Nothing Special   »   [go: up one dir, main page]

EP1469179A1 - Method and device for controlling an internal combustion engine - Google Patents

Method and device for controlling an internal combustion engine Download PDF

Info

Publication number
EP1469179A1
EP1469179A1 EP04100457A EP04100457A EP1469179A1 EP 1469179 A1 EP1469179 A1 EP 1469179A1 EP 04100457 A EP04100457 A EP 04100457A EP 04100457 A EP04100457 A EP 04100457A EP 1469179 A1 EP1469179 A1 EP 1469179A1
Authority
EP
European Patent Office
Prior art keywords
correction value
signal
lambda
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP04100457A
Other languages
German (de)
French (fr)
Other versions
EP1469179B1 (en
Inventor
Andreas Michalske
Thomas Zein
Ralf Knitz
Ruediger Fehrmann
Bjoern Bischoff
Maik Schaufler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1469179A1 publication Critical patent/EP1469179A1/en
Application granted granted Critical
Publication of EP1469179B1 publication Critical patent/EP1469179B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • F02D41/1458Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio with determination means using an estimation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1477Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the regulation circuit or part of it,(e.g. comparator, PI regulator, output)
    • F02D41/1479Using a comparator with variable reference
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1486Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor with correction for particular operating conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1497With detection of the mechanical response of the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/60Input parameters for engine control said parameters being related to the driver demands or status
    • F02D2200/602Pedal position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/18Control of the engine output torque
    • F02D2250/21Control of the engine output torque during a transition between engine operation modes or states
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/18Circuit arrangements for generating control signals by measuring intake air flow
    • F02D41/187Circuit arrangements for generating control signals by measuring intake air flow using a hot wire flow sensor

Definitions

  • the invention relates to a method and a device for controlling the Internal combustion engine according to the preambles of the independent claims.
  • a method and a device for controlling an internal combustion engine in which an expected lambda signal is specified based on operating parameters and by means of a measured lambda signal is detected by a sensor, and with the aid of the comparison of the lambda signals a first correction value for a Fuel mass signal is determined is from the unpublished document DE 102 21 376 known.
  • the method described there is usually called Quantity average adaptation called. Using this approach you can Injection quantity errors of a fuel metering system can be determined. This Injection quantity error gives the deviation between the desired one to be injected Amount of fuel and the amount of fuel actually injected.
  • the first correction value is the quantity error characterized quantity-determining control element of the internal combustion engine.
  • FIG. 1 are the essential elements of a device for controlling a Internal combustion engine shown as a block diagram.
  • a setpoint is 200 designated. This is the output signals N, P2, T2 and ML of a first Signal specification 205 supplied. Furthermore, the output signal QK arrives Quantity specification 110 via a correction device 220 for the target value specification.
  • the Output signal LB of the setpoint specification via a link point 235 to one Control 230.
  • the output signal K of control 230 arrives at the second input the correction device 220. This is also at the node 235 Output signal LM of a lambda sensor 240 on.
  • An accelerator pedal sensor is designated 130, this provides a signal FP that the Characterized driver request.
  • a corresponding signal can also be obtained by other means, such as a vehicle speed control.
  • the Signal FP is subjected to a torque specification 330, which corresponds to the driver's request corresponding torque size M determined.
  • This moment size comes across Filter means 320 as a filtered torque variable MF to an actuating element 150 that the Controls fuel metering in the internal combustion engine.
  • Filter means 320 can include other sizes in the calculation of the torque sizes and the filtered Torque magnitude MF, which is used to form the control signal for the actuating element 150, received.
  • the torque size M and / or the Filtered torque size MF determines the quantity 110 the injected Fuel quantity.
  • the functioning of the elements 130, 330, 320 in connection with the Control element 150 is shown in detail in DE 101 38 493.
  • the output signal K of the control 230 passes through a conversion 300 and a subsequent parameter correction 310 to the filter means.
  • the parameter correction additionally processes a signal of a parameter specification 315.
  • the first signal specification 205 is preferably a sensor for Detection of a speed signal N of the internal combustion engine, a pressure signal P2, the characterizes the pressure in the intake tract of the internal combustion engine, and / or one Temperature signal T2, which characterizes the temperature of the air in the intake tract. at an internal combustion engine with a supercharger is the Charge air temperature T2 and charge pressure P2. In an internal combustion engine without a supercharger it is about the ambient temperature and the ambient air pressure.
  • the signal ML which characterizes the air mass supplied to the internal combustion engine, is preferably also provided by a sensor.
  • This formula gives the relationship between the lambda signal LB, the Air mass signal ML and the injection quantity QK. This is the Air mass signal ML by one measured variable.
  • the special measures are provided that the signal LB such correct that it can also be used in single-station operating points.
  • the output signal LB of the setpoint specification 200 is included compared to the output signal LM of the lambda sensor 240.
  • controller 230 determines a correction value K Correction of the fuel mass signal QK.
  • the setpoint LB for the lambda signal with the Output signal LM of the lambda sensor compared.
  • the deviation of these two Values is a measure of the current injection mass error. That is, is the deviation LD zero, that is, the output signal LB of the setpoint specification and the output signal LM of the lambda sensor are the same, so that corresponds to the setpoint 200 Processed fuel mass of the fuel mass actually injected. They give way two values from each other, the controller 230 specifies a correction value K with which the fuel mass signal QK is corrected until the corrected one Fuel mass signal QKK corresponds to the fuel mass actually injected.
  • the amount of fuel injected is often used to control other functions used. These additional functionalities use the corrected fuel quantity QKK, this is not a problem. Use these other functionalities against it a moment size, it can happen that this functionality is impaired is. This problem can be eliminated if, based on the correction value K a correction value MK for a torque variable is determined for the fuel quantity.
  • the load shock absorber functionality is a filter for one Torque size, the transmission behavior of which depends on the torque size.
  • the Filter means 320 essentially includes the functionality of the load shock absorber. This filter means 320 can, for example, be designed such that the change of the torque is limited in the range of certain values M0 of the torque. This means If the moment M passes through one or more values M0, the change in the Moments over time t limited to maximum permissible values. An example is in Figure 2 shown.
  • the correction value K takes values not equal to 0 , this has the consequence that one around the Value K of corrected fuel quantity is to be injected.
  • Limitation of the change in the range of the value M0 corrected by the value MK for the moment is happening.
  • the corresponding curve is shown in dotted lines in FIG.
  • the value M0 can also include the value X, which defines the areas within the the limitation will be corrected.
  • the corresponding values M0 and / or X are determined by the parameter specification 315 provided and in the parameter correction 310 with a value MK, which is based on the correction value K was determined for the fuel quantity, corrected.
  • This Correction can be additive and / or multiplicative.
  • An external torque intervention of a further controller can be used as a further functionality be considered. This means that, for example, traction control Moment request transmitted to the control of the internal combustion engine. This Torque request can be corrected accordingly.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

