Nothing Special   »   [go: up one dir, main page]

EP1556603B1 - Method for charging a piezoelectric actuator on an injection valve and controller - Google Patents

Method for charging a piezoelectric actuator on an injection valve and controller Download PDF

Info

Publication number
EP1556603B1
EP1556603B1 EP03757703A EP03757703A EP1556603B1 EP 1556603 B1 EP1556603 B1 EP 1556603B1 EP 03757703 A EP03757703 A EP 03757703A EP 03757703 A EP03757703 A EP 03757703A EP 1556603 B1 EP1556603 B1 EP 1556603B1
Authority
EP
European Patent Office
Prior art keywords
fuel
pressure
time
actuator
charge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03757703A
Other languages
German (de)
French (fr)
Other versions
EP1556603A1 (en
Inventor
Heinz Lixl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Continental Automotive GmbH
Original Assignee
Continental Automotive GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Continental Automotive GmbH filed Critical Continental Automotive GmbH
Publication of EP1556603A1 publication Critical patent/EP1556603A1/en
Application granted granted Critical
Publication of EP1556603B1 publication Critical patent/EP1556603B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D41/2096Output circuits, e.g. for controlling currents in command coils for controlling piezoelectric injectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2031Control of the current by means of delays or monostable multivibrators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2051Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit using voltage control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0602Fuel pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0602Fuel pressure
    • F02D2200/0604Estimation of fuel pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/063Lift of the valve needle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M47/00Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure
    • F02M47/02Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure of accumulator-injector type, i.e. having fuel pressure of accumulator tending to open, and fuel pressure in other chamber tending to close, injection valves and having means for periodically releasing that closing pressure
    • F02M47/027Electrically actuated valves draining the chamber to release the closing pressure

Definitions

  • the invention relates to a method for charging a piezoelectric actuator of an injection valve according to the preamble of patent claim 1 and a control device according to claim 1.
  • piezoelectric actuators are used.
  • the piezoelectric actuator has the advantage that it quickly changes its length by charging or discharging.
  • the piezoelectric actuator is used at the injection valve to control the injection process.
  • it is known to control a servo valve with the piezoelectric actuator, which closes a drain of a pressure chamber.
  • the pressure chamber is in operative connection with an injection needle, wherein, depending on the pressure in the pressure chamber, the injection needle closes or releases injection holes.
  • the pressure in the pressure chamber is adjusted.
  • a method and a device for driving at least one capacitive actuator are known.
  • the capacitive actuator is formed in a fuel injection valve of an internal combustion engine.
  • the described method charges a capacitive actuator by means of resonant output stages.
  • the resonant output stages have charging capacitors whose capacitances form a resonant circuit with the capacity of the actuator and with the inductance of the charge-reversing coils. From a combustion point of view and to achieve the lowest fuel injection quantities, the shortest possible charging times should be sought, which, however, lead to high noise emissions. Therefore, the charging times are regulated and short charging times predominantly used in those areas where the noise emissions are not bothersome, such as at high engine speeds.
  • the described method and apparatus allow for both shortening and lengthening the charging time of the capacitive actuator of the fuel injector.
  • Out DE 101 58 553 A1 is a driving circuit for a piezoelectric actuator and a fuel injection system is known, wherein the piezoelectric actuator of an injector for discharging fuel is charged, the actuator depending on the state of charge changes its length, depending on the length of the actuator, the fuel delivery is controlled, wherein for Fuel delivery of the charge state of the actuator is changed during a charge time, wherein after a fixed drive time, the charge state of the actuator is brought back to an initial state, wherein the charging time is changed depending on the pressure of the injected fuel, wherein at a higher fuel pressure, a shorter charging time is set.
  • the object of the invention is to provide an improved method for injecting fuel with a piezoelectrically operated injection valve.
  • An advantage of the method according to the invention is that the amount of fuel to be delivered does not increase so much with an increase in the activation time of the piezoelectric actuator. This offers the advantage that the injected fuel quantities change less with the activation time. Thus, fluctuations in the driving time, which occur due to system inaccuracies have less influence on the amount of fuel to be injected. This makes the process more robust overall.
  • This advantage is achieved in that the charging time, in which the piezoelectric actuator is brought from a rest load to a working charge, is selected depending on the fuel pressure.
  • the charge time is made longer at higher fuel pressure than at lower fuel pressure.
  • a large increase in the amount of fuel to be injected is reduced depending on the drive time at high fuel pressure.
  • the Activation time at high fuel pressure reduced.
  • the amount of fuel to be delivered no longer increases so much when the activation time of the piezoelectric actuator is increased.
  • the change of the injected fuel amount is kept at a variation of the driving time in limits. Consequently, system-related inaccuracies in the activation time have less effect on the quantity of fuel to be injected.
  • the method according to the invention is preferably used for charging times which lie between 100 and 300 ⁇ sec. With this bandwidth of the charging time sufficient for many applications influencing the change in the fuel quantity is achieved depending on the change of the driving time.
  • the inventive method is particularly suitable for use in injection systems having a fuel storage.
  • the fuel accumulator supplies fuel to the injector with a definable fuel pressure.
  • the fuel pressure is measured and the charging time of the piezoelectric actuator is adjusted depending on the measured fuel pressure.
  • the inventive method is used in the delivery of very small amounts.
  • very small amounts are understood amounts, for example, less than 20% of the maximum amount of fuel delivered.
  • a large increase in the fuel quantity with an increase in the activation time and the same charging time occur.
  • the large increase in the amount of fuel to be injected at the same drive time can be inventively reduced by extending the charging time at the same drive time.
  • the charging time of the piezoelectric actuator is changed and the charge to be applied to the piezoelectric actuator during the charging time is maintained unchanged.
  • injectors used are very small amounts in the range of less than 5 mm 3 , preferably in the range less than 2.5 mm 3 .
  • a simple realization of the method according to the invention is achieved in that the charging time is read from a map, and that in the map, the charging times are stored depending on the amount of fuel to be injected and the fuel pressure.
  • the inventive method is used in a piezoelectric actuator which drives a servo valve.
  • a piezoelectric actuator which drives a servo valve.
  • experiments have shown that an advantageous effect on the amount of fuel to be injected via a change in the charging time is achieved at preferably constant driving time of the piezoelectric actuator.
  • FIG. 1 shows in a schematic representation, an injection valve 1 with a piezoelectric actuator 2.
  • the piezoelectric actuator 2 is in operative connection with an injection needle 3, the injection ports 4 opens or closes depending on the length of the piezoelectric actuator 2.
  • a transmission module 5, a servo valve 6, a pressure chamber 7 and a control piston 8 is arranged as an operative connection between the injection needle 3 and the actuator 2.
  • the servo valve 6 is in the illustrated embodiment, an outwardly opening valve which controls an outflow of the pressure chamber 7.
  • the servo valve can also be designed to open inwardly.
  • the piezoelectric actuator 2 is biased by a Bourdon tube pressure and connected in the upper part fixed to the housing of the injector. When the piezoelectric actuator is charged with an electric charge, the piezoelectric actuator expands and presses on the transfer module 5 from above. As a result, the transfer module 5 pulls a closing member of the servo valve 6 upward away from the outflow of the pressure chamber 7.
  • the transmission module 5 is designed as an inverse transmission module, which in the case of a change in length of the actuator 2 in the direction of the transmission module 5, a closing member of the Servo valve 6 lifts up in the direction of the piezoelectric actuator 2. In this way, the outflow of the pressure chamber 7 is released.
  • the pressure chamber 7 is supplied via a feed line 9 with a throttle with a fluid at a predetermined pressure.
  • the pressure chamber 7 is also via the movable control piston 8 in operative connection with the injection needle 3. If a high pressure prevails in the pressure chamber 7, the injection needle 3 is pressed onto a sealing seat and thus closes the injection holes 4.
  • an injection chamber 15 is formed, which is hydraulically connected depending on the position of the injection needle with the injection quenchers 4 or not.
  • the injection needle 3 is biased by spring elements, not shown, in such a way that the injection needle 3 wants to lift off from the injection holes 4. If the pressure in the pressure chamber 7 drops due to an opening of the servo valve 6, the injection needle 3 lifts off from the injection holes 4 and releases the injection holes 4. The injection begins.
  • the injection chamber 15 and the supply line 9 are hydraulically connected to a fuel reservoir 10.
  • the fuel accumulator 10 is supplied by a pump 11, preferably a high pressure pump, with fuel at a predetermined pressure.
  • the fuel accumulator 10 in turn supplies the pressure chamber 7 and the injection chamber 15 with the fuel.
  • a pressure sensor 16 is arranged, which detects the pressure in the fuel reservoir 10 and forwards via a measuring line to a control unit 12.
  • the control unit 12 is connected via measurement signals S with sensors of the internal combustion engine in connection, the operating conditions of the internal combustion engine such. B. the speed and the driver's request, ie the accelerator pedal position, capture and forward to the controller 12.
  • the control unit 12 is also via a control line with the pump 11, connected via a data line to a data memory 14 and via a further control line to an output stage 13.
  • the output stage 13 is connected via electrical lines to the piezoelectric actuator in combination.
  • the actuator 2 is charged with the desired electrical charge via the electrical lines.
  • the control unit 12 determines due to the operating conditions of the internal combustion engine such.
  • the controller 12 determines a charging time within which the output stage 13 charges the piezoelectric actuator to a desired charge .
  • the charging process is performed by the output stage 13, which is controlled in the corresponding manner by the control unit 12.
  • FIG. 2 shows a schematic representation of the charge states of the piezoelectric actuator 2 for an injection process.
  • the charge Q of the actuator 2 is plotted over the time t.
  • the actuator 2 Before a first time T1, the actuator 2 has a rest load.
  • the output stage 13 begins to charge the piezoelectric actuator.
  • the charge of the piezoelectric actuator with a maximum value M reaches a working charge.
  • the time between the first and second times T1, T2 is referred to as the charging time.
  • the charge of the piezoelectric actuator remains unchanged.
  • the output stage 13 begins to discharge the piezoelectric actuator.
  • the piezoelectric actuator is discharged back to the initial state until a subsequent fourth time T4.
  • the drive time is the time duration between the first time T1 and the third time T3.
  • Analogous to the characteristic of the FIG. 2 Time-delayed the opening behavior of the injection valve.
  • a short time after the first time T1 the injection needle is lifted from the injection holes, so that a discharge of fuel begins.
  • the injection needle reaches a maximum opening stroke, so that a maximum fuel flow is discharged via the injection holes.
  • a short time after the third time T3, the injection needle moves in the direction of the injection holes and closes the injection holes short time after the fourth time T4.
  • FIG. 3 shows in a schematic program sequence, the sequence of the method according to the invention.
  • the controller 12 detects the data required to control the injector 1.
  • the pressure in the fuel storage 10 is detected.
  • the control unit 12 determines depending on operating parameters such.
  • the charging time is part of the driving time.
  • the charging time is determined depending on the pressure of the fuel.
  • the charging time can be calculated depending on stored functions depending on the pressure or read from a map that is stored in the data memory 14.
  • the fuel pressure is not measured directly, but calculated using the available operating parameters. For example, as an operating parameter, the delivery line of the pump 11, the speed of the internal combustion engine and the amount of fuel to be dispensed from the injection valve can be used to calculate the fuel pressure.
  • control unit 12 calculates the amount of fuel to be injected.
  • the control unit 12 calculates the activation time for the injection valve from the fuel pressure and the quantity of fuel to be injected.
  • the charging time is preferably read from a map which is stored in the data memory 14.
  • the map has a data field which determines the charging time as a function of the fuel quantity to be injected, as a function of the fuel pressure and as a function of the activation time.
  • control unit 12 controls the output stage 13 in such a way that the injection valve 1 is driven according to the determined charging time and the determined activation time.
  • FIG. 4 shows a schematic representation of a characteristic field which shows the amount of fuel to be injected as a function of the driving time for different fuel pressures according to previously known driving method for an injection valve with a piezoelectric actuator.
  • the uppermost characteristic corresponds to a fuel pressure of 1600 bar, a mean characteristic to a fuel pressure of 800 bar and the lowest characteristic to a fuel pressure of 200 bar. It can be seen that, especially at higher pressures, the fuel quantity to be injected increases strongly with the activation time. The large increase in the amount of fuel injected relates to an area where smaller amounts of fuel are injected.
  • FIG. 5 shows a characteristic field, which shows the injected amount of fuel in dependence on the driving time of the piezoelectric actuator of the injection valve. Different characteristics are shown, which were recorded for the same fuel pressure but for different charging times. Three characteristics are shown, which were recorded for the same fuel pressure, but the top characteristic with a charging time of 120 m / sec, the average characteristic with a charging time of 200 m / sec and the lower characteristic with a charging time of 300 m / sec was recorded.
  • the slope of the characteristic is flattened by an extension of the charging time.
  • a flatter characteristic means that a change of the driving time leads to a smaller increase of the injected fuel quantity.
  • the variation of the charging time represents a means for influencing the injection characteristic of the injection valve.
  • the injection behavior of the injection valve can be influenced in such a way that with increasing activation time there is a smaller increase in the injected fuel quantity.
  • the smaller increase in injected fuel quantity as the drive time increases provides the advantage that a deviation from a target injection time calculated by the controller 12 has less of an impact on the actual amount of fuel injected.
  • the actual amount of fuel injected is less affected by fluctuations in the driving time. Fluctuations in the activation time can be caused, for example, by system-related inaccuracies or production-related fluctuations in the electrical properties of the output stage.
  • FIG. 6 shows a characteristic field in which the injected fuel quantity is shown depending on the driving time and which is obtained according to the inventive method.
  • the characteristic field of the FIG. 6 clearly shows that the characteristics increase less steeply with the activation time than in FIG. 4 , In particular, at high pressures, a flatter increase in the injected fuel quantity is achieved with an increase in the activation time by extending the charging time.
  • This in FIG. 6 illustrated injection behavior of an injection valve shows a minimum injection quantity of 0.5 mm 3 .
  • a minimum driving time is shown.
  • various characteristics are shown, the injection quantities over the An horrzeit for different pressures demonstrate.
  • An upper dotted line shows a characteristic curve for a fuel pressure of 1600 bar and a loading time of 300 m / sec.
  • a lowermost dashed line shows the injection quantity dependence of the driving time for a fuel pressure of 200 bar and a charging time of 200 m / sec.
  • the injected fuel quantity is also less dependent on pressure fluctuations. From the comparison of the characteristic 11 of FIG. 4 with the characteristics of the FIG. 6 It can clearly be seen that, with the same activation time, a variation of the injected fuel quantity as a function of different pressures at FIG. 6 is lower.
  • the characteristic curves for different pressures are in the method according to the invention, whose injection behavior in FIG. 6 is shown, much closer together. It is particularly advantageous that hardly any changes in the injection quantity occur in the region of the smallest quantities when the pressure changes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

