EP1404590B1 - Insulated beverage or food container - Google Patents
Insulated beverage or food container Download PDFInfo
- Publication number
- EP1404590B1 EP1404590B1 EP02741844A EP02741844A EP1404590B1 EP 1404590 B1 EP1404590 B1 EP 1404590B1 EP 02741844 A EP02741844 A EP 02741844A EP 02741844 A EP02741844 A EP 02741844A EP 1404590 B1 EP1404590 B1 EP 1404590B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- layer
- paper stock
- foam
- beverage container
- foam layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 235000013361 beverage Nutrition 0.000 title claims abstract description 83
- 235000013305 food Nutrition 0.000 title abstract description 7
- 239000006260 foam Substances 0.000 claims abstract description 95
- 239000004698 Polyethylene Substances 0.000 claims abstract description 50
- 229920000573 polyethylene Polymers 0.000 claims abstract description 41
- -1 polyethylene Polymers 0.000 claims abstract description 41
- 239000010410 layer Substances 0.000 claims description 182
- 239000000463 material Substances 0.000 claims description 46
- 238000000576 coating method Methods 0.000 claims description 27
- 239000011248 coating agent Substances 0.000 claims description 25
- 229920001684 low density polyethylene Polymers 0.000 claims description 19
- 239000004702 low-density polyethylene Substances 0.000 claims description 19
- 238000000034 method Methods 0.000 claims description 19
- 229920001903 high density polyethylene Polymers 0.000 claims description 16
- 239000004700 high-density polyethylene Substances 0.000 claims description 16
- 230000004888 barrier function Effects 0.000 claims description 11
- 229920000092 linear low density polyethylene Polymers 0.000 claims description 10
- 239000004707 linear low-density polyethylene Substances 0.000 claims description 10
- 239000005026 oriented polypropylene Substances 0.000 claims description 8
- 238000007639 printing Methods 0.000 claims description 7
- 239000004604 Blowing Agent Substances 0.000 claims description 6
- 238000005187 foaming Methods 0.000 claims description 6
- 229920000642 polymer Polymers 0.000 claims description 6
- 239000002344 surface layer Substances 0.000 claims description 6
- 238000002156 mixing Methods 0.000 claims description 3
- 238000012546 transfer Methods 0.000 abstract description 17
- 238000004519 manufacturing process Methods 0.000 abstract description 10
- 230000007423 decrease Effects 0.000 abstract 1
- 239000000123 paper Substances 0.000 description 83
- 239000007789 gas Substances 0.000 description 14
- 238000012360 testing method Methods 0.000 description 11
- 238000010276 construction Methods 0.000 description 10
- 239000000654 additive Substances 0.000 description 9
- 238000009413 insulation Methods 0.000 description 9
- 230000000052 comparative effect Effects 0.000 description 7
- 238000001125 extrusion Methods 0.000 description 7
- 238000007789 sealing Methods 0.000 description 7
- 230000005540 biological transmission Effects 0.000 description 6
- 229920003002 synthetic resin Polymers 0.000 description 6
- 239000000057 synthetic resin Substances 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 230000008901 benefit Effects 0.000 description 5
- 239000011230 binding agent Substances 0.000 description 4
- NNPPMTNAJDCUHE-UHFFFAOYSA-N isobutane Chemical compound CC(C)C NNPPMTNAJDCUHE-UHFFFAOYSA-N 0.000 description 4
- 238000003475 lamination Methods 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 239000004743 Polypropylene Substances 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 3
- 230000001070 adhesive effect Effects 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 239000005038 ethylene vinyl acetate Substances 0.000 description 3
- 239000004715 ethylene vinyl alcohol Substances 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 239000000976 ink Substances 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 239000011101 paper laminate Substances 0.000 description 3
- 239000004014 plasticizer Substances 0.000 description 3
- 229920001155 polypropylene Polymers 0.000 description 3
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- 229920010126 Linear Low Density Polyethylene (LLDPE) Polymers 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 239000006261 foam material Substances 0.000 description 2
- 239000001282 iso-butane Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- 229920001169 thermoplastic Polymers 0.000 description 2
- 239000004416 thermosoftening plastic Substances 0.000 description 2
- 230000008016 vaporization Effects 0.000 description 2
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- 239000004831 Hot glue Substances 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 150000008064 anhydrides Chemical class 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 229910052570 clay Inorganic materials 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 229920001940 conductive polymer Polymers 0.000 description 1
- 238000003851 corona treatment Methods 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 239000002655 kraft paper Substances 0.000 description 1
- 229920000126 latex Polymers 0.000 description 1
- 239000004816 latex Substances 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 235000010446 mineral oil Nutrition 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920013716 polyethylene resin Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 229940068984 polyvinyl alcohol Drugs 0.000 description 1
- 235000019422 polyvinyl alcohol Nutrition 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 238000000518 rheometry Methods 0.000 description 1
- 238000007788 roughening Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 235000014347 soups Nutrition 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000001040 synthetic pigment Substances 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- 235000021261 very cold beverage Nutrition 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B1/00—Layered products having a non-planar shape
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B29/00—Layered products comprising a layer of paper or cardboard
- B32B29/002—Layered products comprising a layer of paper or cardboard as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B29/007—Layered products comprising a layer of paper or cardboard as the main or only constituent of a layer, which is next to another layer of the same or of a different material next to a foam layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/03—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
- B29C48/07—Flat, e.g. panels
- B29C48/08—Flat, e.g. panels flexible, e.g. films
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/06—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B27/10—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of paper or cardboard
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/32—Layered products comprising a layer of synthetic resin comprising polyolefins
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B37/00—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
- B32B37/14—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
- B32B37/15—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer being manufactured and immediately laminated before reaching its stable state, e.g. in which a layer is extruded and laminated while in semi-molten state
- B32B37/153—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer being manufactured and immediately laminated before reaching its stable state, e.g. in which a layer is extruded and laminated while in semi-molten state at least one layer is extruded and immediately laminated while in semi-molten state
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B5/00—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
- B32B5/18—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B7/00—Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
- B32B7/04—Interconnection of layers
- B32B7/12—Interconnection of layers using interposed adhesives or interposed materials with bonding properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D81/00—Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
- B65D81/38—Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents with thermal insulation
- B65D81/3865—Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents with thermal insulation drinking cups or like containers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D81/00—Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
- B65D81/38—Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents with thermal insulation
- B65D81/3865—Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents with thermal insulation drinking cups or like containers
- B65D81/3874—Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents with thermal insulation drinking cups or like containers formed of different materials, e.g. laminated or foam filling between walls
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C44/00—Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
- B29C44/02—Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles for articles of definite length, i.e. discrete articles
- B29C44/12—Incorporating or moulding on preformed parts, e.g. inserts or reinforcements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2105/00—Condition, form or state of moulded material or of the material to be shaped
- B29K2105/04—Condition, form or state of moulded material or of the material to be shaped cellular or porous
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29L—INDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
- B29L2009/00—Layered products
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29L—INDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
- B29L2031/00—Other particular articles
- B29L2031/712—Containers; Packaging elements or accessories, Packages
- B29L2031/7132—Bowls, Cups, Glasses
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B31—MAKING ARTICLES OF PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER; WORKING PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER
- B31B—MAKING CONTAINERS OF PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER
- B31B2105/00—Rigid or semi-rigid containers made by assembling separate sheets, blanks or webs
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B31—MAKING ARTICLES OF PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER; WORKING PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER
- B31B—MAKING CONTAINERS OF PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER
- B31B2120/00—Construction of rigid or semi-rigid containers
- B31B2120/40—Construction of rigid or semi-rigid containers lined or internally reinforced
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/30—Properties of the layers or laminate having particular thermal properties
- B32B2307/304—Insulating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2317/00—Animal or vegetable based
- B32B2317/12—Paper, e.g. cardboard
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2323/00—Polyalkenes
- B32B2323/04—Polyethylene
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2323/00—Polyalkenes
- B32B2323/04—Polyethylene
- B32B2323/043—HDPE, i.e. high density polyethylene
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2323/00—Polyalkenes
- B32B2323/04—Polyethylene
- B32B2323/046—LDPE, i.e. low density polyethylene
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2323/00—Polyalkenes
- B32B2323/10—Polypropylene
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2439/00—Containers; Receptacles
- B32B2439/02—Open containers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S220/00—Receptacles
- Y10S220/903—Insulating jacket for beverage container
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/13—Hollow or container type article [e.g., tube, vase, etc.]
- Y10T428/1303—Paper containing [e.g., paperboard, cardboard, fiberboard, etc.]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/13—Hollow or container type article [e.g., tube, vase, etc.]
- Y10T428/1352—Polymer or resin containing [i.e., natural or synthetic]
- Y10T428/1376—Foam or porous material containing
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/24—Structurally defined web or sheet [e.g., overall dimension, etc.]
- Y10T428/24355—Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/249921—Web or sheet containing structurally defined element or component
- Y10T428/249953—Composite having voids in a component [e.g., porous, cellular, etc.]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/249921—Web or sheet containing structurally defined element or component
- Y10T428/249953—Composite having voids in a component [e.g., porous, cellular, etc.]
- Y10T428/249987—With nonvoid component of specified composition
Definitions
- the present invention relates to an apparatus and method for insulating beverage containers and container stock material.
- the present invention relates to an insulated, paper-based beverage container or stock material having improved insulation properties and a method of producing these insulated containers or stock materials.
- United States Patent No. 4,435,344 to Ioka describes a method for producing an insulating composite paper container having a body member and a bottom member.
- the body member is formed of paper coated or laminated with a thermoplastic synthetic resin film.
- a surface of the body member is then heated to form a foamed polyethylene heat-insulating layer on either or both of inner and outer surfaces of the container's body member.
- the heat-insulated body member is then attached to the bottom member.
- United States Patent Nos. 6,030,476 and 5,840,139 to Geddes et al. describe .a method for producing insulating beverage containers or cups, stock material and containers made therefrom.
- a stock material includes a base layer, an insulating layer formed on a portion of the base layer, and a printed pattern/mineral oil applied to the insulating layer.
- the insulating layer is formed from a thermoplastic synthetic resin film.
- U.S. Patent No. 6,030,476 describes a polyethylene foam taught on the outside surface of the paper cup.
- European Patent Application EP 0940240 A2 describes a heat insulating paper cup with targeted insulation in areas where printed matter exists.
- the body member of the cup is coated on its outside surface with a foamable synthetic resin and on its inside surface with an inside surface laminate of a synthetic resin effective to prevent liquid penetration.
- the bottom panel member is optionally coated on its upper surface with a foamed or an unfoamed synthetic resin.
- Printed matter is provided prior to foaming of the synthetic resin on the outer surface of the cup with water-based ink. Further, the low density polyethylene is foamed by vaporizing the water contained in the paper stock.