The engine control method involves defining an anticipated lambda value starting from operating parameters, detecting a measured lambda signal, deriving a first correction value by comparing the lambda values and then deriving a second correction value from the first. The second correction value is ed to correct parameters of a torque-dependent functionality.. An independent claim is also included for the following: (a) an arrangement for controlling an internal combustion engine.

Description

Stand der TechnikState of the art

Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur Steuerung der Brennkraftmaschine gemäß den Oberbegriffen der unabhängigen Ansprüche.The invention relates to a method and a device for controlling the Internal combustion engine according to the preambles of the independent claims.

Ein Verfahren und eine Vorrichtung zur Steuerung einer Brennkraftmaschine, bei dem ausgehend von Betriebskenngrößen ein erwartetes Lambdasignal vorgegeben und mittels eines Sensors ein gemessenes Lambdasignal erfasst wird, und mit dem ausgehend von dem Vergleich der Lambdasignale ein erster Korrekturwert für ein Kraftstoffmassensignal bestimmt wird, ist aus der nicht vorveröffentlichten Schrift DE 102 21 376 bekannt. Das dort beschriebene Verfahren wird üblicherweise als Mengenmittelwertadaption bezeichnet. Mittels dieser Vorgehensweise können Einspritzmengenfehler eines Kraftstoffzumesssystems ermittelt werden. Dieser Einspritzmengenfehler gibt die Abweichung zwischen der gewünschten einzuspritzenden Kraftstoffmenge und der tatsächlich eingespritzten Kraftstoffmenge an.A method and a device for controlling an internal combustion engine, in which an expected lambda signal is specified based on operating parameters and by means of a measured lambda signal is detected by a sensor, and with the aid of the comparison of the lambda signals a first correction value for a Fuel mass signal is determined is from the unpublished document DE 102 21 376 known. The method described there is usually called Quantity average adaptation called. Using this approach you can Injection quantity errors of a fuel metering system can be determined. This Injection quantity error gives the deviation between the desired one to be injected Amount of fuel and the amount of fuel actually injected.

