Nothing Special   »   [go: up one dir, main page]

EP1335110B1 - Turbomachine with high and low pressure blade sections - Google Patents

Turbomachine with high and low pressure blade sections Download PDF

Info

Publication number
EP1335110B1
EP1335110B1 EP02002719A EP02002719A EP1335110B1 EP 1335110 B1 EP1335110 B1 EP 1335110B1 EP 02002719 A EP02002719 A EP 02002719A EP 02002719 A EP02002719 A EP 02002719A EP 1335110 B1 EP1335110 B1 EP 1335110B1
Authority
EP
European Patent Office
Prior art keywords
region
blade
flow
regions
rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02002719A
Other languages
German (de)
French (fr)
Other versions
EP1335110A1 (en
Inventor
Gerhard Klaus
Ingo Stephan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to ES02002719T priority Critical patent/ES2278821T3/en
Priority to DE50209157T priority patent/DE50209157D1/en
Priority to EP02002719A priority patent/EP1335110B1/en
Priority to JP2003021454A priority patent/JP2003239704A/en
Priority to US10/359,229 priority patent/US6851927B2/en
Priority to CNB031025021A priority patent/CN1313704C/en
Publication of EP1335110A1 publication Critical patent/EP1335110A1/en
Application granted granted Critical
Publication of EP1335110B1 publication Critical patent/EP1335110B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D1/00Non-positive-displacement machines or engines, e.g. steam turbines
    • F01D1/02Non-positive-displacement machines or engines, e.g. steam turbines with stationary working-fluid guiding means and bladed or like rotor, e.g. multi-bladed impulse steam turbines
    • F01D1/04Non-positive-displacement machines or engines, e.g. steam turbines with stationary working-fluid guiding means and bladed or like rotor, e.g. multi-bladed impulse steam turbines traversed by the working-fluid substantially axially
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D1/00Non-positive-displacement machines or engines, e.g. steam turbines
    • F01D1/02Non-positive-displacement machines or engines, e.g. steam turbines with stationary working-fluid guiding means and bladed or like rotor, e.g. multi-bladed impulse steam turbines
    • F01D1/023Non-positive-displacement machines or engines, e.g. steam turbines with stationary working-fluid guiding means and bladed or like rotor, e.g. multi-bladed impulse steam turbines the working-fluid being divided into several separate flows ; several separate fluid flows being united in a single flow; the machine or engine having provision for two or more different possible fluid flow paths