- European Patent application EP 1060879 A2 describes a heat insulating paper cup having a body member partially or fully coated on its outside surface with a foamed low density polyethylene and coated on its inside surface with an unfoamed modified low density polyethylene.
- United States Patent Application US-A-5,952,068 describes a single walled insulating paper cup having a body member fully or partially coated with a thin layer of polythene on its inside surface and coated fully or partially coated with a single or multiple layers of insulation that comprises a syntactic foam (a foam that contains insulating particles that are held in place by an acrylic resin binder) on the outside surface.
- a syntactic foam a foam that contains insulating particles that are held in place by an acrylic resin binder
- Japanese Patent Application JP2000-335548 A describes a heat insulating paper cup having a body member formed from a composite paper, in which paper is stuck to both sides of a foam resin layer, wherein the inner surface of the container is coated with a polyethylene resin layer.
- the related art has not yet achieved insulated paper stock that is capable of effectively impeding heat transfer between the contents of the container and the exterior. In addition, adequate thermal insulation is not achieved from the related art in a manner that is cost effective.
- the present invention overcomes the shortcomings associated with conventional devices and methods, and achieves other advantages not realized by conventional devices and methods.
- the present invention is a recognition, in part, that the ability to produce blank paper cups, sleeves or stock material that can be printed/graphically enhanced is desirable.
- This invention permits a superior insulating cup product to be made from standardized manufacturing processes.
- an insulated beverage container that comprises:
- foam layer can be adhered directly or indirectly to the paper stock layer by melt extrusion, lamination or foam extrusion.
- an insulated beverage container sleeve that comprises:
- an insulated beverage container stock material for making an insulated beverage container that comprises:
- an insulated beverage container stock material for making an insulated beverage container comprises:
- a method of producing an insulated beverage container stock material comprises the following steps:
- Figure 1 is a side cross-sectional view of an insulated beverage container according to the present invention.
- Figure 2 is a cross-sectional view of a comparative insulated beverage container wall or sleeve
- Figure 3 is a cross-sectional view of an insulated beverage container wall according to a second embodiment of the present invention.
- Figure 4 is a cross-sectional view of an insulated beverage container wall according to a third embodiment of the present invention.
- Figure 5 is a cross-sectional view of a comparative insulated beverage container wall
- Figure 6 is a graphical view of experimental data representing actual and comparative hold times for embodiments of the present invention and commercial available products
- Figure 7 is a cross sectional view of an insulating beverage container sleeve according to the present invention.
- Figure 8 is a cross-sectional view of an insulated beverage container wall or beverage container sleeve wall according to another embodiment of the present invention.
- the present invention is directed toward an insulated beverage container or cup, the container stock material, and a method of producing insulated beverage containers or stock materials that utilize a polyethylene foam layer extruded or laminated to a surface of a food or beverage paper stock.
- the present invention is described in greater detail hereinafter with reference to the accompanying drawings.
- FIGS 3 and 4 are cross-sectional views of an insulated beverage container wall 11 according to various embodiments of the present invention.
- an insulated container 10 as shown in Figure 1 will readily incorporate each of the beverage container walls depicted in Figures 3 and 4. While the following description is directed toward a cup, the techniques of this invention can be applied to any number of containers or surfaces, for instance a beverage container insulating beverage sleeve or stock material can be constructed from any of the embodiments shown in the accompanying drawings.
- FIG. 1 is a side cross-sectional view of an insulated beverage container 10 according to the present invention.
- the insulated beverage container includes a container wall 1 having an upper side portion 7, a lower side portion 8 and a bottom portion 9.
- a beverage containing space 11 is formed between the container wall's 1 upper side portion 7, lower side portion 8 and bottom portion 9.
- the present invention utilizes a gas containing film adhered or selectively adhered to the surface of a paper stock.
- the gas containing film layer provides resistance to heat transfer through the container wall 1.
- the present invention provides an insulating container construction and a method of producing this construction which reduces the energy transfer through the container wall, providing increased functionality and usefulness.
- FIG. 2 is a cross-sectional view of a comparative insulated beverage container wall or sleeve 1.
- a beverage container wall or sleeve I includes a paper stock 2, and an extruded or laminated foam layer 3.
- the paper stock 2 provides structural rigidity and forms the desired shape of the container 10 or a portion of a sleeve wall.
- the extruded or laminated foam layer 3 is adhered to an inner surface (e.g. facing the beverage containing space 11) of the paper stock 2 and performs the function of a gas containing film layer.
- the foam layer 3 is designed to provide thermal insulation properties to the container.
- the paper stock 2 is standard paper used for making beverage cups and other food containers.
- the paper stock 2 may be chosen with a thickness that provides optimized physical characteristics for cup construction. Important physical characteristics include fold strength, stiffness, tear and tensile strength.
- a desired paper thickness is chosen such that the resultant thickness of the finished cup wall 1 does not negatively impact converting, handling or finished cup properties.
- a typical paper stock 2 for beverage and food containers range from 254 to 1016 ⁇ m (10 to 40 mils) in a paper stock 2 thickness, and more particularly from 254 to 660 ⁇ m (10 mils to 26 mils) in thickness in a preferred embodiment for the present invention.
- the paper stock 2 may be chosen with a thickness which provides the proper physical characteristics such as strength for constructing a sleeve surrounding a beverage container 10 such as that shown in FIG. 1. Important physical characteristics include fold strength, stiffness, tear and tensile strength.
- the paper thickness is chosen such that the resultant thickness of the sleeve and cup wall does not negatively impact handling, distribution or become cumbersome to the end user. Additional criteria affecting paper stock selection includes appearance and cost.
- a smooth, bleached-white paper may be chosen to enhance the print quality and the appeal of the cup or a brown kraft stock may be chosen for economy.
- Applicable paper suitable for sleeve stock ranges from 51 to 254 ⁇ m (2 mils to 10 mils) for the application to an insulating beverage sleeve.
- the extruded or laminated foam layer 3 is applied to the paper stock 2 as an extrusion, lamination, or it is melted or fused.
- the purpose of the extruded or laminated foam layer 3 is to provide thermal insulation properties, to contain liquids and to provide heat sealing.
- the extruded or laminated foam layer 3 can also be used as a barrier to moisture transmission and further aids in seam sealing during container construction.
- the foam layer 3 is a gas containing layer that provides resistance to heat transfer through the sleeve wall.
- the extruded or laminated foam layer 3 although not limited to, can be formed from any of the following exemplary materials: high density polyethylene (HDPE), low density polyethylene (LDPE), linear low density polyethylene (LLDPE), orientated polypropylene (OPP), etc.
- HDPE and LDPE are desirable materials in a preferred embodiment of the present invention.
- Additives may also be included to enhance various material properties or to aid in the manufacturing process. These additives include, but are not limited to, any of the following exemplary additives: ethylene vinyl acetate (EVA), ethylene vinyl alcohol (EVOH), and plasticizers.
- EVA ethylene vinyl acetate
- EVOH ethylene vinyl alcohol
- plasticizers plasticizers
- the foam layer 3 is attached to the paper stock uniformly during the manufacturing process.
- the gases trapped within the film of the foam layer 3 impart a high level of thermal insulation to the container wall.
- An important aspect of the gas containing foam layer 3 is to provide resistance to energy transfer. The amount of trapped gas is variable and depends upon a specified volume that will render the exterior of the container comfortable to hold for an average user. Therefore, the required amount of trapped air will generally vary according to the intended use of the container.
- a container used to serve coffee (normally 88°C (190° F)) will need more resistance to energy flow than a similar container used to serve a relatively cool cup of soup (normally 74°C (165° F)).
- An additional benefit to the insulating layer is the ability of the container to keep the food or beverage at its serving temperature for a longer period of time.
- the foam layer 3 can be either laminated to or extruded onto the paper stock 2.
- a gas containing film such as CA-20 manufactured by Sealed Air Corporation or other may be used.
- a blowing agent is mixed into the polymer prior to extrusion. The incorporated blowing agent creates gas pockets within the film during the extruding process.
- the extrusion method offers the additional advantage of creating the product in one operational step.
- the insulating foam layer 3 is preferably betweetn 0.9 and 13.6 kg/307m 2 (2 and 30 lbs/3300 ft 2 ), and more preferably between 2.3 and 6.8 kg/307 m 2 (5 and 15 lbs/ 3300 ft 2 ).
- the density of the film is preferably between 0.16 and 0.47 KN/m 3 (1.0 and 3.0 lbs/ft 3 ).
- the thickness of the insulating gas containing foam layer 3 is preferably between 127 and 762 ⁇ m (5 and 30 mils),and more preferably between 254 and 508 ⁇ m (10 and 20 mils).
- the foam layer 3 can be a gas containing film layer formed from a continuous single layer or lamination of films and foam.
- FIG. 3 is a cross sectional view of a container wall according to a second embodiment of the present invention.
- a film layer 4 is extruded, laminated, or coated in a position between the foam containing layer 3 and the beverage containing space 11.
- the foam layer 3 is therefore interposed between the paper stock 2 and the film layer 4.
- the film layer 4 will hereinafter be referred to as a PE layer 4.
- the PE layer 4 can be used as a barrier against moisture transmission and aids in seam sealing during container construction.
- the foam layer 3 is first formed and then it is melt extruded, laminated or melt fused to the surface of the paper stock 2.
- the residual moisture held within the paper stock 2 which is characteristically relied upon in the related art, is not relied upon as the mechanism for creating the foam layer 3.
- the foam can also be extruded to the paper stock 2, but in each instance the foaming is created by mixing a blowing agent into the polymer prior to extrusion or foam creation.
- the incorporated blowing agent creates gas pockets within the film during the extruding process.
- the extruded method offers the advantage of directly creating the product in one operational step.
- the foam layer 3 can also be treated in order to accept or conform with various printing inks.
- the foam layer 3 can be treated by various means well known in the industry such as, but not limited to: corona treatment, flame treatment, ozone treatment, coatings, etc.
- FIG. 4 is a cross sectional view of a container wall according to a third embodiment of the present invention.
- a PE layer 4 is extruded, laminated, or coated in a position interposed between the foam containing layer 3 and the paper stock 2.
- PE layer 4 can also be used as a barrier against moisture transmission and aids in seam sealing during container construction.
- Additives may also be included to enhance various material properties or to aid in the manufacturing process. These additives include, but are not limited to, any of the following exemplary additives: ethylene vinyl acetate (EVA), ethylene vinyl alcohol (EVOH), and plasticizers.
- EVA ethylene vinyl acetate
- EVOH ethylene vinyl alcohol
- plasticizers plasticizers
- FIG. 5 is a cross sectional view of a comparative insulated beverage container wall.
- a PE layer 4 has been applied to an outside surface of the paper stock 2.
- the PE layer 4 can be laminated, extruded or coated onto the paper stock surface.
- the PE layer 4 also serves a barrier to the beverage or food placed within the container, and can also serve as a sealing mechanism.
- the PE layer 4 could be applied as the innermost layer, e.g. closest to the beverage containing space 11.
