Nothing Special   »   [go: up one dir, main page]

EP1436850A1 - Isolator für ein organisches elektronikbauteil - Google Patents

Isolator für ein organisches elektronikbauteil

Info

Publication number
EP1436850A1
EP1436850A1 EP02769910A EP02769910A EP1436850A1 EP 1436850 A1 EP1436850 A1 EP 1436850A1 EP 02769910 A EP02769910 A EP 02769910A EP 02769910 A EP02769910 A EP 02769910A EP 1436850 A1 EP1436850 A1 EP 1436850A1
Authority
EP
European Patent Office
Prior art keywords
insulator
poly
base polymer
organic
styrene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP02769910A
Other languages
English (en)
French (fr)
Inventor
Erwann Guillet
Peter Bonzani
Walter Fix
Henning Rost
Andreas Ullmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PolyIC GmbH and Co KG
Original Assignee
Siemens AG
PolyIC GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG, PolyIC GmbH and Co KG filed Critical Siemens AG
Publication of EP1436850A1 publication Critical patent/EP1436850A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/14Organic dielectrics
    • H01G4/18Organic dielectrics of synthetic material, e.g. derivatives of cellulose
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/44Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
    • H01B3/442Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from aromatic vinyl compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/44Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
    • H01B3/447Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from acrylic compounds
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/468Insulated gate field-effect transistors [IGFETs] characterised by the gate dielectrics
    • H10K10/471Insulated gate field-effect transistors [IGFETs] characterised by the gate dielectrics the gate dielectric comprising only organic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02118Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer carbon based polymeric organic or inorganic material, e.g. polyimides, poly cyclobutene or PVC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/312Organic layers, e.g. photoresist

Definitions

  • the invention relates to an insulator for an organic electronic component, in particular for an organic field-effect transistor (OFET) and / or an organic capacitor.
  • OFET organic field-effect transistor
  • PHS polyhydroxystyrene
  • Polyimide was also presented as an insulator material (JA Rogers et al., IEEE Electron Devices Letters, Vol 21, No 3, 2000, p. 100). Even if this material is used, there is a risk of damage to the already finished layers of an OFET, since this material can only be processed at extremely high temperatures (-400 ° C). Because organic semi- If the conductor or conductor typically only withstands significantly lower temperatures ( «200 ° C), polyimide cannot be used in fully organic OFETs.
  • the object of the present invention is therefore to provide an isolator for a field-effect transistor which is at least partially constructed from organic material and which overcomes the disadvantages of the prior art.
  • the invention relates to an insulator for an organic electronic component, in particular for an organic field-effect transistor and / or a capacitor based at least in part on organic material, the dielectric constant of the insulator layer remaining essentially constant in a frequency range between 1 Hz and 100 kHz ,
  • the insulator comprises polyisobutylene or uncrosslinked EPDM (ethylene propylene diene monomer), as the base polymer (main component), which are only soluble in nonpolar hydrocarbons (hexane, heptane).
  • EPDM ethylene propylene diene monomer
  • the achievable homogeneous layer thickness with the material lies between approx. 2 ⁇ m-250 nm, whereby these layers still have a sufficiently high insulation property.
  • Another important advantage of this material is that it is very easy to structure in order to enable through contacts (eg by means of lithography).
  • the insulator material comprises commercially available PVDC-PAN-PMMA copolymer of the general formula
  • x, y, and z each, independently of one another, values between 0 and 1, preferably those given in the examples
  • the PVDC-PAN-PMMA copolymer is preferably used together with crosslinker components HMMM (hexamethoxymethalmelamine) and / or Cymel, the ratio of which can be varied widely (dissolved in dioxane).
  • HMMM hexamethoxymethalmelamine
  • Cymel the ratio of which can be varied widely (dissolved in dioxane).
  • This material also enables very simple structuring, although it is not yet networked. Due to very low temperatures (approx. 70 ° C), this material can be networked and then becomes resistant to all subsequent steps that are necessary to complete an OFET and to build an integrated circuit.
  • an insulator mixture comprises a base polymer of the general formula
  • A e.g. Polyhydroxystyrene and B poly (styrene-co-allyl alcohol) e.g. Is polyvinyltoluene, poly-alpha-methylstyrene.
  • an insulator which comprises a mixture of two copolymers, according to the general formula
  • a mixture of poly (vinyltoluene-co-alphamethylstyrene) / poly (styrene-co-allyl alcohol) is particularly suitable.
  • the indices x and y can be the same or different and assume values between 0.5 and 1.
  • X and y are particularly preferably the same.
  • the mixture is again preferably dissolved in polar solvents, especially in dioxane.
  • an insulator layer made of one or a mixture of several of the materials mentioned fulfills the following process, electrical and mechanical requirements and is at the same time a very inexpensive material system:
  • the insulator layer has good solubility in conventional organic solvents such as e.g. Dioxane, butanol other alcohols etc.
  • the insulator layer can be structured after application.
  • the structuring also does not negatively influence existing layers.
  • the structurability is absolutely necessary in order to produce integrated circuits which consist of several OFETs, since only with the structuring the connection lines between the gate electrode of one OFET and the source or drain electrode of another OFET is possible.
  • the insulator layer is chemically and thermally stable with respect to the process steps which are necessary to apply and structure subsequent layers of the OFET (e.g. the gate electrode)
  • the relative dielectric constant of the insulator layer is approximately constant in a frequency range between 1 Hz and 100 kHz.
  • the "relative dielectric constant” is referred to here as “approximately constant” if its change is less than or equal to 50%.
  • the relative dielectric constant of the insulator layer preferably has at least a value of about 2 in the systems mentioned. This makes it possible to implement OFETs that operate at low voltages.
  • the leakage currents through the insulator layer are advantageously negligibly small compared to the source-drain currents, even with very thin layers, i.e. they are preferably below 1 nA (depends on the 0-FET geometry).
  • the dielectric strength of the insulator layer is high, preferably has a value of at least 5 * 10 5 V / cm.
  • the insulator material should preferably not contain any movable contaminants (eg ions).
  • the threshold voltage of the OFET is preferably not shifted by the isolator system.
  • the insulator layer is resistant to mechanical loads such as bending, stretching or upsetting.
  • the insulator layer is applied by spinning, knife coating, printing or spraying in such a way that a plane-parallel, smooth, homogeneous and defect-free layer is produced.
  • structurable layers of either photoresist or metal are applied to the insulator layer.
  • the insulator layer can be removed in a defined manner with suitable solvents and thus also structured. In this way, the insulator layer is always structured at temperatures below 100 ° C, so that this processing has no negative impact on the existing functional layers (e.g. semiconductors).
  • organic material or "organic functional polymer” here encompasses all types of organic, metal-organic and / or organic-inorganic plastics (hybrids), in particular those which are referred to in English as “plastics". They are all types of substances with the exception of the semiconductors that form the classic diodes (germanium, silicon) and the typical metallic conductors. A restriction in the dogmatic sense to organic material as carbon-containing material is therefore not provided, rather the broad use of, for example, silicones is also contemplated. Furthermore, the term should not be subject to any restriction with regard to the molecular size, in particular to polymeric and / or oligomeric materials, but the use of "small molecules” is also entirely possible.
  • the word component "polymer” in the functional polymer is historical and therefore contains no information about the presence of an actually polymeric compound.
  • Example 1 Use of polyisobutylene (PIB) as an insulator - 0.4 g of PIB (Aldrich) are dissolved in 9.6 g of hexane at room temperature;
  • PIB polyisobutylene
  • PVDC-co-PAN-co-PMMA Aldrich
  • 9 g dioxane 40 - 50 ° C - then 0.5 g Cymel 327 (Cytec Industries Inc.) and 0.1 g camphorsulfonic acid added and shaken for a few seconds;
  • the solution is spin-coated (8000 rpm / 20 sec) onto the substrate already provided with source / drain electrodes and semiconductors (top gate structure) and a very homogeneous, approx. 400 nm thick layer is obtained;
  • the sample is dried for about 30 minutes at room temperature in a dynamic vacuum; -
  • the layer is then vapor-deposited with a thin gold layer, which in turn is structured by means of photolithography (photoresist, then etching with a KJ / J 2 solution)
  • This applied metal mask allows the structuring of the insulator layer by removing the now exposed insulator surfaces with a cloth soaked in toluene
  • the last step is the cross-linking of the isolator (10 min at 90 ° C)
  • Example 3 Use of [50% polyhydroxystyrene / 50% poly (styrene-co-allyl alcohol)] as an insulator. This polymer mixture is then dissolved using dioxane and filtered using a 0.2 ⁇ m filter. Then the insulator layer is "baked" on a hot plate at approx. 100 ° C for 30 minutes. The structuring is also carried out using "metal masks" as in Example 2.
  • the insulator material according to the invention shows no significant frequency-dependent change in the relative dielectric constant. Alignment of existing anisotropic molecules can be responsible for this phenomenon, or a lack of mobile charge carriers such as mobile ion NEN. In any case, no significant change in the dielectric constant, that is to say approx. 50%, is found over a frequency range of almost 100 kHz.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Formation Of Insulating Films (AREA)
  • Thin Film Transistor (AREA)
  • Organic Insulating Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