Definitions

  • the invention relates to a turbomachine having a housing with a rotatably mounted rotor with three blade areas, which are fluidically connected. It further relates to a method for operating the aforementioned turbomachine as a steam turbine.
  • turbomachines which have a high-pressure steam and low-pressure steam region can be constructed in a one-piece or two-chambered manner.
  • 1997P03012 DE such turbomachines, in particular steam turbines are shown.
  • the two-part design does not belong to the technical field of the present invention and is therefore not further illustrated.
  • the housed design consists of a rotor with two single-flow blade areas facing the respective housing ends.
  • One vane area is designed as a high pressure steam vane area and another vane area as a low pressure steam area.
  • Incoming live steam initially flows in the axial direction through the blade area of the high-pressure steam blade area. From there, the now partially relaxed steam passes via a line to the medium-pressure steam blade area.
  • GB 100 369 describes a steam turbine comprising a medium-pressure turbine section, a low-pressure section turbine and a further low-pressure section turbine.
  • the flow medium flowing through the medium-pressure turbine section divides into two partial flows after flowing through, of which one partial flow flows through the first low-pressure turbine section and the other partial flow flows within the steam turbine to the further low-pressure section turbine.
  • This steam turbine is designed in such a way that the temperature of the flow medium before entry into the first low-pressure turbine part is higher than before entry into the second low-pressure turbine part.
  • the specific volume increases at a constant mass flow in the course of expansion relatively low. From the transition region between medium pressure and low pressure (about 2 to 3 bar), the specific volume of vapor increases sharply, the volume flow and thus the required flow area also. The realization of the flow area encounters physical limits (eg strength) and requires a large construction cost.
  • a disadvantage of these known embodiments with high-pressure expansion region is the concern of superheated steam at the interior of a turbine end.
  • the high energy vapor between the shells is partially recycled to lower temperature blading areas for thermodynamic process optimization.
  • the sealing cup steam introduction into the blading areas leads to casing asymmetry which is asymmetrical on the circumference of the casing, which results in thermal stresses and deformations, i. a distortion of the housing, which may possibly lead to a brushing of blades on the housing.
  • the object of the present invention is to design a single-flow turbomachine in such a way that no return of sealing shell steam is necessary with regard to thermodynamic process optimization.
  • Another object of the present invention is to provide a method of operating a steam turbine.
  • the turbomachine-type object is achieved in that the turbomachine has an outer housing in which a rotor with three blade areas is rotatably mounted, wherein one of the blade areas is an inner area in the axial direction and the other areas are outer areas, as seen in the axial direction wherein, in operation, a flow medium flows along a respective flow direction, the inner blade region being trapped by the outer blade regions along the rotor and the flow directions in the outer blade regions being opposite each other and facing away from the inner blade region, and the flow medium after flowing through the inner blade region is separable with a return passage so that a part of the flow medium flows through an outer blade portion and a second part through the other outer blade portion, wherein that the discoursegeh use has an inlet opening between the outer blade region and the inner blade region and the outer casing between the inner blade region and the other outer blade region has an outlet opening, wherein the outlet port is connected to the inlet opening via the backflow passage fluidically to each other.
  • the compact design of the turbomachine leads to further advantages in the production, which lead to material and time savings.
  • the material and time savings can be attributed, inter alia, to a design of the components in a reduced form.
  • the use of less material leads to components of lower mass and thereby to better starting and operating behavior, in particular the reduction of the last blade stages is advantageous here.
  • the axial compensator may for example consist of a bellows or the like.
  • the impact of the flow medium on the rotating blade regions leads to an acting in the axial direction Force.
  • This force is called axial thrust.
  • the rotor is designed with an attached in front of the first blade portion shaft paragraph in an advantageous embodiment. A significant advantage arises from the simple cost-effective integration in the housing.
  • the turbomachine preferably has an inflow region, in which the flow medium is expanded in a subsequent expansion region by a control stage.
  • the pressure of the flow medium in the expansion area is relieved by a control stage to a Radraumdruck.
  • the turbomachine can be advantageously carried out as axial compressor.
  • the object directed to the method is achieved according to the invention by the description of a method for operating a steam turbine.
  • the steam turbine having an outer casing is provided with a rotatably mounted rotor having three blade regions, wherein one of the blade regions is an inner region viewed in the axial direction and the other regions are outer regions through which a flow medium flows in a respective flow direction during operation. wherein the inner blade region is enclosed by the outer blade regions along the rotor and the flow medium is divided into two partial streams after flowing through the inner blade region.
  • the one sub-stream flows through an outer blade area, and the other sub-stream through the other blade area, wherein the flow medium through a arranged on the outer housing between the inner blade area and the other outer blade area outlet opening via a remindströmkanal to between the outer Blade region and the inner blade portion arranged inlet opening flows.
  • FIG. 1 shows a schematic longitudinal section through a turbomachine 1 with an outer housing 2, a plurality of inner housings 11, 12, 16, 21 and a rotor 3.
  • Four blade areas 4, 5, 6, 7 are arranged on the rotor 3.
  • the four blade areas are divided in this embodiment into two inner 5, 6 and two outer blade areas 4, 7.
  • the two outer blade regions 4, 7 are arranged opposite to one another and point away from the inner blade regions 5, 6.
  • an inflow opening 8 is contained in the outer housing.
  • a control stage 9 is attached.
  • an expansion region 31 follows in the direction of the first inner blade region 5.
  • 5 guide vanes 10 are attached to the inner casing 11 in the first inner blade region.
  • first inner blade area 5 On the first inner blade area 5 there follows a further inner blade area 6.
  • second inner blade area 6 In the second inner blade area 6, further guide blades 13 are attached to a further inner housing 12. Between the second inner blade area 6 and an outer blade area 7 are one or several outlet openings 14 included. At the outer blade area 7 more vanes 15 are fixed to a further inner housing 16.
  • an inflow opening 32 in the outer housing 2 is fluidically connected to the outlet opening 14 via a return flow channel 19.
  • inflow opening 32 in the outer housing 2 is fluidically connected to the outlet opening 14 via a return flow channel 19.
  • further guide vanes 20 in a further inner housing 21 are further guide vanes 20 in a further inner housing 21.
  • the return flow 19 is equipped with an axial compensator 22 to compensate for thermal stresses between the return flow 19 and the outer housing 2.
  • the rotor 3 is designed with a shaft shoulder 23 to compensate for the axial thrust of the rotor 3.
  • sealing shells 24a and 24b are arranged to reduce the leakage from the turbomachine.
  • a flow medium flows via the inflow opening 8 into the turbomachine 1. From there, the flow medium reaches the control stage 9, where the pressure is released to a Radraumtik. Thereafter, the flow medium flows through the first blade region 5. In the illustrated embodiment, the flow medium then flows through the second blade region 6. After this second blade region 6, the flow medium is separated into two partial streams 18, 33 by means of one or more openings 14. The partial flow 33 flows through the outer blade region 7. The second partial flow 18 flows via the return flow channel 19 into an inflow opening 32. From there, the partial flow flows through the further outer blade region 4. After the outer blade regions 4, 5 flow through, both partial flows reach via outlet openings 17a, 17b from the turbomachine 1.
  • the turbomachine can be designed as a steam turbine and, on the other hand, as an axial compressor.
  • superheated steam 26 passes via a feed line 27 into a steam turbine interior 28. After flowing through the previously described blade areas 4, 5, 6 and 7 in the steam turbine interior 28, the superheated steam is expanded and flows via a discharge 29 to a capacitor 30.
  • the rotation of the rotor 3 can be used to generate electrical energy.
  • the operating principle is as described below.
  • atmospheric air or the like is supplied in an inlet opening 30a via a feed line 29a into an axial compressor interior 28a.
  • the atmospheric air is compressed by a direction of rotation of the rotor 3 and thus of the previously described blade areas 4, 5, 6 and 7 in a direction opposite to that of the steam turbine, and reaches the outlet 25a in a highly compressed manner via a line 27a.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Control Of Positive-Displacement Air Blowers (AREA)

