EP1448880A1 - Gas turbine system for working fluid in the form of a carbon dioxide/water mixture - Google Patents
Gas turbine system for working fluid in the form of a carbon dioxide/water mixtureInfo
- Publication number
- EP1448880A1 EP1448880A1 EP02760509A EP02760509A EP1448880A1 EP 1448880 A1 EP1448880 A1 EP 1448880A1 EP 02760509 A EP02760509 A EP 02760509A EP 02760509 A EP02760509 A EP 02760509A EP 1448880 A1 EP1448880 A1 EP 1448880A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- turbine
- compressor
- gas turbine
- working medium
- carbon dioxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical class O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 title claims abstract description 60
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 36
- 229910002092 carbon dioxide Inorganic materials 0.000 title claims abstract description 30
- 239000001569 carbon dioxide Substances 0.000 title claims abstract description 30
- VUZPPFZMUPKLLV-UHFFFAOYSA-N methane;hydrate Chemical compound C.O VUZPPFZMUPKLLV-UHFFFAOYSA-N 0.000 title claims abstract description 22
- 239000000203 mixture Substances 0.000 title claims abstract description 22
- 239000012530 fluid Substances 0.000 title abstract 2
- 239000007789 gas Substances 0.000 claims abstract description 32
- 238000002485 combustion reaction Methods 0.000 claims abstract description 12
- 230000004048 modification Effects 0.000 claims abstract description 12
- 238000012986 modification Methods 0.000 claims abstract description 12
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 6
- 239000000446 fuel Substances 0.000 claims abstract description 6
- 239000001301 oxygen Substances 0.000 claims abstract description 6
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 6
- 239000004215 Carbon black (E152) Substances 0.000 claims abstract description 5
- 229930195733 hydrocarbon Natural products 0.000 claims abstract description 5
- 150000002430 hydrocarbons Chemical class 0.000 claims abstract description 5
- 239000011261 inert gas Substances 0.000 claims description 6
- 238000001816 cooling Methods 0.000 claims description 4
- 230000006978 adaptation Effects 0.000 claims description 2
- 230000000903 blocking effect Effects 0.000 claims description 2
- 230000017525 heat dissipation Effects 0.000 claims description 2
- 239000003570 air Substances 0.000 description 20
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 10
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- 239000003345 natural gas Substances 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 239000002918 waste heat Substances 0.000 description 3
- 229910052786 argon Inorganic materials 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 239000012080 ambient air Substances 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- RLQJEEJISHYWON-UHFFFAOYSA-N flonicamid Chemical compound FC(F)(F)C1=CC=NC=C1C(=O)NCC#N RLQJEEJISHYWON-UHFFFAOYSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000010079 rubber tapping Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C6/00—Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
- F02C6/18—Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use using the waste heat of gas-turbine plants outside the plants themselves, e.g. gas-turbine power heat plants
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D17/00—Regulating or controlling by varying flow
- F01D17/10—Final actuators
- F01D17/12—Final actuators arranged in stator parts
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C1/00—Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid
- F02C1/04—Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid the working fluid being heated indirectly
- F02C1/10—Closed cycles
- F02C1/105—Closed cycles construction; details
Definitions
- the present invention relates to the field of gas turbine technology. It relates to a gas turbine plant for a working medium in the form of a carbon dioxide / water mixture according to the preamble of claim 1.
- Gas turbine systems are known from the prior art, which work in a circuit with a working medium in the form of a carbon dioxide / water mixture and are characterized in that they combust the combustion of hydrocarbon-containing fuels without releasing carbon dioxide to the Allow atmosphere.
- a gas turbine plant is described, for example, in US-A-5,247,791.
- a comparable gas turbine system 16 is shown with a largely closed C0 2 gas turbine cycle in a block diagram.
- the gas turbine system 16 comprises a compressor 1 and a turbine 3, which are connected to a generator 15 via a common shaft.
- the gas turbine system 16 further comprises a combustion chamber 2, a cooler and / or waste heat processor 4, a water separator 5 and a removal point 6 for CO 2 removal.
- a fuel 7 in the form of a hydrocarbon for example a natural gas with the main component methane, is subjected to an internal combustion in an atmosphere prepared from oxygen 8, carbon dioxide and possibly water.
- the water as shown in FIG. 1, can be condensed out in the water separator 5.
- the excess carbon dioxide can be separated off largely purely.
- the carbon dioxide can then be deposited in a suitable manner so that practically no carbon dioxide is released into the atmosphere.
- none or only part of the water can be condensed out in the water separator 5, so that a carbon dioxide / water mixture is removed at the extraction point 6.
- the oxygen 8 required for the combustion of the fuel 7 is generated in an air separation plant 9 from intake air 10.
- Residual gases 11 in the form of nitrogen (N 2 ) and argon (Ar), which are produced as waste products, can either be released into the atmosphere or used for other purposes.
- the steam 17 generated in the cooler / waste heat processor 4 can either be used in an independent process, for example in a downstream steam turbine are, or injected into the combustion chamber 2 as injection steam 12 in order to increase the mass flow in the turbine 3 and thus increase the efficiency and efficiency of the process.
- a partial stream 13 of the steam can be used for effective cooling of thermally loaded components in the turbine 3.
- compressors 1 and turbine 3 are specially designed and designed for the requirements of the respective working medium, there is no doubt about the technical feasibility of such a process. However, for economic reasons it will be necessary to operate corresponding gas turbine systems 16 at least temporarily with compressors 1 and turbines 3, which have been modified as little as possible on the basis of existing machines designed for operation with ambient air.
- the essence of the invention is a compressor and / or the turbine (3) to be used with a rotor and a housing which largely correspond to a rotor and a housing of a compressor designed for the working medium air or a turbine designed for the working medium air.
- the adaptation to the expansion behavior of the working medium, which is different from air, is then brought about essentially by modifications of the flow channels and / or the moving blades and / or the guide grids. This makes it possible to build on existing compressors or turbines, which are then adapted to the new working medium with comparatively minor changes.
- the necessary modification is brought about in that the free flow cross sections on the high pressure side of the compressor and / or turbine are reduced in the form of blocked sectors by blocking part of the flow channels in the guide vane.
- the necessary modification is effected in that the free flow cross sections on the high pressure side of the compressor and / or turbine are reduced by inserting annular flow obstacles in the guide vents.
- the necessary modification is effected in that the free flow cross sections on the high pressure side of the compressor and / or turbine are reduced by adjustable guide grids.
- FIG. 1 shows a system diagram of an exemplary gas turbine system working with a carbon dioxide / water mixture as the working medium
- Fig. 2 shows the speed of sound in carbon dioxide / water mixtures
- Fig. 3 shows the deviation of the volume flow in% during the expansion of
- Fig. 5 shows the inner structure of a schematic representation
- FIG. 6 seen in several partial figures in the axial direction, an exemplary guide grille without modification (FIG. 6a), with a partial partial application according to an embodiment of the invention (FIG. 6b), with a partial partial application according to another embodiment of the invention (FIG. 6c ) and with adjustable guide vanes according to a further embodiment of the invention
- the compressor 1 and the turbine 3 of the gas turbine system from FIG. 1 have the internal structure shown in simplified form in FIG. 5, the high-pressure side (for the compressor 1 the outlet side, for the turbine 3 the inlet side) being on the left side of the illustration.
- the compressor 1 or the turbine 3 has a rotor 18 which can be rotated about an axis 23 and has a multi-stage blading which consists of individual sets of rotor blades 21.
- the rotor 18 with the blading is surrounded by a housing 19.
- Fixed guide vanes 20 with corresponding guide vanes are arranged between the sets of rotor blades 21.
- Flow channels 22 run between the guide vanes of the guide grids 20 in the space between the rotor 18 and the housing 19 (see also FIG. 6a).
- rotor 18 and housing 19 of a compressor 1 designed for the working medium air and / or a turbine 3 designed for the working medium air are now retained.
- carbon dioxide / water different from air essential modifications of the flow channels 22 and / or the blades 21 and / or the guide vane 20 made.
- a first possibility for modification consists in reducing the free flow cross sections on the high pressure side of compressor 1 and / or turbine 3 in that part of the flow channels 22 in the associated guide vane 20 are closed by blocked sectors 24 arranged around the circumference ( 6b; sectoral partial loading).
- a second possibility of the modification is that the free flow cross sections on the high pressure side of the compressor 1 and / or turbine 3 are reduced by inserting annular flow obstacles 25 in the guide vents 20 (FIG. 6 c; partial radial loading).