Die Erfindung betrifft einen Isolator für ein organisches Elektronikbauteil, insbesondere für einen organischen Feld-Effekt-Transistor (OFET) und/oder einen organischen Kondensator. Das Isolatormaterial zeichnet sich dadurch aus, dass es eine nahezu konstante relative Dielektrizitätskonstante auch bei Änderung der Frequenz in weiten Bereichen, wie z.B. zwischen 1 Hz und 100 kHz, hat.

Description

Beschreibung
Isolator für ein organisches Elektronikbauteil
Die Erfindung betrifft einen Isolator für ein organisches E- lektronikbauteil, insbesondere für einen organischen Feld- Effekt-Transistor (OFET) und/oder einen organischen Kondensator.
Bekannt ist aus C.J. Dury et al., Appl . Phys . Lett. 73 1998, p. 108) dass Polyhydroxystyrol (PHS) als Isolator in OFETs eingesetzt wird. Hauptnachteil dieses Materials ist, dass bisher keine Möglichkeit bekannt ist, diesen Isolator wirtschaftlich zu strukturieren. Ein weiteres Problem mit diesem Material sind bewegliche Ionen, die zu einem extrem langsamen Schaltverhalten führen. Außerdem ist das PHS relativ teuer.
In einer neueren Veröffentlichung wurde kommerziell verfügbarer Fotolack (SC100, Olin Hunt) als Isolator verwendet (G.H. Gelinck et al., Appl. Phys. Lett. 77^ 2000, p. 1487). Wesentlicher Nachteil dieses Verfahrens ist, dass durch die Strukturierung des Fotolacks darunterliegende Schichten stark angegriffen oder zerstört werden. Damit ist es praktisch nicht möglich, diesen Isolator auf schon bestehenden Halblei- terschichten, wie z.B. Polyalkythiophen, zu verwenden. Für die Herstellung eines OFETs wird jedoch die Isolatorschicht über der halbleitenden Schicht, in die die Source und/oder Drain Elektroden eingebettet sind, aufgebracht. Eine Beschädigung der bereits bestehenden halbleitenden Schicht ist im Herstellungsprozess nicht tolerierbar.
Es wurde auch Polyimid als Isolatormaterial vorgestellt (J.A. Rogers et al., IEEE Electron Devices Letters, Vol 21, No 3, 2000, p. 100) . Auch bei Verwendung dieses Materials ist eine Beschädigung der bereits fertigen Schichten eines OFETs zu befürchten, da dieses Materials nur bei extrem hoher Temperatur (-400 °C) verarbeitet werden kann. Da organische Halblei- ter bzw. Leiter typischerweise nur deutlich niedrigere Temperaturen unbeschadet überstehen (« 200 °C) , kann Polyimid nicht in vollorganischen OFETs eingesetzt werden.
Unabhängig von den Verarbeitungseigenschaften der bekannten Materialien ist es bisher noch nicht gelungen, einen Isolator zu finden, dessen Dielektrizitätskonstante bei Änderung der eingestrahlten Frequenz grundsätzlich konstant bleibt. Vielmehr zeigen alle diese Materialien eine frequenzabhängige Än- derung der Dielektrizitätskonstante, die ganze Größenordnungen betrifft.
Aufgabe der vorliegenden Erfindung ist es daher, einen Isolator für einen zumindest teilweise aus organischem Material aufgebauten Feld-Effekt-Transistor zur Verfügung zu stellen, der die Nachteile des Standes der Technik überwindet.
Gegenstand der Erfindung ist ein Isolator für ein organisches Elektronikbauteil, insbesondere für einen organischen Feld- Effekt-Transistor und/oder einen zumindest teilweise auf organischem Material basierenden Kondensator, wobei die Dielektrizitätskonstante der Isolatorschicht im wesentlichen konstant bleibt in einem Frequenzbereich zwischen 1 Hz und 100 kHz.
Nach einer Ausführungsform umfasst der Isolator Polyisobuty- len oder unvernetztes EPDM (Ethylen-Propylen-Dien-Monomer) , als Basispolymer (Hauptkomponente) die nur in unpolaren Kohlenwasserstoffen (Hexan, Heptan) löslich sind. Die erreichba- re homogene Schichtdicke mit dem Material liegt zwischen ca. 2 μm-250 nm, wobei diese Schichten eine noch hinreichend hohe Isolationseigenschaft besitzen. Ein weiterer wichtiger Vorteil dieses Materials liegt in der sehr einfachen Struktu- rierbarkeit um Durchkontakte zu ermöglichen (z.B. mittels Li- thographie) . Nach einer weiteren Ausführungsform umfasst das Isolatormaterial handelsübliches PVDC-PAN-PMMA-Copolymer der allgemeinen Formel
(-CH2Cl2-)χ-(-CH2CH(CN)-)y-(-CH2C(CH3) (C0CH3) -)
wobei x, y, und z jeweils, unabhängig voneinander, Werte zwischen 0 und 1, bevorzugt die in den Beispielen angegebenen
Werte annehmen können.