Die Erfindung betrifft ein Verfahren zum Aufladen eines piezoelektrischen Aktors eines Einspritzventils gemäß dem Oberbegriff des Patentanspruchs 1 und ein Steuergerät gemäß Patentanspruch 1. Bei modernen Einspritzanlagen für Brennkraftmaschinen werden piezoelektrische Aktoren eingesetzt. Der piezoelektrische Aktor hat den Vorteil, dass er durch Aufladen oder Entladen schnell seine Länge ändert. Der piezoelektrische Aktor wird beim Einspritzventil eingesetzt, um den Einspritzvorgang zu steuern. Beispielsweise ist es bekannt, mit dem piezoelektrischen Aktor ein Servoventil anzusteuern, das einen Abfluss einer Druckkammer verschließt. Die Druckkammer steht mit einer Einspritznadel in Wirkverbindung, wobei abhängig vom Druck in der Druckkammer die Einspritznadel Einspritzlöcher verschließt oder freigibt. Abhängig von der Offen- oder Schließstellung des Servoventils wird der Druck in der Druckkammer eingestellt.The invention relates to a method for charging a piezoelectric actuator of an injection valve according to the preamble of patent claim 1 and a control device according to claim 1. In modern injection systems for internal combustion engines piezoelectric actuators are used. The piezoelectric actuator has the advantage that it quickly changes its length by charging or discharging. The piezoelectric actuator is used at the injection valve to control the injection process. For example, it is known to control a servo valve with the piezoelectric actuator, which closes a drain of a pressure chamber. The pressure chamber is in operative connection with an injection needle, wherein, depending on the pressure in the pressure chamber, the injection needle closes or releases injection holes. Depending on the open or closed position of the servo valve, the pressure in the pressure chamber is adjusted.