- a third possibility of the modification is that the free flow cross sections on the high pressure side of compressor 1 and / or turbine 3 are reduced by adjustable guide grids 20 with adjustable guide vanes 26 (FIG. 6d; in the figure, for the sake of simplicity, only one exemplary adjustable guide vane is shown 26, whose adjustability is indicated by the dashed lines).
- FIG. 4 shows percentage deviations between axial speeds that occur in a turbine optimized for air and axial speeds in turbines modified according to the invention operated with different carbon dioxide / water mixtures.
- the extensive adjustment of the axial speeds is gradual reduction of the available flow cross-sections in the individual stages of the turbine.
- Table 1 summarizes the cross-sectional ratios chosen for the different compositions.
- guide vanes 26 of the guide vane 20 are provided in the compressor 1 and / or turbine 3 in order to compensate for variations in the thermodynamic properties of the working medium caused by the inert gases.
- the heat sink 4 is designed to generate steam and if a partial stream 13 of the steam generated is fed to the turbine 3 for cooling thermally loaded components.
- This heat sink 4 can also be designed to generate a quantity of steam for operating a steam turbine, not shown in the drawing. The required partial stream 13 can then be branched off from this amount of steam.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
Abstract
The invention concerns a gas turbine system (16) consisting of a compressor (1), a combustion chamber (2), a turbine (3) and at least a cold source (4), said turbine system being driven by a carbon dioxide/water mixture. In the combustion chamber (2), a hydrocarbon reacts as fuel (7) with oxygen (8), and the excess carbon dioxide thus produced and water (14) are tapped in the circuit. The compressor (1) and the turbine (3) respectively comprise a rotor with vanes, and a housing with flow channels and guide grids. The invention is characterized in that the compressor (1) and/or the turbine (3) are adapted to the working fluid expansion properties, different from those of air, by modification of the flow channels, the vanes and/or guide grids.
Description
BESCHREIBUNG DESCRIPTION
GASTURBINENANLAGE FÜR EIN ARBEITSMEDIUM IN FORM EINES KOHLENDIOXID/WASSER-GEMISCHESGAS TURBINE SYSTEM FOR A WORKING MEDIUM IN THE FORM OF A CARBON DIOXIDE / WATER MIXTURE
TECHNISCHES GEBIETTECHNICAL AREA
Die vorliegende Erfindung bezieht sich auf das Gebiet der Technik von Gasturbinen. Sie betrifft eine Gasturbinenanlage für ein Arbeitsmedium in Form eines Kohlendioxid/Wasser-Gemisches gemäss dem Oberbegriff des Anspruchs 1.The present invention relates to the field of gas turbine technology. It relates to a gas turbine plant for a working medium in the form of a carbon dioxide / water mixture according to the preamble of claim 1.
STAND DER TECHNIKSTATE OF THE ART
Aus dem Stand der Technik sind Gasturbinenanlagen bekannt, die in einem Kreislauf mit einem Arbeitsmedium in Form eines Kohlendioxid/Wasser-Gemisches arbeiten und sich dadurch auszeichnen, dass sie die Verbrennung von kohlenwasserstoffhaltigen Brennstoffen ohne Abgabe von Kohlendioxid an die
Atmosphäre ermöglichen. Eine solche Gasturbinenanlage ist beispielsweise in der Druckschrift US-A-5,247,791 beschrieben.Gas turbine systems are known from the prior art, which work in a circuit with a working medium in the form of a carbon dioxide / water mixture and are characterized in that they combust the combustion of hydrocarbon-containing fuels without releasing carbon dioxide to the Allow atmosphere. Such a gas turbine plant is described, for example, in US-A-5,247,791.
In Fig. 1 ist eine vergleichbare Gasturbinenanlage 16 mit einem zum grossen Teil geschlossenen C02-Gasturbinenkreislauf in einem Blockschema dargestellt. Die Gasturbinenanlage 16 umfasst einen Verdichter 1 und eine Turbine 3, die über eine gemeinsame Welle mit einem Generator 15 verbunden sind. Die Gasturbinenanlage 16 umfasst weiterhin eine Brennkammer 2, einen Kühler und/oder Ab- wärmeverwerter 4, einen Wasserabscheider 5 und eine Entnahmestelle 6 zur C02-Entnahme. In der Brennkammer 2 wird ein Brennstoff 7 in Form eines Kohlenwasserstoffes, z.B. ein Erdgas mit der Hauptkomponente Methan, in einer aus Sauerstoff 8, Kohlendioxid und ggf. Wasser aufbereiteten Atmosphäre einer inneren Verbrennung unterzogen. Die durch die Verbrennung entstehenden Komponenten Kohlendioxid und Wasser, sowie ggf. mit dem Sauerstoff oder dem Erdgas eingeführte Inertgase werden laufend entfernt, so dass ein Kreislauf mit weitgehend konstanter Zusammensetzung des Arbeitsmediums aufrechterhalten bleibt. Dabei kann das Wasser, wie in Fig. 1 dargestellt, in dem Wasserabscheider 5 auskondensiert werden. An einer anderen Stelle des Kreislaufs, bevorzugt hinter dem Verdichter 1 an der Entnahmestelle 6, kann das überschüssige Kohlendioxid weitgehend rein abgetrennt werden. Das Kohlendioxid kann dann in geeigneter Weise deponiert werden, so dass praktisch kein Kohlendioxid in die Atmosphäre abgegeben wird. Alternativ kann kein oder nur ein Teil des Wassers im Wasserabscheider 5 auskondensiert werden, so dass an der Entnahmestelle 6 ein Kohlendioxid/Wasser-Gemisch abgeführt wird.In Fig. 1, a comparable gas turbine system 16 is shown with a largely closed C0 2 gas turbine cycle in a block diagram. The gas turbine system 16 comprises a compressor 1 and a turbine 3, which are connected to a generator 15 via a common shaft. The gas turbine system 16 further comprises a combustion chamber 2, a cooler and / or waste heat processor 4, a water separator 5 and a removal point 6 for CO 2 removal. In the combustion chamber 2, a fuel 7 in the form of a hydrocarbon, for example a natural gas with the main component methane, is subjected to an internal combustion in an atmosphere prepared from oxygen 8, carbon dioxide and possibly water. The components carbon dioxide and water resulting from the combustion, as well as any inert gases introduced with the oxygen or natural gas, are continuously removed, so that a cycle with a largely constant composition of the working medium is maintained. The water, as shown in FIG. 1, can be condensed out in the water separator 5. At another point in the circuit, preferably behind the compressor 1 at the extraction point 6, the excess carbon dioxide can be separated off largely purely. The carbon dioxide can then be deposited in a suitable manner so that practically no carbon dioxide is released into the atmosphere. Alternatively, none or only part of the water can be condensed out in the water separator 5, so that a carbon dioxide / water mixture is removed at the extraction point 6.
Der für die Verbrennung des Brennstoffs 7 benötigte Sauerstoff 8 wird in einer Luftzerlegungsanlage 9 aus angesaugter Luft 10 erzeugt. Restgase 11 in Form von Stickstoff (N2) und Argon (Ar), die dabei als Abfallprodukt anfallen, können entweder in die Atmosphäre entlassen oder anderweitig genutzt werden.The oxygen 8 required for the combustion of the fuel 7 is generated in an air separation plant 9 from intake air 10. Residual gases 11 in the form of nitrogen (N 2 ) and argon (Ar), which are produced as waste products, can either be released into the atmosphere or used for other purposes.
Der im Kühler/Abwärmeverwerter 4 erzeugte Dampf 17 kann entweder in einem unabhängigen Prozess, z.B. in einer nachgeschalteten Dampfturbine, genutzt
werden, oder als Einspritzdampf 12 in die Brennkammer 2 eingespritzt werden, um den Massenstrom in der Turbine 3 und damit Leistungsausbeute und Wirkungsgrad des Prozesses zu erhöhen. Zusätzlich kann ein Teilstrom 13 des Dampfes zur effektiven Kühlung thermisch belasteter Bauteile in der Turbine 3 genutzt werden.The steam 17 generated in the cooler / waste heat processor 4 can either be used in an independent process, for example in a downstream steam turbine are, or injected into the combustion chamber 2 as injection steam 12 in order to increase the mass flow in the turbine 3 and thus increase the efficiency and efficiency of the process. In addition, a partial stream 13 of the steam can be used for effective cooling of thermally loaded components in the turbine 3.