Das PVDC-PAN-PMMA-Copolymer wird bevorzugt zusammen mit Vernetzerkomponenten HMMM (Hexamethoxymethalmelamin) und/oder Cymel eingesetzt, deren Verhältnis breit variiert werden kann (gelöst in Dioxan) . Dieses Material ermöglicht ebenfalls eine sehr einfache Ξtrukturierung, wobei es dabei noch nicht vernetzt ist. Durch sehr geringe Temperaturen (ca. 70°C) lässt sich dieses Material vernetzen und wird dann resistent gegen alle nachfolgenden Schritte, die nötig sind um einen OFET fertigzustellen und eine integrierte Schaltung aufzubauen.
Nach einer Ausführungsform umfasst eine Isolatormischung ein Basispolymer der allgemeinen Formel
eingesetzt, wobei A z.B. Polyhydroxystyrol und B Poly (styrol-co- allylalkohol) z.B. Polyvinyltoluol, Poly-alpha-methylstyrol ist.
Besonders bevorzugt sind dabei Mischungen, wie z.B. [50 % Polyhydroxystyrol / 50 % Poly (styrol-co-allylalkohol) ] , gelöst in polaren Lösungsmitteln wie z.B. Dioxan. Ein großer Vorteil dieses Materials ist die sehr defektarme Schichtaufbringung auf P3AT. Schließlich wird nach einer weiteren Ausführungsform ein Isolator eingesetzt, der ein Gemisch zweier Copolymere umfasst, nach der allgemeinen Formel
[A./By]
wobei insbesondere eine Mischung von Poly (vinyltoluol-co- alphamethylstyrol) /Poly (styrol-co-allylalkohol) geeignet ist. Die Indizes x und y können dabei gleich oder ungleich sein und Werte zwischen 0,5 und 1 annehmen. Besonders bevorzugt sind x und y gleich. Das Gemisch ist wiederum bevorzugt in polaren Lösungsmitteln gelöst, insbesondere in Dioxan.
Die genannten Materialien erfüllen überraschenderweise Eigen- Schaftsprofile, die insbesondere ihre Verwendung als Isolatorschicht in OFETs ermöglicht:
Dies insbesondere, weil eine Isolatorschicht aus einem oder einer Mischung mehrerer der genannten Materialien folgende prozesstechnische, elektrische und mechanische Anforderungen erfüllt und gleichzeitig ein sehr preiswertes Materialsystem ist :
a) Prozesstechnische Anforderungen: b)
Die Isolatorschicht hat eine gute Löslichkeit in herkömmlichen organischen Lösungsmitteln wie z.B. Dioxan, Butanol andere Alkohole etc.
- Das Aufbringen der Isolatorschicht auf schon bestehende Schichten des OFETs (z.B. die Halbleiterschicht) schädigt diese Schichten weder durch Angreifen, Anlösen noch durch Veränderung ihrer Eigenschaften.
- Die Isolatorschicht ist nach dem Aufbringen strukturierbar. Das Strukturieren beeinflusst ebenfalls bestehende Schichten nicht negativ. Die Strukturierbarkeit ist unabdingbar nötig, um integrierte Schaltungen herzustellen, die aus mehreren OFETs bestehen, da erst mit der Strukturierung die Verbindungsleitungen zwischen der Gate-Elektrode eines OFETs und der Source- bzw. Drain-Elektrode eines anderen OFETs möglich wird.
Nach dem Strukturieren ist die Isolatorschicht chemisch und thermisch stabil gegenüber den Prozessschritten, die nötig sind um nachfolgende Schichten des OFETs aufzubringen und zu strukturieren (z.B. die Gate- Elektrode)
b) Elektrische Anforderungen:
- Die relative Dielektrizitätskonstante der Isolatorschicht ist in etwa konstant in einem Frequenzbereich zwischen 1 Hz und 100 kHz. Als "in etwa konstant" wird die relative Dielektrizitätskonstante hier bezeichnet, wenn ihre Änderung kleiner gleich 50% beträgt.
Die relative Dielektrizitätskonstante der Isolatorschicht hat bevorzugt mindestens einen Wert von etwa 2 bei den genannten Systemen. Damit lassen sich OFETs realisieren, die bei niedrigen Spannungen arbeiten.
Die Leckströme durch die Isolatorschicht sind vorteilhafterweise auch bei sehr dünnen Schichten vernachlässigbar klein gegenüber den Source-Drain-Strömen, d.h. sie liegen bevorzugt unter 1 nA (hängt von der 0- FET-Geometrie ab) .
Die elektrische Durchschlagsfestigkeit der Isolatorschicht ist hoch, hat bevorzugt einen Wert von mindestens 5*105 V/cm.
Das Isolatormaterial soll bevorzugt keine beweglichen Verunreinigungen enthalten (z.B. Ionen). Die Schwellwertspannung des OFETs wird bevorzugt durch das Isolatorsystem nicht verschoben.
mechanische Anforderungen:
Die Isolatorschicht ist in Grenzen beständig gegenüber mechanischen Belastungen wie Verbiegen, Dehnen o- der Stauchen.
Das Aufbringen der Isolatorschicht durch Aufschleudern, Rakeln, Drucken oder Aufsprühen erfolgt so, dass eine planparallele, glatte, homogene und defektfreie Schicht entsteht.
Zur Herstellung des fertigen OFETs werden auf die Isolatorschicht strukturierbare Schichten aus entweder Photolack oder Metall aufgebracht. Nach deren Strukturierung kann die Isolatorschicht mit geeigneten Lösungsmitteln definiert entfernt und somit ebenfalls strukturiert werden. Die Isolatorschicht wird auf diese Weise stets bei Temperaturen unter 100 °C strukturiert, so dass diese Prozessierung keinen negativen Einfluss auf die bereits vorhandenen Funktionsschichten (z.B. Halbleiter) hat.