Weiterhin ist es bekannt, mit dem piezoelektrischen Aktor eine Einspritznadel direkt zu bewegen. Dabei wird die Position der Nadel abhängig von der Länge des piezoelektrischen Aktors festgelegt.Furthermore, it is known to move an injection needle directly with the piezoelectric actuator. The position of the needle is determined depending on the length of the piezoelectric actuator.

Zudem werden bei modernen Einspritzanlagen, insbesondere bei Dieseleinspritzanlagen beim Einspritzen des Kraftstoffes unterschiedliche Kraftstoffdrücke verwendet. Zum Einspritzen einer bestimmten Kraftstoffmenge wird der piezoelektrische Aktor eine bestimmte Ansteuerzeit in einer Aktivposition gehalten. Über die Ansteuerzeit wird die einzuspritzende Kraftstoffmenge festgelegt. Kennlinien für die einzuspritzende Kraftstoffmenge fallen in Abhängigkeit von der Ansteuerzeit für verschiedene Kraftstoffdrücke unterschiedlich aus. Insbesondere für hohe Kraftstoffdrücke tritt im Bereich von kleinen Kraftstoffmengen ein steiler Anstieg der abzugebenen Kraftstoffmenge mit Zunahme der Ansteuerzeit auf. Eine steile Kennlinie weist den Nachteil auf, dass die abzugebene Kraftstoffmenge nur bei einer sehr präzisen Einhaltung der Ansteuerzeit präzise festgelegt werden kann. Dieses Einspritzverhalten führt jedoch dazu, dass entweder die Ansteuerzeit präzise eingehalten werden muss, was eine technisch aufwendige und teure Lösung erfordert. Zum Anderen führt dieses Einspritzverhalten jedoch bei einer weniger technisch aufwendigen Lösung zu relativ großen Ungenauigkeiten bei der eingespritzten Kraftstoffmenge.In addition, different fuel pressures are used in modern injection systems, especially in diesel injection systems when injecting the fuel. To inject a certain amount of fuel, the piezoelectric actuator is held for a certain activation time in an active position. The fuel quantity to be injected is determined via the activation time. Characteristics for the fuel quantity to be injected differ depending on the activation time for different fuel pressures. Especially for high fuel pressures occurs in the range of small amounts of fuel, a steep increase in the amount of fuel to be dispensed with increase in the activation time. A steep characteristic curve has the disadvantage that the amount of fuel to be dispensed can be precisely determined only with a very precise adherence to the activation time. However, this injection behavior means that either the drive time must be precisely met, which requires a technically complex and expensive solution. On the other hand, this injection behavior, however, leads to relatively large inaccuracies in the injected fuel quantity in a less technically complex solution.

Aus DE 100 17 367 A1 ist ein Verfahren und eine Vorrichtung zum Ansteuern wenigstens eines kapazitiven Stellgliedes bekannt. Das kapazitives Stellglied ist in einem Kraftstoffeinspritzventil einer Brennkraftmaschine ausgebildet. Das beschriebene Verfahren lädt ein kapazitives Stellglied mittels resonanter Endstufen auf. Die resonanten Endstufen weisen Ladekondensatoren auf, deren Kapazitäten mit der Kapazität des Stellgliedes und mit der Induktivität der Umladespulen einen Schwingkreis bilden. Aus verbrennungstechnischer Sicht und zur Erzielung geringster Kraftstoffeinspritzmengen sind möglichst kurze Ladungszeiten anzustreben, die jedoch zu hohen Geräuschemissionen führen. Deshalb werden die Ladezeiten geregelt und kurze Ladezeiten überwiegend in solchen Bereichen benutzt, in denen die Geräuschemissionen nicht als störend empfunden werden, wie beispielsweise bei hohen Motordrehzahlen. Das beschriebene Verfahren und die beschriebene Vorrichtung ermöglichen sowohl eine Verkürzung als auch eine Verlängerung der Ladezeit des kapazitiven Stellgliedes des Kraftstoffeinspritzventils.Out DE 100 17 367 A1 For example, a method and a device for driving at least one capacitive actuator are known. The capacitive actuator is formed in a fuel injection valve of an internal combustion engine. The described method charges a capacitive actuator by means of resonant output stages. The resonant output stages have charging capacitors whose capacitances form a resonant circuit with the capacity of the actuator and with the inductance of the charge-reversing coils. From a combustion point of view and to achieve the lowest fuel injection quantities, the shortest possible charging times should be sought, which, however, lead to high noise emissions. Therefore, the charging times are regulated and short charging times predominantly used in those areas where the noise emissions are not bothersome, such as at high engine speeds. The described method and apparatus allow for both shortening and lengthening the charging time of the capacitive actuator of the fuel injector.

Aus DE 199 44 733 A1 ist eine weitere Vorrichtung zum Ansteuern wenigstens eines kapazitiven Stellgliedes eines Kraftstoffeinspritzventils bekannt, mit dem die Ladezeit des kapazitiven Stellgliedes mit Hilfe eines getakteten Transformators eingestellt werden kann.Out DE 199 44 733 A1 a further device for driving at least one capacitive actuator of a fuel injection valve is known, with which the charging time of the capacitive actuator can be adjusted by means of a clocked transformer.

Aus DE 101 58 553 A1 ist eine Ansteuerschaltung für einen piezoelektrischen Aktor und ein Kraftstoffeinspritzsystem bekannt, wobei der piezoelektrische Aktor eines Einspritzventils zum Abgeben von Kraftstoff aufgeladen wird, wobei der Aktor abhängig vom Ladungszustand seine Länge ändert, wobei abhängig von der Länge des Aktors die Kraftstoffabgabe gesteuert wird, wobei für eine Kraftstoffabgabe der Ladungszustand des Aktors während einer Ladezeit verändert wird, wobei nach einer festgelegten Ansteuerzeit der Ladungszustand des Aktors wieder auf einen Ausgangszustand gebracht wird, wobei die Ladezeit abhängig vom Druck des einzuspritzenden Kraftstoffes verändert wird, wobei bei einem höheren Kraftstoffdruck eine kürzere Ladezeit eingestellt wird.Out DE 101 58 553 A1 is a driving circuit for a piezoelectric actuator and a fuel injection system is known, wherein the piezoelectric actuator of an injector for discharging fuel is charged, the actuator depending on the state of charge changes its length, depending on the length of the actuator, the fuel delivery is controlled, wherein for Fuel delivery of the charge state of the actuator is changed during a charge time, wherein after a fixed drive time, the charge state of the actuator is brought back to an initial state, wherein the charging time is changed depending on the pressure of the injected fuel, wherein at a higher fuel pressure, a shorter charging time is set.

Aus EP 1 138 904 A1 ist ein Verfahren und eine Vorrichtung zum Aufladen eines piezoelektrischen Aktors für ein Einspritzventil bekannt, wobei die dem piezoelektrischen Aktor zuzuführende Energie zur Erzielung eines gewünschten Hubes in Abhängigkeit vom Druck des einzuspritzenden Kraftstoffes bestimmt wird. Die zuzuführende Energie wird durch eine entsprechende Ladespannung des Aktors insbesondere durch eine Ladezeit festgelegt. Bei einem hohen Kraftstoffdruck wird die Ladezeit kürzer gewählt als bei einem niedrigen Kraftstoffdruck.Out EP 1 138 904 A1 a method and a device for charging a piezoelectric actuator for an injection valve is known, wherein the piezoelectric actuator to be supplied energy to achieve a desired stroke in dependence on the pressure of the fuel to be injected is determined. The energy to be supplied is determined by a corresponding charging voltage of the actuator, in particular by a charging time. At a high fuel pressure, the charging time is set shorter than at a low fuel pressure.

Die Aufgabe der Erfindung besteht darin, ein verbessertes Verfahren zum Einspritzen von Kraftstoff mit einem piezoelektrisch betriebenen Einspritzventil bereit zu stellen.The object of the invention is to provide an improved method for injecting fuel with a piezoelectrically operated injection valve.

Die Aufgabe der Erfindung wird durch das Verfahren gemäß Anspruch 1 und durch das Steuergerät gemäß Anspruch 9 gelöst. Weitere vorteilhafte Ausführungsformen der Erfindung sind in den abhängigen Ansprüchen angegeben.The object of the invention is achieved by the method according to claim 1 and by the control device according to claim 9. Further advantageous embodiments of the invention are specified in the dependent claims.