- additional PE layers 4 can be applied to either the inside or outside surfaces of the container wall 1 as desired to add additional barriers to the liquid or heat sealed within the container.
- the PE layer 4 can be applied to the paper stock or over the foam.
- a preferred coating material for additional coating layers for the present invention is an expanding foam.
- This expanding foam material is encapsulated isobutane in a polymeric shell.
- the expanding foam capsules are added to the coating with a small diameter.
- the encapsulated isobutane changes from a liquid to a gas and the polymeric shell expands with the appropriate volumetric change.
- Expanded foam also has the advantage of creating a rough surface that will further reduce the contact area between layers in the container wall and therefore reduce heat transfer.
- a thin layer of the expanding foam coated onto the paper stock exterior is especially useful for roughening or for texturing to aid in gripping the container.
- Foam coating also has the ability to be used as a single coating, or may also act as the insulating coating and a printing coating simultaneously, depending on the application and desires of the end user.
- the selected coating materials for the insulating coating are dispersed in an aqueous system with additional components added as necessary to provide ease of processing and application.
- Pigments such as silica, calcium carbonate, clay and synthetic pigments may be also used.
- Binders are included to adhere the coating to the paper substrate.
- Typical binders may be selected from, but are not limited to, poly vinyl alcohol, SBR latex, starch, poly acrylates and other binders well known in the related art.
- Other additives may be included in the coating to aid in dispersion, rheology and coating handling. These additives include, but are not limited to, defoamers, dispersants, wetting agents, conductive polymers, styrene malefic anhydride, thickeners, etc.
- An insulating coating can be applied that is between 0.9 and 13.6 kg/307 m 2 (2 and 30 lbs /3300 ft 2 ),and more preferably between 2.3 and 6.8 kg/307 m 2 (5 and 15 lbs / 3300 ft 2 ).
- a preferred thickness of the insulating coating is between 1 and 15 mils, most preferably between 76 and 254 ⁇ m (3 and 10 mils).
- the preferred embodiments depicted in the accompanying figures are directed toward the application of a foam layer 3 toward or along the interior surface of a container (e.g. beverage-side of the container).
- a beverage container 10 constructed with a container wall 1 having the construction shown in FIG. 3 has demonstrated extraordinary hold times, moisture inhibition and resistance to vapor transmission. Further, the inventors of the present invention have demonstrated that hold times are significantly increased with the embodiment shown in FIG. 3 as compared to providing a moisture foam layer 3 blown on the outside surface of the paper stock 2, such as the Perfec TouchTM cup sold by Georgia PacificTM.
- a quantitative measurement of the ability of a paper stock to withstand heat transfer between the beverage containing space and the outermost surface of the container is often referred to as hold time.
- the heat of the beverage e.g. coffee
- the heat of the beverage contributes to heating and vaporizing of the residual moisture in the paper stock. Accordingly, how long one can comfortably hold the hot container 10, e.g. hold time, is significantly reduced.
- the preferred embodiment shown in FIG. 3 appears to best inhibit heat transfer to the paper stock 2, thereby reducing heat transfer by providing a moisture vapor transmission rate barrier at the innermost surface which prevents heating by mass transfer of that vapor through the cupstock. Hold times were significantly increased with the preferred embodiments of the present invention.
- FIG. 6 is a graphical view of experimental data representing actual and comparative hold times for embodiments of the present invention and commercial available products.
- Figure 7 is a cross sectional view of an insulating beverage container sleeve 12 according to the present invention.
- Figure 8 is a cross-sectional view of an insulated beverage container wall 1 or beverage container sleeve wall 1 according to another embodiment of the present invention.
- an insulating beverage container sleeve 12 can readily incorporate any of the applicable embodiments of beverage container stock material (container wall) I shown in the accompanying drawings.
- An insulating beverage container sleeve 12 is often slipped over the outer surface of a beverage container such as that shown in FIG. 1.
- an intermediate layer 5 is provided between the paper stock 2 and foam layer 3.
- the intermediate layer 5 is applied to the paper stock as an extrusion, lamination, or coating.
- the purpose of the layer is to adhere the gas containing film layer 3 to the paper stock 2.
- the intermediate layer 5 can also be utilized as a barrier to moisture transmission and as an aid in seam sealing during sleeve construction.
- Typical materials used for intermediate layer 5 include, but are not limited to: high density polyethylene (HDPE), low density polyethylene (LDPE), linear low density polyethylene (LLDP), orientated polypropylene(OPP); and adhesives, such as hot melt adhesives, water based adhesives and solvent based adhesives, etc.
- HDPE high density polyethylene
- LDPE low density polyethylene
- LLDP linear low density polyethylene
- OPP orientated polypropylene
- adhesives such as hot melt adhesives, water based adhesives and solvent based adhesives, etc.
- Additives known in the industry may be included to enhance certain properties or aid in processing and may include, but are not limited to: ethylene vinyl acetate (EVA), ethylene vinyl alcohol (EVOH), and plasticizers.
- Exterior layer 4 is applied to the paper stock to provide a surface which may have the following properties depending on end use, including but not limited to: materials accepting high quality graphics and printing inks, materials providing tactile feel, materials that change color with temperature, materials providing seam sealing capabilities, and materials providing a more secure gripping surface, etc.
- the sleeve 12 construction may be preferentially oriented with the foam material 3 toward the cup 11 surface and the paper surface 2, 4 facing outward, e.g. visible to the user.
- FIG. 6 is a graphical view of experimental data representing actual and comparative hold times for embodiments of the present invention and commercial available products.
- FIG. 6 shows experimental hold times (measured in seconds) achieved for different samples.
- the various samples or beverage containers were filled with approximately 230 ml of water at approximately 90 ° C (194 ° F pour temperature).
- the container is essentially a paper exterior and interior with a corrugated core.
- Sample S5, Sample S6, and Sample S7 are test samples of the present invention incorporating a container wall 1 with construction similar to that shown in Fig. 3.
- Sample S5 is a 254 ⁇ m (10 pt) foam 457 ⁇ m (18 pt) base paper laminate.
- S6 is a 508 ⁇ m (20 point) foam 457 ⁇ m (18 pt) base paper laminate.
- S7 is a 762 ⁇ m (30 pt) foam 457 ⁇ m (18 pt) base paper laminate.
- Testing was conducted of different samples to determine average hold times after several iterations of testing.
- a control test person was used in many testing results to maintain data integrity. In alternative testing, several different control test persons were utilized.
- Table I provides experimental test results of insulated cup hold time studies conducted at a pour temperature of 90°C and with approximately 230 ml. of water. Table I is directed toward the test results of the various samples. The various samples were rinsed out after each test with ambient water.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Packages (AREA)
- Laminated Bodies (AREA)
- Distillation Of Fermentation Liquor, Processing Of Alcohols, Vinegar And Beer (AREA)
- Food Preservation Except Freezing, Refrigeration, And Drying (AREA)
- Tea And Coffee (AREA)
- Wrappers (AREA)
- Details Of Rigid Or Semi-Rigid Containers (AREA)
Abstract
Description
- The present invention relates to an apparatus and method for insulating beverage containers and container stock material. In particular, the present invention relates to an insulated, paper-based beverage container or stock material having improved insulation properties and a method of producing these insulated containers or stock materials.
- Current standard paper cup stock permits excessive heat transfer through the wall of an insulated beverage container. Accordingly, a user's hand becomes uncomfortably or sometimes even painfully hot when excessive heat transfer is permitted through the container wall. This may require the user to be inconvenienced by having to release the container due to the excessive heat of the container's contents. An analogous but opposite situation can occur with very cold beverages, where heat transfer from a user's hand is transferred rapidly to the contents of the container.
- United States Patent No. 4,435,344 to Ioka describes a method for producing an insulating composite paper container having a body member and a bottom member. The body member is formed of paper coated or laminated with a thermoplastic synthetic resin film. A surface of the body member is then heated to form a foamed polyethylene heat-insulating layer on either or both of inner and outer surfaces of the container's body member. The heat-insulated body member is then attached to the bottom member.
- United States Patent Nos. 6,030,476 and 5,840,139 to Geddes et al. describe .a method for producing insulating beverage containers or cups, stock material and containers made therefrom. A stock material includes a base layer, an insulating layer formed on a portion of the base layer, and a printed pattern/mineral oil applied to the insulating layer. The insulating layer is formed from a thermoplastic synthetic resin film. U.S. Patent No. 6,030,476 describes a polyethylene foam taught on the outside surface of the paper cup.
- European Patent Application EP 0940240 A2 describes a heat insulating paper cup with targeted insulation in areas where printed matter exists. The body member of the cup is coated on its outside surface with a foamable synthetic resin and on its inside surface with an inside surface laminate of a synthetic resin effective to prevent liquid penetration. The bottom panel member is optionally coated on its upper surface with a foamed or an unfoamed synthetic resin. Printed matter is provided prior to foaming of the synthetic resin on the outer surface of the cup with water-based ink. Further, the low density polyethylene is foamed by vaporizing the water contained in the paper stock.
- European Patent application EP 1060879 A2 describes a heat insulating paper cup having a body member partially or fully coated on its outside surface with a foamed low density polyethylene and coated on its inside surface with an unfoamed modified low density polyethylene.
- United States Patent Application US-A-5,952,068 describes a single walled insulating paper cup having a body member fully or partially coated with a thin layer of polythene on its inside surface and coated fully or partially coated with a single or multiple layers of insulation that comprises a syntactic foam (a foam that contains insulating particles that are held in place by an acrylic resin binder) on the outside surface.
- [0007a] Japanese Patent Application JP2000-335548 A describes a heat insulating paper cup having a body member formed from a composite paper, in which paper is stuck to both sides of a foam resin layer, wherein the inner surface of the container is coated with a polyethylene resin layer.
- However, the devices and methods of the background art suffer from the following disadvantages. Other known designs sacrifice the outside printability of the cup to provide insulation or do not provide adequate insulation properties. As described above, many designs necessitate application of printed material prior to the manufacture of the paper cup, thereby limiting the ability to print or graphically enhance the cups after they have been manufactured.
- The related art has not yet achieved insulated paper stock that is capable of effectively impeding heat transfer between the contents of the container and the exterior. In addition, adequate thermal insulation is not achieved from the related art in a manner that is cost effective.
- The present invention overcomes the shortcomings associated with conventional devices and methods, and achieves other advantages not realized by conventional devices and methods.
- It is an aspect of the present invention to provide an insulated beverage container, sleeve or stock material that reduces the energy transfer through a container wall, offers increased functionality and usefulness.
- It is an aspect of the present invention to provide a container, sleeve, or stock material having superior hold times and pre-disposed to high quality printing and graphics.
- The present invention is a recognition, in part, that the ability to produce blank paper cups, sleeves or stock material that can be printed/graphically enhanced is desirable. This invention permits a superior insulating cup product to be made from standardized manufacturing processes.