Die exzellenten elektrischen Eigenschaften, d.h. hohe Dielektrizitätskonstante, hohe Durchschlagsspannung und niedrige Leckströme der betrachteten Materialsysteme erlauben weiterhin die Erzeugung von relativ dünnen Isolatorschichten, was zu einer drastischen Reduzierung der benötigten Gate-Spannung auf bevorzugte Werte unter 10 V führt.
Der Begriff "organisches Material" oder "organisches Funktionspolymer" umfasst hier alle Arten von organischen, metall- organischen und/oder organisch-anorganischen Kunststoffen (Hybride), insbesondere die, die im Englischen z.B. mit "plastics" bezeichnet werden. Es handelt sich um alle Arten von Stoffen mit Ausnahme der Halbleiter, die die klassischen Dioden bilden (Germanium, Silizium) , und der typischen metallischen Leiter. Eine Beschränkung im dogmatischen Sinn auf organisches Material als Kohlenstoff-enthaltendes Material ist demnach nicht vorgesehen, vielmehr ist auch an den breiten Einsatz von z.B. Siliconen gedacht. Weiterhin soll der Term keiner Beschränkung im Hinblick auf die Molekülgröße, insbesondere auf polymere und/oder oligomere Materialien unterliegen, sondern es ist durchaus auch der Einsatz von "small molecules" möglich. Der Wortbestandteil "polymer" im Funktionspolymer ist historisch bedingt und enthält insofern keine Aussage über das Vorliegen einer tatsächlich polymeren Verbindung.
Im folgenden wird die Erfindung noch anhand einiger Beispiele, die Ausführungsformen der Erfindung beschreiben, erläutert :
Beispiel 1: Verwendung von Polyisobutylen (PIB) als Isolator - 0,4 g PIB (Aldrich) werden in 9,6 g Hexan bei Raumtemperatur gelöst;
- die Lösung wird durch einen 0,45 μm PTFE-Spritzenfilter filtriert;
- die Lösung wird dann durch spin-coating (4000 U/min; 20 sec) auf das bereits mit Source/Drain-Elektroden und Halbleiter versehene Substrat aufgeschleudert (top-Gate Aufbau) und man erhält eine sehr homogene, ca. 260 n dicke Schicht
- die Probe wird ca. 30 min bei Raumtemperatur im dynamischen Vakuum getrocknet - anschließend wird eine dicke Schicht Photolack auf den Isolator aufgebracht, belichtet und unter normalen Bedingungen entwickelt;
- die Probe wird in ein Hexanbad getaucht und an den vom Photolack befreiten Stellen wird der Isolator abgelöst - der restliche Photolack wird durch ein geeignetes Lösungsmittel entfernt Beispiel 2: Verwendung von PVDC-PAN-PMMA (x = 0.89, y = 0.03, z 0.08) als Isolator
- 0,4 g PVDC-co-PAN-co-PMMA (Aldrich) werden in 9 g Dioxan bei 40 - 50 °C gelöst - dann werden 0,5 g Cymel 327 (Cytec Industries Inc.) und 0,1 g Kamphersulfonsäure zugesetzt und noch einige Sekunden geschüttelt;
- die Lösung wird durch einen 0,45 um PTFE-Filter gefiltert;
- die Lösung wird durch Aufschleudern (8000 ü/min; 20 sec) auf das bereits mit Source/Drain-Elektroden und Halbleiter versehene Substrat aufgeschleudert (top-Gate Aufbau) und man erhält eine sehr homogene, ca. 400 nm dicke Schicht;
- die Probe wird ca. 30 min bei Raumtemperatur im dynamischen Vakuum getrocknet; - die Schicht wird dann mit einer dünnen Goldschicht bedampft, die wiederum mittels Photolithographie strukturiert wird (Photolack, dann Ätzen mit KJ/J2-Lösung)
- diese aufgebrachte Metallmaske erlaubt die Strukturierung der Isolatorschicht, indem die nun freiliegenden Isolatorflä- chen mit einem mit Toluol getränkten Tuch entfernt werden
- dann erfolgt die Entfernung der Goldreste mit KJ/J2-Lösung
- letzter Schritt ist die Vernetzung des Isolators (10 min bei 90 °C)
Beispiel 3: Verwendung von [50 % Polyhydroxystyrol / 50 % Poly (styrol-co-allylalkohol) ] als Isolator. Diese Polymermischung wird anschließend mittels Dioxan gelöst und mit einem 0,2μm Filter gefiltert. Anschließend wird die Isolatorschicht 30 Minuten bei ca. 100°C auf einer Heizplatte "ausgebacken". Die Strukturierung erfolgt ebenfalls mittels "Metallmasken" wie in Beispiel 2.
Das Isolatormaterial nach der Erfindung zeigt keine wesentliche frequenzabhängige Änderung der relativen Dielektrizi- tätskonstante. Für dieses Phänomen kann zum einen eine Ausrichtung vorhandener anisotroper Moleküle verantwortlich sein oder ein Fehlen beweglicher Ladungsträger wie beweglicher Io- nen. Jedenfalls wird über einen Frequenzbereich von nahezu 100 kHz keine wesentliche, also ca. 50 % übersteigende, Änderung der Dielektrizitätskonstante festgestellt.