Ein Vorteil des erfindungsgemäßen Verfahrens besteht darin, dass die abzugebende Kraftstoffmenge nicht so sehr mit einer Zunahme der Ansteuerzeit des piezoelektrischen Aktors zunimmt. Dies bietet den Vorteil, dass die eingespritzten Kraftstoffmengen sich weniger stark mit der Ansteuerzeit ändern. Somit haben Schwankungen der Ansteuerzeit, die aufgrund von Systemungenauigkeiten auftreten, einen geringeren Einfluss auf die einzuspritzenden Kraftstoffmenge. Damit ist das Verfahren insgesamt robuster. Dieser Vorteil wird dadurch erreicht, dass die Ladezeit, in der der piezoelektrische Aktor von einer Ruheladung zu einer Arbeitsladung gebracht wird, abhängig vom Kraftstoffdruck gewählt wird.An advantage of the method according to the invention is that the amount of fuel to be delivered does not increase so much with an increase in the activation time of the piezoelectric actuator. This offers the advantage that the injected fuel quantities change less with the activation time. Thus, fluctuations in the driving time, which occur due to system inaccuracies have less influence on the amount of fuel to be injected. This makes the process more robust overall. This advantage is achieved in that the charging time, in which the piezoelectric actuator is brought from a rest load to a working charge, is selected depending on the fuel pressure.

Versuche haben gezeigt, dass bei verschiedenen Drücken die Ladezeit unterschiedliche Auswirkungen auf die tatsächlich eingespritzte Kraftstoffmenge hat. Somit wurde erkannt, dass die Variation der Ladezeit abhängig vom Kraftstoffdruck eine vorteilhafte Beeinflussung der einzuspritzenden Kraftstoffmenge ermöglicht. Insbesondere ist die tatsächlich eingespritzte Kraftstoffmenge weniger abhängig von Kraftstoffdruckschwankungen.Experiments have shown that at different pressures the charging time has different effects on the actual injected fuel quantity. Thus, it was recognized that the variation of the charging time depending on the fuel pressure allows an advantageous influence on the amount of fuel to be injected. In particular, the actual amount of fuel injected is less dependent on fuel pressure fluctuations.

In der erfindungsgemäßen Ausführungsform wird die Ladezeit bei höherem Kraftstoffdruck länger gewählt als bei einem niedrigeren Kraftstoffdruck. Durch diese Maßnahme wird eine große Zunahme der einzuspritzenden Kraftstoffmenge abhängig von der Ansteuerzeit bei hohem Kraftstoffdruck reduziert. Die Ansteuerzeit bei hohem Kraftstoffdruck reduziert. Die Folge ist, dass im Gegensatz zu bisherigen Verfahren sich die abzugebene Kraftstoffmenge bei einer Verlängerung der Ansteuerzeit des piezoelektrischen Aktors nicht mehr so stark zunimmt. Somit wird die Änderung der eingespritzten Kraftstoffmenge bei einer Variation der Ansteuerzeit in Grenzen gehalten. Folglich wirken sich systembedingte Ungenauigkeiten bei der Ansteuerzeit weniger auf die einzuspritzende Kraftstoffmenge aus.In the embodiment of the present invention, the charge time is made longer at higher fuel pressure than at lower fuel pressure. By this measure, a large increase in the amount of fuel to be injected is reduced depending on the drive time at high fuel pressure. The Activation time at high fuel pressure reduced. The result is that, in contrast to previous methods, the amount of fuel to be delivered no longer increases so much when the activation time of the piezoelectric actuator is increased. Thus, the change of the injected fuel amount is kept at a variation of the driving time in limits. Consequently, system-related inaccuracies in the activation time have less effect on the quantity of fuel to be injected.

Das erfindungsgemäße Verfahren wird vorzugsweise für Ladezeiten eingesetzt, die zwischen 100 und 300 µsec liegen. Mit dieser Bandbreite der Ladezeit wird eine für viele Anwendungsfälle ausreichende Beeinflussung der Änderung der Kraftstoffmenge abhängig von der Änderung der Ansteuerzeit erreicht.The method according to the invention is preferably used for charging times which lie between 100 and 300 μsec. With this bandwidth of the charging time sufficient for many applications influencing the change in the fuel quantity is achieved depending on the change of the driving time.

Das erfindungsgemäße Verfahren eignet sich insbesondere zur Anwendung bei Einspritzanlagen, die einen Kraftstoffspeicher aufweisen. Der Kraftstoffspeicher führt dem Einspritzventil Kraftstoff mit einem festlegbaren Kraftstoffdruck zu. Der Kraftstoffdruck wird gemessen und die Ladezeit des piezoelektrischen Aktors abhängig von dem gemessenen Kraftstoffdruck eingestellt.The inventive method is particularly suitable for use in injection systems having a fuel storage. The fuel accumulator supplies fuel to the injector with a definable fuel pressure. The fuel pressure is measured and the charging time of the piezoelectric actuator is adjusted depending on the measured fuel pressure.

Vorzugsweise wird das erfindungsgemäße Verfahren bei der Abgabe von Kleinstmengen eingesetzt. Unter Kleinstmengen werden Mengen verstanden die beispielsweise kleiner als 20 % der maximal abgegebenen Kraftstoffmenge sind. Versuche haben gezeigt, dass insbesondere bei Kleinstmengen eine starke Zunahme der Kraftstoffmenge mit Zunahme der Ansteuerzeit und gleicher Ladezeit auftreten. Die starke Zunahme der einzuspritzenden Kraftstoffmenge bei gleicher Ansteuerzeit kann erfindungsgemäß durch eine Verlängerung der Ladezeit bei gleichbleibender Ansteuerzeit reduziert werden.Preferably, the inventive method is used in the delivery of very small amounts. Under very small amounts are understood amounts, for example, less than 20% of the maximum amount of fuel delivered. Experiments have shown that, especially for very small quantities, a large increase in the fuel quantity with an increase in the activation time and the same charging time occur. The large increase in the amount of fuel to be injected at the same drive time can be inventively reduced by extending the charging time at the same drive time.

Vorzugsweise wird nur die Ladezeit des piezoelektrischen Aktors verändert und die während der Ladezeit auf dem piezoelektrischen Aktor aufzubringende Ladung unverändert beibehalten.Preferably, only the charging time of the piezoelectric actuator is changed and the charge to be applied to the piezoelectric actuator during the charging time is maintained unchanged.

Bei den verwendeten Einspritzventilen liegen Kleinstmengen im Bereich kleiner 5 mm3, vorzugsweise im Bereich kleiner 2,5 mm3.In the injectors used are very small amounts in the range of less than 5 mm 3 , preferably in the range less than 2.5 mm 3 .

Eine einfache Realisierung des erfindungsgemäßen Verfahrens wird dadurch erreicht, dass die Ladezeit aus einem Kennfeld ausgelesen wird, und dass im Kennfeld die Ladezeiten abhängig von der einzuspritzenden Kraftstoffmenge und dem Kraftstoffdruck abgelegt sind.A simple realization of the method according to the invention is achieved in that the charging time is read from a map, and that in the map, the charging times are stored depending on the amount of fuel to be injected and the fuel pressure.

Vorzugsweise wird das erfindungsgemäße Verfahren bei einem piezoelektrischen Aktor eingesetzt, der ein Servoventil ansteuert. Insbesondere bei der Ausführung eines piezoelektrischen Aktors mit der Verwendung eines Servoventils haben Versuche gezeigt, dass eine vorteilhafte Beeinflussung der einzuspritzenden Kraftstoffmenge über eine Veränderung der Ladezeit bei vorzugsweise konstanter Ansteuerzeit des piezoelektrischen Aktors erreicht wird.Preferably, the inventive method is used in a piezoelectric actuator which drives a servo valve. In particular, in the execution of a piezoelectric actuator with the use of a servo valve experiments have shown that an advantageous effect on the amount of fuel to be injected via a change in the charging time is achieved at preferably constant driving time of the piezoelectric actuator.

Die Erfindung wird im folgenden anhand der Figuren näher erläutert.The invention will be explained in more detail below with reference to FIGS.