Solche Einspritzmengenfehler und die hieraus resultierenden Momentenfehler wirken sich negativ auf einige Funktionalitäten aus. Bei einem so genannten Lastschlagdämpfer kann der Einspritzmengenfehler zu einer erheblichen Beeinträchtigung der Funktion führen.Such injection quantity errors and the resulting torque errors are effective negatively affect some functionalities. With a so-called load shock absorber the injection quantity error can significantly impair the function to lead.

Erfindungsgemäß ist vorgesehen, dass ausgehend von dem ersten Korrekturwert für das Kraftstoffmassensignal ein zweiter Korrekturwert für eine Momentengröße bestimmt wird. According to the invention, starting from the first correction value for the Fuel mass signal determines a second correction value for a torque variable becomes.

Besonders vorteilhaft ist es, wenn der erste Korrekturwert den Mengenfehler eines mengenbestimmenden Stellelements der Brennkraftmaschine charakterisiert.It is particularly advantageous if the first correction value is the quantity error characterized quantity-determining control element of the internal combustion engine.

Besonders vorteilhaft ist es, wenn mittels des zweiten Korrekturwerts Parameter einer momentenabhängigen Funktionalität, wie insbesondere eines Lastschlagdämpfers, korrigiert werden.It is particularly advantageous if, by means of the second correction value, parameters one torque-dependent functionality, such as a load shock absorber, Getting corrected.

Zeichnungdrawing

Die Erfindung wird nachstehend anhand der in der Zeichnung dargestellten Ausführungsformen erläutert.

Figur 1
zeigt ein Blockdiagramm der erfindungsgemäßen Vorrichtung und die
Figur2
den Verlauf einer Momentengröße über der Zeit.
The invention is explained below with reference to the embodiments shown in the drawing.
Figure 1
shows a block diagram of the device according to the invention and the
Figur2
the course of a moment size over time.

Beschreibung der AusführungsbeispieleDescription of the embodiments

In Figur 1 sind die wesentlichen Elemente einer Vorrichtung zur Steuerung einer Brennkraftmaschine als Blockdiagramm dargestellt. Eine Sollwertvorgabe ist mit 200 bezeichnet. Diesem werden die Ausgangssignale N, P2, T2 und ML einer ersten Signalvorgabe 205 zugeleitet. Des weiteren gelangt das Ausgangssignal QK einer Mengenvorgabe 110 über eine Korrektureinrichtung 220 zu der Sollwertvorgabe. Das Ausgangssignal LB der Sollwertvorgabe über einen Verknüpfungspunkt 235 zu einer Regelung 230. Das Ausgangssignal K der Regelung 230 gelangt zu dem zweiten Eingang der Korrektureinrichtung 220. Am Verknüpfungspunkt 235 liegt ferner das Ausgangssignal LM eines Lambdasensors 240 an.In Figure 1 are the essential elements of a device for controlling a Internal combustion engine shown as a block diagram. A setpoint is 200 designated. This is the output signals N, P2, T2 and ML of a first Signal specification 205 supplied. Furthermore, the output signal QK arrives Quantity specification 110 via a correction device 220 for the target value specification. The Output signal LB of the setpoint specification via a link point 235 to one Control 230. The output signal K of control 230 arrives at the second input the correction device 220. This is also at the node 235 Output signal LM of a lambda sensor 240 on.