Claims

Patentansprüche
1. Isolator für ein organisches Elektronikbauteil, insbesondere für einen organischen Feld-Effekt-Transistor und/oder einen zumindest teilweise auf organischem Material basierenden Kondensator, wobei die Dielektrizitätskonstante der Isolatorschicht im wesentlichen konstant bleibt in einem Frequenzbereich zwischen 1 Hz und 100 kHz.
2. Isolator nach Anspruch 1, der Polyisobutylen oder unver- netztes EPDM (Ethylen-Propylen-Dien-Monomer) als Basispolymer umfasst.
3. Isolator nach Anspruch 1, der handelsübliches PVDC-PAN- PMMA-Copolymer der allgemeinen Formel
(-CH2Cl2-)χ-(-CH2CH(CN)-)y-(-CH2C(CH3) (C02CH3)-)z ,
wobei x, y, und z jeweils, unabhängig voneinander, Werte zwi- sehen 0 und 1 annehmen kann, als Basispolymer umfasst.
4. Isolator nach Anspruch 1, der ein Basispolymer der allgemeinen Formel
umfasst, wobei A z.B. Polyhydroxystyrol und B Poly (styrol-co- allylalkohol) , Polyvinylalkohol, und/oder Poly- - methylstyrol ist.
5. Isolator nach Anspruch 4, bei dem das Basispolymer eine Mischung aus 50 % Polyhydroxystyrol / 50 % Poly (styrol-co- allylalkohol) ] ist.
6. Isolator nach Anspruch 1, der als Basispolymer ein Gemisch zweier Polymerer umfasst, nach der allgemeinen Formel mit A gleich Poly (vinyltoluol-co-alphamethylstyrol) und B gleich Poly (styrol-co-allylalkohol) , wobei die Werte von x und y gleich oder ungleich sind und Werte zwischen 0,5 und 1 haben.
7. Isolator nach Anspruch 6, bei dem die Werte von x und y gleich sind.
8. Isolator nach einem der Ansprüche 3 bis 7, bei dem das Basispolymer gelöst in einem polaren Lösungsmittel wie z.B. Dioxan oder einem polaren Gemisch aus zumindest zwei Lösungs- mittel vorliegt.
EP02769910A 2001-10-16 2002-09-05 Isolator für ein organisches elektronikbauteil Withdrawn EP1436850A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10151036 2001-10-16
DE10151036A DE10151036A1 (de) 2001-10-16 2001-10-16 Isolator für ein organisches Elektronikbauteil
PCT/DE2002/003292 WO2003038921A1 (de) 2001-10-16 2002-09-05 Isolator für ein organisches elektronikbauteil

Publications (1)

Publication Number Publication Date
EP1436850A1 true EP1436850A1 (de) 2004-07-14

Family

ID=7702674

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02769910A Withdrawn EP1436850A1 (de) 2001-10-16 2002-09-05 Isolator für ein organisches elektronikbauteil

Country Status (5)

Country Link
US (1) US7298023B2 (de)
EP (1) EP1436850A1 (de)
JP (1) JP4360911B2 (de)
DE (1) DE10151036A1 (de)
WO (1) WO2003038921A1 (de)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10043204A1 (de) * 2000-09-01 2002-04-04 Siemens Ag Organischer Feld-Effekt-Transistor, Verfahren zur Strukturierung eines OFETs und integrierte Schaltung
WO2003052841A1 (en) * 2001-12-19 2003-06-26 Avecia Limited Organic field effect transistor with an organic dielectric
US20040094761A1 (en) * 2002-11-02 2004-05-20 David Sparrowe Polymerizable amine mixtures, amine polymer materials and their use
US20040171743A1 (en) * 2003-01-21 2004-09-02 Terry Brewer, Ph.D. Hybrid organic-inorganic polymer coatings with high refractive indices
WO2006104069A1 (ja) * 2005-03-28 2006-10-05 Pioneer Corporation ゲート絶縁膜、有機トランジスタ、有機el表示装置の製造方法、ディスプレイ
DE102005031448A1 (de) 2005-07-04 2007-01-11 Polyic Gmbh & Co. Kg Aktivierbare optische Schicht
DE102005044306A1 (de) 2005-09-16 2007-03-22 Polyic Gmbh & Co. Kg Elektronische Schaltung und Verfahren zur Herstellung einer solchen
CH705051B1 (fr) * 2007-12-21 2012-12-14 Swatch Group Res & Dev Ltd Dispositif d'affichage à matrice active.
US8692238B2 (en) 2012-04-25 2014-04-08 Eastman Kodak Company Semiconductor devices and methods of preparation
US8779415B2 (en) 2012-11-08 2014-07-15 Eastman Kodak Company Devices containing organic polymeric multi-metallic composites
EP3155623B1 (de) 2014-06-11 2019-05-08 Eastman Kodak Company Vorrichtungen mit dielektrischen schichten mit thiosulfathaltigen polymeren
DE102016115742B4 (de) 2015-12-08 2022-11-24 Shanghai Tianma Micro-electronics Co., Ltd. Verbundsubstrat, flexible Anzeigevorrichtung und Verfahren zu deren Herstellung