Werden Verdichter 1 und Turbine 3 speziell für die Erfordernisse des jeweiligen Arbeitsmediums konstruiert und ausgelegt, so besteht kein Zweifel an der technischen Machbarkeit eines solchen Prozesses. Allerdings wird es aus wirtschaftli- chen Gründen notwendig sein, entsprechende Gasturbinenanlagen 16 zumindest vorübergehend mit Verdichtern 1 und Turbinen 3 zu betreiben, die ausgehend von existierenden, für den Betrieb mit Umgebungsluft ausgelegten Maschinen möglichst wenig modifiziert wurden.If the compressor 1 and turbine 3 are specially designed and designed for the requirements of the respective working medium, there is no doubt about the technical feasibility of such a process. However, for economic reasons it will be necessary to operate corresponding gas turbine systems 16 at least temporarily with compressors 1 and turbines 3, which have been modified as little as possible on the basis of existing machines designed for operation with ambient air.
In diesem Zusammenhang wird in der Literatur die im Vergleich zu Luft sehr viel geringere Schallgeschwindigkeit in Kohlendioxid als wichtigste Herausforderung diskutiert. Fig. 2, in welcher die Schallgeschwindigkeit in Kohlendioxid/Wasser- Gemischen in Abhängigkeit vom Anteil des Wassers bei einem Druck von 3 MPa und zwei unterschiedlichen Temperaturen (700 K und 1400 K) aufgetragen ist, zeigt aber, dass sich durch Verwendung von Kohlendioxid/Wasser-Gemischen über weite Konzentrationsbereiche (z.B. 0.6 < xH2o 0.8) Schallgeschwindigkeiten einstellen lassen, die der Schallgeschwindigkeit in Luft hinreichend ähnlich sind (geht man davon aus, dass Verdichter grosser Gasturbinen typischer Weise mit Machzahlen von etwa 0.7 betrieben werden, so sollten bis zu etwa 20% niedrigere Schallgeschwindigkeiten tolerabel sein).In this context, the much lower speed of sound in carbon dioxide compared to air is discussed as the most important challenge in the literature. 2, in which the speed of sound is plotted in carbon dioxide / water mixtures as a function of the proportion of water at a pressure of 3 MPa and two different temperatures (700 K and 1400 K), but shows that by using carbon dioxide / Allow water mixtures over wide concentration ranges (e.g. 0.6 <x H2 o 0.8) to set sound velocities that are sufficiently similar to the speed of sound in air (assuming that compressors of large gas turbines are typically operated with Mach numbers of around 0.7, then up to be tolerable to about 20% lower sound speeds).
Ein erhebliches Problem ergibt sich dagegen aus dem unterschiedlichen Expansi- ons- und Kompressionsverhalten von Luft auf der einen und Kohlendioxid/Wasser- Gemischen auf der anderen Seite. Fig. 3, in welcher die Abweichung des Volu- menstroms in % bei der Expansion von Kohlendioxid/Wasser-Gemischen gegenüber Luft für drei unterschiedliche Wasseranteile x dargestellt ist, verdeutlicht diesen Zusammenhang am Beispiel einer von T = 1500 K und p = 3 MPa ausgehen-
den Expansion mit einem konstant angenommenen polytropen Wirkungsgrad von ηp0ι = 0.9. Aufgrund des von Luft verschiedenen Isentropenexponenten der Kohlendioxid/Wasser-Gemische ergeben sich auf der Niederdruckseite um ca. 30 bis 35% grössere Volumenströme und damit, bei unveränderten Strömungsquerschnitten, entsprechend grössere Axialgeschwindigkeiten. Dieser Effekt Iässt sich nur in geringem Masse durch Variation der Zusammensetzung beeinflussen. Im Verdichter 1 ergeben sich umgekehrt auf der Hochdruckseite deutlich kleinere Volumenströme und damit kleinere Axialgeschwindigkeiten als beim Betrieb mit Luft.On the other hand, a considerable problem arises from the different expansion and compression behavior of air on the one hand and carbon dioxide / water mixtures on the other. FIG. 3, in which the deviation of the volume flow in% during the expansion of carbon dioxide / water mixtures compared to air is shown for three different water components x, illustrates this relationship using the example of T = 1500 K and p = 3 MPa - expansion with a constant polytropic efficiency of η p0 ι = 0.9. Due to the isentropic exponent of the carbon dioxide / water mixtures, which differs from air, the volume flows on the low pressure side are approx. 30 to 35% higher and, with unchanged flow cross sections, correspondingly higher axial velocities. This effect can only be influenced to a small extent by varying the composition. Conversely, in compressor 1 there are significantly smaller volume flows on the high-pressure side and thus lower axial speeds than when operating with air.
Erschwerend wirkt sich aus, dass sich im Kreislauf nicht kondensierbare Inertgase ansammeln, deren Konzentration im Gleichgewicht etwa gleich dem Anteil der entsprechenden Gase im verwendeten Erdgas ist. Damit ergeben sich in Abhängigkeit vom verwendeten Erdgas signifikant unterschiedliche thermodynamische Eigenschaften des Arbeitsmediums.This is made more difficult by the fact that non-condensable inert gases accumulate in the circuit, the concentration of which in equilibrium is approximately equal to the proportion of the corresponding gases in the natural gas used. This results in significantly different thermodynamic properties of the working medium depending on the natural gas used.
Der Aufwand für die Modifikation existierender Turbinen und damit ihre Erfolgschancen hängen wesentlich davon ab, ob es gelingt, diese Unterschiede im Expansionsverhalten zu kompensieren, ohne Läufer (Rotor) und Gehäuse der Turbi- nen drastisch modifizieren und die Beschaufelung komplett neu auslegen zu müssen.The effort for the modification of existing turbines and thus their chances of success depend largely on whether it is possible to compensate for these differences in expansion behavior without drastically modifying the rotor (rotor) and housing of the turbines and having to completely redesign the blades.
DARSTELLUNG DER ERFINDUNGPRESENTATION OF THE INVENTION
Es ist daher Aufgabe der Erfindung, eine mit einem Kohlendioxid/Wasser-Gemisch als Arbeitsmedium arbeitende Gasturbinenanlage zu schaffen, welche auf einfache und kostengünstige Weise von einem Verdichter und/oder einer Turbine Gebrauch macht, die für einen Betrieb mit dem Arbeitsmedium Luft ausgelegt sind.It is therefore an object of the invention to provide a gas turbine system which uses a carbon dioxide / water mixture as the working medium and which makes use of a compressor and / or a turbine which are designed for operation with the working medium air in a simple and inexpensive manner.
Die Aufgabe wird durch die Gesamtheit der Merkmale des Anspruchs 1 gelöst. Der Kern der Erfindung besteht darin, einen Verdichter und/oder die Turbine (3)
mit einem Rotor und einem Gehäuse einzusetzen, welche weitgehend einem Rotor und einem Gehäuse eines für das Arbeitsmedium Luft ausgelegten Verdichters bzw. einer für das Arbeitsmedium Luft ausgelegten Turbine entsprechen. Die Anpassung an das von Luft verschiedene Expansionsverhalten des Arbeitsmediums wird dann im wesentlichen durch Modifikationen der Strömungskanäle und/oder der Laufschaufeln und/oder der Leitgitter bewirkt. Hierdurch ist es möglich, auf bereits vorhandenen Verdichtern bzw. Turbinen aufzubauen, die dann im Inneren mit vergleichsweise geringfügigen Änderungen an das neue Arbeitsmedium an- gepasst werden.The object is achieved by the entirety of the features of claim 1. The essence of the invention is a compressor and / or the turbine (3) to be used with a rotor and a housing which largely correspond to a rotor and a housing of a compressor designed for the working medium air or a turbine designed for the working medium air. The adaptation to the expansion behavior of the working medium, which is different from air, is then brought about essentially by modifications of the flow channels and / or the moving blades and / or the guide grids. This makes it possible to build on existing compressors or turbines, which are then adapted to the new working medium with comparatively minor changes.
Gemäss einer ersten bevorzugten Ausgestaltung der Erfindung wird die notwendige Modifizierung dadurch bewirkt, dass die freien Strömungsquerschnitte auf der Hochdruckseite von Verdichter und/oder Turbine durch Blockieren eines Teils der Strömungskanäle im Leitgitter in Form von blockierten Sektoren reduziert sind.According to a first preferred embodiment of the invention, the necessary modification is brought about in that the free flow cross sections on the high pressure side of the compressor and / or turbine are reduced in the form of blocked sectors by blocking part of the flow channels in the guide vane.
