Nothing Special   »   [go: up one dir, main page]

EP1412274B1 - Aufzuganlage mit einem messsystem zur ermittlung der absoluten kabinenposition - Google Patents

Aufzuganlage mit einem messsystem zur ermittlung der absoluten kabinenposition Download PDF

Info

Publication number
EP1412274B1
EP1412274B1 EP02745033A EP02745033A EP1412274B1 EP 1412274 B1 EP1412274 B1 EP 1412274B1 EP 02745033 A EP02745033 A EP 02745033A EP 02745033 A EP02745033 A EP 02745033A EP 1412274 B1 EP1412274 B1 EP 1412274B1
Authority
EP
European Patent Office
Prior art keywords
code
sensors
reading device
code mark
mark pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02745033A
Other languages
English (en)
French (fr)
Other versions
EP1412274A1 (de
Inventor
Eric Birrer
Heiko Essinger
Frank Müller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inventio AG
Original Assignee
Inventio AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inventio AG filed Critical Inventio AG
Priority to EP02745033A priority Critical patent/EP1412274B1/de
Publication of EP1412274A1 publication Critical patent/EP1412274A1/de
Application granted granted Critical
Publication of EP1412274B1 publication Critical patent/EP1412274B1/de
Priority to CY20111100537T priority patent/CY1112030T1/el
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B1/00Control systems of elevators in general
    • B66B1/34Details, e.g. call counting devices, data transmission from car to control system, devices giving information to the control system
    • B66B1/3492Position or motion detectors or driving means for the detector

Definitions

  • the invention relates to an elevator installation with a measuring system for determining the absolute cabin position of an elevator car which can be moved along at least one guide rail according to the definition of the patent claims.
  • the position information in coded form is fixedly mounted along the entire travel path of the elevator car and is read by means of a code reading device in coded form and forwarded to an evaluation unit.
  • the evaluation device prepares the read encoded position information in a way that is understandable and derives therefrom information signals that are forwarded as so-called shaft information for the elevator control.
  • a high resolution absolute measuring system for determining the relative position of two relatively movable parts.
  • an absolute code mark pattern in the form of a gapless sequence of identically long code marks of a pseudorandom coding and in a second track parallel thereto an incremental code character pattern are formed there on a first part in a first track. Any n consecutive code marks represent a code word in the absolute code mark pattern. Each of these code words occurs only once in the entire code mark pattern.
  • relatively movable second part of a code reading device is provided, which in the direction of movement n successive Can detect code tags at once while scanning the incremental code character pattern. If the code reading device travels around a code mark position of the absolute code mark pattern along the first part, then a new n-digit binary code word is already read.
  • each code word of the absolute code mark pattern defines a certain relative position of both parts to one another.
  • the length of the individual code marks measured in the direction of movement or reading and the number of maximum possible code words determine the maximum length of the measuring path which can be addressed with codewords.
  • the resolving power with which the relative position expressed in the pseudo-random code, the so-called position code, can be measured depends on the length of each individual code mark. The smaller the length of the code marks, the more accurate positioning can be. However, reading becomes progressively more difficult with decreasing length of the code marks, especially at high relative speeds.
  • Another length measuring systems is from the US-A-5135081 known.
  • the absolute code mark pattern and the incremental code character pattern are to be displayed in their relative position exactly aligned with one another.
  • the code reading device of a two-lane absolute position measuring system builds large, which is undesirable in view of limited available shaft cross-sectional area.
  • the traversing speed is limited in the case of two-lane measuring systems, which is perceived as limiting, in particular, in elevators with large delivery heights.
  • the object of the invention is to provide an elevator described above with a measuring system for determining the absolute position of the elevator car, which allows a high resolution in the position detection with the least possible effort over a long trajectory of the elevator car.
  • an elevator with an absolute position measuring system with the features of claim 1, which is particularly characterized in that the absolute code mark pattern and the incremental code character pattern are shown as a single-track combined code mark pattern of n-digit pseudorandom sequence in Manchester encoding and the code reading device comprises sensors for sampling n + 1 consecutive code marks, each sampling the second code mark of the single-track combined code mark pattern.
  • the essence of the invention consists of a single-lane coding for an absolute length measuring system in which, starting from a binary n-digit pseudo-random sequence, which encodes 2 n -1 different position values, a 0 is inserted behind every 0 and every 1 behind.
  • the double-length sequence thus obtained according to the invention represents a quasi combination of n-digit pseudorandom coding and Manchester coding.
  • n + 1 code marks of the respective second code marks of the combined code mark pattern must be scanned.
  • a twice as long measuring distance can be displayed as that which corresponds to the sum of the lengths ⁇ of all code marks of the n-digit pseudorandom coding from which it is derived.
  • the single-track combined code mark pattern according to the invention only individual code marks with the length ⁇ and code marks of the length occur 2 ⁇ up. Consequently, a code mark change takes place at the longest after the length of 2 ⁇ , which can be detected or scanned by means of the code reading device. From the quasi-equidistant code mark changes a scanning signal is derived, with which the sensors are controlled for detecting the single-track Postionscodes. The reading always takes place when the sensors are completely in coverage of the code marks to be read.
  • the single-lane code mark pattern is slim and therefore requires only a small attachment surface along the travel distance.
  • a single-track code carrier is easy and inexpensive to produce.
  • the code reading device with only n + 1 reading points according to the invention is inexpensive and has a comparatively small size compared to conventional code reading devices for the same travel path and comparable resolution.
  • the sensors are arranged in the direction of movement on a line at a mutual distance of 2 ⁇ , whereby the code reading device builds slim and can be arranged to save space laterally next to the guide rail movable.
  • the suppression of small magnetic poles by adjacent large magnetic poles, the so-called intersymbol interference, is reduced.
  • This has a positive effect on the reading reliability with a greater distance of the code reading device to the code mark pattern.
  • the distance of the code reader to the combined code mark pattern can thus be selected larger in a magnetic measuring system.
  • the measuring system wengier vulnerable to contamination of the code carrier and occurring relative movements of the code reader relative to the code mark pattern in the direction perpendicular to the reading or traversing the car.
  • the uniform Length of the code marks also allows a quick evaluation by inexpensive parallel working components.
  • Hall sensors In a preferred embodiment as a magnetic measuring system, only simple and inexpensive Hall sensors are used to scan the linear position code. Hall sensors also serve for an interpolation device for determining the position of the transition between two different code marks - the zero crossing of the magnetic field - relative to the sensor strip.
  • the interpolation device is arranged in the direction of travel over an area with a length greater than the length of two code marks 2 ⁇ . The distance between these Hall sensors is smaller than the length ⁇ of a code mark.
  • a combined code mark pattern with magnetic code marks outwards forms a magnetic field with a profile which is composed of approximately sinusoidal half-waves. These halfwaves each have the length ⁇ or the length 2 ⁇ of two code marks.
  • a high-resolution position value which is wegproportional each within a pole.
  • a particularly reliable measuring system for determining the absolute cabin position can be obtained by designing the code reading device to scan the position code, including the evaluation unit, in a redundant manner.
  • the second code reading device is basically the same as the first code reading device and differs only by an arrangement of the intermediate reading unit and the fine interpolation in this order in the traversing direction behind the position code reading unit.
  • the sensor pairs of both position code reading devices are in a line parallel to the reading direction, offset by a code mark length from each other and arranged intermeshing.
  • the code reading device is of compact construction and only longer by the interpolation device and the fine interpolation device than in a non-redundant measuring system.
  • Each of the two code reading devices is assigned its own evaluation unit, so that the output signals of the sensors of both code reading devices are evaluated independently of one another and are available for controlling the elevator.
  • the redundant design of the single-track measuring system also meets applicable safety requirements in the elevator industry and thus opens up the possibility to replace the previously mechanically executed safety devices by electrical. Furthermore, she is in common with in each case one floor sensor for each of the two measuring systems, the basis of a comprehensive shaft information system, which is shown schematically in FIG Fig. 7 is shown. Each evaluation unit is assigned to one of the floor sensors. The floor sensors are moved together with the elevator car in the shaft to detect in the shaft at each floor level arranged position markers. These signals are processed together with the output signals of redundant provided safety devices together with the position information and serve to control the elevator system.
  • FIG. 1 schematically shown elevator with a shaft 1, an elevator car 2 and a counterweight 3 are suspended on a plurality of support cables, of which here a representative support cable 4 is shown.
  • the support cables 4 run over a deflection roller 5 and are guided by a driven traction sheave 6.
  • the traction sheave 6 transmits the driving forces of a drive motor, not shown here, to the supporting cables 4 driven by it for lifting and lowering the counterweight 3 and the elevator car 2 along a guide rail 7.
  • Guiding shoes 9 fixedly connected to the elevator car 2 in the travel direction 8 serve to guide the elevator car 2 in the direction perpendicular to the direction of travel 8 on the guide rail 7.