Ein Fahrpedalsensor ist mit 130 bezeichnet, dieser stellt ein Signal FP bereit, das den Fahrerwunsch charakterisiert. Ein entsprechendes Signal kann auch durch andere Mittel, wie beispielsweise eine Fahrgeschwindigkeitsregelung bereitgestellt werden. Mit dem Signal FP wird eine Momentenvorgabe 330 beaufschlagt, die eine dem Fahrerwunsch entsprechende Momentengröße M bestimmt. Diese Momementengröße gelangt über ein Filtermittel 320 als gefilterte Momentengröße MF zu einem Stellelement 150, das die Kraftstoffzumessung in die Brennkraftmaschine steuert. Neben den dargestellt Größen können noch weitere Größen in die Berechnung der Momentengrößen und der gefilterten Momentengröße MF, die zur Bildung des Ansteuersignals für das Stellelement 150 dient, eingehen. Ausgehend von dem Fahrerwunsch, der Momentengröße M und/oder der gefilterten Momentengröße MF ermittelt die Mengenvorgabe 110 die einzuspritzende Kraftstoffmenge. Die Funktionsweise der Elemente 130, 330, 320 in Verbindung mit dem Stellelement 150 ist in der DE 101 38 493 detailliert dargestellt.An accelerator pedal sensor is designated 130, this provides a signal FP that the Characterized driver request. A corresponding signal can also be obtained by other means, such as a vehicle speed control. With the Signal FP is subjected to a torque specification 330, which corresponds to the driver's request corresponding torque size M determined. This moment size comes across Filter means 320 as a filtered torque variable MF to an actuating element 150 that the Controls fuel metering in the internal combustion engine. In addition to the sizes shown can include other sizes in the calculation of the torque sizes and the filtered Torque magnitude MF, which is used to form the control signal for the actuating element 150, received. Based on the driver's request, the torque size M and / or the Filtered torque size MF determines the quantity 110 the injected Fuel quantity. The functioning of the elements 130, 330, 320 in connection with the Control element 150 is shown in detail in DE 101 38 493.

Ferner gelangt das Ausgangssignal K der Regelung 230 über eine Umrechnung 300 und eine anschließende Parameterkorrektur 310 zu dem Filtermittel. Die Parameterkorrektur verarbeitet zusätzliche ein Signal einer Parametervorgabe 315.Furthermore, the output signal K of the control 230 passes through a conversion 300 and a subsequent parameter correction 310 to the filter means. The parameter correction additionally processes a signal of a parameter specification 315.

Bei der ersten Signalvorgabe 205 handelt es sich vorzugsweise um Sensoren zur Erfassung eines Drehzahlsignals N der Brennkraftmaschine, eines Drucksignals P2, das den Druck im Ansaugtrakt der Brennkraftmaschine charakterisiert, und/oder eines Temperatursignals T2, das die Temperatur der Luft im Ansaugtrakt charakterisiert. Bei einer Brennkraftmaschine mit einem Lader handelt es sich hierbei um die Ladelufttemperatur T2 und den Ladedruck P2. Bei einer Brennkraftmaschine ohne Lader handelt es sich hierbei um die Umgebungstemperatur und den Umgebungsluftdruck. Das Signal ML, das die der Brennkraftmaschine zugeführte Luftmasse charakterisiert, wird vorzugsweise ebenfalls von einem Sensor bereitgestellt.The first signal specification 205 is preferably a sensor for Detection of a speed signal N of the internal combustion engine, a pressure signal P2, the characterizes the pressure in the intake tract of the internal combustion engine, and / or one Temperature signal T2, which characterizes the temperature of the air in the intake tract. at an internal combustion engine with a supercharger is the Charge air temperature T2 and charge pressure P2. In an internal combustion engine without a supercharger it is about the ambient temperature and the ambient air pressure. The signal ML, which characterizes the air mass supplied to the internal combustion engine, is preferably also provided by a sensor.

Die Sollwertvorgabe 200 verwendet zur Berechnung des erwartete Werts LB für das Lambdasignal unter anderem die folgende Formel: LB = ML / ( 14.5 * QK) The setpoint specification 200 uses the following formula, among others, to calculate the expected value LB for the lambda signal: LB = ML / (14.5 * QC)

Diese Formel gibt den Zusammenhang zwischen dem Lambdasignal LB, dem Luftmassensignal ML und der Einspritzmenge QK an. Dabei handelt es sich bei dem Luftmassensignal ML um eine Messgröße. Bei Ausgestaltungen der Erfmdung kann auch vorgesehen sein, das besondere Maßnahmen vorgesehen sind, die das Signal LB derart korrigieren, dass es auch in einstationären Betriebspunkten verwendbar ist.This formula gives the relationship between the lambda signal LB, the Air mass signal ML and the injection quantity QK. This is the Air mass signal ML by one measured variable. In embodiments of the invention can also be provided, the special measures are provided that the signal LB such correct that it can also be used in single-station operating points.