Es zeigen

  • Figur 1 eine schematische Darstellung eines piezoelektrischen Einspritzventils mit einer Ansteuerschaltung,
  • Figur 2 eine schematische Darstellung der Ladungszustände bei einem Einspritzvorgang,
  • Figur 3 einen schematischen Programmablauf zur Ansteuerung des Einspritzventils,
  • Figur 4 ein erstes Injektorkennfeld, das Kennlinien für die eingespritzte Kraftstoffmenge in Abhängigkeit der Ansteuerzeit und verschiedener Kraftstoffdrücke zeigt,
  • Figur 5 ein zweites Kennlinienfeld, das Kennlinien für die eingespritzte Kraftstoffmenge in Abhängigkeit von der Ansteuerzeit für verschiedene Ladezeiten zeigt, und
  • Figur 6 ein drittes Kennlinienfeld, das Kennlinien für verschiedene Drücke für die eingespritzte Kraftstoffmenge in Abhängigkeit von der Ansteuerzeit zeigt, wobei bei den verschiedenen Drücken verschiedene Ladezeiten verwendet werden.
Show it
  • FIG. 1 a schematic representation of a piezoelectric injector with a drive circuit,
  • FIG. 2 a schematic representation of the charge states in an injection process,
  • FIG. 3 a schematic program sequence for controlling the injection valve,
  • FIG. 4 a first injector map showing fuel injected quantity characteristics as a function of drive time and various fuel pressures;
  • FIG. 5 a second characteristic field, which shows characteristics for the injected fuel quantity as a function of the activation time for different charging times, and
  • FIG. 6 a third characteristic curve showing characteristic curves for different pressures for the injected fuel quantity as a function of the activation time, wherein different charging times are used at the different pressures.

Figur 1 zeigt in einer schematischen Darstellung, ein Einspritzventil 1 mit einem piezoelektrischen Aktor 2. Der piezoelektrische Aktor 2 steht in Wirkverbindung mit einer Einspritznadel 3, die abhängig von der Länge des piezoelektrischen Aktors 2 Einspritzlöcher 4 öffnet oder verschließt. FIG. 1 shows in a schematic representation, an injection valve 1 with a piezoelectric actuator 2. The piezoelectric actuator 2 is in operative connection with an injection needle 3, the injection ports 4 opens or closes depending on the length of the piezoelectric actuator 2.

In dem dargestellten Ausführungsbeispiel ist als Wirkverbindung zwischen der Einspritznadel 3 und dem Aktor 2 ein Übertragungsmodul 5, ein Servoventil 6, eine Druckkammer 7 und ein Steuerkolben 8 angeordnet. Das Servoventil 6 ist in dem dargestellten Ausführungsbeispiel ein nach außen öffnendes Ventil, das einen Abfluss der Druckkammer 7 regelt. In einer weiteren Ausführungsform kann das Servoventil auch nach innen öffnend ausgebildet sein. Der piezoelektrische Aktor 2 ist von einer Rohrfeder auf Druck vorgespannt und im oberen Bereich fest mit dem Gehäuse des Einspritzventils verbunden. Wird der piezoelektrische Aktor mit einer elektrischen Ladung beaufschlagt, so dehnt sich der piezoelektrische Aktor aus und drückt von oben auf das Übertragungsmodul 5. Als Folge davon zieht das Übertragungsmodul 5 ein Schließglied des Servoventils 6 nach oben von dem Abfluss der Druckkammer 7 weg. Das Übertragungsmodul 5 ist als inverses Übertragungsmodul ausgebildet, das bei einer Längenänderung des Aktors 2 in Richtung auf das Übertragungsmodul 5 ein Schließglied des Servoventil 6 nach oben in Richtung zum piezoelektrischen Aktor 2 anhebt. Auf diese Weise wird der Abfluss der Druckkammer 7 frei gegeben.In the illustrated embodiment, a transmission module 5, a servo valve 6, a pressure chamber 7 and a control piston 8 is arranged as an operative connection between the injection needle 3 and the actuator 2. The servo valve 6 is in the illustrated embodiment, an outwardly opening valve which controls an outflow of the pressure chamber 7. In a further embodiment, the servo valve can also be designed to open inwardly. The piezoelectric actuator 2 is biased by a Bourdon tube pressure and connected in the upper part fixed to the housing of the injector. When the piezoelectric actuator is charged with an electric charge, the piezoelectric actuator expands and presses on the transfer module 5 from above. As a result, the transfer module 5 pulls a closing member of the servo valve 6 upward away from the outflow of the pressure chamber 7. The transmission module 5 is designed as an inverse transmission module, which in the case of a change in length of the actuator 2 in the direction of the transmission module 5, a closing member of the Servo valve 6 lifts up in the direction of the piezoelectric actuator 2. In this way, the outflow of the pressure chamber 7 is released.

Die Druckkammer 7 wird über eine Zuleitung 9 mit einer Drossel mit einem Fluid mit einem festgelegten Druck versorgt. Die Druckkammer 7 steht zudem über den beweglichen Steuerkolben 8 in Wirkverbindung mit der Einspritznadel 3. Herrscht in der Druckkammer 7 ein hoher Druck so wird die Einspritznadel 3 auf einen Dichtsitz gedrückt und verschließt damit die Einspritzlöcher 4. Zwischen der Einspritznadel 3 und dem Gehäuse des Einspritzventils ist eine Einspritzkammer 15 ausgebildet, die abhängig von der Position der Einspritznadel mit den Einspritzlöschern 4 hydraulisch verbunden ist, oder nicht.The pressure chamber 7 is supplied via a feed line 9 with a throttle with a fluid at a predetermined pressure. The pressure chamber 7 is also via the movable control piston 8 in operative connection with the injection needle 3. If a high pressure prevails in the pressure chamber 7, the injection needle 3 is pressed onto a sealing seat and thus closes the injection holes 4. Between the injection needle 3 and the housing of the injection valve an injection chamber 15 is formed, which is hydraulically connected depending on the position of the injection needle with the injection quenchers 4 or not.

Die Einspritznadel 3 ist über nicht dargestellte Federelemente in der Weise vorgespannt, dass die Einspritznadel 3 von den Einspritzlöchern 4 abheben will. Sinkt der Druck in der Druckkammer 7 durch ein Öffnen des Servoventils 6, so hebt die Einspritznadel 3 von den Einspritzlöchern 4 ab und gibt die Einspritzlöcher 4 frei. Die Einspritzung beginnt.The injection needle 3 is biased by spring elements, not shown, in such a way that the injection needle 3 wants to lift off from the injection holes 4. If the pressure in the pressure chamber 7 drops due to an opening of the servo valve 6, the injection needle 3 lifts off from the injection holes 4 and releases the injection holes 4. The injection begins.

Die Einspritzkammer 15 und die Zuleitung 9 stehen mit einem Kraftstoffspeicher 10 hydraulisch in Verbindung. Der Kraftstoffspeicher 10 wird von einer Pumpe 11, vorzugsweise einer Hochdruckpumpe, mit Kraftstoff mit einem festgelegten Druck versorgt. Der Kraftstoffspeicher 10 versorgt wiederum die Druckkammer 7 und den Einspritzraum 15 mit dem Kraftstoff.The injection chamber 15 and the supply line 9 are hydraulically connected to a fuel reservoir 10. The fuel accumulator 10 is supplied by a pump 11, preferably a high pressure pump, with fuel at a predetermined pressure. The fuel accumulator 10 in turn supplies the pressure chamber 7 and the injection chamber 15 with the fuel.