  • the magnetic tape 10 serves as a carrier for a single-track combined code mark pattern according to the invention, which represents the numerical code of absolute positions of the elevator car 2 in the shaft 1 relative to a zero point.
  • a code reading device 12 is fixedly mounted on the elevator car 2 in the direction of travel 8. It consists essentially of a code reading sensor 11 carrying sensor block 13 which is supported by a holder 14 perpendicular to the direction of travel 8 Agebar. A roller guide 15 guides the sensor block 13 on the guide rail 7 when the code reader 12 is in common is moved with the elevator car 2. The same arrangement is also possible laterally or at the bottom of the elevator car 2.
  • the code reading device 12 transfers the read coded information via connecting lines 16 to an evaluation unit 17.
  • the evaluation unit 17 translates the read coded information into a binary expressed absolute position information understandable to the elevator control 18 before being transmitted via a suspension cable 19 to the elevator control 18, for example for positioning the elevator car 2 is forwarded.
  • Fig. 2 schematically shows a first embodiment of the invention with a magnetic measuring system.
  • a magnetic tape 10 having a single-track combined code mark pattern 20 is mounted on a portion of the guide rail 7.
  • the individual north poles 22 and south poles 23 form correspondingly oriented magnetic fields to the outside.
  • Each two adjacent code marks 12 define a so-called bit of coding.
  • the arrangement order of the individual bits in the combined code mark pattern 20 is in Figure 3 shown. There, too, the individual pole transitions 24 are replaced by the respectively corresponding bits of the coding.
  • the coding according to the invention is made up of a per se known binary pseudorandom sequence 25, which is combined with its inverted counterpart 26.
  • a pseudorandom sequence consists of bit sequences with n binary digits arranged consecutively. Each time you move back by one bit in the binary pseudo-random sequence, then, as is well known, a new n-digit binary bit sequence arises in each case. Such a sequence n consecutive bits is hereinafter referred to as code word.
  • the code words of a binary pseudorandom coding can be generated with the aid of a linear feedback shift register. The number of digits of the shift register corresponds to the number of digits of the binary bit sequence or of the code word.
  • n xexp (m)
  • x the valency of the codeword digit
  • m the number of digits or bits of the codeword.
  • N x exp (m) -1. The larger the number of bits, the more code words can be distinguished from each other.
  • the described pseudorandom sequence 25 is in the direction of travel 8 after each bit Valence "0" is a bit of significance "1" and after each "1" bit a "0" bit of the inverse pseudorandom sequence 26 is inserted. Consequently, in the single-lane combined code mark pattern 20, a bit change takes place at the latest after two bits. On the magnetic tape 10, this is shown according to Fig.
  • the combination according to the invention also yields a code digit gain. With simultaneous sampling of eighteen consecutive of the respective second bits of the combined code mark pattern 20, therefore, a unique 18-digit reading pattern 33 is read out without repetition of code words ( Fig. 2 ).
  • an eighteen position code reader 28 is provided Sensor pairs 29, which are in Fig. 4 geauer is shown.
  • All eighteen first sensors 31 are in a first group and all eighteen second sensors 31 'are combined into a second sensor group.
  • the reading pattern 33 of the position code reading device 28 Fig. 2 Thus, it is composed of eighteen simultaneously read bits, but only every other bit of the combined code mark pattern 20 is read.
  • the eighteen bits of a reading pattern 33 simultaneously read by the position code reading device 28 in the manner described are interpreted jointly by the evaluation unit 17 as an eighteen-digit code word.
  • the resolution of the position code reading device 28 here is 4 mm, which corresponds to the length ⁇ of a code mark 21.
  • the interpolation reading 36 detects the present invention created quasi-equidistant pole transitions 24 and zero crossings of the magnetic field between two successive north poles 22nd or South Poland 23.
  • FIG. 5 is an example of the output voltage of the six Hall sensors S0 to S5 of the interpolation device 36 over the path in the direction of travel 8 millimeter intervals shown.
  • Well-known comparator circuits perform the following comparisons of the voltages of individual sensors S0 to S5, which are evaluated as indicated: U s ⁇ 0 > 0 - > 0 U s ⁇ 0 + 1 / 3 * U s ⁇ 1 > 0 - > 0 U s ⁇ 0 + U s ⁇ 1 > 0 - > 1 1 / 3 * U s ⁇ 0 + U s ⁇ 1 > 0 - > 1 U s ⁇ 1 > 0 - > 1 etc to: U s ⁇ 4 + 1 / 3 * U s ⁇ 5 - > 1
  • the generated number sequence is decoded via a table stored, for example, in an EPROM into a three-digit binary number sequence which contains an interpolation value 46 (FIG. Fig.2 ) with - in the example 3mm represents.
  • This is periodic with the code mark length ⁇ and indicates the polarity of the band from the location of the first Hall sensor S0, calculated stepwise in, for example, 0.5 mm steps.
  • the most significant bit 24 of this interpolation value 46 inverts at a distance of 2 mm and takes over as the scanning signal for the described switching between the sensors 31 and 31 'of the position code reading device 28th
  • the three bits 24 of the interpolation value 46 are additionally included in the overall position information 53.
  • the voltages of the Hall sensors S0-S5 now only have to be compared with the threshold for 0mT, for which purpose a comparator is provided for each of the six Hall sensors S0-S5 of the position code reading device 28.
  • the correct bits 24 are selected via a number of 2 to 1 multiplexers which are controlled by the 2mm bit 24 of the interpolator 36. All that is needed is a synchronous clock, which can amount to several 100kHz. After one clock cycle ( ⁇ 10ns), the position value is updated.
  • the single-track measuring system described so far can be constructed with very inexpensive components. It enables high travel speeds of more than 16m / s. The measuring rate is practically only dependent on the speed of the interface.
  • the system resolution of this absolute single-track system is 0.5 mm, but can be significantly increased by the additional use of a Feininterpolations issued 47.
  • Fig. 6 shows the course of the output signal 48 of the MR angle sensor 49 used here with the designation LK28 from IMO when scanning the half-waves of the combined code mark pattern 20 along the path in the travel direction 8 plotted.
  • the sinusoidal and cosinusoidal output voltages of the MR sensor 49 are already interpolated in the p-controller by means of an interpolator chip or by software (not shown) and are normalized such that the minimum values 50 are 0 mm and the maximum values 51 are 4 mm.
  • the course of the output signal 48 of the MR angle sensor 49 can be seen that it is in the range 54 between 0mm and 8mm to a 8mm magnetic pole and 55 in the range between 8mm and 12mm to a 4mm magnetic pole.
  • This high-resolution position information is processed as follows:
  • the information as to whether the MR angle sensor 49 is above a four-pole or above an eight-mm magnetic pole can be stored in the decoding table.
  • the code word 33 is first determined by the position code reading device 28, and both the absolute position 35 and the arrangement of the magnetic poles under the current position of the MR angle sensor 49 are read out via the address of the decoding table indicated by the code word 33.
  • the calculation of the high-resolution total position 53 of the elevator car 2 consisting of a total of twenty-four bits 24 can be carried out very quickly since only a few simple operations, such as e.g. Comparisons, bit shifts, additions and subtractions are necessary.
  • Fig. 7 an embodiment of the invention is shown in which the code reading sensor 11 is redundant.
  • the second code reading sensor 11 ' has basically the same structure as the code reading sensor 11 in the first exemplary embodiment described above Fig. 4 , In difference
  • the interpolation device 36' and the fine interpolation device 47 ' are arranged in this direction in the direction of travel 8 in front of the position code reading device 28.
  • the eighteen sensor pairs 29 'of the second position code reading device 28 detect a reading pattern 33 of eighteen of the respective first bits of the combined code mark pattern 20.
  • each of the two code reading sensors 11, 11 ' is assigned its own evaluation unit 17, 17', so that the output signals of the sensors of both code reading sensors 11, 11 'are evaluated independently of one another and two independently determined high-resolution values of the overall position 53, 53 as a binary number are available with twenty-four locations to control the elevator.
  • Examples of such functions of a shaft information system which are based on the determination of the absolute cabin position are: the end-of-travel delay, end-of-shaft limitation, floor detection, level compensation, door bridging, as well as a wide variety of cruise controls, etc.
  • Fig. 7 a redundant design of the single-track measuring system as the basis of a shaft information system.
  • the redundant design of the single-track measuring system is, together with one floor sensor 41, 41 'in each case, the basis of a comprehensive shaft information system, which is shown schematically in FIG Fig. 7 is shown.
  • Each evaluation unit 17, 17 ' is assigned to one of the floor sensors 41, 41'.
  • the floor sensors 41, 41 ' are moved together with the elevator car 2 in the shaft 1 in order to detect position markings 42, 42' arranged in the shaft 1 at each floor level.
  • These signals of the floor sensors 41,41 ' are processed together with the output signals of also redundantly provided safety devices 43,43' together with the position information 53 and serve to control the elevator.
  • the Operatingncodemarkenmuster 20 of the magnetic tape 10 is shown in this embodiment by different pole magnetized sections and is read by magnetic field-sensitive sensors 31,31 ', S0-S6 of the code reader 12.
  • the code marks can also have different dielectric constants, which are read by sensors detecting capacitive effects.
  • a reflective code mark pattern is possible, in which, depending on the value of the individual code mark, more or less light is reflected by an illumination device to reflex light barriers than sensors.
  • the invention enables the use of inexpensive Hall sensors for reading the Postionscodes. Basically, an implementation but also with costly induction generator, so-called GMR sensors or magnetic field detecting magnetoresitive sensors, so-called MR sensors possible. Of each of these sensors, either a plurality of individual and / or a group of different sensors can be combined with one another on a code reading device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Indicating And Signalling Devices For Elevators (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Lift-Guide Devices, And Elevator Ropes And Cables (AREA)
  • Cage And Drive Apparatuses For Elevators (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Optical Transform (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Description