Gemäss einer zweiten bevorzugten Ausgestaltung der Erfindung wird die notwendige Modifizierung dadurch bewirkt, dass die freien Strömungsquerschnitte auf der Hochdruckseite von Verdichter und/oder Turbine durch Einfügen ringförmiger Strömungshindernisse in den Leitgittern reduziert sind.According to a second preferred embodiment of the invention, the necessary modification is effected in that the free flow cross sections on the high pressure side of the compressor and / or turbine are reduced by inserting annular flow obstacles in the guide vents.
Gemäss einer dritten bevorzugten Ausgestaltung der Erfindung wird die notwendige Modifizierung dadurch bewirkt, dass die freien Strömungsquerschnitte auf der Hochdruckseite von Verdichter und/oder Turbine durch verstellbare Leitgitter reduziert werden.According to a third preferred embodiment of the invention, the necessary modification is effected in that the free flow cross sections on the high pressure side of the compressor and / or turbine are reduced by adjustable guide grids.
Es ist aber auch denkbar, dass die freien Strömungsquerschnitte in Verdichter und/oder Turbine unverändert bleiben und statt dessen die Beschaufelung des Verdichters bzw. der Turbine an die veränderten Axialgeschwindigkeiten ange- passt ist.
Weiterhin ist es vorteilhaft, wenn in Verdichter und/oder Turbine verstellbare Leitgitter vorgesehen sind, um durch Inertgase bedingte Variationen der thermodyna- mischen Eigenschaften des Arbeitsmediums zu kompensieren.However, it is also conceivable that the free flow cross sections in the compressor and / or turbine remain unchanged and instead the blading of the compressor or the turbine is adapted to the changed axial speeds. Furthermore, it is advantageous if adjustable guide grids are provided in the compressor and / or turbine in order to compensate for variations in the thermodynamic properties of the working medium caused by inert gases.
Weitere Ausführungsformen ergeben sich aus den abhängigen Ansprüchen.Further embodiments result from the dependent claims.
KURZE ERLÄUTERUNG DER FIGURENBRIEF EXPLANATION OF THE FIGURES
Die Erfindung soll nachfolgend anhand von Ausführungsbeispielen im Zusammenhang mit der Zeichnung näher erläutert werden. Es zeigenThe invention will be explained in more detail below on the basis of exemplary embodiments in connection with the drawing. Show it
Fig. 1 ein Anlagenschema einer beispielhaften, mit einem Kohlendioxid/Wasser-Gemisch als Arbeitsmedium arbeitenden Gasturbi- nenanlage;1 shows a system diagram of an exemplary gas turbine system working with a carbon dioxide / water mixture as the working medium;
Fig. 2 die Schallgeschwindigkeit in Kohlendioxid/Wasser-Gemischen inFig. 2 shows the speed of sound in carbon dioxide / water mixtures
Abhängigkeit vom Anteil des Wassers bei einem Druck von 3 MPa und zwei unterschiedlichen Temperaturen;Depending on the proportion of water at a pressure of 3 MPa and two different temperatures;
Fig. 3 die Abweichung des Volumenstroms in % bei der Expansion vonFig. 3 shows the deviation of the volume flow in% during the expansion of
Kohlendioxid/Wasser-Gemischen gegenüber Luft für drei unterschiedliche Wasseranteile;Carbon dioxide / water mixtures versus air for three different water proportions;
Fig. 4 prozentuale Abweichungen zwischen Axialgeschwindigkeiten, die sich in einer für Luft optimierten Turbine einstellen, und Axialgeschwindigkeiten in einer mit verschiedenen Kohlendioxid/Wasser- Gemischen betriebenen, erfindungsgemäss modifizierten 5-stufi- gen Turbine;
Fig. 5 in einer schematisierten Darstellung den inneren Aufbau eines4 percentage deviations between axial speeds which occur in a turbine optimized for air and axial speeds in a 5-stage turbine which is modified according to the invention and which is operated with different carbon dioxide / water mixtures; Fig. 5 shows the inner structure of a schematic representation
Verdichters oder einer Turbine mit der zugehörigen Beschaufelung und einer Mehrzahl von Leitgittern; undCompressor or a turbine with the associated blading and a plurality of guide vanes; and
Fig. 6 in mehreren Teilfiguren in axialer Richtung gesehen ein beispielhaftes Leitgitter ohne Modifizierung (Fig. 6a), mit einer sektoriellen Teilbeaufschlagung gemäss einer Ausgestaltung der Erfindung (Fig. 6b), mit einer radialen Teilbeaufschlagung gemäss einer anderen Ausgestaltung der Erfindung (Fig. 6c) und mit verstellbaren Leitschaufeln gemäss einer weiteren Ausgestaltung der Erfindung6 seen in several partial figures in the axial direction, an exemplary guide grille without modification (FIG. 6a), with a partial partial application according to an embodiment of the invention (FIG. 6b), with a partial partial application according to another embodiment of the invention (FIG. 6c ) and with adjustable guide vanes according to a further embodiment of the invention
(Fig. 6d).(Fig. 6d).
WEGE ZUR AUSFÜHRUNG DER ERFINDUNGWAYS OF CARRYING OUT THE INVENTION
Der Verdichter 1 und die Turbine 3 der Gasturbinenanlage aus Fig. 1 haben den in Fig. 5 vereinfacht dargestellten inneren Aufbau, wobei sich die Hochdruckseite (beim Verdichter 1 die Auslassseite, bei der Turbine 3 die Einlassseite) auf der linken Seite der Darstellung befindet. Der Verdichter 1 bzw. die Turbine 3 haben einen um eine Achse 23 drehbaren Rotor 18 mit einer mehrstufigen Beschaufelung, die aus einzelnen Sätzen von Laufschaufeln 21 besteht. Der Rotor 18 mit der Beschaufelung ist von einem Gehäuse 19 umgeben. Zwischen den Sätzen von Laufschaufeln 21 sind jeweils ortsfeste Leitgitter 20 mit entsprechenden Leitschaufeln angeordnet. Zwischen den Leitschaufeln der Leitgitter 20 verlaufen in dem Zwischenraum von Rotor 18 und Gehäuse 19 Strömungskanäle 22 (siehe auch Fig. 6a).The compressor 1 and the turbine 3 of the gas turbine system from FIG. 1 have the internal structure shown in simplified form in FIG. 5, the high-pressure side (for the compressor 1 the outlet side, for the turbine 3 the inlet side) being on the left side of the illustration. The compressor 1 or the turbine 3 has a rotor 18 which can be rotated about an axis 23 and has a multi-stage blading which consists of individual sets of rotor blades 21. The rotor 18 with the blading is surrounded by a housing 19. Fixed guide vanes 20 with corresponding guide vanes are arranged between the sets of rotor blades 21. Flow channels 22 run between the guide vanes of the guide grids 20 in the space between the rotor 18 and the housing 19 (see also FIG. 6a).
Gemäss der Erfindung werden nun Rotor 18 und Gehäuse 19 eines für das Arbeitsmedium Luft ausgelegten Verdichters 1 und/oder einer für das Arbeitsmedium Luft ausgelegten Turbine 3 beibehalten. Zur Anpassung an das von Luft verschiedene Expansionsverhalten des Arbeitsmediums Kohlendioxid/Wasser werden im
wesentlichen Modifikationen der Strömungskanäle 22 und/oder der Laufschaufeln 21 und/oder der Leitgitter 20 vorgenommen.According to the invention, rotor 18 and housing 19 of a compressor 1 designed for the working medium air and / or a turbine 3 designed for the working medium air are now retained. In order to adapt to the expansion behavior of the working medium carbon dioxide / water different from air essential modifications of the flow channels 22 and / or the blades 21 and / or the guide vane 20 made.
Eine erste Möglichkeit zur Modifikation besteht darin, die freien Strömungsquer- schnitte auf der Hochdruckseite von Verdichter 1 und/oder Turbine 3 dadurch zu reduzieren, dass ein Teil der Strömungskanäle 22 im zugehörigen Leitgitter 20 durch über den Umfang verteilt angeordnete blockierten Sektoren 24 verschlossen sind (Fig. 6b; sektorielle Teilbeaufschlagung).A first possibility for modification consists in reducing the free flow cross sections on the high pressure side of compressor 1 and / or turbine 3 in that part of the flow channels 22 in the associated guide vane 20 are closed by blocked sectors 24 arranged around the circumference ( 6b; sectoral partial loading).