Im Verknüpfungspunkt 235 wird das Ausgangssignal LB der Sollwertvorgabe 200 mit dem Ausgangssignal LM des Lambdasensors 240 verglichen. Ausgehend von der Differenz LD der beiden Signale bestimmt der Regler 230 einen Korrekturwert K zur Korrektur des Kraftstoffmassensignals QK. Im Verknüpfungspunkt 235 wird der Sollwert LB für das Lambdasignal mit dem Ausgangssignal LM des Lambdasensors verglichen. Die Abweichung dieser beiden Werte ist ein Maß für den aktuellen Einspritzmassenfehler. Das heißt, ist die Abweichung LD Null, das heißt, das Ausgangssignal LB der Sollwertvorgabe und das Ausgangssignal LM des Lambdasensors sind gleich, so entspricht die von der Sollwertvorgabe 200 verarbeitete Kraftstoffmasse der tatsächlich eingespritzten Kraftstoffmasse. Weichen die beiden Werte voneinander ab, so gibt der Regler 230 einen Korrekturwert K vor, mit dem das Kraftstoffmassensignal QK so lange korrigiert wird, bis das korrigierte Kraftstoffmassensignal QKK der tatsächlich eingespritzten Kraftstoffmasse entspricht.At node 235, the output signal LB of the setpoint specification 200 is included compared to the output signal LM of the lambda sensor 240. Starting from the Difference LD of the two signals, controller 230 determines a correction value K Correction of the fuel mass signal QK. At node 235, the setpoint LB for the lambda signal with the Output signal LM of the lambda sensor compared. The deviation of these two Values is a measure of the current injection mass error. That is, is the deviation LD zero, that is, the output signal LB of the setpoint specification and the output signal LM of the lambda sensor are the same, so that corresponds to the setpoint 200 Processed fuel mass of the fuel mass actually injected. They give way two values from each other, the controller 230 specifies a correction value K with which the fuel mass signal QK is corrected until the corrected one Fuel mass signal QKK corresponds to the fuel mass actually injected.

Es wird nicht die berechnete Kraftstoffmasse mit der tatsächlichen Kraftstoffmasse verglichen sondern es wird der geschätzte Wert für das Lambdasignal mit dem gemessenen Lambdasignal verglichen und ausgehend von diesem Vergleich wird dann ein Korrekturwert K zur Korrektur des Kraftstoffmassenwertes QK bestimmt.It will not calculate the calculated fuel mass with the actual fuel mass compared, instead the estimated value for the lambda signal is compared with the measured lambda signal is compared and based on this comparison is then a correction value K for correcting the fuel mass value QK is determined.

Häufig wird die eingespritzte Kraftstoffmenge zur Steuerung von weiteren Funktionen verwendet. Verwenden diese weiteren Funktionalitäten die korrigierte Kraftstoffmenge QKK, so ist dies unproblematisch. Verwenden diese weiteren Funktionalitäten dagegen eine Momentengröße, so kann der Fall eintreten, dass diese Funktionalität beeinträchtigt ist. Diese Problematik kann beseitigt werden, wenn ausgehend von dem Korrekturwert K für die Kraftstoffmenge ein Korrekturwert MK für eine Momentengröße bestimmt wird.The amount of fuel injected is often used to control other functions used. These additional functionalities use the corrected fuel quantity QKK, this is not a problem. Use these other functionalities against it a moment size, it can happen that this functionality is impaired is. This problem can be eliminated if, based on the correction value K a correction value MK for a torque variable is determined for the fuel quantity.

Im folgenden wird dies am Beispiel der Funktionalität Lastschlagdämpfer beschrieben. Bei der Funktionalität Lastschlagdämpfer handelt es sich um einen Filter für eine Momentengröße, dessen Übertragungsverhalten von der Momentengröße abhängt. Das Filtermittel 320 beinhaltet im wesentlichen die Funktionalität des Lastschlagdämpfers. Dieses Filtermittel 320 kann beispielsweise derart ausgebildet sein, dass die Änderung des Moments im Bereich von bestimmten Werten M0 des Moments begrenzt. Das heißt durchläuft das Moment M einen oder mehrer Werte M0, so wird die Änderung des Moments über der Zeit t auf maximal zulässige Werte begrenzt. Ein Beispiel ist in Figur 2 dargestellt. This is described below using the example of the load shock absorber functionality. The load shock absorber functionality is a filter for one Torque size, the transmission behavior of which depends on the torque size. The Filter means 320 essentially includes the functionality of the load shock absorber. This filter means 320 can, for example, be designed such that the change of the torque is limited in the range of certain values M0 of the torque. This means If the moment M passes through one or more values M0, the change in the Moments over time t limited to maximum permissible values. An example is in Figure 2 shown.