  • Die Erfindung betrifft eine Aufzuganlage mit einem Messsystem zur Ermittlung der absoluten Kabinenposition einer entlang mindestens einer Führungsschiene verfahrbaren Aufzugkabine nach Definition der Patentansprüche.
  • Bei Aufzügen ist die Positionsinformation in codierter Form ortsfest entlang des gesamten Verfahrwegs der Aufzugkabine angebracht und wird mittels einer Codeleseeinrichtung in codierter Form abgelesen und zu einer Auswerteeinheit weitergeleitet. Die Auswerteeinrichtung bereitet die abgelesene codierte Positionsinformation steuerungsverständlich auf und leitet daraus Informationssignale ab, die als sogenannte Schachtinformationen zur Aufzugsteuerung weitergeleitet werden.
  • Aus der DE 42 09 629 A1 ist ein absolutes Messsystem mit hoher Auflösung zum Bestimmen der relativen Position zweier relativ zueinander bewegbarer Teile bekannt. In bislang üblicher Weise sind dort an einem ersten Teil in einer ersten Spur ein absolutes Codemarkenmuster in Form einer lückenlosen Folge von gleichlangen Codemarken einer Pseudozufallscodierung und in einer dazu parallelen zweiten Spur ein inkrementales Codezeichenmuster ausgebildet. In dem absoluten Codemarkenmuster stellen jeweils beliebige n aufeinanderfolgende Codemarken ein Codewort dar. Jedes dieser Codeworte kommt im gesamten Codemarkenmuster nur ein einziges Mal vor. An einem zum ersten Teil relativ bewegbaren zweiten Teil ist eine Codelesevorrichtung vorgesehen, die in Bewegungsrichtung n aufeinanderfolgende Codemarken auf einmal erfassen kann und dabei das inkrementale Codezeichenmuster abtastet. Wird die Codelesevorrichtung um eine Codemarkenposition des absoluten Codemarkenmusters entlang des ersten Teils verfahren, dann wird bereits ein neues n-stelliges binäres Codewort gelesen.
  • Bei dieser bekannten Einrichtung definiert jedes Codewort des absoluten Codemarkenmusters eine bestimmte Relativposition beider Teile zueinander. Die in Bewegungs- bzw. Ableserichtung gemessene Länge der einzelnen Codemarken und die Anzahl der maximal möglichen Codeworte legen die maximale Länge der Messstrecke fest, die mit Codeworten adressierbar ist. Das Auflösevermögen mit dem die im Pseudozufallscode ausgedrückte Relativposition, der sogenannte Positionscode, gemessen werden kann, hängt von der Länge jeder einzelnen Codemarke ab. Je kleiner die Länge der Codemarken ist, desto genauer kann positioniert werden. Jedoch gestaltet sich das Ablesen mit abnehmender Länge der Codemarken, insbesondere bei hohen Relativgeschwindigkeiten zusehens schwieriger.
  • Bei einer Anwendung eines solchen absoluten Längenmesssystems zur Ermittlung der Position einer Aufzugkabine, wie beispielweise dem aus dem deutschen Gebrauchsmuster G 92 10 996.9 bekannten Aufzug, ist der gesamten Fahrweg in Verfahrrichtung der Aufzugskabine lückenlos mit codierten Positionsangaben, den Codeworten der Pseudozufallscodierung zu adressieren. Das Maximum der Mess- bzw. Fahrwegstrecke ist dabei aber durch die Summe der Längen aller Codemarken begrenzt. Für lange Fahrstrecken ist deshalb eine Pseudozufallscodierung mit vielstelligen Codeworten und/oder Codemarken mit grösseren Längen vorzusehen. Vielstellige Codeworte bedingen jedoch entsprechend aufwendige Codeleseeinrichtungen und Auswerteeinheiten, was mit hohen Kosten verbunden ist. Mit zunehmender Länge der einzelnen Codemarken nimmt aber das Auflösevermögen ab.
  • Ein weiteres Längen messsysteme ist aus der US-A-5135081 bekannt.
  • Um Ablesefehler zu vermeiden, sind das absolute Codemarkenmuster und das inkrementale Codezeichenmuster in ihrer Relativlage exakt zueinander ausgerichtet darzustellen. Dies macht die Herstellung eines zweispurigen Codeträgers teuer und bedingt andererseits eine zeitintensive genaue Montage. Zudem baut insbesondere die Codeleseeinrichtung eines zweispurigen absoluten Positionsmesssystems gross, was im Hinblick auf begrenzt zur Verfügung stehender Schachtquerschnittsfläche unerwünscht ist. Im übrigen ist die Verfahrgeschwindigkeit bei zweispurigen Messsystemen begrenzt, was insbesondere bei Aufzügen mit grossen Förderhöhen als einschränkend empfunden wird.
  • Aufgabe der Erfindung ist es, einen eingangs beschriebenen Aufzug mit einem Messsystem zur Bestimmung der absoluten Position der Aufzugkabine anzugeben, welches mit möglichst geringem Aufwand über eine lange Verfahrstrecke der Aufzugskabine eine hohe Auflösung bei der Positionserkennung ermöglicht.
  • Die Lösung dieser Aufgabe ist erfindungsgemäss durch einen Aufzug mit einem absoluten Positionsmesssystem mit den Merkmalen des Patentanspruchs 1 gegeben, welcher sich insbesondere dadurch auszeichnet, dass das absolute Codemarkenmuster und das inkrementale Codezeichenmuster als einspuriges kombiniertes Codemarkenmuster der n-stelligen Pseudozufallsfolge in Manchester-Codierung dargestellt sind und die Codelesevorrichtung Sensoren zum Abtasten von n+1 aufeinanderfolgenden Codemarken aufweist, wobei jeweils die zweite Codemarke des einspurigen kombinierten Codemarkenmusters abgetastet wird. Das Wesen der Erfindung besteht in einer einspurigen Codierung für ein absolutes Längenmesssystem, bei welchem ausgehend von einer binären n-stelligen Pseudozallsfolge, mit der 2n-1 verschiedene Positionswerte codiert sind, hinter jeder 0 eine 1 und hinter jeder 1 eine 0 eingefügt ist. Die dadurch erhaltene erfindungsgemässe Folge mit doppelter Länge stellt quasi eine Kombination der n-stelligen Pseudozufallscodierung und einer Manchestercodierung dar. Damit sich sämtliche im erfindungsgemäss kombinierten Codemarkenmuster auftretenden Codeworte voneinander unterscheiden, müssen n+1 Codemarken der jeweils zweiten Codemarken des kombinierten Codemarkenmusters abgetastet werden.
  • Mit der erfindungsgemässen Codierung können die Vorteile von absoluten Einspursystemen mit dem Vorteil der hohen Auflösung von absoluten Zwei- bzw. Mehrspursysteme kombiniert werden.
  • Mit der erfindungsgemäss kombinierten Codierung ist mit einer n-stelligen Pseudozufallscodierung bei unveränderter Auflösung eine doppelt so lange Messstrecke darstellbar, als jene, die der Summe der Längen λ aller Codemarken der n-stelligen Pseudozufallscodierung, aus der sie abgeleitet ist entspricht. Dabei treten in dem erfindungsgemässen einspurigen kombinierten Codemarkenmuster ausschliesslich einzelne Codemarken mit der Länge λ und Codemarken der Länge 2λ auf. Folglich findet längstens nach der Länge von 2λ ein Codemarkenwechsel statt, welcher mittels der Codelesevorrichtung detektiert bzw. abgetastet werden kann. Aus den quasi äquidistanten Codemarkenwechseln wird ein Abtastsignal abgeleitet, mit dem die Sensoren für das Erfassen des einspurigen Postionscodes angesteuert werden. Das Lesen erfolgt immer dann, wenn sich die Sensoren vollständig in Abdeckung der zu lesenden Codemarken befinden. Das einspurige Codemarkenmuster ist schlank und benötigt deshalb lediglich eine kleine Befestigungsfläche entlang der Verfahrstrecke. Zudem ist ein einspuriger Codeträger einfach und kostengünstig herstellbar.
  • Mit lediglich einer zusätzlichen Ablesestelle der Codelesevorrichtung mehr, also nur n+1 Ablesestellen, kann an der erfindungsgemäss einen Spur des kombinierten Codemarkenmusters jeweils ein eindeutiges bzw. absolutes Zeichenmuster abgelesen werden.
  • Die Codelesevorrichtung mit erfindungsgemäss nur n+1 Lesestellen ist kostengünstig und baut verhältnismassig klein im Vergleich zu herkömmlichen Codelesevorrichtungen für dieselbe Fahrwegstrecke und vergleichbarer Auflösung. Zum Ablesen des einspurigen kombinierten Codemarkenmusters sind die Sensoren in Bewegungsrichtung auf einer Linie in einem gegenseitigen Abstand von 2λ angeordnet, wodurch die Codelesevorrichtung schlank baut und so platzsparend seitlich neben der Führungsschiene verfahrbar angeordnet sein kann.
  • In einfacher Weise kann bereits beim Aufstarten ohne Verfahren der Aufzugskabine, deren absolute Position ermittelt werden, indem für jedes Bit des kombinierten Codemarkenmusters zwei Sensoren in Verfahrrichtung in einem Abstand der halben Codemarkenlänge angeordnet sind. Steht einer der beiden Sensoren in der Nähe eines Codemarkenwechsels und liefert eine Sensorspannung von annähernd dem Wert Null, dann befindet sich der jeweils andere Sensor mit Sicherheit in Abdeckung zu einer Codemarke und liefert eine sichere Information. Jeweils die ersten Sensoren und jeweils die zweiten Sensoren zur Absolutablesung sind zu einer Sensorgruppe zusammengefasst. Von den beiden ineinandergreifenden, um die halbe Codemarkenlänge versetzten Sensorgruppen, werden alternierend immer nur die Ausgangssignale der Sensoren von einer der beiden Sensorgruppen zur Ablesung ausgewählt und ausgewertet. Die Umschaltung auf die jeweils richtige der beiden Sensorgruppen erfolgt über die Bestimmung der Lage des Übergangs zwischen zwei verschiendenen Codemarken und den beiden Sensorgruppen durch das Abtastsignal.
  • Bei der Anwendung der erfindungsgemässen einspurigen kombinierten Codierung bei einem magnetischen Messsystem wird die Unterdrückung kleiner Magnetpole durch benachbarte große Magnetpole, die sogenannte Intersymbolinterferenz, vermindert. Dies wirkt sich positiv auf die Lesesicherheit bei grösserem Abstand der Codelesevorrichtung zum Codemarkenmuster aus. Der Abstand der Codelesevorrichtung zum kombinierten Codemarkenmuster kann also bei einem magnetischen Messsystem grösser gewählt werden. Damit wird das Messsystem wengier Anfällig gegen Verschmutzung des Codeträgers und auftretenden Relativbewegungen der Codelesevorrichtung gegenüber dem Codemarkenmuster in Richtung senkrecht zur Lese- bzw. Verfahrrichtung der Kabine. Die gleichmässige Länge der Codemarken ermöglicht zudem eine schnelle Auswertung durch preiswerte parallelarbeitende Bauelemente.
  • In einer bevorzugten Ausführungsform als magnetisches Messsystem werden zur Abtastung des linearen Positionscodes ausschliesslich einfache und kostengünstige Hallsensoren eingesetzt. Ebenso dienen Hallsensoren einer Interpolationseinrichtung zur Bestimmung der Lage des Übergangs zwischen zwei verschiendenen Codemarken - dem Nulldurchganges des Magnetfeldes - relativ zur Sensorleiste. Die Interpolationseinrichtung ist in Verfahrrichtung über einen Bereich mit einer Länge grösser als die Länge zweier Codemarken 2λ angeordnet. Der Abstand zwischen diesen Hallsensoren ist kleiner als die Länge λ einer Codemarke.
  • Ferner ist es in einer besonders bevorzugten Weiterbildung der Erfindung vorgesehen, zusätzlich zu den Hall-Sensoren einen MR-Sensor einzusetzen, mit welchem die erfindungsgemässe Codierung abgetastet und so die Auflösung gegenüber bisherigen absoluten Einspursystemen erheblich gesteigert wird. Aufgrund der beschriebenen Eigenschaften bildet ein kombiniertes Codemarkenmuster mit magnetischen Codemarken nach aussen ein Magnetfeld mit einem Verlauf aus, welcher sich aus annähernd sinusförmigen Halbwellen zusammensetzt. Diese Halbwellen haben jeweils die Länge λ einer oder der Länge 2λ zweier Codemarken. Bei Abtastung mit einem entsprechenden MR-Sensor kann durch Arcustangensinterpolation der Sensorspannungen ein hochauflösender Positionswert erzeugt werden, welcher jeweils innerhalb eines Poles wegproportional ist. Kombiniert mit dem absoluten Positionswert mit der Auflösung einer Codemarkenlänge ergibt sich eine hochauflösende Absolutposition.
  • Ein besonders zuverlässiges Messsystem zur Ermittlung der absoluten Kabinenposition kann erhalten werden, indem die Codelesevorrichtung zum Abtasten des Positionscodes einschliesslich der Auswerteeinheit redundant ausgebildet ist. Die zweite Codelesevorrichtung ist dabei grundsätzlich gleich wie die erste Codelesevorrichtung aufgebaut und unterscheidet sich nur durch eine Anordnung der Zwischenleseeinheit und der Feininterpolation in dieser Reihenfolge in Verfahrrichtung hinter der Positionscodeleseeinheit. Die Sensorpaare beider Positionscodeleseeinrichtungen sind in einer zur Ableserichtung parallen Linie, um eine Codemarkenlänge zueinander versetzt und ineinandergreifend angeordnet. Die Codelesevorrichtung ist kompakt gebaut und lediglich um die Interpolationseinrichtung und die Feininterpolationseinrichtung länger als bei einem nicht redundanten Messsystem.