- According to a first aspect of the present invention, an insulated beverage container is provided that comprises:
- a container wall having an upper side portion, a lower side portion, and a bottom portion engaging said lower side portion to define a beverage containing space inside the container wall;
wherein said container wall comprises:- a paper stock layer arranged along an exterior surface of said container wall;
- a laminated or extruded foam layer arranged inside said paper stock layer; and
- a thin polyethylene film layer also arranged inside said paper stock layer, and wherein either:
- (A) the foam layer forms the innermost layer of the container wall and the thin polyethylene film layer is sandwiched between the foam layer and the paper stock layer; or
- (B) the thin polyethylene film layer is applied onto the surface of the foam layer such that the foam layer is sandwiched between the paper stock layer and the thin polyethylene film layer, whereby the thin polyethylene film layer forms the innermost layer of the container wall.
- Optionally two thin polythene film layers can be used, one on each side of the foam layer. Also, optionally the foam layer can be adhered directly or indirectly to the paper stock layer by melt extrusion, lamination or foam extrusion.
- [0015a] In accordance with a second aspect of the present invention, an insulated beverage container sleeve is provided that comprises:
- a bottomless container wall having a sidewall enclosing a beverage container space, wherein said sidewall comprises:
- a paper stock layer arranged along an exterior surface of said sidewall;
- a laminated or extruded foam layer; and
- a thin polyethylene film layer,
- In accordance with a third aspect of the present invention, an insulated beverage container stock material for making an insulated beverage container is provided that comprises:
- a paper stock layer forming a first surface layer of said stock material;
- an extruded or laminated foam layer formed from a high density polyethylene, low density polyethylene, linear low density polyethylene, or oriented polypropylene, wherein the foam layer forms the second surface layer of said stock material opposite said paper stock layer; and
- a polyethylene film layer sandwiched between said paper stock layer and said foam layer.
- [0016a] In accordance with a further aspect of the present invention, an insulated beverage container stock material for making an insulated beverage container is provided that comprises:
- a paper stock layer forming a first surface layer of said stock material;
- an extruded or laminated foam layer formed from high density polyethylene, low density polyethylene, linear low density polyethylene, or oriented polypropylene;
- a polyethylene film layer sandwiched between said paper stock layer and said foam layer, and
- a second polyethylene film layer sandwiching said foam layer between said first polyethylene film layer and said second polyethylene film layer.
- [0016b] In accordance with another aspect of the present invention, a method of producing an insulated beverage container stock material is provided, wherein said method comprises the following steps:
- providing a paper stock material;
- foaming a polymer selected from high density polyethylene, low density polyethylene, linear low density polyethylene, or oriented polypropylene into a foam layer by mixing a blowing agent into the polymer prior to foaming;
- applying a polyethylene film barrier layer to a surface of the paper stock;
- applying the foam layer to said surface of the paper stock, whereby the polyethylene film barrier layer is interposed between said foam layer and the paper stock layer.
- Further scope of the applicability of the present invention will become apparent from the detailed description given hereinafter. However, it should be understood that the detailed description and specific examples, while indicating preferred embodiments of the invention, are given by way of illustration only, since various changes and modifications within the scope of the invention as described in the claims will become apparent to those skilled in the art from this detailed description.
- The present invention will become more fully understood from the detailed description given hereinafter and the accompanying drawings which are given by way of illustration only, and thus are not limitative of the present invention, and wherein:
- Figure 1 is a side cross-sectional view of an insulated beverage container according to the present invention;
- Figure 2 is a cross-sectional view of a comparative insulated beverage container wall or sleeve;
- Figure 3 is a cross-sectional view of an insulated beverage container wall according to a second embodiment of the present invention;
- Figure 4 is a cross-sectional view of an insulated beverage container wall according to a third embodiment of the present invention;
- Figure 5 is a cross-sectional view of a comparative insulated beverage container wall;
- Figure 6 is a graphical view of experimental data representing actual and comparative hold times for embodiments of the present invention and commercial available products;
- Figure 7 is a cross sectional view of an insulating beverage container sleeve according to the present invention; and
- Figure 8 is a cross-sectional view of an insulated beverage container wall or beverage container sleeve wall according to another embodiment of the present invention;
- The present invention is directed toward an insulated beverage container or cup, the container stock material, and a method of producing insulated beverage containers or stock materials that utilize a polyethylene foam layer extruded or laminated to a surface of a food or beverage paper stock. The present invention is described in greater detail hereinafter with reference to the accompanying drawings.
- Figures 3 and 4 are cross-sectional views of an insulated
beverage container wall 11 according to various embodiments of the present invention. One of ordinary skill in the art will appreciate that aninsulated container 10 as shown in Figure 1 will readily incorporate each of the beverage container walls depicted in Figures 3 and 4. While the following description is directed toward a cup, the techniques of this invention can be applied to any number of containers or surfaces, for instance a beverage container insulating beverage sleeve or stock material can be constructed from any of the embodiments shown in the accompanying drawings. - Figure 1 is a side cross-sectional view of an
insulated beverage container 10 according to the present invention. The insulated beverage container includes a container wall 1 having an upper side portion 7, a lower side portion 8 and a bottom portion 9. Abeverage containing space 11 is formed between the container wall's 1 upper side portion 7, lower side portion 8 and bottom portion 9. - As aforementioned, current standard paper cup stock allows excessive heat to transfer through the wall of the container. This results in a user's hand becoming uncomfortably or sometimes even painfully hot or cold when grasping a hot or cold container. A quantitative measurement of the ability of a paper stock' to withstand heat transfer between the beverage containing space and the outermost surface of the container is often referred to as hold time. It will be appreciated that the present invention significantly improves the hold time of paper-based stock beverage containers over the related art.
- The present invention utilizes a gas containing film adhered or selectively adhered to the surface of a paper stock. The gas containing film layer provides resistance to heat transfer through the container wall 1. The present invention provides an insulating container construction and a method of producing this construction which reduces the energy transfer through the container wall, providing increased functionality and usefulness.
- Figure 2 is a cross-sectional view of a comparative insulated beverage container wall or sleeve 1. A beverage container wall or sleeve I includes a paper stock 2, and an extruded or
laminated foam layer 3. The paper stock 2 provides structural rigidity and forms the desired shape of thecontainer 10 or a portion of a sleeve wall. The extruded orlaminated foam layer 3 is adhered to an inner surface (e.g. facing the beverage containing space 11) of the paper stock 2 and performs the function of a gas containing film layer. Thefoam layer 3 is designed to provide thermal insulation properties to the container. - The paper stock 2 is standard paper used for making beverage cups and other food containers. The paper stock 2 may be chosen with a thickness that provides optimized physical characteristics for cup construction. Important physical characteristics include fold strength, stiffness, tear and tensile strength.
- A desired paper thickness is chosen such that the resultant thickness of the finished cup wall 1 does not negatively impact converting, handling or finished cup properties. A typical paper stock 2 for beverage and food containers range from 254 to 1016 µm (10 to 40 mils) in a paper stock 2 thickness, and more particularly from 254 to 660µm (10 mils to 26 mils) in thickness in a preferred embodiment for the present invention. Where the present invention is applied to an insulating beverage sleeve, the paper stock 2 may be chosen with a thickness which provides the proper physical characteristics such as strength for constructing a sleeve surrounding a
beverage container 10 such as that shown in FIG. 1. Important physical characteristics include fold strength, stiffness, tear and tensile strength. The paper thickness is chosen such that the resultant thickness of the sleeve and cup wall does not negatively impact handling, distribution or become cumbersome to the end user. Additional criteria affecting paper stock selection includes appearance and cost. A smooth, bleached-white paper may be chosen to enhance the print quality and the appeal of the cup or a brown kraft stock may be chosen for economy. Applicable paper suitable for sleeve stock ranges from 51 to 254µm (2 mils to 10 mils) for the application to an insulating beverage sleeve. - The extruded or
laminated foam layer 3 is applied to the paper stock 2 as an extrusion, lamination, or it is melted or fused. The purpose of the extruded orlaminated foam layer 3 is to provide thermal insulation properties, to contain liquids and to provide heat sealing. However, the extruded orlaminated foam layer 3 can also be used as a barrier to moisture transmission and further aids in seam sealing during container construction. In the case of an insulating beverage sleeve, thefoam layer 3 is a gas containing layer that provides resistance to heat transfer through the sleeve wall. - The extruded or
laminated foam layer 3, although not limited to, can be formed from any of the following exemplary materials: high density polyethylene (HDPE), low density polyethylene (LDPE), linear low density polyethylene (LLDPE), orientated polypropylene (OPP), etc. HDPE and LDPE are desirable materials in a preferred embodiment of the present invention. - Additives may also be included to enhance various material properties or to aid in the manufacturing process. These additives include, but are not limited to, any of the following exemplary additives: ethylene vinyl acetate (EVA), ethylene vinyl alcohol (EVOH), and plasticizers.
- The
foam layer 3 is attached to the paper stock uniformly during the manufacturing process. The gases trapped within the film of thefoam layer 3 impart a high level of thermal insulation to the container wall. An important aspect of the gas containingfoam layer 3 is to provide resistance to energy transfer. The amount of trapped gas is variable and depends upon a specified volume that will render the exterior of the container comfortable to hold for an average user. Therefore, the required amount of trapped air will generally vary according to the intended use of the container. - For instance, a container used to serve coffee (normally 88°C (190° F)) will need more resistance to energy flow than a similar container used to serve a relatively cool cup of soup (normally 74°C (165° F)). An additional benefit to the insulating layer is the ability of the container to keep the food or beverage at its serving temperature for a longer period of time.