Family Cites Families (111)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3512052A (en) 1968-01-11 1970-05-12 Gen Motors Corp Metal-insulator-semiconductor voltage variable capacitor with controlled resistivity dielectric
US3769096A (en) 1971-03-12 1973-10-30 Bell Telephone Labor Inc Pyroelectric devices
JPS543594B2 (de) 1973-10-12 1979-02-24
JPS54101176A (en) 1978-01-26 1979-08-09 Shinetsu Polymer Co Contact member for push switch
US4442019A (en) 1978-05-26 1984-04-10 Marks Alvin M Electroordered dipole suspension
US4340657A (en) 1980-02-19 1982-07-20 Polychrome Corporation Novel radiation-sensitive articles
US4666735A (en) * 1983-04-15 1987-05-19 Polyonics Corporation Process for producing product having patterned metal layer
DE3338597A1 (de) 1983-10-24 1985-05-02 GAO Gesellschaft für Automation und Organisation mbH, 8000 München Datentraeger mit integriertem schaltkreis und verfahren zur herstellung desselben
JPS60117769A (ja) 1983-11-30 1985-06-25 Fujitsu Ltd 半導体メモリ装置
DE3768112D1 (de) 1986-03-03 1991-04-04 Toshiba Kawasaki Kk Strahlungsdetektor.
JP2728412B2 (ja) 1987-12-25 1998-03-18 株式会社日立製作所 半導体装置
GB2215307B (en) 1988-03-04 1991-10-09 Unisys Corp Electronic component transportation container
US5364735A (en) 1988-07-01 1994-11-15 Sony Corporation Multiple layer optical record medium with protective layers and method for producing same
US4937119A (en) 1988-12-15 1990-06-26 Hoechst Celanese Corp. Textured organic optical data storage media and methods of preparation
US5892244A (en) 1989-01-10 1999-04-06 Mitsubishi Denki Kabushiki Kaisha Field effect transistor including πconjugate polymer and liquid crystal display including the field effect transistor
US6331356B1 (en) 1989-05-26 2001-12-18 International Business Machines Corporation Patterns of electrically conducting polymers and their application as electrodes or electrical contacts
US5206525A (en) 1989-12-27 1993-04-27 Nippon Petrochemicals Co., Ltd. Electric element capable of controlling the electric conductivity of π-conjugated macromolecular materials
FR2664430B1 (fr) * 1990-07-04 1992-09-18 Centre Nat Rech Scient Transistor a effet de champ en couche mince de structure mis, dont l'isolant et le semiconducteur sont realises en materiaux organiques.
FR2673041A1 (fr) 1991-02-19 1992-08-21 Gemplus Card Int Procede de fabrication de micromodules de circuit integre et micromodule correspondant.
US5408109A (en) 1991-02-27 1995-04-18 The Regents Of The University Of California Visible light emitting diodes fabricated from soluble semiconducting polymers
JPH0580530A (ja) 1991-09-24 1993-04-02 Hitachi Ltd 薄膜パターン製造方法
US5173835A (en) 1991-10-15 1992-12-22 Motorola, Inc. Voltage variable capacitor
DE59105477D1 (de) 1991-10-30 1995-06-14 Fraunhofer Ges Forschung Belichtungsvorrichtung.
JP2709223B2 (ja) 1992-01-30 1998-02-04 三菱電機株式会社 非接触形携帯記憶装置
DE4243832A1 (de) 1992-12-23 1994-06-30 Daimler Benz Ag Tastsensoranordnung
JP3457348B2 (ja) 1993-01-15 2003-10-14 株式会社東芝 半導体装置の製造方法
US5567550A (en) 1993-03-25 1996-10-22 Texas Instruments Incorporated Method of making a mask for making integrated circuits
JPH0722669A (ja) 1993-07-01 1995-01-24 Mitsubishi Electric Corp 可塑性機能素子
JP3460863B2 (ja) 1993-09-17 2003-10-27 三菱電機株式会社 半導体装置の製造方法
US5556706A (en) 1993-10-06 1996-09-17 Matsushita Electric Industrial Co., Ltd. Conductive layered product and method of manufacturing the same
IL111151A (en) 1994-10-03 1998-09-24 News Datacom Ltd Secure access systems
JP3246189B2 (ja) 1994-06-28 2002-01-15 株式会社日立製作所 半導体表示装置
US5574291A (en) 1994-12-09 1996-11-12 Lucent Technologies Inc. Article comprising a thin film transistor with low conductivity organic layer
JP3068430B2 (ja) 1995-04-25 2000-07-24 富山日本電気株式会社 固体電解コンデンサ及びその製造方法
US5652645A (en) 1995-07-24 1997-07-29 Anvik Corporation High-throughput, high-resolution, projection patterning system for large, flexible, roll-fed, electronic-module substrates
US5625199A (en) 1996-01-16 1997-04-29 Lucent Technologies Inc. Article comprising complementary circuit with inorganic n-channel and organic p-channel thin film transistors
GB2310493B (en) 1996-02-26 2000-08-02 Unilever Plc Determination of the characteristics of fluid
JP3080579B2 (ja) 1996-03-06 2000-08-28 富士機工電子株式会社 エアリア・グリッド・アレイ・パッケージの製造方法
DE19629656A1 (de) 1996-07-23 1998-01-29 Boehringer Mannheim Gmbh Diagnostischer Testträger mit mehrschichtigem Testfeld und Verfahren zur Bestimmung von Analyt mit dessen Hilfe
US6344662B1 (en) 1997-03-25 2002-02-05 International Business Machines Corporation Thin-film field-effect transistor with organic-inorganic hybrid semiconductor requiring low operating voltages
KR100248392B1 (ko) 1997-05-15 2000-09-01 정선종 유기물전계효과트랜지스터와결합된유기물능동구동전기발광소자및그소자의제작방법
JPH1135893A (ja) * 1997-05-22 1999-02-09 Toray Dow Corning Silicone Co Ltd シート状ホットメルト接着剤、および半導体装置
EP0968537B1 (de) 1997-08-22 2012-05-02 Creator Technology B.V. Feld-effekt-transistor, der im wesentlichen aus organischen materialien besteht
DE69830846T2 (de) 1997-09-11 2006-05-24 Precision Dynamics Corp., San Fernando Radiofrequenzidentifikationsetikett auf flexiblem substrat
US6078196A (en) * 1997-09-17 2000-06-20 Intel Corporation Data enabled logic circuits
US6251513B1 (en) 1997-11-08 2001-06-26 Littlefuse, Inc. Polymer composites for overvoltage protection
JPH11142810A (ja) 1997-11-12 1999-05-28 Nintendo Co Ltd 携帯型情報処理装置
US5997817A (en) 1997-12-05 1999-12-07 Roche Diagnostics Corporation Electrochemical biosensor test strip
WO1999030432A1 (en) 1997-12-05 1999-06-17 Koninklijke Philips Electronics N.V. Identification transponder
US5998805A (en) 1997-12-11 1999-12-07 Motorola, Inc. Active matrix OED array with improved OED cathode
US6083104A (en) 1998-01-16 2000-07-04 Silverlit Toys (U.S.A.), Inc. Programmable toy with an independent game cartridge
CA2319430C (en) 1998-01-28 2004-05-11 Thin Film Electronics Asa A method for generating electrical conducting or semiconducting structures in two or three dimensions, a method for erasing the same structures and an electric field generator/modulator for use with the method for generating
US6087196A (en) 1998-01-30 2000-07-11 The Trustees Of Princeton University Fabrication of organic semiconductor devices using ink jet printing
US6045977A (en) 1998-02-19 2000-04-04 Lucent Technologies Inc. Process for patterning conductive polyaniline films
DE19816860A1 (de) 1998-03-06 1999-11-18 Deutsche Telekom Ag Chipkarte, insbesondere Guthabenkarte
US6033202A (en) 1998-03-27 2000-03-07 Lucent Technologies Inc. Mold for non - photolithographic fabrication of microstructures