  • Jeder der beiden Codelesevorrichtungen ist eine eigene Auswerteeinheit zugeordnet, so dass die Ausgangssignale der Sensoren beider Codelesevorrichtungen unabhängig voneinander ausgewertet werden und zur Steuerung des Aufzugs verfügbar sind.
  • Die redundante Ausbildung des einspurigen Messsystems erfüllt ferner geltende Sicherheitsanforderungen in der Aufzugsindustrie und eröffnet damit die Möglichkeit bisher mechanisch ausgeführte Sicherheitseinrichtungen durch elektrische zu ersetzen. Ferner ist sie gemeinsam mit jeweils einem Stockwerksensor für jeder der beiden Messsysteme Grundlage eines umfassenden Schachtinformationssystem, welches schematisch in Fig. 7 dargestellt ist. Jeder Auswerteeinheit ist einer der Stockwerksensoren zugeordnet. Die Stockwerksensoren werden zusammen mit der Aufzugkabine im Schacht bewegt, um im Schacht auf jedem Stockwerkniveau angeordnete Positionsmarkierungen zu detektieren. Diese Signale werden zusammen mit den Ausgangssignalen von ebenfalls redundant vorgesehenen Sicherheitseinrichtungen gemeinsam mit der Postionsinformation verarbeitet und dienen der Steuerung der Aufzugsanlage.
  • Weitere Merkmale und Vorteile der Erfindung gehen aus der nachstehenden Beschreibung eines bevorzugten Ausführungsbeispiels unter Bezugnahme auf die beigefügte Zeichnung hervor. Es zeigt:
  • Fig. 1,
    schematisch eine Aufzuganlage mit einer Einrichtung zur Ermittelung der Position einer Aufzugkabine;
    Fig. 2,
    schematisch den Aufbau einer ersten Ausführung der Erfindung;
    Fig. 3,
    die Anordnungsreihenfolge der einzelnen Bits im kombinierten Codemarkenmuster,
    Fig. 4,
    eine zweite Ausführung der Codelesesensorik;
    Fig. 5,
    ein Verlauf des Ausgangssignals der Interpolationseinrichtung,
    Fig. 6,
    den Verlauf des Ausgangssignals eines MR- Winkelsensors der Feininterpolation bei Abtastung des Magnetfeldverlauf über dem codierten Magnetband,
    Fig. 7,
    eine zweite redundante Ausführung des Messystem gemäss der Erfindung.
    Fig. 8
    eine redundante Ausbildung des einspurigen Messsystems als Grundlage eines umfassenden Schachtinformationssystems.
  • Bei dem in Fig. 1 schematisch gezeigten Aufzug mit einem Schacht 1, sind eine Aufzugkabine 2 und ein Gegengewicht 3 an mehreren Tragseilen aufgehängt, von denen hier stellvertretend ein einzelnes Tragseil 4 dargestellt ist. Die Tragseile 4 laufen über eine Umlenkrolle 5 und sind über eine angetriebene Treibscheibe 6 geführt. Die Treibscheibe 6 überträgt die Antriebskräfte eines hier nicht dargestellten Antriebsmotors auf die von ihr angetriebenen Tragseile 4 zum Heben und Senken des Gegengewichts 3 und der Aufzugkabine 2 entlang einer Führungschiene 7. In Verfahrrichtung 8 fest mit der Aufzugkabine 2 verbundene Führungsschuhe 9 dienen zur Führung der Aufzugkabine 2 in Richtung senkrecht zur Verfahrrichtung 8 an der Führungsschiene 7. An der Führungsschiene 7 ist ein Magnetband 10 entlang der gesamten Fahrstrecke der Aufzugkabine 2 parallel zur Verfahrrichtung 8 der Aufzugkabine 2 ortfest angebracht. Das Magnetband 10 dient als Träger für ein erfindungsgemässes einspuriges kombiniertes Codemarkenmuster, das den numerischen Code von absoluten Positionen der Aufzugkabine 2 im Schacht 1 bezogen auf einen Nullpunkt darstellt.
  • Eine Codelesevorrichtung 12 ist in Verfahrrichtung 8 fest auf der Aufzugkabine 2 angebracht. Sie besteht im wesentlichen aus einem die Codelesesensorik 11 tragenden Sensorblock 13, der von einer Halterung 14 senkrecht zur Fahrtrichtung 8 verschiebar gehaltert ist. Eine Rollenführung 15 führt den Sensorblock 13 an der Führungsschiene 7, wenn die Codelesevorrichtung 12 gemeinsam mit der Aufzugkabine 2 bewegt wird. Die gleiche Anordnung ist auch seitlich oder unten an der Aufzugkabine 2 möglich.
  • Die Codelesevorrichtung 12 übergibt die abgelesene codierte Information über Verbindungsleitungen 16 an eine Auswerteeinheit 17. Die Auswerteeinheit 17 übersetzt die abgelesene codierte Information in eine für die Aufzugssteuerung 18 verständliche binäre ausgedrückte absolute Positionsangabe, bevor sie über ein Hängekabel 19 an die Aufzugssteuerung 18, beispielsweise zur Positionierung der Aufzugkabine 2 weitergeleitet wird.
  • Fig. 2 zeigt schematisch eine erste Ausführung der Erfindung mit einem magnetischen Messsystem. Auf einem Abschnitt der Führungsschiene 7 ist ein Magnetband 10 mit einem einspurigen kombinierten Codemarkenmuster 20 angebracht. Die Codemarken 21 sind durch in Längsrichtung des Magnetbands 10 in einer Spur angeordnete gleichlange rechteckige Abschnitte mit einer Länge von jeweils λ=4 mm symbolisiert und entweder als magnetischer Nordpol 22 oder als magnetischer Südpol 23 magnetisiert. Die einzelnen Nordpole 22 und Südpole 23 bilden nach aussen entsprechend orientierte Magnetfelder aus. Jeweils zwei aneinandergrenzende Codemarken 12 definieren ein sogenanntes Bit der Codierung. Befindet sich ein Nordpol 23 in Verfahrrichtung 8 vor einem Südpol 23, so ist diesem Bit der Wert "0" zugeordnet, während einem Süd-Nord-Übergang der Wert "1" zugeordnet ist. Diese Art der über Zustandsänderungen definierten Wertigkeit der Bits ist als sogenannte Manchester-Codierung bekannt. Zur Veranschaulichung sind in Fig. 2 oberhalb der einzelnen Polübergänge 24 die entsprechenden Binärziffern bzw. Bits aufgetragen.
  • Die Anordnungsreihenfolge der einzelnen Bits im kombinierten Codemarkenmuster 20, ist in Fig.3 gezeigt. Auch dort sind die einzelnen Polübergänge 24 durch die jeweils entsprechenden Bits der Codierung ersetzt. Die erfindungsgemässe Codierung ist aufgebaut aus einer an sich bekannten binären Pseudozufallsfolge 25, die mit ihrem invertierten Gegenstück 26 kombiniert ist.
  • Eine Pseudozufallsfolge besteht aus lückenlos hintereinander angeordneten Bitsquenzen mit n binären Stellen. Bei jedem Weiterrücken um ein Bit in der binären Pseudozufallsfolge, stellt sich dann bekanntlich jeweils eine neue n-stellige binäre Bitsequenz ein. Eine solche Sequenz n hintereinander liegender Bits ist nachfolgend als Codewort bezeichnet. Die Codeworte einer binären Pseudozufallscodierung können bekanntlich mit Hilfe eines linear rückgekoppelten Schieberegisters erzeugt werden. Die Anzahl der Stellen des Schieberegisters entspricht dabei der Anzahl der Stellen der binären Bitfolge bzw. des Codewortes. Allgemein können in einer m-Bit Pseudozufallscodierung n=xexp(m) verschiedene Codeworte unterschieden werden, wobei x die Wertigkeit der Codewortziffer und m die Anzahl der Stellen oder Bits des Codeworts sind. Die grösste darstellbare Zahl ergibt sich zu N= x exp(m)-1. Je grösser die Anzahl der Bits, desto mehr Codeworte können voneinander unterschieden werden.
  • Der in Fig. 3 dargestellten Ausführung der Erfindung liegt eine Pseudozufallsfolge 25 aus Codeworten 27 mit n=17 Stellen zugrunde. Sie ist 2exp(17)-1 Bits lang und besteht folglich aus insgesamt n=2exp(17) = 131 072 verschiedenen Codeworten 27. Erfindungsgemäss ist in Verfahrrichtung 8 der beschriebenen Pseudozufallsfolge 25 nach jedem Bit mit Wertigkeit "0" ein Bit mit der Wertigkeit "1" und nach jedem "1"-Bit ein "0"-Bit der inversen Pseudozufallsfolge 26 eingefügt. Folglich findet in dem einspurigen kombinierten Codemarkenmuster 20 spätestens nach zwei Bits ein Bitwechsel statt. Auf dem Magnetband 10 zeigt sich dies gemäss Fig. 3 dadurch, dass nur Magnetpole 22,23 in der Länge λ=4mm und der doppelten Länge von L=2λ=8mm vorhanden sind und dass längstens nach L=2λ=8mm ein Übergang 24 von einem Nordpol 23 auf einen Südpol 22 oder umgekehrt auftritt.
  • Die n1=2exp(17)-1 Bits der Pseudozufallsfolge 25 und die dazu inversen n2=2exp(17)-1 Bits des invertierten Gegenstück 26 addieren sich zu insgesamt nK=2x(2exp(17)-1) Bits. Dies entspricht bei der hier gewählten Codemarkenlänge λ=4mm einer geometrischen Gesamtlänge des einspurigen kombinierten Codemarkenmusters 20 von Lmax=nK*λ=262144*4mm=1048,576m.
  • Analytisch betrachtet ergibt die Kombination ein kombiniertes Codemarkenmuster 20 bei dem insgesamt NK=2(2exp(17)-1)-36=2exp(18)-2-36=262'106 Codewörter mit nun jeweils achtzehn Stellen unterschieden werden. Damit ergibt die erfidungsgemässe Kombination neben der Verdoppelung der Zahl der Bits bzw. Magnetpole 22,23 auch ein Codestellengewinn. Bei gleichzeitiger Abtastung von jeweils achtzehn aufeinanderfolgenden der jeweils zweiten Bits des kombinierten Codemarkenmusters 20 wird also ein eindeutiges 18-stelliges Ablesemuster 33 ohne Wiederholung von Codeworten ausgelesen (Fig. 2).
  • Dementsprechend umfasst die Codelesesensorik 11 gemäss Fig. 2 zum Lesen der achtzehn Bit Positionscodes bzw. Codeworte 33 eine Positionscodeleseeinrichtung 28 mit achtzehn Sensorpaaren 29, die in Fig. 4 geauer dargestellt ist. Die Sensorpaare 29 in Verfahrrichtung 8 auf einer Linie mit einem Abstand 30 angeordnet, der der Länge 2λ=8mm zweier Magnetpole 22,23 entspricht. Die beiden Sensoren 31,31' jedes der Sensorpaare 29 trennt ein gegenseitiger Abstand 32 der Grösse einer halben Codemarkenlänge λ/2=2mm. Steht einer der beiden Sensoren 31,31' in der Nähe eines Magnetpolwechsels 24 und liefert eine Sensorspannung von annähernd dem Wert Null, dann befindet sich der jeweils andere Sensor 31,31' mit Sicherheit in Abdeckung zu einem der Magnetpole 22,23 und liefert eine sichere Information. Alle achtzehn ersten Sensoren 31 sind zu einer ersten Gruppe und alle achtzehn zweiten Sensoren 31' sind zu einer zweiten Sensorgruppe zusammengefasst. Von den Sensoren 31 der ersten Sensorgruppe und der um die halbe Codemarkenlänge λ/2=2mm in Verfahrrichtung versetzten Sensoren 31' der zweiten Sensorgruppe, werden alternierend immer nur die Ausgangssignale der Sensoren einer von beiden Sensorgruppen zur Positionsablesung ausgewählt und ausgewertet. Das Ablesemuster 33 der Positionscodeleseeinrichtung 28 aus Fig. 2 setzt sich also aus achtzehn gleichzeitig gelesenen Bits zusammen, wobei aber nur jedes zweite Bit des kombinierten Codemarkenmusters 20 gelesen wird.
  • Die in beschriebener Weise von der Positionscodeleseeinrichtung 28 gleichzeitig abgelesenen achtzehn Bits eines Ablesemusters 33 werden von der Auswerteeinheit 17 gemeinsam als ein achtzehnstelliges Codewort interpretiert. Jedem dieser n=2*(2exp(17)-1)-36=262'106 achtzehnstelligen Codeworte des kombinierten Codemarkenmusters 20 ist über eine in einem Festwertspeicher, hier einem EPROM, gespeicherten Übersetzungs- oder Decodiertabelle eindeutig ein Absolutpositionswert 35 der Aufzugskabine 2 zugeordnet, der als eine Binärzahl in richtiger Reihenfolge ausgegeben wird. Die Auflösung der Positionscodeleseeinrichtung 28 ist hier 4mm, was der Länge λ einer Codemarke 21 entspricht.
  • Die Umschaltung auf die jeweils richtige der beiden Sensorgruppen der Positionscodeleseeinrichtung 28 erfolgt über die Bestimmung der Lage des Polübergangs 24 zwischen einem Südpol 22 und einem Nordpol 23 mit Hilfe einer Interpolationseinrichtung 36. Die Interpolationseinrichtung 36 ist in Verfahrrichtung 8 entweder wie in Fig. 2 vor oder aber wie hier in Fig. 3 hinter der Positionscodeleseeinrichtung 28 in einem Abstand 37 von einem ganzzahligen Vielfachen der Länge λ=4mm einer Codemarke 21 angeordnet. Die Interpolationseinrichtung 36 umfasst eine Gruppe von sechs Hallsensoren S0-S5, welche in Verfahrrichtung 8 hintereinander in einem Abstand von jeweils λ/2=2mm platziert sind, so dass den ersten Hallsensor S0 und den letzten Hallsensoren S5 demnach ein Abstand von 10mm trennt. In dem Bereich zwischen dem ersten Hallsensor S0 und dem letzten Hallsensoren S5 liegt zwingend eine Nullstelle, d.h. ein Polübergang 24 des oben beschriebenen kombinierten Codemarkenmusters 20. Die Interpolationsleseeinrichtung 36 detektiert die erfindungsgemäss geschaffenen quasi äquidistanten Polübergänge 24 bzw. Nulldurchgänge des Magnetfelds zwischen zwei aufeinanderfolgenden Nordpolen 22 oder Südpolen 23.
  • In Fig. 5 ist ein Beispiel der Ausgangsspannung der sechs Hallsensoren S0 bis S5 der Interpolationseinrichtung 36 über dem Weg in Verfahrrichtung 8 im Millimeterabständen dargestellt. Hinlänglich bekannte Komparatorschaltungen führen folgende Vergleiche der Spannungen einzelner Sensoren S0 bis S5 durch, die wie angegeben gewertet werden: U s 0 > 0 - > 0
    Figure imgb0001
    U s 0 + 1 / 3 * U s 1 > 0 - > 0
    Figure imgb0002
    U s 0 + U s 1 > 0 - > 1
    Figure imgb0003
    1 / 3 * U s 0 + U s 1 > 0 - > 1
    Figure imgb0004
    U s 1 > 0 - > 1
    Figure imgb0005