Eine zweite Möglichkeit der Modifikation besteht darin, dass die freien Strömungsquerschnitte auf der Hochdruckseite von Verdichter 1 und/oder Turbine 3 durch Einfügen von ringförmigen Strömungshindernissen 25 in den Leitgittern 20 reduziert sind (Fig. 6c; radiale Teilbeaufschlagung).A second possibility of the modification is that the free flow cross sections on the high pressure side of the compressor 1 and / or turbine 3 are reduced by inserting annular flow obstacles 25 in the guide vents 20 (FIG. 6 c; partial radial loading).
Eine dritte Möglichkeit der Modifikation besteht darin, dass die freien Strömungsquerschnitte auf der Hochdruckseite von Verdichter 1 und/oder Turbine 3 durch verstellbare Leitgitter 20 mit verstellbaren Leitschaufeln 26 reduziert werden (Fig. 6d; in der Figur ist der Einfachheit halber nur eine beispielhafte verstellbare Leitschaufel 26 eingezeichnet, deren Verstellbarkeit durch die gestrichelten Linien angedeutet ist).A third possibility of the modification is that the free flow cross sections on the high pressure side of compressor 1 and / or turbine 3 are reduced by adjustable guide grids 20 with adjustable guide vanes 26 (FIG. 6d; in the figure, for the sake of simplicity, only one exemplary adjustable guide vane is shown 26, whose adjustability is indicated by the dashed lines).
Es ist aber auch denkbar, dass die freien Strömungsquerschnitte in Verdichter 1 und/oder Turbine 3 unverändert bleiben, und statt dessen die Beschaufelung (Laufschaufeln 21) des Verdichters 1 bzw. der Turbine 3 durch eine geänderte Ausgestaltung der Schaufelgeometrie an die veränderten Axialgeschwindigkeiten angepasst ist.However, it is also conceivable that the free flow cross sections in the compressor 1 and / or turbine 3 remain unchanged, and instead the blading (blades 21) of the compressor 1 or the turbine 3 is adapted to the changed axial velocities by changing the design of the blade geometry ,
Am Beispiel einer fünfstufigen Turbine zeigt Fig. 4 prozentuale Abweichungen zwischen Axialgeschwindigkeiten, die sich in einer für Luft optimierten Turbine einstellen, und Axialgeschwindigkeiten in mit verschiedenen Kohlendioxid/Wasser- Gemischen betriebenen, erfindungsgemäss modifizierten Turbinen. Die weitgehende Angleichung der Axialgeschwindigkeiten wird in diesem Falle durch abge-
stufte Reduzierung der zur Verfügung stehenden Strömungsquerschnitte in den einzelnen Stufen der Turbine erreicht. Die nachfolgende Tabelle 1 fasst die für die verschiedenen Zusammensetzungen gewählten Querschnittsverhältnisse zusammen.Using the example of a five-stage turbine, FIG. 4 shows percentage deviations between axial speeds that occur in a turbine optimized for air and axial speeds in turbines modified according to the invention operated with different carbon dioxide / water mixtures. In this case, the extensive adjustment of the axial speeds is gradual reduction of the available flow cross-sections in the individual stages of the turbine. Table 1 below summarizes the cross-sectional ratios chosen for the different compositions.
Tabelle 1. Bezogenes Verhältnis der freien Strömungsquerschnitte in den Stufen von für den Betrieb mit Kohlendioxid/Wasser-Gemischen modifizierten TurbinenTable 1. Relative ratio of the free flow cross sections in the stages of turbines modified for operation with carbon dioxide / water mixtures
Beim Auftreten von Inertgasen im Arbeitsmedium ist es weiterhin von Vorteil, wenn in Verdichter 1 und/oder Turbine 3 verstellbare Leitschaufeln 26 des Leitgitters 20 vorgesehen sind, um durch die Inertgase bedingte Variationen der thermodynamischen Eigenschaften des Arbeitsmediums zu kompensieren.If inert gases occur in the working medium, it is also advantageous if guide vanes 26 of the guide vane 20 are provided in the compressor 1 and / or turbine 3 in order to compensate for variations in the thermodynamic properties of the working medium caused by the inert gases.
Auch kann es bei der Gasturbinenanlage 16 der Erfindung von Vorteil sein, wenn die Wärmesenke 4 zur Erzeugung von Dampf ausgelegt ist , und wenn ein Teilstrom 13 des erzeugten Dampfes zur Kühlung thermisch belasteter Bauteile der Turbine 3 zugeführt wird. Diese Wärmesenke 4 kann auch zur Erzeugung einer Dampfmenge zum Betrieb einer in der Zeichnung nicht näher dargestellten Dampfturbine ausgelegt werden. Der benötigte Teilstrom 13 kann dann aus dieser Dampfmenge abgezweigt werden.It can also be advantageous in the gas turbine system 16 of the invention if the heat sink 4 is designed to generate steam and if a partial stream 13 of the steam generated is fed to the turbine 3 for cooling thermally loaded components. This heat sink 4 can also be designed to generate a quantity of steam for operating a steam turbine, not shown in the drawing. The required partial stream 13 can then be branched off from this amount of steam.
Schliesslich ist es aber auch möglich, dass in der Gasturbinenanlage 16 aus Fig. 1 Mittel zur Verflüssigung des Arbeitsmediums durch Wärmeabfuhr vorgesehen sind, und dass an Stelle des Verdichters 1 eine Pumpe eingesetzt wird.
BEZUGSZEICHENLISTEFinally, it is also possible that means for liquefying the working medium by heat dissipation are provided in the gas turbine system 16 from FIG. 1, and that a pump is used instead of the compressor 1. LIST OF REFERENCE NUMBERS
1 Verdichter1 compressor
2 Brennkammer2 combustion chamber
3 Turbine Kühler/Abwärmeverwerter Wasserabscheider Entnahmestelle (Kohlendioxid, Wasser) Brennstoff (Kohlenwasserstoff) Sauerstoff Luftzerlegungsanlage 0 Luft 1 Restgase (Stickstoff, Argon) 2 Einspritzdampf 3 Teilstrom (Dampf) 4 Wasser 5 Generator 6 Gasturbinenanlage 7 Dampf 8 Rotor 9 Gehäuse 0 Leitgitter 1 Laufschaufel 2 Strömungskanal 3 Achse 4 blockierter Sektor 5 Strömungshindernis (ringförmig) 6 verstellbare Leitschaufel
3 Turbine cooler / waste heat recycled water separator Tapping point (carbon dioxide, water) Fuel (hydrocarbon) Oxygen Air separation plant 0 Air 1 Residual gases (nitrogen, argon) 2 Injection steam 3 Partial flow (steam) 4 Water 5 Generator 6 Gas turbine plant 7 Steam 8 Rotor 9 Housing 0 Guide grille 1 Blade 2 flow channel 3 axis 4 blocked sector 5 flow obstacle (ring-shaped) 6 adjustable guide vane
Claims
1. Gasturbinenanlage (16), umfassend einen Verdichter (1), eine Brenn- kammer (2), eine Turbine (3) und mindestens einer Wärmesenke (4), welche Gasturbinenanlage (16) mit einem Arbeitsmedium in Form eines Kohlendioxid/Wasser- Gemisches betrieben wird, wobei in der Brennkammer (2) ein Kohlenwasserstoff als Brennstoff (7) mit Sauerstoff (8) reagiert ,und wobei das dadurch entstehende überschüssige Kohlendioxid und Wasser (14) dem Kreislauf an geeigneter stelle (5, 6) entnommen wird, bei welcher Gasturbinenanlage (16) der Verdichter (1) und die Turbine (3) jeweils einen Rotor (18) und ein Gehäuse (19) aufweisen, zwischen denen Strömungskanäle (22) für das Arbeitsmedium verlaufen, auf dem Rotor (18) Laufschaufein (21) und in den Strömungskanälen (22) Leitgitter (20) angeordnet sind, dadurch gekennzeichnet, dass der Verdichter (1) und/oder die Turbine (3) einen Rotor (18) und ein Gehäuse (19) aufweisen, welche weitgehend einem Rotor und einem Gehäuse eines für das Arbeitsmedium Luft ausgelegten Verdichters bzw. einer für das Arbeitsmedium Luft ausgelegten Turbine entsprechen, und dass bei dem Verdichter (1) und/oder der Turbine (3) die Anpassung an das von Luft verschiedene Expansionsverhalten des Arbeitsmediums im wesentli- chen durch Modifikationen der Strömungskanäle (22) und/oder der Laufschaufeln (21) und/oder der Leitgitter (20) bewirkt wird.1. Gas turbine plant (16), comprising a compressor (1), a combustion chamber (2), a turbine (3) and at least one heat sink (4), which gas turbine plant (16) with a working medium in the form of a carbon dioxide / water Mixture is operated, in which a hydrocarbon as fuel (7) reacts with oxygen (8) in the combustion chamber (2), and the excess carbon dioxide and water (14) formed thereby are taken from the circuit at a suitable point (5, 6), in which gas turbine system (16) the compressor (1) and the turbine (3) each have a rotor (18) and a housing (19), between which flow channels (22) for the working medium run, rotor blades (18) on the rotor (18) 21) and in the flow channels (22) guide vane (20), characterized in that the compressor (1) and / or the turbine (3) have a rotor (18) and a housing (19), which is largely a rotor and a housing one for the working medium Air designed compressor or a turbine designed for the working medium air, and that in the compressor (1) and / or the turbine (3) the adaptation to the expansion behavior of the working medium different from air essentially by modifications of the flow channels (22 ) and / or the moving blades (21) and / or the guide vane (20) is effected.