- The
foam layer 3 can be either laminated to or extruded onto the paper stock 2. When the film is laminated, a gas containing film such as CA-20 manufactured by Sealed Air Corporation or other may be used. When the film is extruded onto the paper stock 2 a blowing agent is mixed into the polymer prior to extrusion. The incorporated blowing agent creates gas pockets within the film during the extruding process. The extrusion method offers the additional advantage of creating the product in one operational step. - The insulating
foam layer 3 is preferably betweetn 0.9 and 13.6 kg/307m2 (2 and 30 lbs/3300 ft 2), and more preferably between 2.3 and 6.8 kg/307 m2 (5 and 15 lbs/ 3300 ft2). The density of the film is preferably between 0.16 and 0.47 KN/m3 (1.0 and 3.0 lbs/ft3). The thickness of the insulating gas containingfoam layer 3 is preferably between 127 and 762µm (5 and 30 mils),and more preferably between 254 and 508 µm (10 and 20 mils). Thefoam layer 3 can be a gas containing film layer formed from a continuous single layer or lamination of films and foam. - Figure 3 is a cross sectional view of a container wall according to a second embodiment of the present invention. A
film layer 4 is extruded, laminated, or coated in a position between thefoam containing layer 3 and thebeverage containing space 11. Thefoam layer 3 is therefore interposed between the paper stock 2 and thefilm layer 4. Thefilm layer 4 will hereinafter be referred to as aPE layer 4. ThePE layer 4 can be used as a barrier against moisture transmission and aids in seam sealing during container construction. - In a preferred embodiment, the
foam layer 3 is first formed and then it is melt extruded, laminated or melt fused to the surface of the paper stock 2. The residual moisture held within the paper stock 2 which is characteristically relied upon in the related art, is not relied upon as the mechanism for creating thefoam layer 3. The foam can also be extruded to the paper stock 2, but in each instance the foaming is created by mixing a blowing agent into the polymer prior to extrusion or foam creation. The incorporated blowing agent creates gas pockets within the film during the extruding process. The extruded method offers the advantage of directly creating the product in one operational step. - The
foam layer 3 can also be treated in order to accept or conform with various printing inks. Thefoam layer 3 can be treated by various means well known in the industry such as, but not limited to: corona treatment, flame treatment, ozone treatment, coatings, etc. - Figure 4 is a cross sectional view of a container wall according to a third embodiment of the present invention. A
PE layer 4 is extruded, laminated, or coated in a position interposed between thefoam containing layer 3 and the paper stock 2. However,PE layer 4 can also be used as a barrier against moisture transmission and aids in seam sealing during container construction. - The
PE layer 4, although not limited to, can be formed from any of the following exemplary materials: high density polyethylene (HDPE), low density polyethylene (LDPE), linear low density polyethylene (LLDPE), orientated polypropylene (OPP), etc. HDPE and LDPE are desirable materials in a preferred embodiment of the present invention. - Additives may also be included to enhance various material properties or to aid in the manufacturing process. These additives include, but are not limited to, any of the following exemplary additives: ethylene vinyl acetate (EVA), ethylene vinyl alcohol (EVOH), and plasticizers.
- Figure 5 is a cross sectional view of a comparative insulated beverage container wall. A
PE layer 4 has been applied to an outside surface of the paper stock 2. ThePE layer 4 can be laminated, extruded or coated onto the paper stock surface. ThePE layer 4 also serves a barrier to the beverage or food placed within the container, and can also serve as a sealing mechanism. Alternatively, thePE layer 4 could be applied as the innermost layer, e.g. closest to thebeverage containing space 11. Further, additional PE layers 4 can be applied to either the inside or outside surfaces of the container wall 1 as desired to add additional barriers to the liquid or heat sealed within the container. ThePE layer 4 can be applied to the paper stock or over the foam. - A preferred coating material for additional coating layers for the present invention is an expanding foam. This expanding foam material is encapsulated isobutane in a polymeric shell. The expanding foam capsules are added to the coating with a small diameter. Upon drying the foam and increasing the heat to a certain temperature, the encapsulated isobutane changes from a liquid to a gas and the polymeric shell expands with the appropriate volumetric change.
- The resulting expanded spheres or cavities have a very low density and low thermal conductivity. Expanded foam also has the advantage of creating a rough surface that will further reduce the contact area between layers in the container wall and therefore reduce heat transfer. A thin layer of the expanding foam coated onto the paper stock exterior is especially useful for roughening or for texturing to aid in gripping the container.
- A preferred coating is a foamed coating. Foamed coating is a coating that utilizes entrained air. The dispersed air in the coating provides a low coating density and low thermal conductivity. The foamed coating also accepts and is easily processed to achieve surface modification. The foamed coating will therefore allow a rough or perforated surface to be created through the means of an embosser, press or other mechanical device.
- Foam coating also has the ability to be used as a single coating, or may also act as the insulating coating and a printing coating simultaneously, depending on the application and desires of the end user.
- The selected coating materials for the insulating coating are dispersed in an aqueous system with additional components added as necessary to provide ease of processing and application. Pigments such as silica, calcium carbonate, clay and synthetic pigments may be also used.
- Binders are included to adhere the coating to the paper substrate. Typical binders may be selected from, but are not limited to, poly vinyl alcohol, SBR latex, starch, poly acrylates and other binders well known in the related art. Other additives may be included in the coating to aid in dispersion, rheology and coating handling. These additives include, but are not limited to, defoamers, dispersants, wetting agents, conductive polymers, styrene malefic anhydride, thickeners, etc.
- An insulating coating can be applied that is between 0.9 and 13.6 kg/307 m2 (2 and 30 lbs /3300 ft2),and more preferably between 2.3 and 6.8 kg/307 m2 (5 and 15 lbs / 3300 ft2). A preferred thickness of the insulating coating is between 1 and 15 mils, most preferably between 76 and 254µm (3 and 10 mils).
- United States Patents Nos. 5,911,904 to Shih et al; 5,993,705 to Grischchenko et al.; and 6,085,970 to Sadlier, although directed toward distinct insulating container coatings and fabrication processes from that of the present invention, generally describe many of the manufacturing coating, heating and assembling processes that are commonly utilized in the paper cup/container stock art.
- The preferred embodiments depicted in the accompanying figures are directed toward the application of a
foam layer 3 toward or along the interior surface of a container (e.g. beverage-side of the container). - The inventors of the present invention have discovered highly favorable, and heretofore unexpected, results when testing was conducted of the various preferred embodiments of the present invention. For example, a
beverage container 10 constructed with a container wall 1 having the construction shown in FIG. 3 has demonstrated extraordinary hold times, moisture inhibition and resistance to vapor transmission. Further, the inventors of the present invention have demonstrated that hold times are significantly increased with the embodiment shown in FIG. 3 as compared to providing amoisture foam layer 3 blown on the outside surface of the paper stock 2, such as the Perfec Touch™ cup sold by Georgia Pacific™. - As aforementioned, a quantitative measurement of the ability of a paper stock to withstand heat transfer between the beverage containing space and the outermost surface of the container is often referred to as hold time. With the
foam layer 3 provided on the exterior surface of the paper stock 2, the heat of the beverage (e.g. coffee) contributes to heating and vaporizing of the residual moisture in the paper stock. Accordingly, how long one can comfortably hold thehot container 10, e.g. hold time, is significantly reduced. - The preferred embodiment shown in FIG. 3 appears to best inhibit heat transfer to the paper stock 2, thereby reducing heat transfer by providing a moisture vapor transmission rate barrier at the innermost surface which prevents heating by mass transfer of that vapor through the cupstock. Hold times were significantly increased with the preferred embodiments of the present invention.
- FIG. 6 is a graphical view of experimental data representing actual and comparative hold times for embodiments of the present invention and commercial available products. Figure 7 is a cross sectional view of an insulating
beverage container sleeve 12 according to the present invention. Figure 8 is a cross-sectional view of an insulated beverage container wall 1 or beverage container sleeve wall 1 according to another embodiment of the present invention. - It will be appreciated that an insulating
beverage container sleeve 12 can readily incorporate any of the applicable embodiments of beverage container stock material (container wall) I shown in the accompanying drawings. An insulatingbeverage container sleeve 12 is often slipped over the outer surface of a beverage container such as that shown in FIG. 1. As seen in Figure 8, anintermediate layer 5 is provided between the paper stock 2 andfoam layer 3. Theintermediate layer 5 is applied to the paper stock as an extrusion, lamination, or coating. The purpose of the layer is to adhere the gas containingfilm layer 3 to the paper stock 2. However, theintermediate layer 5 can also be utilized as a barrier to moisture transmission and as an aid in seam sealing during sleeve construction. Typical materials used forintermediate layer 5 include, but are not limited to: high density polyethylene (HDPE), low density polyethylene (LDPE), linear low density polyethylene (LLDP), orientated polypropylene(OPP); and adhesives, such as hot melt adhesives, water based adhesives and solvent based adhesives, etc. - Additives known in the industry may be included to enhance certain properties or aid in processing and may include, but are not limited to: ethylene vinyl acetate (EVA), ethylene vinyl alcohol (EVOH), and plasticizers.
Exterior layer 4 is applied to the paper stock to provide a surface which may have the following properties depending on end use, including but not limited to: materials accepting high quality graphics and printing inks, materials providing tactile feel, materials that change color with temperature, materials providing seam sealing capabilities, and materials providing a more secure gripping surface, etc. Thesleeve 12 construction may be preferentially oriented with thefoam material 3 toward thecup 11 surface and thepaper surface 2, 4 facing outward, e.g. visible to the user. - FIG. 6 is a graphical view of experimental data representing actual and comparative hold times for embodiments of the present invention and commercial available products. FIG. 6 shows experimental hold times (measured in seconds) achieved for different samples. The various samples or beverage containers were filled with approximately 230 ml of water at approximately 90 ° C (194 ° F pour temperature).
- In Table 1, Sample S2 is a container known as Insulair having a 381/381/381µm (15/15/15/ pt (1 pt = 1/1000 in.)) base paper/corrugated/base paper design. The container is essentially a paper exterior and interior with a corrugated core. Sample S5, Sample S6, and Sample S7 are test samples of the present invention incorporating a container wall 1 with construction similar to that shown in Fig. 3. Sample S5 is a 254 µm (10 pt) foam 457µm (18 pt) base paper laminate. S6 is a 508µm (20 point) foam 457µm (18 pt) base paper laminate. S7 is a 762µm (30 pt) foam 457µm (18 pt) base paper laminate.
- Sample S9 is a paper stock with a moisture blow polyethylene exterior such as the PerfecTouch™ container available from Fort James. Sample S10 is an 457µm (18 pt) paper cup. Sample S12 is a laminate foam 457µm (18 pt) base with 508µm (20 pt) polyethylene foam. Sample 14 is an 457 µm (18 pt) paper with a 940µm (37 pt) sleeve utilizing MicroPearl™ coated on the exterior. Sample S16 is a 457µm (18 pt) paper with a 508µm (20 pt) laminated polyethylene foam.
- Testing was conducted of different samples to determine average hold times after several iterations of testing. A control test person was used in many testing results to maintain data integrity. In alternative testing, several different control test persons were utilized.
- Table I provides experimental test results of insulated cup hold time studies conducted at a pour temperature of 90°C and with approximately 230 ml. of water. Table I is directed toward the test results of the various samples. The various samples were rinsed out after each test with ambient water.
- The invention being thus described, it will be obvious that the same may be varied in many ways. Such variations are not to be regarded as a departure from the scope of the invention, and all such modifications as would be obvious to one skilled in the art are intended to be included within the scope of the following claims.
wherein the foam layer forms the innermost layer of the sidewall and the thin polyethylene film layer is sandwiched between the foam layer and the paper stock layer.