    u.s.w. bis: U s 4 + 1 / 3 * U s 5 - > 1
    Figure imgb0006
  • Dies ergibt für das in Fig. 5 dargestellte Beispiel die Ziffernfolge: 001111111111111111. Damit ist ausgedrückt, dass sich an dem ersten Interpolationssensor S0 bis 0.5mm dahinter ein Südpol 23 erstreckt. Ab 1.0mm bis 9mm hinter dem ersten Interpolationssensor S0 befindet sich ein Nordpol 22.
  • Die erzeugte Ziffernfolge wird über eine z.B. in einem EPROM gespeicherte Tabelle in eine dreistellige binäre Zahlenfolge decodiert, die einen Interpolationswert 46 (Fig.2) mit - im Beispielfall 3mm darstellt. Dieser ist mit der Codemarkenlänge λ periodisch und gibt die Polarität des Bandes von der Stelle des ersten Hallsensors S0 an gerechnet schrittweise in beispielsweise 0.5mm Schritten an. Das höchstwertige Bit 24 dieses Interpolationswertes 46 invertiert in einem Abstand von 2mm und übernimmt als Abtastsignal die zur beschriebenen Umschaltung zwischen den Sensoren 31 und 31' der Positionscodeleseeinrichtung 28. Die drei Bits 24 des Interpolationswertes 46 werden zusätzlich in die Gesamtpositionsinformation 53 einbezogen. Die Spannungen der Hallsensoren S0-S5 müssen nun lediglich mit der Schwelle für 0mT verglichen werden, wozu für jeden der sechs Hallsensoren S0-S5 der Positionscodeleseeinrichtung 28 ein Komparator vorgesehen ist. Von den sich daraus ergebenden digitalen Bits 24 werden die richtigen Bits 24 über ein Anzahl von 2 zu 1 Multiplexern ausgewählt, welche vom 2mm-Bit 24 der Interpolationseinrichtung 36 gesteuert werden. Nötig ist lediglich noch ein Synchrontakt, welcher mehrere 100kHz betragen kann. Nach einem Taktzyklus (<10ns) ist der Positionswert aktualisiert.
  • Das insoweit beschriebene einspurige Messsystem kann mit sehr preiswerten Bauteilen aufgebaut werden. Es ermöglicht hohe Verfahrgeschwindigkeiten von mehr als 16m/s. Die Messrate ist praktisch nur von der Geschwindigkeit der Schnittstelle abhängig. Die Systemauflösung dieses absoluten Einspursystems beträgt 0,5mm, kann aber durch den zusätzlichen Einsatz einer Feininterpolationseinrichtung 47 erheblich gesteigert.
  • Die Feininterpolationseinheit 47 tastet zusätzlich zu den Hallsensoren 31,31',S0-S5 das kombinierte Codemarkenmuster 20 mit einem MR-Sensor 49 (magnetoResistant= Induktiver Widerstands-Sensor) ab. Der MR-Winkelsensor 49 ist bei der Ausführung gemäss Fig. 2 in einem festen Abstand 1=kλ, der einem Vielfachen der Länge einer Codemarke 21 entspricht in Verfahrrichtung 8 vor und in der Ausführung gemäss Fig. 4 hinter der Interpolationseinrichtung 36 an der Codelesevorrichtung 12 angeordnet und wird zusammen mit dieser relativ entlang des Magnetbands 10 bewegt. Dabei detektiert der MR-Winkelsensor 49 den Verlauf des Magnetfelds des einspurigen kombinierten Codemarkenmusters 20, welcher sich sich aus annähernd sinusförmigen Halbwellen der Längen λ=4mm oder 2λ=8mm, der durch die Nordpole 22 und Südpole 23 gebildeten Magnetfelder zusammensetzt.
  • Fig. 6 zeigt den Verlauf des Ausgangssignals 48 des hier verwendeten MR-Winkelsensors 49 mit der Bezeichnung LK28 der Firma IMO bei Abtastung der Halbwellen des kombinierten Codemarkenmusters 20 längs des Wegs in der Verfahrrichtung 8 aufgetragen. Die sinus- und cosinusförmige Ausgangsspannungen des MR-Sensors 49 sind bereits mittels Interpolatorchip oder per Software (nicht dargestellt) im p-Controller arcustangensinterpoliert und so normiert, dass die Minimalwerte 50 bei 0mm und die Maximalwerte 51 bei 4mm liegen. Das Ausgangssignal 48 ergibt eine hochauflösenden Positionsinformation, welcher innerhalb der Länge λ=4mm eines Nordpols 22 oder Südpols 23, bzw. 2λ=8mm zweier aneinander grenzender gleichpoliger Magnetpole wegproportional ist.
  • Dem Verlauf des Ausgangssignals 48 des MR-Winkelsensors 49 ist zu entnehmen, dass es sich im Bereich 54 zwischen 0mm und 8mm um einen 8mm-Magnetpol und im Bereich 55 zwischen 8mm und 12mm um einen 4mm Magnetpol handelt.
  • Diese hochauflösende Positionsinformation wird wie folgt weiterverarbeitet:
  • Wenn sich der MR-Winkelsensor 49 über einem 4mm-Magnetpol befindet, dann wird die interpolierte Positionsinformation der Feininterpolationseinrichtung 47 als hochauflösender Positionswert 52 übernommen. Befindet sich der MR-Sensor 49 über einem 8mm-Pol, dann wird die interpolierte Positionsinformation mit 2 multipliziert. Ist der sich daraus ergebende Wert grösser als der hier durch die Länge von λ=4mm eines Magnetpols vorgegebene Maximalwert, dann wird der Maximalwert subtrahiert.
  • Aus dieser Berechnungsvorschrift ergibt sich eine mit der Codemarkenlänge λ periodischer Positionswert 52 mit einer Auflösung in der Grössenordnung von 50µm, wie man sie bisher nur aus der Inkrementalspur eines herkömmlichen Zweispursystems erhält.
  • Die Information, ob sich der MR-Winkelsensor 49 über einem vier- oder über einem acht-mm-Magnetpol befindet, kann in der Decodiertabelle abgelegt werden. Es wird zuerst von der Positionscodeleseeinrichtung 28 das Codewort 33 ermittelt und über die durch das Codewort 33 angegebene Adresse der Decodiertabelle sowohl die Absolutposition 35 als auch die Anordnung der Magnetpole unter der momentanen Position des MR-Winkelsensors 49 ausgelesen.
  • Zur Berechnung der hochauflösenden Gesamtposition 53 werden der durch die Feininterpolationseinrichtung 47 ermittelte periodische hochauflösende Positionswerte 52 und der von der Positionscodeleseeinrichtung 28 ermittelte Absolutpositionswert 35 der Auflösung λ=4mm in einem p-Controller 40 miteinander synchronisiert. Dies ist problemlos möglich, da die Absolutposition 35 wie zuvor beschrieben mit einer Auflösung von 0,5mm zur Verfügung steht.
  • Die Berechnung der hochauflösenden, aus insgesamt vierundzwanzig Bits 24 bestehenden Gesamtposition 53 der Aufzugkabine 2 kann sehr schnell durchgeführt werden, da nur wenige einfache Operationen, wie z.B. Vergleiche, Bitschiebungen, Additionen und Subtraktionen notwendig sind.
  • Die durch die erfindungsgemässe Codierung und die Positionscodeleseeinrichtung 28 mögliche hohe Verfahrgeschwindigkeit wird durch die Feininterpolationseinrichtung 47 nicht beeinträchtigt, wenn ein Interpolatorchip mit paralleler Ausgabe der interpolierten Positionsinfo benutzt und der hochauflösende Positionswert 52 zeitgleich mit dem Absolutpositionswert 35 durch den Synchrontakt gesteuert zwischenspeichert.
  • Die in Fig. 6 erkennbare Verzerrungen des Verlaufs 48 des durch Feininterpolation gewonnenen interpolierten Positionswertes kann durch eine Entzerrungstabelle jeweils für Vier- und Achtmillimetermagnetpole entzerrt werden, wodurch die Genauigkeit erheblich verbessert wird. Dies ist möglich, weil sich die Verzerrungen von Magnetpolen gleicher Länge λ oder 2λ an allen Stellen des kombinierten Codemarkenmusters 20 stark ähneln.
  • In Fig. 7 ist eine Ausführung der Erfindung dargestellt, bei der die Codelesesensorik 11 redundant ausgebildet ist. Die zweite Codelesesensorik 11' ist grundsätzlich gleich aufgebaut wie die Codelesesensorik 11 im zuvor beschriebenen ersten Ausführungsbeispiels gemäss Fig. 4. Im Unterschied zur ersten Ausführung der Codelesesensorik 11, sind bei der zweiten Codelesesensorik 11' die Interpolationseinrichtung 36' und die Feininterpolationseinrichtung 47' in dieser Reihenfolge in Verfahrrichtung 8 vor der Positionscodeleseeinrichtung 28 angeordnet.
  • Die zweite Codelesesensorik 11' ist spiegelsymmetrisch zur ersten Codelesesensorik 11 platziert, wobei die Sensorpaare 29,29' beider Positionscodeleseeinrichtungen 28,28' in einer zur Verfahr-/ Ableserichtung 8 parallen Linie, um eine Codemarkenlänge λ=4mm zueinander versetzt ineinandergreifen. In dieser Lage detektieren die achtzehn Sensorpaare 29' der zweiten Positionscodeleseeinrichtung 28 ein Ablesemuster 33 aus achtzehn der jeweils ersten Bits des kombinierten Codemarkenmusters 20.
  • Wie Fig. 8 zeigt, ist jeder der beiden Codelesesensoriken 11,11' eine eigene Auswerteeinheit 17,17' zugeordnet, so dass die Ausgangssignale der Sensoren beider Codelesesensoriken 11, 11' unabhängig voneinander ausgewertet werden und zwei unabhängig voneinander ermittelte hochauflösende Werte der Gesamtposition 53,53 als Binärzahl mit vierundzwanzig Stellen zur Steuerung des Aufzugs verfügbar sind.
  • Ausgehend von der erfindungsgemäss geschaffenen Redundanz des absoluten Messsystem zur Ermittelung der absoluten Kabinenposition kann damit im Zusammenwirken mit zusätzlicher Aufzugssensorik, ein umfassendes Schachtinformationssystem mit zahlreichen Funktionen erhalten werden.
  • Als Beispiele solcher von der Bestimmung der absoluten Kabinenposition ausgehender Funktionen eines Schachtinformationssystem sind: die Schachtendverzögerung, Schachtendbegrenzung, Stockwerkserkennung, Niveauausgleich, Türüberbrückung sowie die verschiedensten Fahrtregelungen, u.v.m..
  • Fig. 7 eine redundante Ausbildung des einspurigen Messsystems als Grundlage eines Schachtinformationssystems.
  • Die redundante Ausbildung des einspurigen Messsystems ist gemeinsam mit jeweils einem Stockwerksensor 41,41' Grundlage eines umfassenden Schachtinformationssystem, welches schematisch in Fig. 7 dargestellt ist. Jeder Auswerteeinheit 17,17' ist einer der Stockwerksensoren 41,41' zugeordnet. Die Stockwerksensoren 41,41' werden zusammen mit der Aufzugkabine 2 im Schacht 1 bewegt, um im Schacht 1 auf jedem Stockwerkniveau angeordnete Positionsmarkierungen 42,42' zu detektieren. Diese Signale der Stockwerksensoren 41,41' werden zusammen mit den Ausgangssignalen von ebenfalls redundant vorgesehenen Sicherheitseinrichtungen 43,43' gemeinsam mit der Postionsinformation 53 verarbeitet und dienen der Steuerung des Aufzugs.
  • Das Längencodemarkenmuster 20 des Magnetbands 10 ist bei diesem Ausführungsbeispiel durch verschiedenpolig magnetisierte Abschnitte dargestellt und wird mittels magnetfeldsensitiven Sensoren 31,31', S0-S6 der Codelesevorrichtung 12 abgelesen. Grundsätzlich sind auch andere physikalische Prinzipien zur Darstellung der Längencodierung denkbar. So können die Codemarken auch unterschiedliche Dielektrizitätszahlen aufweisen, die von kapazitive Effekte erfassenden Sensoren gelesen werden. Ferner ist ein reflexives Codemarkenmuster möglich, bei dem je nach Wertigkeit der einzelnen Codemarke mehr oder weniger Licht von einer Beleuchtungseinrichtung zu Reflexlichtschranken als Sensoren reflektiert wird.
  • Die Erfindung ermöglicht den Einsatz von kostengünstigen Hall-Sensoren zum Ablesen des Postionscodes. Grundsätzlich ist ein Realisierung aber auch mit kostenintensiven Induktionsgeber, sogenannte GMR-Sensoren oder die Magnetfeldrichtung detektierende magnetoresitive Sensoren, sogenannte MR-Sensoren möglich. Von jedem dieser Sensoren können entweder mehrere einzelne und/ oder eine Gruppe unterschiedlicher Sensoren miteinander kombiniert an einer Codelesevorrichtung vorhanden sein.