2. Gasturbinenanlage nach Anspruch 1, dadurch gekennzeichnet, dass die freien Strömungsquerschnitte auf der Hochdruckseite von Verdichter (1) und/oder Turbine (3) durch Blockieren eines Teils der Strömungskanäle (22) im Leitgitter (20) in Form von blockierten Sektoren (24) reduziert sind.2. Gas turbine system according to claim 1, characterized in that the free flow cross sections on the high pressure side of the compressor (1) and / or turbine (3) by blocking part of the flow channels (22) in the guide vane (20) in the form of blocked sectors (24 ) are reduced.
3. Gasturbinenanlage nach Anspruch 1, dadurch gekennzeichnet, dass die freien Strömungsquerschnitte auf der Hochdruckseite von Verdichter (1) und/oder Turbine (3) durch Einfügen ringförmiger Strömungshindemisse (25) in den Leitgittern (20) reduziert sind. 3. Gas turbine plant according to claim 1, characterized in that the free flow cross sections on the high pressure side of the compressor (1) and / or turbine (3) are reduced by inserting annular flow obstacles (25) in the guide vents (20).
4. Gasturbinenanlage nach Anspruch 1 , dadurch gekennzeichnet, dass die freien Strömungsquerschnitte auf der Hochdruckseite von Verdichter (1) und/oder Turbine (3) durch verstellbare Leitgitter (20, 26) reduziert werden.4. Gas turbine system according to claim 1, characterized in that the free flow cross sections on the high pressure side of the compressor (1) and / or turbine (3) are reduced by adjustable guide vents (20, 26).
5. Gasturbinenanlage nach Anspruch 1 , dadurch gekennzeichnet, dass die freien Strömungsquerschnitte in Verdichter (1) und/oder Turbine (3) unverändert bleiben und statt dessen die Beschaufelung (21) des Verdichters (1) bzw. der Turbine (3) an die veränderten Axialgeschwindigkeiten angepasst ist.5. Gas turbine system according to claim 1, characterized in that the free flow cross sections in the compressor (1) and / or turbine (3) remain unchanged and instead the blading (21) of the compressor (1) or the turbine (3) to the changed axial speeds is adapted.
6. Gasturbinenanlage nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass in Verdichter (1) und/oder Turbine (3) verstellbare Leitgitter (20, 26) vorgesehen sind, um durch Inertgase bedingte Variationen der thermodynami- schen Eigenschaften des Arbeitsmediums zu kompensieren.6. Gas turbine system according to one of claims 1 to 5, characterized in that in the compressor (1) and / or turbine (3) adjustable guide grill (20, 26) are provided in order to variations caused by inert gases to the thermodynamic properties of the working medium compensate.
7. Gasturbinenanlage nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Wärmesenke (4) zur Erzeugung von Dampf ausgelegt ist , und dass mindestens ein Teilstrom (13) des erzeugten Dampfes zur Kühlung thermisch belasteter Bauteile der Turbine (3) zugeführt wird.7. Gas turbine system according to one of claims 1 to 6, characterized in that the heat sink (4) is designed for generating steam, and that at least a partial stream (13) of the steam generated for cooling thermally loaded components of the turbine (3) is supplied ,
8. Gasturbinenanlage nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Wärmesenke (4) zur Erzeugung von Dampf für den Betrieb einer Dampfturbine ausgelegt ist, und dass ein Teilstrom (13) des erzeugten Dampfes zur Kühlung thermisch belasteter Bauteile der Turbine (3) zugeführt wird.8. Gas turbine system according to one of claims 1 to 6, characterized in that the heat sink (4) is designed for generating steam for the operation of a steam turbine, and that a partial flow (13) of the steam generated for cooling thermally loaded components of the turbine ( 3) is supplied.
9. Gasturbinenanlage nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass Mittel zur Verflüssigung des Arbeitsmediums durch Wärmeabfuhr vorgesehen sind, und dass an Stelle des Verdichters (1) eine Pumpe vorgesehen ist. 9. Gas turbine system according to one of claims 1 to 8, characterized in that means for liquefying the working medium by heat dissipation are provided, and that a pump is provided instead of the compressor (1).
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CH176501 | 2001-09-24 | ||
CH17652001 | 2001-09-24 | ||
PCT/IB2002/003912 WO2003027461A1 (en) | 2001-09-24 | 2002-09-23 | Gas turbine system for working fluid in the form of a carbon dioxide/water mixture |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1448880A1 true EP1448880A1 (en) | 2004-08-25 |
Family
ID=4566177
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP02760509A Withdrawn EP1448880A1 (en) | 2001-09-24 | 2002-09-23 | Gas turbine system for working fluid in the form of a carbon dioxide/water mixture |
Country Status (3)
Country | Link |
---|---|
US (2) | US20040200205A1 (en) |
EP (1) | EP1448880A1 (en) |
WO (1) | WO2003027461A1 (en) |
Families Citing this family (76)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10393451D2 (en) * | 2002-07-14 | 2005-06-16 | Rerum Cognitio Ges Fuer Markti | Process for the separation of residual gases and working fluid in the water-steam combination process |
US7686567B2 (en) * | 2005-12-16 | 2010-03-30 | United Technologies Corporation | Airfoil embodying mixed loading conventions |
WO2009041617A1 (en) * | 2007-09-28 | 2009-04-02 | Central Research Institute Of Electric Power Industry | Turbine facility and power generating apparatus |
MY153097A (en) | 2008-03-28 | 2014-12-31 | Exxonmobil Upstream Res Co | Low emission power generation and hydrocarbon recovery systems and methods |
CA2715186C (en) | 2008-03-28 | 2016-09-06 | Exxonmobil Upstream Research Company | Low emission power generation and hydrocarbon recovery systems and methods |
MX2011002770A (en) | 2008-10-14 | 2011-04-26 | Exxonmobil Upstream Res Co | Methods and systems for controlling the products of combustion. |
WO2010141777A1 (en) | 2009-06-05 | 2010-12-09 | Exxonmobil Upstream Research Company | Combustor systems and methods for using same |
BR112012010294A2 (en) | 2009-11-12 | 2017-11-07 | Exxonmobil Upstream Res Co | integrated system and method for the recovery of low emission hydrocarbon with energy production |
TWI593878B (en) | 2010-07-02 | 2017-08-01 | 艾克頌美孚上游研究公司 | Systems and methods for controlling combustion of a fuel |
US9903271B2 (en) | 2010-07-02 | 2018-02-27 | Exxonmobil Upstream Research Company | Low emission triple-cycle power generation and CO2 separation systems and methods |
PL2588727T3 (en) | 2010-07-02 | 2019-05-31 | Exxonmobil Upstream Res Co | Stoichiometric combustion with exhaust gas recirculation and direct contact cooler |
JP5906555B2 (en) | 2010-07-02 | 2016-04-20 | エクソンモービル アップストリーム リサーチ カンパニー | Stoichiometric combustion of rich air by exhaust gas recirculation system |
WO2012003080A1 (en) | 2010-07-02 | 2012-01-05 | Exxonmobil Upstream Research Company | Low emission power generation systems and methods |
WO2012018457A1 (en) | 2010-08-06 | 2012-02-09 | Exxonmobil Upstream Research Company | Systems and methods for optimizing stoichiometric combustion |
WO2012018458A1 (en) | 2010-08-06 | 2012-02-09 | Exxonmobil Upstream Research Company | System and method for exhaust gas extraction |
TWI563165B (en) | 2011-03-22 | 2016-12-21 | Exxonmobil Upstream Res Co | Power generation system and method for generating power |
TWI564474B (en) | 2011-03-22 | 2017-01-01 | 艾克頌美孚上游研究公司 | Integrated systems for controlling stoichiometric combustion in turbine systems and methods of generating power using the same |
TWI593872B (en) | 2011-03-22 | 2017-08-01 | 艾克頌美孚上游研究公司 | Integrated system and methods of generating power |