In Fig.2 ist der Verlauf des Moments M über der Zeit t aufgetragen. Mit einer durchgezogenen Linie sind die Verhältnisse ohne Mengenfehler dargestellt. Nimmt das Moment Werte im Bereich des Moments M0 an, so nimmt die Steigung dieser Kurve sehr kleine Werte an. Erreicht das Moment den Wert M0+X so erfolgt die Begrenzung der Änderung. Erreicht das Moment den Wert M0-X so endet die Begrenzung der Änderung.The course of the moment M is plotted against the time t in FIG. With a the solid line shows the conditions without quantity errors. Take that Moment values in the range of the moment M0, the slope of this curve increases very much small values. If the moment reaches the value M0 + X, the Modification. If the moment reaches the value M0-X, the limitation of the change ends.

Tritt nun ein Mengenfehler auf, das heißt der Korrekturwert K nimmt Werte ungleich 0 an, so hat dies zur Folge, dass zur Erzeugung des gewünschten Moments eine um den Wert K korrigierte Kraftstoffmenge einzuspritzen ist. Um die Funktionalität des Lastschlagdämpfers aufrechtzuerhalten ist erfindungsgemäß vorgesehen, dass Begrenzung der Änderung im Bereich des um den Wert MK korrigierten Wertes M0 für das Moment erfolgt. Die entsprechende Kurve ist in Fig.2 punktiert eingezeichnet. Neben dem Wert M0 kann zusätzlich auch der Wert X, der die Bereiche festlegt innerhalb der die Begrenzung erfolgt korrigiert werden.If a quantity error now occurs, i.e. the correction value K takes values not equal to 0 , this has the consequence that one around the Value K of corrected fuel quantity is to be injected. To the functionality of the To maintain the load shock absorber, it is provided according to the invention that Limitation of the change in the range of the value M0 corrected by the value MK for the moment is happening. The corresponding curve is shown in dotted lines in FIG. Next The value M0 can also include the value X, which defines the areas within the the limitation will be corrected.

Die entsprechenden Werte M0 und/oder X werden von der Parametervorgabe 315 bereitgestellt und in der Parameterkorrektur 310 mit einem Wert MK, der ausgehend von dem Korrekturwert K für die Kraftstoffmenge bestimmt wurde, korrigiert. Diese Korrektur kann additiv und/oder multiplikativ erfolgen.The corresponding values M0 and / or X are determined by the parameter specification 315 provided and in the parameter correction 310 with a value MK, which is based on the correction value K was determined for the fuel quantity, corrected. This Correction can be additive and / or multiplicative.

Die Vorgehensweise wurde am Beispiel des Lastschlagdämpfers beschrieben, sie kann aber in entsprechender Weise auf andere Funktionalitäten übertragen werden, bei der die Funktionalität durch Parameter beeinflusst ist, die als Momentengrößen vorliegen. Parameter einer Funktionalität, die als Momentengröße vorliegen, werden mittels eines oder mehreren Korrekturwerten MK für eine Momentengröße additiv und/oder multiplikativ korrigiert, wobei der eine oder die mehreren Korrekturwerte MK ausgehend von einem Korrekturwert K für die Kraftstoffmenge bestimmt werden.The procedure was described using the example of the shock absorber, it can but can be transferred in a corresponding manner to other functionalities in which the Functionality is influenced by parameters that are available as moment sizes. Parameters of a functionality that are available as a torque variable are determined using a or a plurality of correction values MK for a torque size additively and / or corrected multiplicatively, the one or more correction values MK starting out be determined by a correction value K for the fuel quantity.

Als weitere Funktionalität kann ein externer Momenteneingriff einer weiteren Steuerung angesehen werden. Das heißt, dass beispielsweise eine Antriebsschlupfregelung ein Momentwunsch an die Steuerung der Brennkraftmaschine übermittelt. Dieser Momentenwunsch kann entsprechend korrigiert werden.An external torque intervention of a further controller can be used as a further functionality be considered. This means that, for example, traction control Moment request transmitted to the control of the internal combustion engine. This Torque request can be corrected accordingly.