Claims (13)

  1. Aufzuganlage mit einem Längenmesssystem zur Ermittlung einer Kabinenposition einer entlang mindestens einer Führungsschiene (7) verfahrbaren Aufzugkabine (2), mit einem parallel zur Verfahrrichtung (8) neben der Aufzugskabine angebrachten Codemarkenmuster (20), mit einer an der Aufzugkabine angebrachten Codelesevorrichtung (12) zum berührungslosen Abtasten des Codemarkenmusters, und mit einer Auswerteeinheit (17) zum Auswerten abgetasteter Codemarkenmuster, wobei n aufeinanderfolgende Codemarken (21) des Codemarkenmusters ein Codewort (27) bilden, Codewörter in einer n-stelligen Pseudozufallsfolge verschiedener Codewörter eindeutig angeordnet sind, die Codewörter ein einspuriges Codemarkenmuster bilden und ein abgetastetes Codewort eine absolute Kabinenposition (35) darstellt, dadurch gekennzeichnet, dass das Codemarkenmuster in Manchester-Codierung codiert ist, so dass spätestens nach jeder zweiten Codemarke ein Codemarkenwechsel stattfindet, und dass die codelesevorrichtung (12) mindestens über zwei Sensoren (31, 31') verfügt, die in Verfahrrichtung um eine halbe Codemarkenlänge versetzt angeordnet sind, so dass ein erster Sensor (31) bei Detektion eines Codemarkenwechsels (24) ein Abtastsignal erzeugt, mit dem ein zweiter Sensor (31') für das Erfassen des Codeworts ansteuerbar ist.
  2. Aufzugsanlage nach Anspruch 1, dadurch gekennzeichnet, dass mittels des Abtastsignals alternierend das Ausgangssignal von einem der beiden Sensoren (31), (31') ausgewählt und ausgewertet wird.
  3. Auf zuganlage nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Codemarken magnetische Pole bilden und dass die Codelesevorrichtung Hallsensoren (31, 31',S0-S5) aufweist.
  4. Aufzuganlage nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Codeleseeinrichtung mehrere Sensoren zum gleichzeitigen Abtasten der Codemarken eines Codewortes aufweist.
  5. Aufzuganlage nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Codelesee inrichtung mehrere Sensoren (S0-S5) zum Erfassen von Codemarkenübergangen aufweist, welche in Verfahrrichtung über einen Bereich mit einer Länge grösser als die Länge (2λ) zweier Codemarken in einem Abstand kleiner als die Länge einer Codemarke (λ) angeordnet sind.
  6. Aufzuganlage nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Codeleseeinrichtung mindestens einen Übergang (24) zwischen Codemarken erfasst.
  7. Aufzuganlage nach einem der Ansprüche 4 bis 6, dadurch gekennzeichnet, dass ein Komparator eine Spannung der Sensoren mit einer Schwelle vergleicht.
  8. Aufzuganlage nach Anspruch 6, dadurch gekennzeichnet, dass die Auflösung der absolute Kabinenposition durch Abtasten eines Codewortes der Länge einer Codemarke entspricht und/oder dass die Auflösung der absoluten Kabinenposition durch Erfassen eines Übergangs (24) zwischen Codemarken 0.5mm beträgt.
  9. Aufzuganlage nach einem der Ansprüche 1 bis 8, dadurch gekenntzeichnet, dass an der Aufzugskabine mindestens ein Stockwerkssensor (41, 41') angebracht ist, welcher Stockwerkssensor auf Stockwerksniveau angebrachte Positionsmarkierungen (42,42') detektiert und dass eine Steuerung detektierte Positionsmarkierungen mit abgetasteten Codeworten auswertet.
  10. Aufzugsanlage nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die Codeleseeinrichtung redundant ausgebildet ist.
  11. Aufzuganlage nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass dass das Codemarkenmuster an der Führungsschiene (7) angebracht ist und/oder dass die Sensoren in einer zur Verfahrrichtung parallen Linie angeordnet sind.
  12. Aufzuganlage nach Anspruch 3, dadurch gekennzeichnet, dass die Codeleseeinrichtung eine Feininterpolationseinheit (47) aufweist, welche den verlauf des Magnetfeldes des Codemarkenmusters detektiert, welche den Verlauf des Magnetfeldes des Codemarkenmusters arcustangensinterpoliert und welche einen mit der Codemarkenlänge periodischen hochauflösenden Positionswert (52) erzeugt.
  13. Aufzuganlage nach Anspruch 1, dadurch gekennzeichnet, dass die Codemarken unterschiedliche Dielektrizitätszahlen aufweisen und dass die Codelesevorrichtung kapazitive Effekte erfassende Sensoren aufweist.
EP02745033A 2001-07-31 2002-07-22 Aufzuganlage mit einem messsystem zur ermittlung der absoluten kabinenposition Expired - Lifetime EP1412274B1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP02745033A EP1412274B1 (de) 2001-07-31 2002-07-22 Aufzuganlage mit einem messsystem zur ermittlung der absoluten kabinenposition
CY20111100537T CY1112030T1 (el) 2001-07-31 2011-06-03 Εγκατασταση ανελκυστηρα με συστημα μετρησης για τον υπολογισμο της απολυτης θεσης του θαλαμου