TWI563164B (en) * | 2011-03-22 | 2016-12-21 | Exxonmobil Upstream Res Co | Integrated systems incorporating inlet compressor oxidant control apparatus and related methods of generating power |
TWI563166B (en) | 2011-03-22 | 2016-12-21 | Exxonmobil Upstream Res Co | Integrated generation systems and methods for generating power |
US9127598B2 (en) | 2011-08-25 | 2015-09-08 | General Electric Company | Control method for stoichiometric exhaust gas recirculation power plant |
US8453461B2 (en) * | 2011-08-25 | 2013-06-04 | General Electric Company | Power plant and method of operation |
US8347600B2 (en) | 2011-08-25 | 2013-01-08 | General Electric Company | Power plant and method of operation |
US8713947B2 (en) | 2011-08-25 | 2014-05-06 | General Electric Company | Power plant with gas separation system |
US8453462B2 (en) | 2011-08-25 | 2013-06-04 | General Electric Company | Method of operating a stoichiometric exhaust gas recirculation power plant |
WO2013095829A2 (en) | 2011-12-20 | 2013-06-27 | Exxonmobil Upstream Research Company | Enhanced coal-bed methane production |
US9353682B2 (en) | 2012-04-12 | 2016-05-31 | General Electric Company | Methods, systems and apparatus relating to combustion turbine power plants with exhaust gas recirculation |
US10273880B2 (en) | 2012-04-26 | 2019-04-30 | General Electric Company | System and method of recirculating exhaust gas for use in a plurality of flow paths in a gas turbine engine |
US9784185B2 (en) | 2012-04-26 | 2017-10-10 | General Electric Company | System and method for cooling a gas turbine with an exhaust gas provided by the gas turbine |
US9631815B2 (en) | 2012-12-28 | 2017-04-25 | General Electric Company | System and method for a turbine combustor |
US10215412B2 (en) | 2012-11-02 | 2019-02-26 | General Electric Company | System and method for load control with diffusion combustion in a stoichiometric exhaust gas recirculation gas turbine system |
US10107495B2 (en) | 2012-11-02 | 2018-10-23 | General Electric Company | Gas turbine combustor control system for stoichiometric combustion in the presence of a diluent |
US9869279B2 (en) | 2012-11-02 | 2018-01-16 | General Electric Company | System and method for a multi-wall turbine combustor |
US10138815B2 (en) | 2012-11-02 | 2018-11-27 | General Electric Company | System and method for diffusion combustion in a stoichiometric exhaust gas recirculation gas turbine system |
US9574496B2 (en) | 2012-12-28 | 2017-02-21 | General Electric Company | System and method for a turbine combustor |
US9611756B2 (en) | 2012-11-02 | 2017-04-04 | General Electric Company | System and method for protecting components in a gas turbine engine with exhaust gas recirculation |
US9708977B2 (en) | 2012-12-28 | 2017-07-18 | General Electric Company | System and method for reheat in gas turbine with exhaust gas recirculation |
US9599070B2 (en) | 2012-11-02 | 2017-03-21 | General Electric Company | System and method for oxidant compression in a stoichiometric exhaust gas recirculation gas turbine system |
US9803865B2 (en) | 2012-12-28 | 2017-10-31 | General Electric Company | System and method for a turbine combustor |
US10208677B2 (en) | 2012-12-31 | 2019-02-19 | General Electric Company | Gas turbine load control system |
US9581081B2 (en) | 2013-01-13 | 2017-02-28 | General Electric Company | System and method for protecting components in a gas turbine engine with exhaust gas recirculation |
US9518734B2 (en) | 2013-01-28 | 2016-12-13 | General Electric Technology Gmbh | Fluid distribution and mixing grid for mixing gases |
US9512759B2 (en) | 2013-02-06 | 2016-12-06 | General Electric Company | System and method for catalyst heat utilization for gas turbine with exhaust gas recirculation |
US9938861B2 (en) | 2013-02-21 | 2018-04-10 | Exxonmobil Upstream Research Company | Fuel combusting method |
TW201502356A (en) | 2013-02-21 | 2015-01-16 | Exxonmobil Upstream Res Co | Reducing oxygen in a gas turbine exhaust |
WO2014133406A1 (en) | 2013-02-28 | 2014-09-04 | General Electric Company | System and method for a turbine combustor |
US9618261B2 (en) | 2013-03-08 | 2017-04-11 | Exxonmobil Upstream Research Company | Power generation and LNG production |
US9784182B2 (en) | 2013-03-08 | 2017-10-10 | Exxonmobil Upstream Research Company | Power generation and methane recovery from methane hydrates |
US20140250945A1 (en) | 2013-03-08 | 2014-09-11 | Richard A. Huntington | Carbon Dioxide Recovery |
TW201500635A (en) | 2013-03-08 | 2015-01-01 | Exxonmobil Upstream Res Co | Processing exhaust for use in enhanced oil recovery |
US9631542B2 (en) | 2013-06-28 | 2017-04-25 | General Electric Company | System and method for exhausting combustion gases from gas turbine engines |
US9835089B2 (en) | 2013-06-28 | 2017-12-05 | General Electric Company | System and method for a fuel nozzle |
US9617914B2 (en) | 2013-06-28 | 2017-04-11 | General Electric Company | Systems and methods for monitoring gas turbine systems having exhaust gas recirculation |
TWI654368B (en) | 2013-06-28 | 2019-03-21 | 美商艾克頌美孚上游研究公司 | System, method and media for controlling exhaust gas flow in an exhaust gas recirculation gas turbine system |
US9587510B2 (en) | 2013-07-30 | 2017-03-07 | General Electric Company | System and method for a gas turbine engine sensor |
US9903588B2 (en) | 2013-07-30 | 2018-02-27 | General Electric Company | System and method for barrier in passage of combustor of gas turbine engine with exhaust gas recirculation |
US9951658B2 (en) | 2013-07-31 | 2018-04-24 | General Electric Company | System and method for an oxidant heating system |
US10030588B2 (en) | 2013-12-04 | 2018-07-24 | General Electric Company | Gas turbine combustor diagnostic system and method |
US9752458B2 (en) | 2013-12-04 | 2017-09-05 | General Electric Company | System and method for a gas turbine engine |
US10227920B2 (en) | 2014-01-15 | 2019-03-12 | General Electric Company | Gas turbine oxidant separation system |
US9915200B2 (en) | 2014-01-21 | 2018-03-13 | General Electric Company | System and method for controlling the combustion process in a gas turbine operating with exhaust gas recirculation |
US9863267B2 (en) | 2014-01-21 | 2018-01-09 | General Electric Company | System and method of control for a gas turbine engine |
US10079564B2 (en) | 2014-01-27 | 2018-09-18 | General Electric Company | System and method for a stoichiometric exhaust gas recirculation gas turbine system |
US10047633B2 (en) | 2014-05-16 | 2018-08-14 | General Electric Company | Bearing housing |
US9885290B2 (en) | 2014-06-30 | 2018-02-06 | General Electric Company | Erosion suppression system and method in an exhaust gas recirculation gas turbine system |
US10655542B2 (en) | 2014-06-30 | 2020-05-19 | General Electric Company | Method and system for startup of gas turbine system drive trains with exhaust gas recirculation |
US10060359B2 (en) | 2014-06-30 | 2018-08-28 | General Electric Company | Method and system for combustion control for gas turbine system with exhaust gas recirculation |
US9869247B2 (en) | 2014-12-31 | 2018-01-16 | General Electric Company | Systems and methods of estimating a combustion equivalence ratio in a gas turbine with exhaust gas recirculation |
US9819292B2 (en) | 2014-12-31 | 2017-11-14 | General Electric Company | Systems and methods to respond to grid overfrequency events for a stoichiometric exhaust recirculation gas turbine |
US10788212B2 (en) | 2015-01-12 | 2020-09-29 | General Electric Company | System and method for an oxidant passageway in a gas turbine system with exhaust gas recirculation |
US10094566B2 (en) | 2015-02-04 | 2018-10-09 | General Electric Company | Systems and methods for high volumetric oxidant flow in gas turbine engine with exhaust gas recirculation |