Description

Die Erfindung betrifft eine Strömungsmaschine, die ein Gehäuse mit einem drehgelagerten Rotor mit drei Schaufelbereichen aufweist, die strömungstechnisch verbunden sind. Sie betrifft weiter ein Verfahren zum Betrieb der vorgenannten Strömungsmaschine als Dampfturbine.The invention relates to a turbomachine having a housing with a rotatably mounted rotor with three blade areas, which are fluidically connected. It further relates to a method for operating the aforementioned turbomachine as a steam turbine.

Bekannte Strömungsmaschinen die einen Hochdruckdampf- und Niederdruckdampfbereich aufweisen, können eingehäusig oder zweigehäusig aufgebaut sein. In 1997P03012 DE sind solche Strömungsmaschinen, insbesondere Dampfturbinen dargestellt. Die zweigehäusige Ausführung gehört nicht zum technischen Gebiet der vorliegenden Erfindung und wird daher nicht weiter dargestellt. Die eingehäusige Ausführung besteht aus einem Rotor mit zwei einflutigen Schaufelbereichen die zu den jeweiligen Gehäuseenden weisen. Ein Schaufelbereich wird als Hochdruckdampf-Schaufelbereich ausgeführt und ein anderer Schaufelbereich als Niederdruckdampfbereich. Einströmender Frischdampf strömt in axialer Richtung zunächst durch den Schaufelbereich des Hochdruckdampf-Schaufelbereichs. Von dort gelangt der nunmehr teilweise entspannte Dampf über eine Leitung zum Mitteldruckdampf-Schaufelbereich.Known turbomachines which have a high-pressure steam and low-pressure steam region can be constructed in a one-piece or two-chambered manner. In 1997P03012 DE such turbomachines, in particular steam turbines are shown. The two-part design does not belong to the technical field of the present invention and is therefore not further illustrated. The housed design consists of a rotor with two single-flow blade areas facing the respective housing ends. One vane area is designed as a high pressure steam vane area and another vane area as a low pressure steam area. Incoming live steam initially flows in the axial direction through the blade area of the high-pressure steam blade area. From there, the now partially relaxed steam passes via a line to the medium-pressure steam blade area.

In der GB 100,369 wird eine Dampfturbine umfassend eine Mitteldruckteilturbine, eine Niederdruckteilturbine und eine weitere Niederdruckteilturbine beschrieben. Das durch die Mitteldruckteilturbine strömende Strömungsmedium teilt sich nach der Durchströmung in zwei Teilströme auf, wovon der eine Teilstrom durch die erste Niederdruckteilturbine strömt und der andere Teilstrom innerhalb der Dampfturbine zur weiteren Niederdruckteilturbine strömt. Diese Dampfturbine ist derart ausgestaltet, dass die Temperatur des Strömungsmediums vor dem Eintritt in die erste Niederdruckteilturbine höher ist als vor dem Eintritt in die zweite Niederdruckteilturbine.GB 100 369 describes a steam turbine comprising a medium-pressure turbine section, a low-pressure section turbine and a further low-pressure section turbine. The flow medium flowing through the medium-pressure turbine section divides into two partial flows after flowing through, of which one partial flow flows through the first low-pressure turbine section and the other partial flow flows within the steam turbine to the further low-pressure section turbine. This steam turbine is designed in such a way that the temperature of the flow medium before entry into the first low-pressure turbine part is higher than before entry into the second low-pressure turbine part.