Claims (6)

Verfahren zur Steuerung einer Brennkraftmaschine, bei dem ausgehend von Betriebskenngrößen ein erwartetes Lambdasignal vorgegeben und mittels eines Sensors ein gemessenes Lambdasignal erfasst wird, und dass ausgehend von dem Vergleich der Lambdasignale ein erster Korrekturwert für ein Kraftstoffmassensignal bestimmt wird, dass ausgehend von dem ersten Korrekturwert ein zweiter Korrekturwert für eine Momentengröße bestimmt wird.Method for controlling an internal combustion engine, in which starting from Operating parameters predefined an expected lambda signal and by means of a Sensor measures a measured lambda signal, and that based on that Comparison of the lambda signals a first correction value for a fuel mass signal it is determined that, based on the first correction value, a second one Correction value for a torque size is determined. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass mittels des zweiten Korrekturwerts Parameter einer momentenabhängigen Funktionalität korrigiert werden.Method according to Claim 1, characterized in that parameters of a torque-dependent functionality are corrected by means of the second correction value. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der erste Korrekturwert den Mengenfehler eines mengenbestimmendes Stellelements der Brennkraftmaschine charakterisiert.Method according to claim 1 or 2, characterized in that the first correction value characterizes the quantity error of a quantity-determining control element of the internal combustion engine. Verfahren nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass es sich bei der Funktionalität um einen Filter einer Momentengröße handelt, dessen Übertragungsverhalten von der Momentengröße abhängt.Method according to one of the preceding claims, characterized in that the functionality is a filter of a torque size, the transmission behavior of which depends on the torque size. Vorrichtung zur Steuerung einer Brennkraftmaschine, bei dem ausgehend von Betriebskenngrößen ein erwartetes Lambdasignal vorgegeben und mittels eines Sensors ein gemessenes Lambdasignal erfasst wird, und bei dem ausgehend von dem Vergleich der Lambdasignale ein erster Korrekturwert für ein Kraftstoffmassensignal bestimmt wird, mit Mitteln, die ausgehend von dem ersten Korrekturwert einen zweiten Korrekturwert für eine Momentengröße bestimmen.Device for controlling an internal combustion engine, in which starting from Operating parameters predefined an expected lambda signal and by means of a Sensor a measured lambda signal is detected, and in which starting from the Comparison of the lambda signals a first correction value for a fuel mass signal is determined with means which, starting from the first correction value determine the second correction value for a torque variable. Vorrichtung zur Steuerung einer Brennkraftmaschine, bei der ausgehend von Betriebskenngrößen ein erwartetes Lambdasignal vorgegeben und mittels eines Sensors ein gemessenes Lambdasignal erfasst wird, und dass Mittel vorgesehen sind, die ausgehend von dem Vergleich der Lambdasignale einen ersten Korrekturwert für ein Kraftstoffmassensignal bestimmen, dass ausgehend von dem ersten Korrekturwert einen zweiten Korrekturwert für eine Momentengröße bestimmen.Device for controlling an internal combustion engine, in which starting from Operating parameters predefined an expected lambda signal and by means of a Sensor a measured lambda signal is detected, and that means are provided which, based on the comparison of the lambda signals, has a first correction value for determine a fuel mass signal based on the first Correction value determine a second correction value for a torque variable.
EP20040100457 2003-04-16 2004-02-06 Method and device for controlling an internal combustion engine Expired - Lifetime EP1469179B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2003117464 DE10317464A1 (en) 2003-04-16 2003-04-16 Method and device for controlling an internal combustion engine
DE10317464 2003-04-16

Publications (2)

Publication Number Publication Date
EP1469179A1 true EP1469179A1 (en) 2004-10-20
EP1469179B1 EP1469179B1 (en) 2007-03-07

Family

ID=32892366

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20040100457 Expired - Lifetime EP1469179B1 (en) 2003-04-16 2004-02-06 Method and device for controlling an internal combustion engine

Country Status (3)

Country Link
EP (1) EP1469179B1 (en)
JP (1) JP2004316646A (en)
DE (2) DE10317464A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0687809A2 (en) * 1994-06-17 1995-12-20 Hitachi, Ltd. An output torque control apparatus and method for an internal combustion engine
EP1132600A2 (en) * 2000-03-10 2001-09-12 Siemens Aktiengesellschaft Adapting method for the control of injection
DE10208426A1 (en) * 2001-02-28 2002-09-19 Denso Corp Device for controlling a diesel engine comprises a unit for controlling a valve, a unit for maintaining the theoretical oxygen concentration of the exhaust gas
DE10138493A1 (en) 2001-08-04 2003-02-13 Bosch Gmbh Robert Method and device for controlling a drive unit of a vehicle
EP1129279B1 (en) * 1998-11-03 2003-03-05 Robert Bosch Gmbh Method for determining the controller output for controlling fuel injection engines
DE10221376A1 (en) 2002-05-14 2003-11-27 Bosch Gmbh Robert Controlling internal combustion engine involves matching time profiles of estimated and measured lambda signals, correcting air mass signal and/or fuel mass signal by comparing matched lambda signals