Claims (15)
- An insulated beverage container comprising:a container wall (1) having an upper side portion (7), a lower side portion (8), and a bottom portion (9) engaging said lower side portion (8) to define a beverage containing space (11) inside the container wall (1);
wherein said container wall (1) comprises:a paper stock layer (2) arranged along an exterior surface of said container wall (1);a laminated or extruded foam layer (3) arranged inside said paper stock layer; anda thin polyethylene film layer (4) also arranged inside said paper stock layer, and wherein either:(A) the foam layer forms the innermost layer of the container wall and the thin polyethylene film layer (4) is sandwiched between the foam layer (3) and the paper stock layer (2); or(B) the thin polyethylene film layer (4) is applied onto the surface of the foam layer (3) such that the foam layer (3) is sandwiched between the paper stock layer (2) and the thin polyethylene film layer (4), whereby the thin polyethylene film layer (4) forms the innermost layer of the container wall. - The insulated beverage container according to claim 1, wherein said foam layer is foam formed from high density polyethylene, low density polyethylene, linear low density polyethylene, or oriented polypropylene.
- The insulated beverage container according to claim 1 or 2, further comprising an insulating coating sandwiched between said foam layer and said paper stock layer.
- The insulated beverage container according to any preceding claim, wherein the thin polyethylene film layer (4) is applied onto the surface of the foam layer (3) such that the foam layer (3) is sandwiched between the paper stock layer (2) and the thin polyethylene film layer (4), characterized in that the container wall (1) further comprises a second thin polyethylene film layer sandwiched between said foam layer and said paper stock.
- The insulated beverage container according to any of claims 1 to 4, wherein said paper stock material has a thickness greater than or equal to 254 µm (10 mils) and less than or equal to 660µm (26 mils).
- An insulated beverage container sleeve comprising:a bottomless container wall having a sidewall enclosing a beverage container space (12), wherein said sidewall comprises:a paper stock layer (2) arranged along an exterior surface of said sidewall (1);a laminated or extruded foam layer (3); anda thin polyethylene film layer (4),
wherein the foam layer forms the innermost layer of the sidewall and the thin polyethylene film layer (4) is sandwiched between the foam layer (3) and the paper stock layer (2). - The insulated beverage container sleeve according to claim 6, wherein said foam layer is foam formed from high density polyethylene, low density polyethylene, linear low density polyethylene, or oriented polypropylene.
- The insulated beverage container sleeve according to claim 6 or 7, further comprising a printing layer, said printing layer forming a first exterior surface of said beverage container sleeve, wherein the printing layer is made from a material having high quality graphics printability or having a textured surface.
- The insulated beverage container sleeve according to any of claims 6 to 8, wherein said paper stock material has a thickness greater than or equal to 51µm (2 mils)and less than or equal to 254 µm (10 mils).
- An insulated beverage container stock material for making an insulated beverage container according to any of claims 1 to 3, comprising:a paper stock layer forming a first surface layer of said stock material;an extruded or laminated foam layer formed from high density polyethylene, low density polyethylene, linear low density polyethylene, or oriented polypropylene, wherein the foam layer forms the second surface layer of said stock material opposite said paper stock layer; anda polyethylene film layer sandwiched between said paper stock layer and said foam layer.
- An insulated beverage container stock material for making an insulated beverage container according to any of claims 1 to 4, comprising:a paper stock layer forming a first surface layer of said stock material;an extruded or laminated foam layer formed from high density polyethylene, low density polyethylene, linear low density polyethylene, or oriented polypropylene;a polyethylene film layer sandwiched between said paper stock layer and said foam layer; anda second polyethylene film layer sandwiching said foam layer between said first polyethylene film layer and said second polyethylene film layer.
- The insulated beverage container stock material according to claim 10 or 11, wherein said paper stock material has a thickness greater than or equal to 254 µm (10 mils) and less than or equal to 660µm (26 mils).
- A method of producing an insulated beverage container stock material according to any of claims 10 to 12, said method comprising the steps of:providing a paper stock material;foaming a polymer selected from high density polyethylene, low density polyethylene, linear low density polyethylene, or oriented polypropylene into a foam layer by mixing a blowing agent into the polymer prior to foaming;applying a polyethylene film barrier layer to a surface of the paper stock;applying the foam layer to said surface of the paper stock, whereby the polyethylene film barrier layer is interposed between said foam layer and the paper stock layer.
- The method of claim 13, further comprising the step of applying a thermal insulating coating interposed between said foamed layer and said paper stock layer.
- The method of claim 13, further comprising the step of applying a second polyethylene film in a position sandwiching said foam layer between said second film layer and said paper stock layer.
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US29838601P | 2001-06-18 | 2001-06-18 | |
US298386P | 2001-06-18 | ||
US09/923,332 US6811843B2 (en) | 2001-04-05 | 2001-08-08 | Insulated beverage or food container |
US923332 | 2001-08-08 | ||
PCT/US2002/017747 WO2002102682A1 (en) | 2001-06-18 | 2002-06-07 | Insulated beverage or food container |
Publications (4)
Publication Number | Publication Date |
---|---|
EP1404590A1 EP1404590A1 (en) | 2004-04-07 |
EP1404590A4 EP1404590A4 (en) | 2004-07-14 |
EP1404590B1 true EP1404590B1 (en) | 2006-02-22 |
EP1404590B2 EP1404590B2 (en) | 2010-06-30 |
Family
ID=26970631
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP02741844A Expired - Lifetime EP1404590B2 (en) | 2001-06-18 | 2002-06-07 | Insulated beverage or food container |
EP02737458A Expired - Lifetime EP1404580B1 (en) | 2001-06-18 | 2002-06-11 | Insulated beverage or food container |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP02737458A Expired - Lifetime EP1404580B1 (en) | 2001-06-18 | 2002-06-11 | Insulated beverage or food container |
Country Status (17)
Country | Link |
---|---|
US (2) | US6811843B2 (en) |
EP (2) | EP1404590B2 (en) |
JP (2) | JP2004532775A (en) |
KR (2) | KR20040017234A (en) |
CN (2) | CN1219685C (en) |
AT (2) | ATE318241T1 (en) |
AU (2) | AU2002314917B2 (en) |
BR (2) | BR0206196B1 (en) |
CA (2) | CA2431869C (en) |
DE (2) | DE60209350T2 (en) |
DK (2) | DK1404590T3 (en) |
ES (2) | ES2258639T3 (en) |
IL (4) | IL156108A0 (en) |
MX (2) | MXPA03006045A (en) |
MY (1) | MY129080A (en) |
NZ (2) | NZ527511A (en) |
WO (2) | WO2002102682A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8146796B2 (en) | 2001-01-30 | 2012-04-03 | Seda S.P.A. | Cardboard container for drinks and process therefor |
US8360263B2 (en) | 2005-04-15 | 2013-01-29 | Seda S.P.A. | Insulated container, method of fabricating same and apparatus for fabricating |
Families Citing this family (87)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7074466B2 (en) * | 2001-04-05 | 2006-07-11 | Appleton Papers Inc. | Beverage and food containers, inwardly directed foam |
US7070841B2 (en) * | 2001-04-11 | 2006-07-04 | E. I. Du Pont De Nemours And Company | Insulating label stock |
DE10237818B4 (en) * | 2002-07-29 | 2005-01-27 | Huhtamaki Ronsberg, Zweigniederlassung Der Huhtamaki Deutschland Gmbh & Co. Kg | Insulation for bottles or the like |
ITBO20030202A1 (en) * | 2003-04-07 | 2004-10-08 | Ezio Dondini | THERMAL TOWEL. |
US20050189361A1 (en) * | 2004-02-17 | 2005-09-01 | Wincup Holdings, Inc. | Beverage cup for placement in holder |
EP1892189B1 (en) * | 2004-04-08 | 2011-06-15 | Dart Container Corporation | Wrapping apparatus for foam cups |
BRPI0510164A (en) | 2004-04-22 | 2007-10-02 | Insulair Inc | insulating cup wrap and insulated container formed with wrap |
US20060131316A1 (en) * | 2004-12-17 | 2006-06-22 | Lewis Bresler | Paper-wrapped polystyrene foam beverage container |
US20060131317A1 (en) * | 2004-12-17 | 2006-06-22 | Lewis Bresler | Paper-wrapped polymer beverage container |
US20060196923A1 (en) * | 2005-03-01 | 2006-09-07 | Tedford Richard A Jr | Insulated container |
US7281650B1 (en) * | 2005-03-24 | 2007-10-16 | Michael Milan | Beverage cup |
WO2006104114A1 (en) * | 2005-03-28 | 2006-10-05 | Kureha Corporation | Polyglycolic acid resin-based layered sheet and method of producing the same |
US7704347B2 (en) * | 2005-05-27 | 2010-04-27 | Prairie Packaging, Inc. | Reinforced plastic foam cup, method of and apparatus for manufacturing same |
US7818866B2 (en) * | 2005-05-27 | 2010-10-26 | Prairie Packaging, Inc. | Method of reinforcing a plastic foam cup |
US7694843B2 (en) * | 2005-05-27 | 2010-04-13 | Prairie Packaging, Inc. | Reinforced plastic foam cup, method of and apparatus for manufacturing same |
US7536767B2 (en) * | 2005-05-27 | 2009-05-26 | Prairie Packaging, Inc. | Method of manufacturing a reinforced plastic foam cup |
US7552841B2 (en) * | 2005-05-27 | 2009-06-30 | Prairie Packaging, Inc. | Reinforced plastic foam cup, method of and apparatus for manufacturing same |
US7814647B2 (en) * | 2005-05-27 | 2010-10-19 | Prairie Packaging, Inc. | Reinforced plastic foam cup, method of and apparatus for manufacturing same |
DE202005014177U1 (en) | 2005-09-08 | 2005-11-17 | Seda S.P.A., Arzano | Double-walled beaker comprises an inner wall formed by an inner beaker which is made of a fluid-tight plastic material, and is releasably inserted into an outer beaker forming the outer wall |
DE202005014738U1 (en) | 2005-09-19 | 2007-02-08 | Seda S.P.A., Arzano | Container and cut |
US8932706B2 (en) | 2005-10-27 | 2015-01-13 | Multi-Color Corporation | Laminate with a heat-activatable expandable layer |
PT1785370E (en) | 2005-11-11 | 2008-06-06 | Seda Spa | Insulated cup |