Im Hochdruck-, Mitteldruckbereich nimmt das spezifische Volumen bei konstantem Massenstrom im Verlauf der Expansion verhältnismäßig gering zu. Ab dem Übergangsbereich zwischen Mitteldruck und Niederdruck (ca. 2 bis 3 bar) nimmt das spezifische Dampfvolumen stark zu, der Volumenstrom und damit die benötigte Strömungsfläche gleichfalls. Die Realisierung der Strömungsfläche stößt auf physikalische Grenzen (z.B. Festigkeit) und erfordert einen großen Bauaufwand.In the high-pressure, medium-pressure region, the specific volume increases at a constant mass flow in the course of expansion relatively low. From the transition region between medium pressure and low pressure (about 2 to 3 bar), the specific volume of vapor increases sharply, the volume flow and thus the required flow area also. The realization of the flow area encounters physical limits (eg strength) and requires a large construction cost.

Nachteilig bei diesen bekannten Ausführungsformen mit Hochdruck-Expansionsbereich ist das Anliegen von Heißdampf am Inneren eines Turbinenendes. Zur Reduzierung des austretenden Dampfes aus der Turbine zwischen Außengehäuse und Rotor werden mehrere Dichtschalen angeordnet. Der energiereiche Dampf zwischen den Dichtschalen wird teilweise in Beschaufelungsbereiche mit niedrigerer Temperatur zur thermodynamischen Prozessoptimierung rückgeführt. Dabei führt die Dichtschalendampf-Einleitung in die Beschaufelungsbereiche zur einer am Gehäuseumfang unsymmetrischen Gehäuseerwärmung, die thermische Spannungen und Verformungen zur Folge hat, d.h. ein Verziehen des Gehäuses, das unter Umständen zu einem Anstreifen von Schaufeln am Gehäuse führen kann.A disadvantage of these known embodiments with high-pressure expansion region is the concern of superheated steam at the interior of a turbine end. To reduce the exiting steam from the turbine between the outer casing and the rotor several sealing shells are arranged. The high energy vapor between the shells is partially recycled to lower temperature blading areas for thermodynamic process optimization. The sealing cup steam introduction into the blading areas leads to casing asymmetry which is asymmetrical on the circumference of the casing, which results in thermal stresses and deformations, i. a distortion of the housing, which may possibly lead to a brushing of blades on the housing.

Der vorliegenden Erfindung liegt deshalb die Aufgabe zugrunde, eine eingehäusige Strömungsmaschine so zu entwerfen, dass keine Rückführung von Dichtschalendampf hinsichtlich einer thermodynamischen Prozessoptimierung notwendig ist.Therefore, the object of the present invention is to design a single-flow turbomachine in such a way that no return of sealing shell steam is necessary with regard to thermodynamic process optimization.

Eine weitere Aufgabe der vorliegenden Erfindung ist es, ein Verfahren zum Betrieb einer Dampfturbine anzugeben.Another object of the present invention is to provide a method of operating a steam turbine.

Erfindungsgemäß wird die auf die Strömungsmaschine gerichtete Aufgabe dadurch gelöst, dass die Strömungsmaschine ein Außengehäuse aufweist, in dem ein Rotor mit drei Schaufelbereichen drehgelagert ist, wobei einer der Schaufelbereiche ein in axialer Richtung gesehen innerer Bereich ist und die anderen in axialer Richtung gesehen äußere Bereiche sind, durch die im Betrieb ein Strömungsmedium entlang einer jeweiligen Strömungsrichtung strömt, wobei der innere Schaufelbereich von den äußeren Schaufelbereichen entlang des Rotors eingeschlossen ist und die Strömungsrichtungen in den äußeren Schaufelbereichen zueinander entgegengesetzt und vom inneren Schaufelbereich weggerichtet sind, und das Strömungsmedium nach Durchströmung des inneren Schaufelbereichs mit einem Rückströmkanal so auftrennbar ist, dass ein Teil des Strömungsmediums durch einen äußeren Schaufelbereich und ein zweiter Teil durch den anderen äußeren Schaufelbereich strömt, wobei dass das Außengehäuse zwischen dem äußeren Schaufelbereich und dem inneren Schaufelbereich eine Eintrittsöffnung aufweist und das Außengehäuse zwischen dem inneren Schaufelbereich und dem anderen äußeren Schaufelbereich eine Auslassöffnung aufweist, wobei die Auslassöffnung mit der Eintrittsöffnung über den Rückströmkanal strömungstechnisch miteinander verbunden ist.According to the invention, the turbomachine-type object is achieved in that the turbomachine has an outer housing in which a rotor with three blade areas is rotatably mounted, wherein one of the blade areas is an inner area in the axial direction and the other areas are outer areas, as seen in the axial direction wherein, in operation, a flow medium flows along a respective flow direction, the inner blade region being trapped by the outer blade regions along the rotor and the flow directions in the outer blade regions being opposite each other and facing away from the inner blade region, and the flow medium after flowing through the inner blade region is separable with a return passage so that a part of the flow medium flows through an outer blade portion and a second part through the other outer blade portion, wherein that the Außengeh use has an inlet opening between the outer blade region and the inner blade region and the outer casing between the inner blade region and the other outer blade region has an outlet opening, wherein the outlet port is connected to the inlet opening via the backflow passage fluidically to each other.