Am Kraftstoffspeicher 10 ist ein Drucksensor 16 angeordnet, der den Druck im Kraftstoffspeicher 10 erfasst und über eine Messleitung an ein Steuergerät 12 weiterleitet. Das Steuergerät 12 steht über Messsignale S mit Sensoren der Brennkraftmaschine in Verbindung, die Betriebszustände der Brennkraftmaschine wie z. B. die Drehzahl und den Fahrerwunsch, d. h. die Gaspedalstellung, erfassen und an das Steuergerät 12 weiterleiten. Das Steuergerät 12 ist zudem über eine Steuerleitung mit der Pumpe 11, über eine Datenleitung mit einem Datenspeicher 14 und über eine weitere Steuerleitung mit einer Endstufe 13 verbunden. Die Endstufe 13 steht über elektrische Leitungen mit dem piezoelektrischen Aktor in Verbindung. Über die elektrischen Leitungen wird der Aktor 2 mit der gewünschten elektrischen Ladung aufgeladen. Das Steuergerät 12 ermittelt aufgrund der Betriebsbedingungen der Brennkraftmaschine wie z. B. der Drehzahl und der Gaspedalstellung in Abhängigkeit von Kennfeldern, die im Speicher 14 abgelegt sind, Zeitpunkte zum Aufladen und Endladen des piezoelektrischen Aktors 2. Zudem ermittelt das Steuergerät 12 eine Ladezeit, innerhalb der die Endstufe 13 den piezoelektrischen Aktor auf eine gewünschte Ladung auflädt. Der Aufladevorgang wird von der Endstufe 13 durchgeführt, die in den entsprechender Weise vom Steuergerät 12 angesteuert wird.At the fuel reservoir 10, a pressure sensor 16 is arranged, which detects the pressure in the fuel reservoir 10 and forwards via a measuring line to a control unit 12. The control unit 12 is connected via measurement signals S with sensors of the internal combustion engine in connection, the operating conditions of the internal combustion engine such. B. the speed and the driver's request, ie the accelerator pedal position, capture and forward to the controller 12. The control unit 12 is also via a control line with the pump 11, connected via a data line to a data memory 14 and via a further control line to an output stage 13. The output stage 13 is connected via electrical lines to the piezoelectric actuator in combination. The actuator 2 is charged with the desired electrical charge via the electrical lines. The control unit 12 determines due to the operating conditions of the internal combustion engine such. As the speed and the accelerator pedal position depending on maps stored in the memory 14, times for charging and discharging the piezoelectric actuator 2. In addition, the controller 12 determines a charging time within which the output stage 13 charges the piezoelectric actuator to a desired charge , The charging process is performed by the output stage 13, which is controlled in the corresponding manner by the control unit 12.

Figur 2 zeigt eine schematische Darstellung der Ladungszustände des piezoelektrischen Aktors 2 für einen Einspritzvorgang. Im Diagramm der Figur 2 ist die Ladung Q des Aktors 2 über die Zeit t aufgetragen. Vor einem ersten Zeitpunkt T1 weist der Aktor 2 eine Ruheladung auf. Zu einem ersten Zeitpunkt T1 beginnt die Endstufe 13 mit dem Aufladen des piezoelektrischen Aktors. Zu einem zweiten Zeitpunkt T2 erreicht die Ladung des piezoelektrischen Aktors mit einem Maximalwert M eine Arbeitsladung. Die Zeit zwischen dem ersten und zweiten Zeitpunkt T1, T2 wird als Ladezeit bezeichnet. In dem Zeitraum zwischen dem zweiten Zeitpunkt T2 und einem dritten Zeitpunkt T3 bleibt die Ladung des piezoelektrischen Aktors unverändert. Zum dritten Zeitpunkt T3 beginnt die Endstufe 13 mit dem Entladen des piezoelektrischen Aktors. Innerhalb einer Entladezeit wird bis zu einem folgenden vierten Zeitpunkt T4 der piezoelektrische Aktor wieder auf den Ausgangszustand entladen. FIG. 2 shows a schematic representation of the charge states of the piezoelectric actuator 2 for an injection process. In the diagram of FIG. 2 the charge Q of the actuator 2 is plotted over the time t. Before a first time T1, the actuator 2 has a rest load. At a first time T1, the output stage 13 begins to charge the piezoelectric actuator. At a second time T2, the charge of the piezoelectric actuator with a maximum value M reaches a working charge. The time between the first and second times T1, T2 is referred to as the charging time. In the period between the second time T2 and a third time T3, the charge of the piezoelectric actuator remains unchanged. At the third time T3, the output stage 13 begins to discharge the piezoelectric actuator. Within a discharge time, the piezoelectric actuator is discharged back to the initial state until a subsequent fourth time T4.

Als Ansteuerzeit wird die Zeitdauer zwischen dem ersten Zeitpunkt T1 und dem dritten Zeitpunkt T3 bezeichnet. Analog zu der Kennlinie der Figur 2 verläuft zeitversetzt das Öffnungsverhalten des Einspritzventils. Kurze Zeit nach dem ersten Zeitpunkt T1 wird die Einspritznadel von den Einspritzlöchern abgehoben, so dass eine Abgabe von Kraftstoff beginnt. Kurz nach dem zweiten Zeitpunkt T2 erreicht die Einspritznadel einen maximalen Öffnungshub, so dass ein maximaler Kraftstoffstrom über die Einspritzlöcher abgegeben wird. Kurze Zeit nach dem dritten Zeitpunkt T3 bewegt sich die Einspritznadel in Richtung auf die Einspritzlöcher und verschließt die Einspritzlöcher kurze Zeit nach dem vierten Zeitpunkt T4.The drive time is the time duration between the first time T1 and the third time T3. Analogous to the characteristic of the FIG. 2 Time-delayed the opening behavior of the injection valve. A short time after the first time T1, the injection needle is lifted from the injection holes, so that a discharge of fuel begins. Shortly after the second time T2, the injection needle reaches a maximum opening stroke, so that a maximum fuel flow is discharged via the injection holes. A short time after the third time T3, the injection needle moves in the direction of the injection holes and closes the injection holes short time after the fourth time T4.

Figur 3 zeigt in einem schematischen Programmablauf die Abfolge des erfindungsgemäßen Verfahrens. Bei Programmpunkt 100 erfasst das Steuergerät 12 die Daten, die zur Steuerung des Einspritzventils 1 erforderlich sind. Dabei wird auch der Druck im Kraftstoffspeicher 10 erfasst. Anschließend ermittelt das Steuergerät 12 abhängig von Betriebsparametern wie z. B. der Drehzahl und dem Fahrerwunsch und abhängig vom Kaftstoffdruck den Beginn der Ansteuerung des piezoelektrischen Aktors die Ladezeit und die Ansteuerzeit. Die Ladezeit ist ein Teil der Ansteuerzeit. Erfindungsgemäß wird die Ladezeit abhängig vom Druck des Kraftstoffes ermittelt. Die Ladezeit kann dabei nach abgelegten Funktionen abhängig vom Druck berechnet oder aus einem Kennfeld ausgelesen werden, das im Datenspeicher 14 abgelegt ist. In einer weiteren Ausführungsform wird der Kraftstoffdruck nicht direkt gemessen, sondern über die zur Verfügung stehenden Betriebsparameter berechnet. Beispielsweise kann als Betriebsparameter die Förderleitung der Pumpe 11, die Drehzahl der Brennkraftmaschine und die vom Einspritzventil abzugebene Kraftstoffmenge verwendet werden, um den Kraftstoffdruck zu berechnen. FIG. 3 shows in a schematic program sequence, the sequence of the method according to the invention. At program point 100, the controller 12 detects the data required to control the injector 1. In this case, the pressure in the fuel storage 10 is detected. Subsequently, the control unit 12 determines depending on operating parameters such. As the speed and the driver's request and depending on Kaftstoffdruck the beginning of the control of the piezoelectric actuator, the charging time and the driving time. The charging time is part of the driving time. According to the charging time is determined depending on the pressure of the fuel. The charging time can be calculated depending on stored functions depending on the pressure or read from a map that is stored in the data memory 14. In a further embodiment, the fuel pressure is not measured directly, but calculated using the available operating parameters. For example, as an operating parameter, the delivery line of the pump 11, the speed of the internal combustion engine and the amount of fuel to be dispensed from the injection valve can be used to calculate the fuel pressure.

Bei folgenden Programmpunkt 110 berechnet das Steuergerät 12 die einzuspritzende Kraftstoffmenge.At the following program item 110, the control unit 12 calculates the amount of fuel to be injected.

Beim folgendem Programmpunkt 120 berechnet das Steuergerät 12 aus dem Kraftstoffdruck und der einzuspritzenden Kraftstoffmenge die Ansteuerzeit für das Einspritzventil. Zudem wird erfindungsgemäß abhängig vom Kraftstoffdruck die Ladezeit festgelegt. Die Ladezeit wird dabei vorzugsweise aus einem Kennfeld ausgelesen, das im Datenspeicher 14 abgelegt ist. Das Kennfeld weist ein Datenfeld auf, das die Ladezeit in Abhängigkeit von der einzuspritzenden Kraftstoffmenge, in Abhängigkeit vom Kraftstoffdruck und in Abhängigkeit von der Ansteuerzeit festlegt.At the following program point 120, the control unit 12 calculates the activation time for the injection valve from the fuel pressure and the quantity of fuel to be injected. In addition, will according to the invention set the charging time depending on the fuel pressure. The charging time is preferably read from a map which is stored in the data memory 14. The map has a data field which determines the charging time as a function of the fuel quantity to be injected, as a function of the fuel pressure and as a function of the activation time.