EP1785265A1 (en) | 2005-11-14 | 2007-05-16 | SEDA S.p.A. | Device for producing a stacking projection on a container wall and container with same |
EP1839504B2 (en) * | 2006-03-27 | 2015-02-18 | Nestec S.A. | In situ preperation of whey protein micelles |
US9522772B2 (en) | 2006-04-03 | 2016-12-20 | Lbp Manufacturing Llc | Insulating packaging |
US20130303351A1 (en) | 2006-04-03 | 2013-11-14 | Lbp Manufacturing, Inc. | Microwave heating of heat-expandable materials for making packaging substrates and products |
US9648969B2 (en) * | 2006-04-03 | 2017-05-16 | Lbp Manufacturing Llc | Insulating packaging |
EP2001767B1 (en) * | 2006-04-03 | 2010-08-25 | LBP Manufacturing, Inc. | Thermally activatable insulating packaging |
US7828199B2 (en) | 2006-07-27 | 2010-11-09 | Huhtamaki, Inc. | Multi-layer heat insulating container |
US20080047967A1 (en) * | 2006-08-24 | 2008-02-28 | Kimberly-Clark Worldwide, Inc. | Insulation sleeve for beverage containers |
US20080057245A1 (en) * | 2006-08-31 | 2008-03-06 | Dale Bennett | Liquid Container Material And Method Thereof |
US7807262B2 (en) * | 2006-09-28 | 2010-10-05 | Graphic Packaging International, Inc. | Thermal insulative label |
US7767049B2 (en) | 2006-10-12 | 2010-08-03 | Dixie Consumer Products Llc | Multi-layered container having interrupted corrugated insulating liner |
DE202006018406U1 (en) | 2006-12-05 | 2008-04-10 | Seda S.P.A. | packaging |
US20080128481A1 (en) * | 2006-12-05 | 2008-06-05 | Robertson Ronald D | Stackable storage container with insulating sleeve |
US8592014B2 (en) | 2007-02-05 | 2013-11-26 | Grupo Convermex, S.A. De C.V. | Tri-layer food container |
GB2448910A (en) * | 2007-05-02 | 2008-11-05 | President Packaging Ind Corp | Sleeve for a disposable drinking cup |
US20090214837A1 (en) * | 2008-02-21 | 2009-08-27 | Multi-Color Corporation | Insulating Label |
TW200936460A (en) * | 2008-02-29 | 2009-09-01 | xi-qing Zhang | Cup structure and manufacturing method thereof |
US20090263440A1 (en) * | 2008-04-22 | 2009-10-22 | Yvette Kathrynn Kendall | Disposable containers and utensils for sanitizing |
EP2293928A4 (en) * | 2008-05-15 | 2011-12-28 | Meadwestvaco Corp | Combined boards without corrugated medium having enhanced surface properties |
JP5302395B2 (en) | 2008-06-20 | 2013-10-02 | ザ プロクター アンド ギャンブル カンパニー | Foam film packaging |
US20150210443A1 (en) * | 2009-03-18 | 2015-07-30 | George E. Sarson | Container apparatus and method for using the same |
AU2010245971A1 (en) * | 2009-05-05 | 2011-11-10 | Meadwestvaco Corporation | Packaging materials with enhanced thermal-insulating performance |
TWI408048B (en) * | 2009-09-21 | 2013-09-11 | Rich Cup Bio Chem Tech Co Ltd | Degradable heat insulation container |
ZA200908125B (en) * | 2009-11-18 | 2010-07-28 | Feng-Chi Shen-Yu | Foamed polymer food container |
US8828170B2 (en) | 2010-03-04 | 2014-09-09 | Pactiv LLC | Apparatus and method for manufacturing reinforced containers |
CA2930885C (en) | 2010-09-01 | 2019-02-05 | Lbp Manufacturing, Inc. | Process of expediting activation of heat-expandable adhesives/coatings used in making packaging substrates |
DE102010062194A1 (en) * | 2010-11-30 | 2012-05-31 | Huhtamäki Oyj | Lid made of fiber material |
CN102556513A (en) * | 2010-12-22 | 2012-07-11 | 梁仁宇 | Container with heat-cold insulation structure |
EP2510869A1 (en) | 2011-04-15 | 2012-10-17 | F. Hoffmann-La Roche AG | A medical system and a method for operating a medical system |
GB2506796B (en) | 2011-06-17 | 2017-03-22 | Berry Plastics Corp | Insulated container |
US9067705B2 (en) | 2011-06-17 | 2015-06-30 | Berry Plastics Corporation | Process for forming an insulated container having artwork |
JP6166719B2 (en) | 2011-06-17 | 2017-07-19 | ベリー プラスチックス コーポレイション | Insulation sleeve for cup |
WO2012174422A2 (en) | 2011-06-17 | 2012-12-20 | Berry Plastics Corporation | Insulated container with molded brim |
ES2486615B2 (en) | 2011-08-31 | 2017-03-08 | Berry Plastics Corporation | FORMULATION, RESIN OR EXTRUDED TO CONFORM AN INSULATING, POLYMERIC AND NON-AROMATIC CELL STRUCTURE, ARTICLE AND MATERIAL THAT IS OBTAINED, CONFORMED CONTAINER AND PROCESS OF OBTAINING. |
CN102400418A (en) * | 2011-11-23 | 2012-04-04 | 成都东航塑胶有限公司 | Waterproof packing paper |
CN102493286A (en) * | 2011-11-23 | 2012-06-13 | 成都东航塑胶有限公司 | Packing paper with two waterproof surfaces |
CN102514325A (en) * | 2011-11-23 | 2012-06-27 | 成都东航塑胶有限公司 | Ice cream cone wrapping paper |
US8608018B2 (en) | 2012-05-21 | 2013-12-17 | Meadwestvaco Corporation | Insulated container with comfort zone |
CA2879564A1 (en) | 2012-08-07 | 2014-02-13 | Berry Plastics Corporation | Cup-forming process and machine |
MX2015005207A (en) | 2012-10-26 | 2016-03-21 | Berry Plastics Corp | Polymeric material for an insulated container. |
US9840049B2 (en) | 2012-12-14 | 2017-12-12 | Berry Plastics Corporation | Cellular polymeric material |
US20140167310A1 (en) * | 2012-12-14 | 2014-06-19 | Berry Plastics Corporation | Process for forming container blank |
AR093944A1 (en) | 2012-12-14 | 2015-07-01 | Berry Plastics Corp | PUNCHED FOR PACKAGING |
AR093943A1 (en) | 2012-12-14 | 2015-07-01 | Berry Plastics Corp | EDGE OF A THERMAL PACK |
US9957365B2 (en) | 2013-03-13 | 2018-05-01 | Berry Plastics Corporation | Cellular polymeric material |
BR112015022750A2 (en) | 2013-03-14 | 2017-07-18 | Berry Plastics Corp | container |
JP2014227221A (en) * | 2013-05-27 | 2014-12-08 | 大日本印刷株式会社 | Paper cup for microwave |
WO2015006772A1 (en) | 2013-07-12 | 2015-01-15 | Berry Plastics Corporation | Polymeric material for container |
EP3033208A4 (en) | 2013-08-16 | 2017-07-05 | Berry Plastics Corp. | Polymeric material for an insulated container |
TW201521999A (en) | 2013-08-26 | 2015-06-16 | Berry Plastics Corp | Polymeric material for container |
TW201536527A (en) | 2013-08-30 | 2015-10-01 | Berry Plastics Corp | Multiple layer tube and process of making the same |
EP2886483B1 (en) * | 2013-12-17 | 2016-10-05 | Maurizio Festa | Container for storing and preparing food stuffs |
CN104172849A (en) * | 2014-08-02 | 2014-12-03 | 江阴宇昊复合材料科技有限公司 | Adjustable thermal insulating container cover |
US9758655B2 (en) | 2014-09-18 | 2017-09-12 | Berry Plastics Corporation | Cellular polymeric material |
US10513589B2 (en) | 2015-01-23 | 2019-12-24 | Berry Plastics Corporation | Polymeric material for an insulated container |
WO2016141179A1 (en) | 2015-03-04 | 2016-09-09 | Berry Plastics Corporation | Polymeric material for container |
US10260617B2 (en) * | 2016-10-21 | 2019-04-16 | Nio Usa, Inc. | Transmission packaging for an epicyclic/planetary gearbox unit with integrated oil pump |
CN106966010A (en) * | 2017-05-12 | 2017-07-21 | 嘉兴市新发现机械制造有限公司 | A kind of paper container |
GB2565118B (en) * | 2017-08-02 | 2020-09-16 | Bockatech Ltd | Hollow plastic article |
US11091311B2 (en) | 2017-08-08 | 2021-08-17 | Berry Global, Inc. | Insulated container and method of making the same |
US10562659B2 (en) * | 2017-09-08 | 2020-02-18 | Georgia-Pacific Bleached Board LLC | Heat sealable barrier coatings for paperboard |
CN107738490A (en) * | 2017-09-29 | 2018-02-27 | 江阴润渲纸业有限公司 | A kind of heat insulation foaming paper and preparation method thereof |
SE542108C2 (en) * | 2017-12-28 | 2020-02-25 | Stora Enso Oyj | A paperboard for packaging of liquid and/or frozen food |
US20220063250A1 (en) * | 2020-08-26 | 2022-03-03 | Berry Global, Inc. | Insulated container and method of making the same |
WO2022145421A1 (en) * | 2020-12-28 | 2022-07-07 | アサヒビール株式会社 | Can for effervescent beverage and manufacturing method therefor |
Family Cites Families (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3988521A (en) * | 1972-07-28 | 1976-10-26 | Owens-Illinois, Inc. | Laminated structures and methods and compositions for producing same |
FR2217954A5 (en) * | 1973-02-08 | 1974-09-06 | Muller Patrick | Thermally insulating packaging material - of polyethylene foam bonded to a stiff support |
CA1078722A (en) * | 1975-03-03 | 1980-06-03 | Lamonte R. Koonts | Insulation board |
JPS5541318U (en) * | 1978-09-08 | 1980-03-17 | ||
US4282984A (en) * | 1979-01-16 | 1981-08-11 | Curry Byron V Jun | Composite container structure |
JPS6123389Y2 (en) * | 1980-12-19 | 1986-07-14 | ||
JPS57110439A (en) * | 1980-12-29 | 1982-07-09 | Nihon Dixie Co Ltd | Vessel made of heat insulating paper and its manufacture |
GB2181412B (en) * | 1983-10-28 | 1987-11-25 | Hiromichi Inagaki | Waterproof paper-based container |
JPH01166942A (en) * | 1987-12-23 | 1989-06-30 | Sekisui Plastics Co Ltd | Laminated sheet and its manufacture |
US4923557A (en) | 1988-08-01 | 1990-05-08 | Trine Manufacturing Co., Inc. | Apparatus and method for applying a heat shrink film to a container |
JPH0550535A (en) * | 1991-08-26 | 1993-03-02 | Honshu Paper Co Ltd | Manufacture of paper container having heat insulation property |
JP2575941Y2 (en) * | 1992-02-27 | 1998-07-02 | 凸版印刷株式会社 | Insulated cup container |
JPH07100505B2 (en) * | 1992-09-22 | 1995-11-01 | 本州製紙株式会社 | Method for manufacturing paper container having heat insulating property |
JP2824895B2 (en) | 1993-12-22 | 1998-11-18 | 株式会社日本デキシー | Insulating paper container and method of manufacturing the same |
US5445315A (en) * | 1994-04-01 | 1995-08-29 | John R. Sexton | Insulated beverage receptacle holder |
JPH08295324A (en) * | 1995-04-21 | 1996-11-12 | Honshu Paper Co Ltd | Heat insulating paper container and production thereof |
JPH0930523A (en) * | 1995-07-18 | 1997-02-04 | Jsp Corp | Container material, and container made of it |
US5766709A (en) | 1996-02-23 | 1998-06-16 | James River Corporation Of Virginia | Insulated stock material and containers and methods of making the same |
US5667135A (en) | 1996-04-17 | 1997-09-16 | Sweetheart Cup Company, Inc. | Thermal insulating sleeve for drink cups |
US5952068A (en) | 1996-06-14 | 1999-09-14 | Insulation Dimension Corporation | Syntactic foam insulated container |
US6265040B1 (en) * | 1996-06-14 | 2001-07-24 | Insulation Dimension Corporation | Self-bonding syntactic foam insulated container sleeve |
US6277454B1 (en) * | 1999-02-24 | 2001-08-21 | Insulation Dimension Corporation | Syntactic foam insulated container |
SE513572C2 (en) † | 1997-01-29 | 2000-10-02 | Tetra Laval Holdings & Finance | Ways to manufacture a packaging container |
US6224954B1 (en) | 1997-03-26 | 2001-05-01 | Fort James Corporation | Insulating stock material and containers and methods of making the same |