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP01810750 2001-07-31
EP01810750 2001-07-31
PCT/CH2002/000406 WO2003011733A1 (de) 2001-07-31 2002-07-22 Aufzuganlage mit einem messsystem zur ermittlung der absoluten kabinenposition
EP02745033A EP1412274B1 (de) 2001-07-31 2002-07-22 Aufzuganlage mit einem messsystem zur ermittlung der absoluten kabinenposition

Publications (2)

Publication Number Publication Date
EP1412274A1 EP1412274A1 (de) 2004-04-28
EP1412274B1 true EP1412274B1 (de) 2011-03-09

Family

ID=8184065

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02745033A Expired - Lifetime EP1412274B1 (de) 2001-07-31 2002-07-22 Aufzuganlage mit einem messsystem zur ermittlung der absoluten kabinenposition

Country Status (21)

Country Link
US (1) US6874244B2 (de)
EP (1) EP1412274B1 (de)
JP (2) JP4397689B2 (de)
CN (1) CN1310818C (de)
AT (1) ATE501079T1 (de)
BR (1) BRPI0211549B1 (de)
CA (1) CA2452661C (de)
CY (1) CY1112030T1 (de)
DE (1) DE50214946D1 (de)
DK (1) DK1412274T3 (de)
ES (1) ES2362417T3 (de)
HK (1) HK1065016A1 (de)
MX (1) MXPA04000910A (de)
MY (1) MY131881A (de)
NO (1) NO20040401L (de)
NZ (1) NZ530532A (de)
PL (1) PL368311A1 (de)
PT (1) PT1412274E (de)
TW (1) TW575518B (de)
WO (1) WO2003011733A1 (de)
ZA (1) ZA200400035B (de)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103601049A (zh) * 2013-12-06 2014-02-26 北京金自天正智能控制股份有限公司 一种显示升降容器的位置状态的设备和方法
WO2019002309A1 (de) 2017-06-27 2019-01-03 Inventio Ag Positionsbestimmungssystem und verfahren zur ermittlung einer kabinenposition einer aufzugkabine
WO2019141726A1 (de) 2018-01-18 2019-07-25 Inventio Ag Messbandanordnung für einen einsatz in einem aufzug zum bestimmen einer absolutposition einer aufzugkabine entlang eines verfahrwegs
WO2019206644A1 (de) * 2018-04-24 2019-10-31 Inventio Ag Positionsbestimmungssystem und verfahren zur ermittlung einer kabinenposition einer aufzugkabine
WO2020193235A2 (de) 2019-03-27 2020-10-01 Inventio Ag Messbandanordnung für einen einsatz in einer aufzuganlage und verfahren zum installieren und betreiben einer aufzuganlage
US11230455B2 (en) 2017-07-14 2022-01-25 Inventio Ag Method for configuring security related configuration parameters in a passenger transport installation
EP4015430A1 (de) 2020-12-16 2022-06-22 Inventio AG Verfahren zum betreiben einer mit einem positionsbestimmungssystem ausgestatteten aufzuganlage sowie entsprechende vorrichtungen
WO2024078698A1 (en) * 2022-10-11 2024-04-18 Kone Corporation Operating with two different speeds an elevator car in an elevator shaft in a manual drive operating mode
WO2024160614A1 (de) 2023-02-03 2024-08-08 Inventio Ag Messsystem zur erfassung der absoluten position einer aufzugskabine in einem aufzugsschacht

Families Citing this family (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE300725T1 (de) * 2002-01-17 2005-08-15 Heidenhain Gmbh Dr Johannes Positionsmesseinrichtung
DE10234744A1 (de) 2002-07-30 2004-02-19 Elgo-Electric Gmbh Vorrichtung zur Positions-und/oder Längenbestimmung
AU2003293208A1 (en) * 2003-11-26 2005-07-21 Otis Elevator Company Device and method for self-aligning position reference system
EP1749778B1 (de) * 2004-05-28 2011-11-16 Mitsubishi Denki Kabushiki Kaisha Aufzugsschienenverbindungsdetektor und aufzugssystem
US7353916B2 (en) 2004-06-02 2008-04-08 Inventio Ag Elevator supervision
DK2189410T3 (en) 2004-06-02 2014-03-10 Inventio Ag Elevator Monitoring
US20080202862A1 (en) * 2004-07-27 2008-08-28 Frank Dudde Signal Strip And System For Determining A Movement Status Of A Moving Body
US7597176B2 (en) * 2004-08-10 2009-10-06 Otis Elevator Company Elevator car position determining system and method using a signal filling technique
SG120230A1 (en) * 2004-08-12 2006-03-28 Inventio Ag Lift installation with a cage and equipment for detecting a cage position as well as a method of operating such a lift installation
SG120250A1 (en) * 2004-08-12 2006-03-28 Inventio Ag Elevator installation with a car and a device for determining a car position and method for operating such an elevator installation
ES2293392T5 (es) 2005-01-07 2011-07-20 Thyssenkrupp Elevator Ag Ascensor con sistema de control.
DE102005047009A1 (de) * 2005-09-30 2007-04-05 Bosch Rexroth Mechatronics Gmbh Absolutes Positionsmesssystem
WO2007063574A1 (ja) * 2005-11-29 2007-06-07 Mitsubishi Denki Kabushiki Kaisha エレベータの制御装置
RU2404111C2 (ru) * 2006-07-26 2010-11-20 Виттур АГ Лифт с расширенным копированием шахты
FR2921480B1 (fr) * 2007-09-20 2010-03-05 Renault Sas Capteur de position absolue a lecture serie
JP5229611B2 (ja) * 2008-01-18 2013-07-03 新日鐵住金株式会社 自動走行クレーンとその走行位置検出装置
DE102008018355B4 (de) * 2008-04-11 2020-07-02 Robert Bosch Gmbh Absolute Positionsmessvorrichtung mit Interpolator
FI120449B (fi) * 2008-08-12 2009-10-30 Kone Corp Järjestely ja menetelmä hissikorin paikan määrittämiseksi
AU2015221529B2 (en) * 2008-08-12 2016-07-07 Kone Corporation Arrangement and method for determining the position of an elevator car
EP2370333B1 (de) 2008-12-26 2013-08-28 Inventio AG Aufzugsanlage mit einer sicherheitseinrichtung
US7886454B2 (en) * 2008-12-31 2011-02-15 Kone Corporation Elevator hoistway installation guide systems, methods and templates
US8878526B2 (en) 2009-01-27 2014-11-04 Renishaw Plc Magnetic encoder apparatus
GB0903535D0 (en) 2009-03-02 2009-04-08 Rls Merilna Tehnika D O O Encoder readhead
FI20095986A0 (fi) * 2009-09-25 2009-09-25 Kone Corp Mittausjärjestely, sähkökäyttö ja hissijärjestelmä
US8121805B2 (en) * 2009-09-30 2012-02-21 Mitsubishi Electric Research Laboratories, Inc. Method and system for determining locations of moving objects with maximum length sequences
RU2552376C2 (ru) 2009-12-21 2015-06-10 Инвентио Аг Устройство определения положения этажа
SI2447676T1 (sl) * 2010-10-26 2017-01-31 Bogen Electronic Gmbh Postopek za izdelovanje magnetnega linearnega merila
DE202011051667U1 (de) * 2011-10-18 2012-02-23 Elgo-Electronic Gmbh & Co. Kg Vorrichtung zur Positionserfassung einer Aufzugkabine
FR2984864A1 (fr) 2011-12-27 2013-06-28 Arnoult Serge Controle du mouvement d'une cabine d'ascenseur
US9926170B2 (en) 2012-10-30 2018-03-27 Inventio Ag Movement-monitoring system of an elevator installation
US9890016B2 (en) 2012-11-29 2018-02-13 Otis Elevator Company Position recovery via dummy landing patterns
US9670690B2 (en) * 2013-11-18 2017-06-06 Park Plus, Inc. Hall effect sensor grid array guidance system
JP6497848B2 (ja) * 2014-04-14 2019-04-10 キヤノン株式会社 アブソリュートエンコーダ、処理方法、プログラム、駆動装置、および産業機械
CN104071665B (zh) * 2014-07-07 2017-09-15 日立电梯(中国)有限公司 电梯轿厢位置检测装置及方法
EP3209589B1 (de) 2014-10-21 2022-04-20 Inventio AG Aufzug mit einem dezentralen elektronischen sicherheitssystem
KR101979522B1 (ko) 2014-10-29 2019-05-16 미쓰비시덴키 가부시키가이샤 엘리베이터 칸 위치 검출 장치
CN104515534B (zh) * 2014-12-17 2017-01-04 中国科学院长春光学精密机械与物理研究所 绝对位置测量方法
EP3085653B1 (de) 2015-04-24 2019-04-10 KONE Corporation Aufzug
MY187668A (en) 2015-07-30 2021-10-08 Inventio Ag Locking system for cabin door
CN105384037B (zh) * 2015-12-03 2017-07-28 中国矿业大学 电梯轿厢编码定位系统及控制方法
JP6452887B2 (ja) 2016-03-15 2019-01-16 三菱電機株式会社 かご位置検出装置
CN107804764A (zh) 2016-09-09 2018-03-16 奥的斯电梯公司 电梯系统的位置识别和位置恢复
EP3434634B2 (de) 2017-07-25 2024-07-03 Otis Elevator Company Sicherheitsvorrichtung für einen aufzug
JP7073396B2 (ja) * 2018-03-09 2022-05-23 日立電梯(中國)有限公司 かご絶対位置の検出システム、及びそのセルフチェック方法
GB2574644B (en) * 2018-06-13 2022-09-07 Avire Ltd A location system, method, and calibration method
EP3587323A1 (de) * 2018-06-22 2020-01-01 Otis Elevator Company Aufzugsystem
GB2562414B (en) * 2018-07-26 2020-12-09 Innovarail Ltd Determining position of a vehicle on a rail
US12060247B2 (en) 2018-10-18 2024-08-13 Otis Elevator Company Elevator car leveling sensor
US11767194B2 (en) 2019-01-28 2023-09-26 Otis Elevator Company Elevator car and door motion monitoring
CN110127484B (zh) * 2019-06-14 2023-11-14 嘉兴技师学院 一种电梯桥箱运行位置监控预警系统及方法
FR3102469B1 (fr) 2019-10-24 2021-11-19 Sodimas Ensemble d’ascenseur
CN111268530B (zh) * 2020-03-24 2022-08-02 上海三菱电梯有限公司 电梯井道测量、定位及电梯安装方法和设备
CN111762645B (zh) * 2020-07-28 2022-06-07 北京三快在线科技有限公司 电梯轿厢位置检测系统、方法及装置
CN113602920B (zh) * 2021-08-05 2023-11-28 猫岐智能科技(上海)有限公司 基于加速度传感器位移的楼层计算方法及系统
CN116952280B (zh) * 2023-07-03 2024-04-02 长春盛昊电子有限公司 一种用于电梯轿厢绝对位置检测的解码器及解码方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1984001027A1 (en) * 1982-09-01 1984-03-15 Rosemount Eng Co Ltd Position measuring apparatus
US4786891A (en) * 1986-04-08 1988-11-22 Yokogawa Electric Corporation Absolute encoder for linear or angular position measurements
US4750592A (en) * 1987-03-20 1988-06-14 United States Elevator Corp. Elevator position reading sensor system
DE3825097A1 (de) * 1988-07-23 1990-02-08 Stahl R Foerdertech Gmbh Vorrichtung zur positionsmessung bei kran- und elektrohaengebahnen
JPH04295719A (ja) 1991-03-25 1992-10-20 Nikon Corp アブソリュ−ト・エンコ−ダ
US5135081A (en) * 1991-05-01 1992-08-04 United States Elevator Corp. Elevator position sensing system using coded vertical tape
DE9210996U1 (de) 1992-08-17 1992-10-29 C. Haushahn GmbH & Co, 7000 Stuttgart Kombinierte Positionsmeß- und/oder Steueranordnung für einen Aufzug
FI111937B (fi) * 1993-12-28 2003-10-15 Kone Corp Menetelmä hissikorin paikan määrittämiseksi
CA2165247C (en) * 1995-01-20 2006-05-23 Bernhard Gerstenkorn Method and equipment for the production of shaft information data of a lift shaft
DE19652562C2 (de) * 1996-12-17 1999-07-22 Heidenhain Gmbh Dr Johannes Positionsmeßeinrichtung
US5925859A (en) * 1997-08-06 1999-07-20 Interface Products Co., Inc. Landing control system
US6435315B1 (en) * 2000-12-11 2002-08-20 Otis Elevator Company Absolute position reference system for an elevator
DE20302273U1 (de) * 2003-02-12 2003-04-30 Bernstein AG, 32457 Porta Westfalica Positionserfassungssystem