Beim folgenden Programmpunkt 130 steuert das Steuergerät 12 die Endstufe 13 in der Weise an, dass das Einspritzventil 1 entsprechend der ermittelten Ladezeit und der ermittelten Ansteuerzeit angesteuert wird.In the following program item 130, the control unit 12 controls the output stage 13 in such a way that the injection valve 1 is driven according to the determined charging time and the determined activation time.

Figur 4 zeigt in einer schematischen Darstellung ein Kennlinienfeld, das die einzuspritzende Kraftstoffmenge in Abhängigkeit von der Ansteuerzeit für verschiedene Kraftstoffdrücke gemäß bisher bekannten Ansteuerverfahren für ein Einspritzventil mit einem piezoelektrischen Aktor zeigt. Die oberste Kennlinie entspricht einem Kraftstoffdruck von 1600 bar, eine mittlere Kennlinie einem Kraftstoffdruck von 800 bar und die unterste Kennlinie einem Kraftstoffdruck von 200 bar. Es ist dabei zu erkennen, dass insbesondere bei höheren Drücken die einzuspritzende Kraftstoffmenge stark mit der Ansteuerzeit zunimmt. Die starke Zunahme der eingespritzten Kraftstoffmenge betrifft einen Bereich, bei dem kleinere Kraftstoffmengen eingespritzt werden. FIG. 4 shows a schematic representation of a characteristic field which shows the amount of fuel to be injected as a function of the driving time for different fuel pressures according to previously known driving method for an injection valve with a piezoelectric actuator. The uppermost characteristic corresponds to a fuel pressure of 1600 bar, a mean characteristic to a fuel pressure of 800 bar and the lowest characteristic to a fuel pressure of 200 bar. It can be seen that, especially at higher pressures, the fuel quantity to be injected increases strongly with the activation time. The large increase in the amount of fuel injected relates to an area where smaller amounts of fuel are injected.

Figur 5 zeigt ein Kennlinienfeld, das die eingespritzte Kraftstoffmenge in Abhängigkeit von der Ansteuerzeit des piezoelektrischen Aktors des Einspritzventils zeigt. Es sind verschiedene Kennlinien dargestellt, die für den gleichen Kraftstoffdruck aber für verschiedene Ladezeiten erfasst wurden. Es sind drei Kennlinien dargestellt, die für den gleichen Kraftstoffdruck erfasst wurden, wobei jedoch die oberste Kennlinie mit einer Ladezeit von 120 m/sec, die mittlere Kennlinie mit einer Ladezeit von 200 m/sec und die untere Kennlinie mit einer Ladezeit von 300 m/sec erfasst wurde. Aus der Figur 5 ist zu erkennen, dass durch eine Verlängerung der Ladezeit die Steigung der Kennlinie abgeflacht wird. Eine flachere Kennlinie bedeutet, dass eine Änderung der Ansteuerzeit zu einer kleineren Zunahme der eingespritzten Kraftstoffmenge führt. Somit ist aus Figur 5 erkennbar, dass die Variation der Ladezeit ein Mittel zur Beeinflussung der Einspritzcharakteristik des Einspritzventils dargestellt. FIG. 5 shows a characteristic field, which shows the injected amount of fuel in dependence on the driving time of the piezoelectric actuator of the injection valve. Different characteristics are shown, which were recorded for the same fuel pressure but for different charging times. Three characteristics are shown, which were recorded for the same fuel pressure, but the top characteristic with a charging time of 120 m / sec, the average characteristic with a charging time of 200 m / sec and the lower characteristic with a charging time of 300 m / sec was recorded. Out of the FIG. 5 It can be seen that the slope of the characteristic is flattened by an extension of the charging time. A flatter characteristic means that a change of the driving time leads to a smaller increase of the injected fuel quantity. Thus is off FIG. 5 It can be seen that the variation of the charging time represents a means for influencing the injection characteristic of the injection valve.

Beispielsweise kann bei Beibehaltung der Ansteuerzeit durch eine Verlängerung der Ladezeit das Einspritzverhalten des Einspritzventils in der Weise beeinflusst werden, dass mit Zunahme der Ansteuerzeit eine geringere Zunahme der eingespitzten Kraftstoffmenge erfolgt. Die geringere Zunahme der eingespritzten Kraftstoffmenge bei Zunahme der Ansteuerzeit bietet den Vorteil, dass eine Abweichung von einer Solleinspritzzeit, die vom Steuergerät 12 berechnet wird, eine geringere Auswirkung auf die tatsächlich eingespritzte Kraftstoffmenge hat. Somit wird die tatsächlich eingespritzte Kraftstoffmenge weniger von Schwankungen der Ansteuerzeit beeinflusst. Schwankungen der Ansteuerzeit können beispielsweise durch systembedingte Ungenauigkeiten oder herstellungsbedingte Schwankungen der elektrischen Eigenschaften der Endstufe bewirkt werden.For example, while maintaining the activation time by lengthening the charging time, the injection behavior of the injection valve can be influenced in such a way that with increasing activation time there is a smaller increase in the injected fuel quantity. The smaller increase in injected fuel quantity as the drive time increases provides the advantage that a deviation from a target injection time calculated by the controller 12 has less of an impact on the actual amount of fuel injected. Thus, the actual amount of fuel injected is less affected by fluctuations in the driving time. Fluctuations in the activation time can be caused, for example, by system-related inaccuracies or production-related fluctuations in the electrical properties of the output stage.

Figur 6 zeigt ein Kennlinienfeld, bei dem die eingespritzte Kraftstoffmenge abhängig von der Ansteuerzeit dargestellt ist und das gemäß dem erfindungsgemäßen Verfahren erhalten wird. Das Kennlinienfeld der Figur 6 zeigt deutlich, dass die Kennlinien weniger steil mit der Ansteuerzeit ansteigen als in Figur 4. Insbesondere bei hohen Drücken wird durch eine Verlängerung der Ladezeit ein flacherer Anstieg der eingespritzten Kraftstoffmenge mit Anstieg der Ansteuerzeit erreicht. Das in Figur 6 dargestellte Einspritzverhalten eines Einspritzventils zeigt eine minimale Einspritzmenge von 0,5 mm3. Zudem ist eine minimale Ansteuerdauer eingezeichnet. Weiterhin sind verschiedene Kennlinien eingezeichnet, die die Einspritzmengen über die Ansteuerzeit für verschiedene Drücke zeigen. Eine obere gepunktete Linie zeigt eine Kennlinie für eine Kraftstoffdruck von 1600 bar und einer Ladezeit von 300 m/sec. Eine unterste gestrichelte Trennlinie zeigt die Einspritzmengenabhängigkeit von der Ansteuerzeit für einen Kraftstoffdruck von 200 bar und einer Ladezeit von 200 m/sec. FIG. 6 shows a characteristic field in which the injected fuel quantity is shown depending on the driving time and which is obtained according to the inventive method. The characteristic field of the FIG. 6 clearly shows that the characteristics increase less steeply with the activation time than in FIG. 4 , In particular, at high pressures, a flatter increase in the injected fuel quantity is achieved with an increase in the activation time by extending the charging time. This in FIG. 6 illustrated injection behavior of an injection valve shows a minimum injection quantity of 0.5 mm 3 . In addition, a minimum driving time is shown. Furthermore, various characteristics are shown, the injection quantities over the Ansteuerzeit for different pressures demonstrate. An upper dotted line shows a characteristic curve for a fuel pressure of 1600 bar and a loading time of 300 m / sec. A lowermost dashed line shows the injection quantity dependence of the driving time for a fuel pressure of 200 bar and a charging time of 200 m / sec.

Zudem ist gemäß dem erfindungsgemäßen Verfahren die eingespritzte Kraftstoffmenge auch weniger abhängig von Druckschwankungen. Aus dem Vergleich der Kennlinie 11 der Figur 4 mit den Kennlinien der Figur 6 ist deutlich zu erkennen, dass bei gleichbleibender Ansteuerzeit eine Variation der eingespritzten Kraftstoffmenge in Abhängigkeit von unterschiedlichen Drücken bei Figur 6 geringer ist. Die Kennlinien für unterschiedliche Drücke liegen bei dem erfindungsgemäßen Verfahren, dessen Einspritzverhalten in Figur 6 dargestellt ist, deutlich enger beieinander. Besonders vorteilhaft ist, dass im Bereich der Kleinstmengen kaum Änderungen der Einspritzmenge bei einer Änderung des Druckes auftreten.In addition, according to the method according to the invention, the injected fuel quantity is also less dependent on pressure fluctuations. From the comparison of the characteristic 11 of FIG. 4 with the characteristics of the FIG. 6 It can clearly be seen that, with the same activation time, a variation of the injected fuel quantity as a function of different pressures at FIG. 6 is lower. The characteristic curves for different pressures are in the method according to the invention, whose injection behavior in FIG. 6 is shown, much closer together. It is particularly advantageous that hardly any changes in the injection quantity occur in the region of the smallest quantities when the pressure changes.