Durch diese Konfiguration wird erstmals der Vorteil ausgenutzt, dass durch die oben beschriebene Anordnung der Schaufelbereiche ein ausströmendes Strömungsmedium mit nahezu identischen Kenngrößen wie Druck, Temperatur und Volumenstrom an den Außengehäuseenden austritt. Durch die niedrigen Austrittsparameter des Dampfes an den beiden Gehäuseenden ist die Anordnung von Dichtschalensystemen mit Dichtschalendampfrückführung in den Beschaufelungsbereich nicht erforderlich. Eine am Gehäuseumfang unsymmetrische Erwärmung durch Dichtschalendampf-Einleitung ist ausgeschlossen.With this configuration, the advantage is exploited for the first time that due to the above-described arrangement of the blade regions, an outflowing flow medium with almost identical parameters such as pressure, temperature and volumetric flow exits at the outer housing ends. Due to the low outlet parameters of the steam at the two ends of the housing, the arrangement of sealing shell systems with sealing shell vapor return into the blading area is not necessary. Unbalanced heating at the circumference of the housing due to sealing shell vapor initiation is ruled out.

Die kompakte Ausführung der Strömungsmaschine führt zu weiteren Vorteilen in der Fertigung, die zu Material- und Zeitersparnissen führen. Die Material- und Zeitersparnis lässt sich unter anderem auf eine Ausführung der Bauteile in verkleinerter Form zurückführen. Die Verwendung von weniger Material führt zu Bauteilen geringerer Masse und dadurch zu besseren Anfahr- und Betriebsverhalten, insbesondere die Verkleinerung der letzten Schaufelstufen ist hier vorteilhaft.The compact design of the turbomachine leads to further advantages in the production, which lead to material and time savings. The material and time savings can be attributed, inter alia, to a design of the components in a reduced form. The use of less material leads to components of lower mass and thereby to better starting and operating behavior, in particular the reduction of the last blade stages is advantageous here.

Durch die geringere Masse ändert sich das Trägheitsmoment des Rotors. Dadurch verkürzt sich die Anfahrzeit. Vorteilhaft ist es, den Rückströmkanal mit einem Axial-Kompensator zur Kompensation von thermischen Ausdehnungen auszustatten. Dadurch werden temperaturbedingte Außengehäusespannungen vermieden. Der Axial-Kompensator kann beispielsweise aus einem Balg oder ähnlichem bestehen.Due to the lower mass, the moment of inertia of the rotor changes. This shortens the startup time. It is advantageous to equip the return flow channel with an axial compensator for the compensation of thermal expansions. As a result, temperature-induced outer housing voltages are avoided. The axial compensator may for example consist of a bellows or the like.

Das Auftreffen des Strömungsmediums auf die rotierenden Schaufelbereiche führt zu einer in axialer Richtung wirkenden Kraft. Diese Kraft wird Axialschub genannt. Zum Ausgleich des Axialschubs wird in vorteilhafter Weiterbildung der Rotor mit einem vor dem ersten Schaufelbereich angebrachten Wellenabsatz ausgeführt.
Ein wesentlicher Vorteil entsteht hierbei durch die einfache kostengünstige Integration im Gehäuse.
The impact of the flow medium on the rotating blade regions leads to an acting in the axial direction Force. This force is called axial thrust. To compensate for the axial thrust, the rotor is designed with an attached in front of the first blade portion shaft paragraph in an advantageous embodiment.
A significant advantage arises from the simple cost-effective integration in the housing.