GB9808061D0 (en) 1998-04-16 1998-06-17 Cambridge Display Tech Ltd Polymer devices
TW410478B (en) 1998-05-29 2000-11-01 Lucent Technologies Inc Thin-film transistor monolithically integrated with an organic light-emitting diode
US5967048A (en) 1998-06-12 1999-10-19 Howard A. Fromson Method and apparatus for the multiple imaging of a continuous web
US6215130B1 (en) 1998-08-20 2001-04-10 Lucent Technologies Inc. Thin film transistors
EP1108207B1 (de) 1998-08-26 2008-05-07 Sensors for Medicine and Science, Inc. Optisch basierte sensor-vorrichtungen
US6315883B1 (en) * 1998-10-26 2001-11-13 Novellus Systems, Inc. Electroplanarization of large and small damascene features using diffusion barriers and electropolishing
DE19851703A1 (de) 1998-10-30 2000-05-04 Inst Halbleiterphysik Gmbh Verfahren zur Herstellung von elektronischen Strukturen
US6207522B1 (en) * 1998-11-23 2001-03-27 Microcoating Technologies Formation of thin film capacitors
US6384804B1 (en) 1998-11-25 2002-05-07 Lucent Techonologies Inc. Display comprising organic smart pixels
US6506438B2 (en) 1998-12-15 2003-01-14 E Ink Corporation Method for printing of transistor arrays on plastic substrates
US6321571B1 (en) 1998-12-21 2001-11-27 Corning Incorporated Method of making glass structures for flat panel displays
US6114088A (en) 1999-01-15 2000-09-05 3M Innovative Properties Company Thermal transfer element for forming multilayer devices
GB2347013A (en) 1999-02-16 2000-08-23 Sharp Kk Charge-transport structures
US6300141B1 (en) 1999-03-02 2001-10-09 Helix Biopharma Corporation Card-based biosensor device
US6207472B1 (en) * 1999-03-09 2001-03-27 International Business Machines Corporation Low temperature thin film transistor fabrication
US6498114B1 (en) 1999-04-09 2002-12-24 E Ink Corporation Method for forming a patterned semiconductor film
US6072716A (en) 1999-04-14 2000-06-06 Massachusetts Institute Of Technology Memory structures and methods of making same
DE19921024C2 (de) 1999-05-06 2001-03-08 Wolfgang Eichelmann Videospielanlage
US6383664B2 (en) 1999-05-11 2002-05-07 The Dow Chemical Company Electroluminescent or photocell device having protective packaging
JP3940546B2 (ja) * 1999-06-07 2007-07-04 株式会社東芝 パターン形成方法およびパターン形成材料
EP1192676A1 (de) * 1999-06-21 2002-04-03 Cambridge University Technical Services Limited Organische polymere für einen organischen tft
DE19933757A1 (de) 1999-07-19 2001-01-25 Giesecke & Devrient Gmbh Chipkarte mit integrierter Batterie
DE19935527A1 (de) 1999-07-28 2001-02-08 Giesecke & Devrient Gmbh Aktive Folie für Chipkarten mit Display
DE19937262A1 (de) 1999-08-06 2001-03-01 Siemens Ag Anordnung mit Transistor-Funktion
US6593690B1 (en) 1999-09-03 2003-07-15 3M Innovative Properties Company Large area organic electronic devices having conducting polymer buffer layers and methods of making same
US6517995B1 (en) 1999-09-14 2003-02-11 Massachusetts Institute Of Technology Fabrication of finely featured devices by liquid embossing
US6340822B1 (en) 1999-10-05 2002-01-22 Agere Systems Guardian Corp. Article comprising vertically nano-interconnected circuit devices and method for making the same
WO2001027998A1 (en) 1999-10-11 2001-04-19 Koninklijke Philips Electronics N.V. Integrated circuit
US6335539B1 (en) 1999-11-05 2002-01-01 International Business Machines Corporation Method for improving performance of organic semiconductors in bottom electrode structure
US6284562B1 (en) 1999-11-17 2001-09-04 Agere Systems Guardian Corp. Thin film transistors
US6621098B1 (en) 1999-11-29 2003-09-16 The Penn State Research Foundation Thin-film transistor and methods of manufacturing and incorporating a semiconducting organic material
US6673434B2 (en) * 1999-12-01 2004-01-06 Honeywell International, Inc. Thermal interface materials
US6197663B1 (en) 1999-12-07 2001-03-06 Lucent Technologies Inc. Process for fabricating integrated circuit devices having thin film transistors
CA2395004C (en) * 1999-12-21 2014-01-28 Plastic Logic Limited Solution processing
US6304232B1 (en) * 2000-02-24 2001-10-16 The Goodyear Tire & Rubber Company Circuit module
DE10012204A1 (de) 2000-03-13 2001-09-20 Siemens Ag Einrichtung zum Kennzeichnen von Stückgut
US6441196B2 (en) * 2000-05-19 2002-08-27 Alcon, Inc. Processes and novel intermediates for 11-oxa prostaglandin synthesis
US6329226B1 (en) 2000-06-01 2001-12-11 Agere Systems Guardian Corp. Method for fabricating a thin-film transistor
DE10033112C2 (de) 2000-07-07 2002-11-14 Siemens Ag Verfahren zur Herstellung und Strukturierung organischer Feldeffekt-Transistoren (OFET), hiernach gefertigter OFET und seine Verwendung
JP3609697B2 (ja) * 2000-08-10 2005-01-12 北川工業株式会社 電気・電子装置用の導電性箔付き熱伝導シート
WO2002015264A2 (de) 2000-08-18 2002-02-21 Siemens Aktiengesellschaft Verkapseltes organisch-elektronisches bauteil, verfahren zu seiner herstellung und seine verwendung
DE10043204A1 (de) 2000-09-01 2002-04-04 Siemens Ag Organischer Feld-Effekt-Transistor, Verfahren zur Strukturierung eines OFETs und integrierte Schaltung
DE10045192A1 (de) 2000-09-13 2002-04-04 Siemens Ag Organischer Datenspeicher, RFID-Tag mit organischem Datenspeicher, Verwendung eines organischen Datenspeichers
DE10047171A1 (de) 2000-09-22 2002-04-18 Siemens Ag Elektrode und/oder Leiterbahn für organische Bauelemente und Herstellungverfahren dazu
KR20020036916A (ko) 2000-11-11 2002-05-17 주승기 실리콘 박막의 결정화 방법 및 이에 의해 제조된 반도체소자
GB0028867D0 (en) * 2000-11-28 2001-01-10 Avecia Ltd Field effect translators,methods for the manufacture thereof and materials therefor
KR100390522B1 (ko) 2000-12-01 2003-07-07 피티플러스(주) 결정질 실리콘 활성층을 포함하는 박막트랜지스터 제조 방법
US20020170897A1 (en) 2001-05-21 2002-11-21 Hall Frank L. Methods for preparing ball grid array substrates via use of a laser
US6870180B2 (en) 2001-06-08 2005-03-22 Lucent Technologies Inc. Organic polarizable gate transistor apparatus and method
JP3865601B2 (ja) * 2001-06-12 2007-01-10 日東電工株式会社 電磁波抑制体シート
JP2003089259A (ja) 2001-09-18 2003-03-25 Hitachi Ltd パターン形成方法およびパターン形成装置
US7351660B2 (en) 2001-09-28 2008-04-01 Hrl Laboratories, Llc Process for producing high performance interconnects
US6946332B2 (en) 2002-03-15 2005-09-20 Lucent Technologies Inc. Forming nanoscale patterned thin film metal layers
US6812509B2 (en) 2002-06-28 2004-11-02 Palo Alto Research Center Inc. Organic ferroelectric memory cells
US6870183B2 (en) 2002-11-04 2005-03-22 Advanced Micro Devices, Inc. Stacked organic memory devices and methods of operating and fabricating