Claims (9)

  1. Method for charging a piezoelectric actuator (2) of an injection valve (1) for dispensing fuel,
    with the actuator (2) changing its length as a function of the charge state, with the dispensing of fuel being controlled as a function of the length of the actuator,
    with the charge state of the actuator being changed during a charging period for dispensing fuel,
    with the charge state of the actuator being put back into an initial state again after a defined activation time,
    with the charge time being changed as a function of operating states,
    with the charge time being defined as a function of the pressure of the fuel to be injected,
    characterised in that a longer charge time is selected for high pressure than is selected for lower pressure.
  2. The method according to claim 1, characterised in that an amount of fuel to be dispensed is dispensed with different charge times for different fuel pressure.
  3. The method according to one of claims 1 or 2, characterised in that the charge time is set to between 100 und 300 µs.
  4. The method according to one of claims 1 to 3, characterised in that the fuel to be injected is provided by a fuel accumulator (10) which is connected hydraulically to the injection valve (1), that the pressure of the fuel is measured, that the charge time of the actuator is defined for the amount of fuel to be injected as a function of the measured pressure.
  5. The method according to one of claims 1 to 4, characterised in that the charge time is changed when the value of the amount of fuel to be dispensed lies below a smallest value.
  6. The method according to claim 5, characterised in that the value of the smallest amount is less than 5 mm3, preferably less than 2.5 mm3.
  7. The method according to one of claims 1 to 6, characterised in that the charge time is read out from an engine map, that the charge times are stored in the engine map as a function of the fuel pressure.
  8. The method according to one of claims 1 to 7, characterised in that a servo valve (6) is controlled by the actuator (2), that the servo valve controls a sequence of a pressure chamber (7), that the pressure chamber (7) is filled with a fluid that is actively connected to an injection needle (3), that the injection needle (3) moves from an open into a closed position as a function of the pressure of the fluid and that the dispensing of fuel is controlled by the injection valve.
  9. A control device operating in accordance with one of the above methods.
EP03757703A 2002-10-22 2003-10-09 Method for charging a piezoelectric actuator on an injection valve and controller Expired - Lifetime EP1556603B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10249218A DE10249218A1 (en) 2002-10-22 2002-10-22 Method for charging a piezoelectric actuator of an injection valve and control device
DE10249218 2002-10-22
PCT/DE2003/003346 WO2004038203A1 (en) 2002-10-22 2003-10-09 Method for charging a piezoelectric actuator on an injection valve and controller

Publications (2)

Publication Number Publication Date
EP1556603A1 EP1556603A1 (en) 2005-07-27
EP1556603B1 true EP1556603B1 (en) 2010-01-06

Family

ID=32114822

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03757703A Expired - Lifetime EP1556603B1 (en) 2002-10-22 2003-10-09 Method for charging a piezoelectric actuator on an injection valve and controller

Country Status (3)

Country Link
EP (1) EP1556603B1 (en)
DE (2) DE10249218A1 (en)
WO (1) WO2004038203A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4363331B2 (en) * 2005-01-17 2009-11-11 トヨタ自動車株式会社 Fuel injection system
DE102007033469B4 (en) * 2007-07-18 2017-06-14 Continental Automotive Gmbh Method and device for shaping an electrical control signal for an injection pulse
KR101427968B1 (en) 2013-02-06 2014-08-08 현대자동차 주식회사 Control method of engine

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19931238A1 (en) * 1999-07-07 2001-01-18 Siemens Ag Method for controlling a capacitive actuator of a fuel injection valve of an internal combustion engine
DE19945670B4 (en) * 1999-09-23 2006-01-12 Siemens Ag Method for driving a capacitive actuator of a fuel injection valve of an internal combustion engine
EP1138904B1 (en) * 2000-04-01 2005-09-14 Robert Bosch GmbH Method and apparatus for charging a piezoelectric element
DE10017367B4 (en) * 2000-04-07 2006-12-28 Siemens Ag Method and device for controlling at least one capacitive actuator
DE10158553A1 (en) * 2000-11-30 2002-06-13 Denso Corp Control circuit for piezoelectric actuator e.g. for vehicle fuel injection system, has controller that determines timing of switch transition from on to off states so peak charging current value reduces with desired stack charge

Also Published As

Publication number Publication date
WO2004038203A1 (en) 2004-05-06
DE10249218A1 (en) 2004-05-19
EP1556603A1 (en) 2005-07-27
DE50312322D1 (en) 2010-02-25

Similar Documents

Publication Publication Date Title
DE19640826B4 (en) Storage fuel injection device and pressure control device therefor
DE19607070B4 (en) Method and device for controlling an internal combustion engine
DE19913477B4 (en) Method for operating a fuel supply device of an internal combustion engine, in particular a motor vehicle
DE102010022910B4 (en) Method and device for operating an injection valve
EP1825124B1 (en) Method for controlling a piezoelectric actuator and control unit for controlling a piezoelectric actuator
DE10311141B4 (en) Method, computer program, storage medium and control and / or regulating device for operating an internal combustion engine, and internal combustion engine, in particular for a motor vehicle
DE19731201C2 (en) Method for regulating the fuel pressure in a fuel accumulator
DE102006011725B4 (en) Method and device for calibrating a piezo actuator
EP1373706B1 (en) Injection valve
EP1567758B1 (en) Method and device for operating an injection system in an internal combustion engine
EP1556603B1 (en) Method for charging a piezoelectric actuator on an injection valve and controller
DE10303573B4 (en) Method, computer program, storage medium and control and / or regulating device for operating an internal combustion engine, and internal combustion engine, in particular for a motor vehicle
DE10360019A1 (en) Method for controlling a valve and method for controlling a pump-nozzle device with a valve
DE102006033932A1 (en) Internal-combustion engine i.e. diesel internal-combustion engine, operating method, involves performing injections such that minimum distance between consecutive injections depends on active fuel pressure influencing closing of valve unit
DE10305525B4 (en) Method and device for adapting the pressure wave correction in a high-pressure injection system of a motor vehicle while driving
DE10149960C1 (en) IC engine operating method uses set of functions for determining required control energy for each fuel injector piezoactuator
DE102005046933B4 (en) Method for controlling a piezo-actuated injection valve
DE10026273C2 (en) Method for cylinder equalization in an internal combustion engine
WO2016155917A1 (en) High-pressure injection device for an internal combustion engine
DE102007059115B4 (en) Method for operating a piezoelectric actuator
DE102005001499B4 (en) Method and device for controlling an internal combustion engine
DE102017219568A1 (en) Method for controlling a fuel injector
DE102007061946A1 (en) Fuel injection device operating method for internal-combustion engine, involves detecting closing of valve element based on evaluation of voltage applied on piezoelectric actuator according to actuator load
DE102004063294B4 (en) Method and device for controlling an injection valve
DE102004028612B4 (en) Method for operating an internal combustion engine, and computer program, control and / or regulating device, and internal combustion engine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050401

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT

17Q First examination report despatched

Effective date: 20051206

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: CONTINENTAL AUTOMOTIVE GMBH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50312322

Country of ref document: DE

Date of ref document: 20100225

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20101007

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100106

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20101009

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101009

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 50312322

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 50312322

Country of ref document: DE

Owner name: VITESCO TECHNOLOGIES GMBH, DE

Free format text: FORMER OWNER: CONTINENTAL AUTOMOTIVE GMBH, 30165 HANNOVER, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20201021

Year of fee payment: 18

Ref country code: DE

Payment date: 20201031

Year of fee payment: 18

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 50312322

Country of ref document: DE

Owner name: VITESCO TECHNOLOGIES GMBH, DE

Free format text: FORMER OWNER: VITESCO TECHNOLOGIES GMBH, 30165 HANNOVER, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50312322

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211031