Zur Reduzierung von Leckagen zwischen den Außengehäuseenden und dem Rotor werden Dichtschalen mit Labyrinthdichtungen o.ä. angeordnet.To reduce leaks between the outer housing ends and the rotor sealing cups with labyrinth seals or similar. arranged.

Die Strömungsmaschine weist bevorzugt einen Einströmbereich auf, in dem das Strömungsmedium in einem anschließenden Expansionsbereich durch eine Regelstufe entspannt wird. Der Druck des Strömungsmediums im Expansionsbereich wird durch eine Regelstufe auf einen Radraumdruck entspannt. Durch diese Regelungsmethode ist eine schnelle und präzise Regelungsmöglichkeit der Strömungsmaschine gegeben und führt zu einem guten Betriebsverhalten.The turbomachine preferably has an inflow region, in which the flow medium is expanded in a subsequent expansion region by a control stage. The pressure of the flow medium in the expansion area is relieved by a control stage to a Radraumdruck. By this control method is a quick and precise control option of the turbomachine and leads to a good performance.

Eine vorteilhafte Weiterführung ist die Ausführung der Strömungsmaschine als Dampfturbine.An advantageous development is the execution of the turbomachine as a steam turbine.

Die Strömungsmaschine kann vorteilhaft ausgeführt werden als Axialverdichter.The turbomachine can be advantageously carried out as axial compressor.

Die auf das Verfahren gerichtete Aufgabe wird erfindungsgemäß gelöst durch die Beschreibung eines Verfahrens zum Betrieb einer Dampfturbine. Die ein Außengehäuse aufweisende Dampfturbine ist mit einem drehgelagerten Rotor mit drei Schaufelbereichen ausgeführt, wobei einer der Schaufelbereiche ein in axialer Richtung gesehen innerer Bereich ist und die anderen in axialer Richtung gesehen äußere Bereiche sind, durch die im Betrieb ein Strömungsmedium entlang einer jeweiligen Strömungsrichtung strömt, wobei der innere Schaufelbereich von den äußeren Schaufelbereichen entlang des Rotors eingeschlossen ist und das Strömungsmedium nach Durchströmung des inneren Schaufelbereichs in zwei Teilströme aufgeteilt wird. Nach der Aufteilung in die zwei Teilströme strömt der eine Teilstrom durch einen äußeren Schaufelbereich, und der andere Teilstrom durch den anderen Schaufelbereich, wobei dass das Strömungsmedium durch eine an dem Außengehäuse zwischen dem inneren Schaufelbereich und dem anderen äußeren Schaufelbereich angeordneten Austrittsöffnung über einen Rückströmkanal zu einer zwischen dem äußeren Schaufelbereich und dem inneren Schaufelbereich angeordneten Eintrittsöffnung strömt.The object directed to the method is achieved according to the invention by the description of a method for operating a steam turbine. The steam turbine having an outer casing is provided with a rotatably mounted rotor having three blade regions, wherein one of the blade regions is an inner region viewed in the axial direction and the other regions are outer regions through which a flow medium flows in a respective flow direction during operation. wherein the inner blade region is enclosed by the outer blade regions along the rotor and the flow medium is divided into two partial streams after flowing through the inner blade region. After the division into the two sub-streams, the one sub-stream flows through an outer blade area, and the other sub-stream through the other blade area, wherein the flow medium through a arranged on the outer housing between the inner blade area and the other outer blade area outlet opening via a Rückströmkanal to between the outer Blade region and the inner blade portion arranged inlet opening flows.

Im folgenden wird die Erfindung anhand von Ausführungsbeispielen näher erläutert, die in schematischer Weise in den Zeichnungen dargestellt sind.In the following the invention with reference to embodiments will be explained in more detail, which are shown in a schematic manner in the drawings.

Für gleiche und funktionsidentische Bauteile werden durchgehend dieselben Bezugszeichen verwendet. Dabei zeigt:

Figur 1
einen schematischen Längsschnitt durch eine Strömungsmaschine;
Figur 2
eine Darstellung der prinzipiellen Funktionsweise einer Turbine und eines Axialverdichters.
For identical and functionally identical components, the same reference numerals are used throughout. Showing:
FIG. 1
a schematic longitudinal section through a turbomachine;
FIG. 2
a representation of the basic operation of a turbine and an axial compressor.