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO03038921A1 *

Also Published As

Publication number Publication date
DE10151036A1 (de) 2003-05-08
JP4360911B2 (ja) 2009-11-11
WO2003038921A1 (de) 2003-05-08
JP2005507180A (ja) 2005-03-10
US20050048803A1 (en) 2005-03-03
US7298023B2 (en) 2007-11-20

Similar Documents

Publication Publication Date Title
DE69902441T2 (de) Feldeffekttransistor
EP1636826B1 (de) Verbindung zur bildung einer selbstorganisierenden monolage, schichtstruktur, halbleiterbauelement mit einer schichtstruktur und verfahren zur herstellung einer schichtstruktur
DE102011007762B4 (de) Verfahren zur herstellung einer elektronischen vorrichtung, elektronische vorrichtung und dielektrische zusammensetzung für dünnschichttransistoren
DE602004002549T2 (de) Zusammensetzung zur Herstellung eines organischen und isolierenden Filmes sowie der daraus hergestellte Film
WO2003038921A1 (de) Isolator für ein organisches elektronikbauteil
EP1516374A1 (de) Verringerung des kontaktwiderstandes in organischen feldeffekttransistoren mit palladiumkontakten durch verwendung von nitrilen und isonitrilen
DE102012200896A1 (de) Elektronisches Bauelement
DE102004009600A1 (de) Selbstorganisierende organische Dielektrikumsschichten auf der Basis von Phosphonsäure-Derivaten
EP1658647B1 (de) Integrierte schaltung mit einem organischen halbleiter und verfahren zur herstellung einer integrierten schaltung
EP1696440A1 (de) Halbleiterspeichervorrichtung und Verfahren zur Herstellung einer Halbleiterspeichervorrichtung
EP1656683B1 (de) Organischer kondensator mit spannungsgesteuerter kapazität
DE69737335T2 (de) Festelektrolytkondensator und dessen Herstellungsverfahren
DE102011087561B4 (de) Verfahren zur Herstellung einer elektronischen Vorrichtung und dielektrische Zusammensetzungen
DE102004010094B3 (de) Halbleiterbauelement mit mindestens einer organischen Halbleiterschicht und Verfahren zu dessen Herstellung
EP1658624A2 (de) Integrierte schaltung und verfahren zur herstellung einer integrierten schaltung
DE10226370A1 (de) Substrat für einen organischen Feld-Effekt Transistor, Verwendung des Substrates, Verfahren zur Erhöhung der Ladungsträgermobilität und Organischer Feld-Effekt Transistor (OFET)
EP1532570B1 (de) Organisches bauelement zum überspannungsschutz und dazugehörige schaltung
EP1704606B1 (de) Verfahren zur Herstellung eines organischen Transistors mit selbstjustierender Gate-Elektrode
DE102020124520A1 (de) Kondensator
DE102017124800A1 (de) Dielektrikum für elektronische Bauelemente
EP1644995A2 (de) Halbleiterbauelement und verfahren zu dessen herstellung
DE10255870A1 (de) Verfahren zur Herstellung von organischen Feldeffektransistoren mit Top-Kontakt-Architektur aus leitfähigen Polymeren
DE10307772B4 (de) Verfahren zur Passivierung der organischen Elektrode einer organischen Solarzelle und organische Solarzelle
DE102014107850A1 (de) Elektronisches Bauelement mit einem Dielektrikum und Verfahren zur Herstellung des elektronischen Bauelementes
DE102005005589A1 (de) Hybrider, organischer Feldeffekttransistor mit oberflächenmodifiziertem Kupfer als Source- und Drain-Elektrode

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040304

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: ROST, HENNING

Inventor name: GUILLET, ERWANN

Inventor name: ULLMANN, ANDREAS

Inventor name: FIX, WALTER

Inventor name: BONZANI, PETER

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: POLYIC GMBH & CO. KG

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: POLYIC GMBH & CO. KG

17Q First examination report despatched

Effective date: 20080225

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20150401