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0687809A2 (en) * 1994-06-17 1995-12-20 Hitachi, Ltd. An output torque control apparatus and method for an internal combustion engine
EP1129279B1 (en) * 1998-11-03 2003-03-05 Robert Bosch Gmbh Method for determining the controller output for controlling fuel injection engines
EP1132600A2 (en) * 2000-03-10 2001-09-12 Siemens Aktiengesellschaft Adapting method for the control of injection
DE10208426A1 (en) * 2001-02-28 2002-09-19 Denso Corp Device for controlling a diesel engine comprises a unit for controlling a valve, a unit for maintaining the theoretical oxygen concentration of the exhaust gas
DE10138493A1 (en) 2001-08-04 2003-02-13 Bosch Gmbh Robert Method and device for controlling a drive unit of a vehicle
DE10221376A1 (en) 2002-05-14 2003-11-27 Bosch Gmbh Robert Controlling internal combustion engine involves matching time profiles of estimated and measured lambda signals, correcting air mass signal and/or fuel mass signal by comparing matched lambda signals

Also Published As

Publication number Publication date
DE10317464A1 (en) 2004-11-11
EP1469179B1 (en) 2007-03-07
DE502004003097D1 (en) 2007-04-19
JP2004316646A (en) 2004-11-11

Similar Documents

Publication Publication Date Title
DE112009003611B4 (en) An in-cylinder pressure sensor abnormality detecting device, an in-cylinder pressure sensor abnormality detecting method, and an internal combustion engine control device
DE102012211687B4 (en) Method and control unit for detecting a voltage offset of a voltage lambda characteristic curve
DE10120654B4 (en) Method and device for controlling the air charge in spark-ignited direct-injection engines
EP2464849B1 (en) Method and device for dynamically diagnosing an exhaust gas probe
DE4120388C2 (en) Temperature detection method
DE4207541B4 (en) System for controlling an internal combustion engine
WO2007140997A1 (en) Electronic control device for controlling the internal combustion engine in a motor vehicle
DE102016220850B3 (en) Method for operating a drive device and corresponding drive device
EP0152604A1 (en) Control and regulation method for the operating parameters of an internal-combustion engine
DE102008042549A1 (en) Method and device for diagnosing an exhaust gas probe
DE3408223A1 (en) CONTROL AND REGULATING METHOD FOR THE OPERATING CHARACTERISTICS OF AN INTERNAL COMBUSTION ENGINE
WO1997021029A1 (en) Method and device for the control of an internal-combustion engine
DE102005012950B4 (en) Method and device for controlling an internal combustion engine
WO1999008071A1 (en) Method and device for correcting margins of error of an indicating wheel
DE3925877C2 (en) Method and device for controlling the fuel metering in a diesel internal combustion engine
DE102005038492A1 (en) Combustion engine catalyzer input lambda value offset determination comprises recording times at which second sensor crosses expected value to calculate input and output oxygen masses
EP1342901B1 (en) Method for detecting a leak in the inlet duct of an internal combustion engine
EP1309782B1 (en) Method and device for monitoring a sensor
DE19610170B4 (en) Lambda control method
EP1309783A1 (en) Method for controlling an internal combustion engine
DE4344633B4 (en) Load detection with diagnosis in an internal combustion engine
WO2003006810A1 (en) Method for compensating injection quantity in each individual cylinder in internal combustion engines
DE19931823A1 (en) Method and device for controlling an internal combustion engine
DE19748284C2 (en) Motor control device
WO2005059342A1 (en) Device for controlling an internal combustion engine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

17P Request for examination filed

Effective date: 20050420

AKX Designation fees paid

Designated state(s): DE FR GB IT SE

17Q First examination report despatched

Effective date: 20050809

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 502004003097

Country of ref document: DE

Date of ref document: 20070419

Kind code of ref document: P

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20070606

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20071210

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20160222

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20160222

Year of fee payment: 13

Ref country code: FR

Payment date: 20160222

Year of fee payment: 13

Ref country code: SE

Payment date: 20160222

Year of fee payment: 13

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170207

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20171031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170206

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170206

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20200421

Year of fee payment: 17

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502004003097

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210901