Fig. 1 zeigt einen schematischen Längsschnitt durch eine Strömungsmaschine 1 mit einem Außengehäuse 2, mehreren Innengehäusen 11, 12, 16, 21 und einem Rotor 3. Auf dem Rotor 3 sind vier Schaufelbereiche 4, 5, 6, 7 angeordnet. Die vier Schaufelbereiche sind in diesem Ausführungsbeispiel in zwei innere 5, 6 und zwei äußere Schaufelbereiche 4, 7 aufgeteilt. Die beiden äußeren Schaufelbereiche 4, 7 sind zueinander entgegengerichtet angeordnet und weisen von den inneren Schaufelbereichen 5, 6 weg. Vor dem ersten inneren Schaufelbereich 5 ist im Außengehäuse eine Einströmöffnung 8 enthalten. Von der Einströmöffnung 8 ausgehend in Richtung des ersten inneren Schaufelbereichs 5 ist eine Regelstufe 9 angebracht. Nach der Regelstufe 9 folgt in Richtung des ersten inneren Schaufelbereichs 5 ein Expansionsbereich 31. Im aufgeführten Ausführungsbeispiel sind im ersten inneren Schaufelbereich 5 Leitschaufeln 10 am Innengehäuse 11 angebracht. Auf dem ersten inneren Schaufelbereich 5 folgt ein weiterer innerer Schaufelbereich 6. Im zweiten inneren Schaufelbereich 6 sind weitere Leitschaufeln 13 an einem weiteren Innengehäuse 12 angebracht. Zwischen den zweiten inneren Schaufelbereich 6 und einem äußeren Schaufelbereich 7 sind eine oder mehrere Auslassöffnungen 14 enthalten. Am äußeren Schaufelbereich 7 sind weitere Leitschaufeln 15 an einem weiteren Innengehäuse 16 fixiert.1 shows a schematic longitudinal section through a turbomachine 1 with an outer housing 2, a plurality of inner housings 11, 12, 16, 21 and a rotor 3. Four blade areas 4, 5, 6, 7 are arranged on the rotor 3. The four blade areas are divided in this embodiment into two inner 5, 6 and two outer blade areas 4, 7. The two outer blade regions 4, 7 are arranged opposite to one another and point away from the inner blade regions 5, 6. Before the first inner blade area 5, an inflow opening 8 is contained in the outer housing. Starting from the inflow opening 8 in the direction of the first inner blade area 5, a control stage 9 is attached. After the control stage 9, an expansion region 31 follows in the direction of the first inner blade region 5. In the exemplary embodiment shown, 5 guide vanes 10 are attached to the inner casing 11 in the first inner blade region. On the first inner blade area 5 there follows a further inner blade area 6. In the second inner blade area 6, further guide blades 13 are attached to a further inner housing 12. Between the second inner blade area 6 and an outer blade area 7 are one or several outlet openings 14 included. At the outer blade area 7 more vanes 15 are fixed to a further inner housing 16.

Zwischen einem weiteren äußeren Schaufelbereich 4 und des Einströmbereichs 8 befindet sich eine Einströmöffnung 32 im Außengehäuse 2, die strömungstechnisch über einen Rückströmkanal 19 mit der Auslassöffnung 14 verbunden ist. Im Bereich des äußeren Schaufelbereichs 4 befinden sich weitere Leitschaufeln 20 in einem weiteren Innengehäuse 21.Between an additional outer blade area 4 and the inflow area 8 there is an inflow opening 32 in the outer housing 2, which is fluidically connected to the outlet opening 14 via a return flow channel 19. In the area of the outer blade area 4 there are further guide vanes 20 in a further inner housing 21.

Der Rückströmkanal 19 ist mit einem Axial-Kompensator 22 ausgestattet um thermische Spannungen zwischen dem Rückströmkanal 19 und dem Außengehäuse 2 auszugleichen.The return flow 19 is equipped with an axial compensator 22 to compensate for thermal stresses between the return flow 19 and the outer housing 2.

Der Rotor 3 ist mit einem Wellenabsatz 23 ausgeführt, um den Axialschub des Rotors 3 auszugleichen.The rotor 3 is designed with a shaft shoulder 23 to compensate for the axial thrust of the rotor 3.

Zwischen dem Rotor 3 und dem Außengehäuse 2 sind Dichtschalen 24a und 24b angeordnet, um die Leckage aus der Strömungsmaschine zu reduzieren.Between the rotor 3 and the outer housing 2 sealing shells 24a and 24b are arranged to reduce the leakage from the turbomachine.