US10316746B2 (en) | 2015-02-04 | 2019-06-11 | General Electric Company | Turbine system with exhaust gas recirculation, separation and extraction |
US10253690B2 (en) | 2015-02-04 | 2019-04-09 | General Electric Company | Turbine system with exhaust gas recirculation, separation and extraction |
US10267270B2 (en) | 2015-02-06 | 2019-04-23 | General Electric Company | Systems and methods for carbon black production with a gas turbine engine having exhaust gas recirculation |
US10145269B2 (en) | 2015-03-04 | 2018-12-04 | General Electric Company | System and method for cooling discharge flow |
US10480792B2 (en) | 2015-03-06 | 2019-11-19 | General Electric Company | Fuel staging in a gas turbine engine |
Family Cites Families (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2565178A (en) * | 1942-10-13 | 1951-08-21 | Rateau Soc | Gas turbine |
US3579992A (en) * | 1969-01-03 | 1971-05-25 | United Aircraft Corp | Power plant variable geometry control |
US3841789A (en) * | 1973-09-17 | 1974-10-15 | Gen Motors Corp | Variable diffuser |
US4271664A (en) * | 1977-07-21 | 1981-06-09 | Hydragon Corporation | Turbine engine with exhaust gas recirculation |
US4387563A (en) * | 1979-06-20 | 1983-06-14 | General Motors Corporation | Articulated power turbine gate |
US4245464A (en) * | 1979-06-20 | 1981-01-20 | General Motors Corporation | Quick release turbine gate valve |
US4232514A (en) * | 1979-06-20 | 1980-11-11 | General Motors Corporation | Dump control for turbine engine gate valve actuator |
US4569195A (en) * | 1984-04-27 | 1986-02-11 | General Electric Company | Fluid injection gas turbine engine and method for operating |
FR2576974B1 (en) * | 1985-02-06 | 1989-02-03 | Snecma | DEVICE FOR VARIING THE SECTION OF THE NECK OF A TURBINE DISTRIBUTOR |
SE452352B (en) * | 1985-05-03 | 1987-11-23 | Olofsson Sven Bertil | DEVICE FOR TURBO BUILDING UNIT FOR SPECIFICALLY MINOR COMBUSTION ENGINES, AS MODEL ENGINES |
DE3540401A1 (en) * | 1985-11-14 | 1987-05-21 | Mtu Muenchen Gmbh | Vane ring for turbo machines, especially for gas turbines |
US4813226A (en) * | 1987-01-12 | 1989-03-21 | Grosselfinger Robert A | Demand control of variable geometry gas turbine power plant |
US4856962A (en) * | 1988-02-24 | 1989-08-15 | United Technologies Corporation | Variable inlet guide vane |
US4874289A (en) * | 1988-05-26 | 1989-10-17 | United States Of America As Represented By The Secretary Of The Air Force | Variable stator vane assembly for a rotary turbine engine |
US4884944A (en) * | 1988-09-07 | 1989-12-05 | Avco Corporation | Compressor flow fence |
US5247791A (en) * | 1989-10-25 | 1993-09-28 | Pyong S. Pak | Power generation plant and power generation method without emission of carbon dioxide |
US5301500A (en) * | 1990-07-09 | 1994-04-12 | General Electric Company | Gas turbine engine for controlling stall margin |
GB9203168D0 (en) * | 1992-02-13 | 1992-04-01 | Rolls Royce Plc | Guide vanes for gas turbine engines |
DE4213709A1 (en) * | 1992-04-25 | 1993-10-28 | Asea Brown Boveri | Turbine with axial flow |
DE19516799B4 (en) * | 1995-05-08 | 2004-03-18 | Abb Schweiz Holding Ag | Method for setting a main controlled variable when operating a gas turbine group |
US5724805A (en) * | 1995-08-21 | 1998-03-10 | University Of Massachusetts-Lowell | Power plant with carbon dioxide capture and zero pollutant emissions |
US5768884A (en) * | 1995-11-22 | 1998-06-23 | General Electric Company | Gas turbine engine having flat rated horsepower |
EP0953748B1 (en) * | 1998-04-28 | 2004-01-28 | ALSTOM (Switzerland) Ltd | Power plant with a CO2-cycle |
EP1010857B1 (en) * | 1998-12-16 | 2003-06-04 | ALSTOM (Switzerland) Ltd | Modular steam turbine with standard blading |
GB0002257D0 (en) * | 2000-02-02 | 2000-03-22 | Rolls Royce Plc | Rotary apparatus for a gas turbine engine |
AU2001276823A1 (en) * | 2000-05-12 | 2001-12-03 | Clean Energy Systems, Inc. | Semi-closed brayton cycle gas turbine power systems |
US6681558B2 (en) * | 2001-03-26 | 2004-01-27 | General Electric Company | Method of increasing engine temperature limit margins |
US6516603B1 (en) * | 2001-06-06 | 2003-02-11 | The United States Of America As Represented By The Secretary Of The Navy | Gas turbine engine system with water injection |
EP1681472A1 (en) * | 2005-01-14 | 2006-07-19 | ALSTOM Technology Ltd | Method for retrofitting a compressor |
-
2002
- 2002-09-23 EP EP02760509A patent/EP1448880A1/en not_active Withdrawn
- 2002-09-23 WO PCT/IB2002/003912 patent/WO2003027461A1/en not_active Application Discontinuation
-
2004
- 2004-03-23 US US10/806,225 patent/US20040200205A1/en not_active Abandoned
-
2007
- 2007-08-27 US US11/845,182 patent/US20080066443A1/en not_active Abandoned
Non-Patent Citations (1)
Title |
---|
See references of WO03027461A1 * |
Also Published As
Publication number | Publication date |
---|---|
WO2003027461A1 (en) | 2003-04-03 |
US20080066443A1 (en) | 2008-03-20 |
US20040200205A1 (en) | 2004-10-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1448880A1 (en) | Gas turbine system for working fluid in the form of a carbon dioxide/water mixture | |
DE102021201627A1 (en) | Heat engine with steam supply device | |
DE60133629T2 (en) | METHOD FOR OPERATING A GAS TURBINE WITH ADJUSTABLE RODS | |
EP2503106B1 (en) | Method for operating a gas turbine power plant with flue gas recirculation and oxygen-depleted cooling gas | |
EP1752616A2 (en) | Gas turbine plant | |
EP2329555B1 (en) | Air supply unit for a fuel cell stack, fuel cell system and method for operating an air supply unit | |
DE4301100C2 (en) | Process for operating a combined cycle power plant with coal or oil gasification | |
DE2042478A1 (en) | Gas turbine jet engine for aircraft with devices for component cooling and compressor control | |
EP1776516A1 (en) | Method for generating energy in an energy generating installation comprising a gas turbine, and energy generating installation for carrying out said method | |
DE1626137A1 (en) | Dual-circuit jet engine | |
DE2554010A1 (en) | DEVICE AND METHOD FOR SUPPLYING COOLING AIR TO TURBINE VANES | |
DE4312078A1 (en) | Exhaust gas turbocharger for a supercharged internal combustion engine | |
EP0735253A2 (en) | Method and device for register supercharging an internal combustion engine | |
EP2532898A1 (en) | Axial turbo compressor | |
DE60110006T2 (en) | Low pressure system for gaseous fuel | |
DE102016118779A1 (en) | Turbofan engine for a civil supersonic aircraft | |
DE102005046144A1 (en) | Supercharging device for e.g. diesel combustion engine, has branching pipe connecting high pressure outlet of compressor with air intake inlet into compressor and exhibiting absorption chamber between discharge valve and outlet | |
DE102012200866A1 (en) | Compressor for charging internal combustion engine, has exhaust gas recirculation channel that is fluidically connected to annular channel, where compressor housing has cavity for passage of cooling medium, which is radially extended | |
DE29723421U1 (en) | Charging device of an internal combustion engine | |
WO2004010003A2 (en) | Method for compressing the working fluid during a water/steam combination process | |
EP1375867B1 (en) | Intercooling process and intercooled gas turbine engine | |
EP1541803B1 (en) | Gas turbine comprising a bearing relief arrangement | |
EP1771663B1 (en) | Method for modifying a turbocompressor | |
EP0592817B1 (en) | Gas turbine plant with a pressure wave machine | |
DE102017124689A1 (en) | Axial compressor, comprising juxtaposed rotors that rotate in opposite directions |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20040426 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK RO SI |
|
17Q | First examination report despatched |
Effective date: 20090520 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20091001 |