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103601049B (zh) * 2013-12-06 2016-01-20 北京金自天正智能控制股份有限公司 一种显示升降容器的位置状态的设备和方法
CN103601049A (zh) * 2013-12-06 2014-02-26 北京金自天正智能控制股份有限公司 一种显示升降容器的位置状态的设备和方法
WO2019002309A1 (de) 2017-06-27 2019-01-03 Inventio Ag Positionsbestimmungssystem und verfahren zur ermittlung einer kabinenposition einer aufzugkabine
US11548759B2 (en) 2017-06-27 2023-01-10 Inventio Ag Position determining system and method for determining a car position of an elevator car
CN110799436A (zh) * 2017-06-27 2020-02-14 因温特奥股份公司 位置确定系统和用于获取电梯轿厢的轿厢位置的方法
CN110799436B (zh) * 2017-06-27 2022-06-17 因温特奥股份公司 位置确定系统和用于获取电梯轿厢的轿厢位置的方法
AU2018293703B2 (en) * 2017-06-27 2021-05-27 Inventio Ag Position-determining system and method for determining a car postion of a lift car
US11230455B2 (en) 2017-07-14 2022-01-25 Inventio Ag Method for configuring security related configuration parameters in a passenger transport installation
WO2019141726A1 (de) 2018-01-18 2019-07-25 Inventio Ag Messbandanordnung für einen einsatz in einem aufzug zum bestimmen einer absolutposition einer aufzugkabine entlang eines verfahrwegs
WO2019206644A1 (de) * 2018-04-24 2019-10-31 Inventio Ag Positionsbestimmungssystem und verfahren zur ermittlung einer kabinenposition einer aufzugkabine
WO2020193235A2 (de) 2019-03-27 2020-10-01 Inventio Ag Messbandanordnung für einen einsatz in einer aufzuganlage und verfahren zum installieren und betreiben einer aufzuganlage
US11905140B2 (en) 2019-03-27 2024-02-20 Inventio Ag Measuring tape arrangement for use in an elevator system and method for installing and operating an elevator system
EP4015430A1 (de) 2020-12-16 2022-06-22 Inventio AG Verfahren zum betreiben einer mit einem positionsbestimmungssystem ausgestatteten aufzuganlage sowie entsprechende vorrichtungen
WO2024078698A1 (en) * 2022-10-11 2024-04-18 Kone Corporation Operating with two different speeds an elevator car in an elevator shaft in a manual drive operating mode
WO2024160614A1 (de) 2023-02-03 2024-08-08 Inventio Ag Messsystem zur erfassung der absoluten position einer aufzugskabine in einem aufzugsschacht

Also Published As

Publication number Publication date
DK1412274T3 (da) 2011-06-14
NO20040401L (no) 2004-03-31
HK1065016A1 (en) 2005-02-08
CA2452661C (en) 2010-10-19
JP4397689B2 (ja) 2010-01-13
US6874244B2 (en) 2005-04-05
ZA200400035B (en) 2005-10-26
WO2003011733A1 (de) 2003-02-13
PL368311A1 (en) 2005-03-21
MY131881A (en) 2007-09-28
US20040216320A1 (en) 2004-11-04
ATE501079T1 (de) 2011-03-15
JP2004536001A (ja) 2004-12-02
CN1537072A (zh) 2004-10-13
EP1412274A1 (de) 2004-04-28
CN1310818C (zh) 2007-04-18
TW575518B (en) 2004-02-11
BR0211549A (pt) 2004-07-13
MXPA04000910A (es) 2004-04-02
CY1112030T1 (el) 2015-11-04
JP2009184835A (ja) 2009-08-20
BRPI0211549B1 (pt) 2017-05-02
PT1412274E (pt) 2011-06-06
DE50214946D1 (de) 2011-04-21
NZ530532A (en) 2005-01-28
ES2362417T3 (es) 2011-07-05
CA2452661A1 (en) 2003-02-13

Similar Documents

Publication Publication Date Title
EP1412274B1 (de) Aufzuganlage mit einem messsystem zur ermittlung der absoluten kabinenposition
EP1222471B1 (de) Gebersystem mit einem beschleunigungsgeber und einem positionsgeber
EP2502030B2 (de) Induktive messeinrichtung für längen- und winkelerfassung
EP0391058B1 (de) Positionsmessvorrichtung für Kran- und Elektrohängebahnen
EP1400778A2 (de) Positionsmesseinrichtung
WO2019002309A1 (de) Positionsbestimmungssystem und verfahren zur ermittlung einer kabinenposition einer aufzugkabine
EP2183550B2 (de) Induktiver weggeber, kodiereinrichtung und verfahren zum bestimmen einer position eines ersten objekts relativ zu einem zweiten objekt
DE20302273U1 (de) Positionserfassungssystem
EP3784613B1 (de) Positionsbestimmungssystem und verfahren zur ermittlung einer kabinenposition einer aufzugkabine
DE10234744A1 (de) Vorrichtung zur Positions-und/oder Längenbestimmung
AT410485B (de) Positionsmesseinrichtung
DE2335711A1 (de) Handgefuehrter abtaster
EP3803278B1 (de) Absolutwertgeber
EP2869031B1 (de) Positionsmesseinrichtung
DE10341297B3 (de) Codierte Absolutpositions-Messung für in Schienen geführte Elemente
EP1321743B1 (de) Absolutlängenmesssystem, bei dem ein Massstab relativ zur Position von beabstandeten Längesensoren bewegt wird
DE3803293A1 (de) Magnetisch betaetigter analoger elektrischer wegaufnehmer fuer geradlinige bewegungen
EP1992914A2 (de) Inkrementalweggeber und Verfahren zum Bestimmen einer Verschiebung eines ersten Objekts relativ zu einem zweiten Objekt
EP1637493B1 (de) Aufzugsanlage mit einer Kabine und einer Einrichtung zur Ermittlung einer Kabinenposition sowie Verfahren zum Betreiben einer solchen Aufzugsanlage
DE10158942B4 (de) Vorrichtung und Verfahren zur Detektion der Position eines Messobjekts
DE102022115981A1 (de) Multisensorisches Positionsmesssystem
DE10341202B3 (de) Absolutpositionsmesssystem für eine automatische Karusselltür
EP4375621A1 (de) Vorrichtung und verfahren zur positions-, längen- oder winkelbestimmung
DE102008054042A1 (de) Absolute Positionscodierung und Positionsmessvorrichtung
DE102005050365A1 (de) Berührungsfreier Positionssensor

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040209

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

RIN1 Information on inventor provided before grant (corrected)

Inventor name: MUELLER, FRANK

Inventor name: BIRRER, ERIC

Inventor name: ESSINGER, HEIKO

REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1065016

Country of ref document: HK

17Q First examination report despatched

Effective date: 20090423

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50214946

Country of ref document: DE

Date of ref document: 20110421

Kind code of ref document: P

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 50214946

Country of ref document: DE

Effective date: 20110421

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20110527

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2362417

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20110705

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20110401258

Country of ref document: GR

Effective date: 20110614

REG Reference to a national code

Ref country code: HK

Ref legal event code: GR

Ref document number: 1065016

Country of ref document: HK

REG Reference to a national code

Ref country code: SK

Ref legal event code: T3

Ref document number: E 9906

Country of ref document: SK

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20111212

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 50214946

Country of ref document: DE

Effective date: 20111212

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20210730

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20210726

Year of fee payment: 20

Ref country code: MC

Payment date: 20210722

Year of fee payment: 20

Ref country code: IE

Payment date: 20210721

Year of fee payment: 20

Ref country code: IT

Payment date: 20210722

Year of fee payment: 20

Ref country code: FI

Payment date: 20210721

Year of fee payment: 20

Ref country code: AT

Payment date: 20210721

Year of fee payment: 20

Ref country code: CY

Payment date: 20210714

Year of fee payment: 20

Ref country code: EE

Payment date: 20210722

Year of fee payment: 20

Ref country code: CZ

Payment date: 20210722

Year of fee payment: 20

Ref country code: BG

Payment date: 20210720

Year of fee payment: 20

Ref country code: FR

Payment date: 20210726

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 20210726

Year of fee payment: 20

Ref country code: SE

Payment date: 20210722

Year of fee payment: 20

Ref country code: SK

Payment date: 20210712

Year of fee payment: 20

Ref country code: TR

Payment date: 20210709

Year of fee payment: 20

Ref country code: DE

Payment date: 20210827

Year of fee payment: 20

Ref country code: CH

Payment date: 20210722

Year of fee payment: 20

Ref country code: BE

Payment date: 20210726

Year of fee payment: 20

Ref country code: DK

Payment date: 20210722

Year of fee payment: 20

Ref country code: ES

Payment date: 20210810

Year of fee payment: 20

Ref country code: GB

Payment date: 20210726

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20210708

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 50214946

Country of ref document: DE

REG Reference to a national code

Ref country code: DK

Ref legal event code: EUP

Expiry date: 20220722

REG Reference to a national code

Ref country code: NL

Ref legal event code: MK

Effective date: 20220721

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: FI

Ref legal event code: MAE

REG Reference to a national code

Ref country code: SK

Ref legal event code: MK4A

Ref document number: E 9906

Country of ref document: SK

Expiry date: 20220722

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20220721

REG Reference to a national code

Ref country code: BE

Ref legal event code: MK

Effective date: 20220722

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: IE

Ref legal event code: MK9A

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20220902

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK07

Ref document number: 501079

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220722

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20220722

Ref country code: PT

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20220801

Ref country code: IE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20220722

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20220721

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20220723

Ref country code: CZ

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20220722