US5993705A (en) | 1997-05-30 | 1999-11-30 | Fort James Corporation | Methods for conveying containers through an oven to produce heat-insulative foamed layers therethrough |
US5911904A (en) | 1997-12-16 | 1999-06-15 | International Paper Company | Foamable insulating barrier coating |
US6139665A (en) * | 1998-03-06 | 2000-10-31 | Fort James Corporation | Method for fabricating heat insulating paper cups |
JPH11334716A (en) * | 1998-05-22 | 1999-12-07 | Toppan Printing Co Ltd | Paper-made heat insulating container |
US6138902A (en) † | 1998-08-14 | 2000-10-31 | Weekend 2000, Inc. | Insulated foldable receptacle for containers |
US6085970A (en) * | 1998-11-30 | 2000-07-11 | Insulair, Inc. | Insulated cup and method of manufacture |
JP2000271011A (en) * | 1999-03-24 | 2000-10-03 | Nippon Paper Industries Co Ltd | Thermally insulating and heat insulating container |
IT1311470B1 (en) * | 1999-05-19 | 2002-03-13 | Ipm Ind Plastica Monregalese | THERMOFORMABLE EXPANDED PLASTIC MATERIAL AND PROCEDURE FOR ITS PRODUCTION. |
JP2000335548A (en) * | 1999-06-01 | 2000-12-05 | Toppan Printing Co Ltd | Heat insulated paper cup, and its manufacture |
US6070755A (en) | 1999-07-20 | 2000-06-06 | Waddington North America, Inc. | Lid with folding side tabs for hot beverage cup |
JP2001139017A (en) * | 1999-08-31 | 2001-05-22 | Sanyo Pax Co Ltd | Heat insulation paper container |
KR100674777B1 (en) † | 1999-09-16 | 2007-01-25 | 테트라 라발 홀딩스 앤드 피낭스 소시에떼아노님 | Laminated packaging material and method for producing the same |
JP2001122353A (en) * | 1999-10-27 | 2001-05-08 | Dainippon Printing Co Ltd | Heat insulating paper container |
-
2001
- 2001-08-08 US US09/923,332 patent/US6811843B2/en not_active Expired - Lifetime
-
2002
- 2002-05-10 MY MYPI20021694A patent/MY129080A/en unknown
- 2002-06-07 DK DK02741844T patent/DK1404590T3/en active
- 2002-06-07 WO PCT/US2002/017747 patent/WO2002102682A1/en active IP Right Grant
- 2002-06-07 DE DE60209350T patent/DE60209350T2/en not_active Expired - Fee Related
- 2002-06-07 AT AT02741844T patent/ATE318241T1/en not_active IP Right Cessation
- 2002-06-07 CA CA2431869A patent/CA2431869C/en not_active Expired - Fee Related
- 2002-06-07 AU AU2002314917A patent/AU2002314917B2/en not_active Ceased
- 2002-06-07 CN CNB028036433A patent/CN1219685C/en not_active Expired - Fee Related
- 2002-06-07 MX MXPA03006045A patent/MXPA03006045A/en active IP Right Grant
- 2002-06-07 NZ NZ527511A patent/NZ527511A/en not_active IP Right Cessation
- 2002-06-07 IL IL15610802A patent/IL156108A0/en active IP Right Grant
- 2002-06-07 EP EP02741844A patent/EP1404590B2/en not_active Expired - Lifetime
- 2002-06-07 BR BRPI0206196-1A patent/BR0206196B1/en not_active IP Right Cessation
- 2002-06-07 KR KR10-2003-7016453A patent/KR20040017234A/en not_active Application Discontinuation
- 2002-06-07 JP JP2003505236A patent/JP2004532775A/en active Pending
- 2002-06-07 ES ES02741844T patent/ES2258639T3/en not_active Expired - Lifetime
- 2002-06-11 KR KR10-2003-7016454A patent/KR20040017235A/en not_active Application Discontinuation
- 2002-06-11 AU AU2002310386A patent/AU2002310386B2/en not_active Ceased
- 2002-06-11 DK DK02737458T patent/DK1404580T3/en active
- 2002-06-11 JP JP2003505225A patent/JP2004530602A/en active Pending
- 2002-06-11 MX MXPA03006046A patent/MXPA03006046A/en active IP Right Grant
- 2002-06-11 EP EP02737458A patent/EP1404580B1/en not_active Expired - Lifetime
- 2002-06-11 CA CA2431542A patent/CA2431542C/en not_active Expired - Fee Related
- 2002-06-11 BR BRPI0206195-3A patent/BR0206195B1/en not_active IP Right Cessation
- 2002-06-11 IL IL15610902A patent/IL156109A0/en active IP Right Grant
- 2002-06-11 ES ES02737458T patent/ES2253538T3/en not_active Expired - Lifetime
- 2002-06-11 CN CNB02803645XA patent/CN1253353C/en not_active Expired - Fee Related
- 2002-06-11 WO PCT/US2002/018416 patent/WO2002102671A1/en active IP Right Grant
- 2002-06-11 DE DE60207862T patent/DE60207862T2/en not_active Expired - Fee Related
- 2002-06-11 NZ NZ527520A patent/NZ527520A/en not_active IP Right Cessation
- 2002-06-11 AT AT02737458T patent/ATE311978T1/en not_active IP Right Cessation
-
2003
- 2003-05-26 IL IL156108A patent/IL156108A/en not_active IP Right Cessation
- 2003-05-26 IL IL156109A patent/IL156109A/en not_active IP Right Cessation
-
2004
- 2004-07-08 US US10/885,676 patent/US20050003122A1/en not_active Abandoned
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8146796B2 (en) | 2001-01-30 | 2012-04-03 | Seda S.P.A. | Cardboard container for drinks and process therefor |
US8360263B2 (en) | 2005-04-15 | 2013-01-29 | Seda S.P.A. | Insulated container, method of fabricating same and apparatus for fabricating |
US8794294B2 (en) | 2005-04-15 | 2014-08-05 | Seda S.P.A. | Insulated container, method of fabricating same and apparatus for fabricating |
US8932428B2 (en) | 2005-04-15 | 2015-01-13 | Seda S.P.A. | Insulated container, method of fabricating same and apparatus for fabricating |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1404590B1 (en) | Insulated beverage or food container | |
AU2002314917A1 (en) | Insulated beverage or food container | |
ZA200304065B (en) | Insulated beverage or food container. | |
US7811644B2 (en) | Insulated beverage or food container | |
AU2002310386A1 (en) | Insulated beverage or food container | |
US7074466B2 (en) | Beverage and food containers, inwardly directed foam | |
US5766709A (en) | Insulated stock material and containers and methods of making the same | |
US20020172818A1 (en) | Beverage and food containers and substrates | |
JP2013534198A (en) | Containers and jackets containing thermoplastic polymer materials, and related manufacturing methods | |
US20020172784A1 (en) | Beverage and food containers, outwardly directed foam | |
JP2008247399A (en) | Heat-insulating paper container | |
JPH057260B2 (en) | ||
JPS61219628A (en) | Manufacture of heat retaining cup |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20040106 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK RO SI |
|
A4 | Supplementary search report drawn up and despatched |
Effective date: 20040528 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: 7B 32B 27/32 B Ipc: 7B 32B 27/10 B Ipc: 7B 65D 81/38 A |
|
17Q | First examination report despatched |
Effective date: 20040811 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060222 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REF | Corresponds to: |
Ref document number: 60209350 Country of ref document: DE Date of ref document: 20060427 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: PATENTANWAELTE SCHAAD, BALASS, MENZL & PARTNER AG |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060630 |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060724 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2258639 Country of ref document: ES Kind code of ref document: T3 |
|
ET | Fr: translation filed | ||
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
PLAX | Notice of opposition and request to file observation + time limit sent |
Free format text: ORIGINAL CODE: EPIDOSNOBS2 |
|
26 | Opposition filed |
Opponent name: SUDNIF S.A. Effective date: 20061122 |
|
NLR1 | Nl: opposition has been filed with the epo |
Opponent name: SUDNIF S.A. |
|
PLAF | Information modified related to communication of a notice of opposition and request to file observations + time limit |
Free format text: ORIGINAL CODE: EPIDOSCOBS2 |
|
PLBB | Reply of patent proprietor to notice(s) of opposition received |
Free format text: ORIGINAL CODE: EPIDOSNOBS3 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060523 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060607 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060222 |
|
PLAY | Examination report in opposition despatched + time limit |
Free format text: ORIGINAL CODE: EPIDOSNORE2 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DK Payment date: 20090611 Year of fee payment: 8 Ref country code: ES Payment date: 20090624 Year of fee payment: 8 Ref country code: NL Payment date: 20090616 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FI Payment date: 20090615 Year of fee payment: 8 Ref country code: SE Payment date: 20090612 Year of fee payment: 8 Ref country code: TR Payment date: 20090527 Year of fee payment: 8 |
|
PLBC | Reply to examination report in opposition received |
Free format text: ORIGINAL CODE: EPIDOSNORE3 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20090617 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20090622 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20090715 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20090629 Year of fee payment: 8 |
|
PUAH | Patent maintained in amended form |
Free format text: ORIGINAL CODE: 0009272 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: PATENT MAINTAINED AS AMENDED |
|
27A | Patent maintained in amended form |
Effective date: 20100630 |
|
AK | Designated contracting states |
Kind code of ref document: B2 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: AEN Free format text: AUFRECHTERHALTUNG DES PATENTES IN GEAENDERTER FORM |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: VDEP Effective date: 20100630 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100629 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100630 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100607 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100930 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100630 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110101 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100630 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20110714 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110704 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100608 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100607 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100608 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100630 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 15 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 16 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IE Payment date: 20190621 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20190619 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20190619 Year of fee payment: 18 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20200607 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200607 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200630 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200607 |