Im Betrieb strömt ein Strömungsmedium über die Einströmöffnung 8 in die Strömungsmaschine 1. Von dort gelangt das Strömungsmedium zu der Regelstufe 9, wo der Druck auf einen Radraumdruck entspannt wird. Anschließend strömt das Strömungsmedium durch den ersten Schaufelbereich 5. Im dargestellten Ausführungsbeispiel strömt das Strömungsmedium danach durch den zweiten Schaufelbereich 6. Nach diesem zweiten Schaufelbereich 6 wird das Strömungsmedium mittels einer oder mehrerer Öffnungen 14 in zwei Teilströme 18, 33 getrennt. Der Teilstrom 33 strömt durch den äußeren Schaufelbereich 7. Über den Rückströmkanal 19 strömt der zweite Teilstrom 18 in eine Einströmöffnung 32. Von dort strömt der Teilstrom durch den weiteren äußeren Schaufelbereich 4. Beide Teilströme gelangen nach der Durchströmung der äußeren Schaufelbereiche 4, 5 über Auslassöffnungen 17a, 17b aus der Strömungsmaschine 1.In operation, a flow medium flows via the inflow opening 8 into the turbomachine 1. From there, the flow medium reaches the control stage 9, where the pressure is released to a Radraumdruck. Thereafter, the flow medium flows through the first blade region 5. In the illustrated embodiment, the flow medium then flows through the second blade region 6. After this second blade region 6, the flow medium is separated into two partial streams 18, 33 by means of one or more openings 14. The partial flow 33 flows through the outer blade region 7. The second partial flow 18 flows via the return flow channel 19 into an inflow opening 32. From there, the partial flow flows through the further outer blade region 4. After the outer blade regions 4, 5 flow through, both partial flows reach via outlet openings 17a, 17b from the turbomachine 1.

Durch die Trennung des Strömungsmediums in zwei Teilströme 18, 33 und der dargestellten Anordnung der Schaufelbereiche 4, 5, 6 und 7 gelangen die einzelnen Teilströme des getrennten Strömungsmediums zu den äußeren Schaufelbereichen 4, 7 mit nahezu identischen Kenngrößen wie Druck, Temperatur und Volumenstrom. Ein Vorteil besteht dadurch in der symmetrischen Gehäuseerwärmung. Durch die niedrigen Zustandsgrößen des Strömungsmediums in diesen Bereichen treten geringere thermische Verformungen auf, die Betriebssicherheit der Strömungsmaschine nimmt zu. Vorteilhaft ist die Ausführung von Dichtschalen zwischen Außengehäuse und Rotor zur Reduzierung der Leckage ohne Rückführung von Dichtschalendampf zwischen die Beschaufelungsbereiche.As a result of the separation of the flow medium into two partial flows 18, 33 and the illustrated arrangement of the blade regions 4, 5, 6 and 7, the individual partial flows of the separate flow medium reach the outer blade regions 4, 7 with almost identical characteristics such as pressure, temperature and volume flow. An advantage consists in the symmetrical housing heating. Due to the low state variables of the flow medium in these areas lower thermal deformations occur, the reliability of the turbomachine increases. Advantageously, the execution of sealing shells between the outer housing and the rotor to reduce the leakage without repatriation of sealing shell steam between the Beschaufelungsbereiche.

Durch die kompakte eingehäusige Ausführung entstehen weitere Vorteile in der Fertigung und im Anfahr- und Betriebsverhalten. Dabei wird ausgenutzt, dass Material eingespart werden kann. Insbesondere können die letzten Schaufelstufen in kleineren Größen gefertigt werden.Due to the compact, single-shell design, further advantages in terms of production and start-up and operating behavior arise. It is exploited that material can be saved. In particular, the last blade stages can be made in smaller sizes.

In Fig. 2 ist das Wirkprinzip der erfindungsgemäßen Strömungsmaschine 1 dargestellt. Zum einen kann die Strömungsmaschine als Dampfturbine ausgeführt werden und zum anderen als Axialverdichter.In Fig. 2, the operating principle of the flow machine 1 according to the invention is shown. On the one hand, the turbomachine can be designed as a steam turbine and, on the other hand, as an axial compressor.

Bei einer Ausführung als Dampfturbine stellt sich das Wirkprinzip wie nachfolgend beschrieben dar. Über einen Dampferzeuger 25 gelangt Heißdampf 26 über eine Zuleitung 27 in ein Dampfturbineninneres 28. Nach Durchströmung durch die vorbeschriebenen Schaufelbereiche 4,5,6 und 7 im Dampfturbineninneren 28 wird der Heißdampf entspannt und strömt über eine Ausleitung 29 zu einem Kondensator 30. Die Rotation des Rotors 3 kann zur Erzeugung von elektrischer Energie verwendet werden.Via a steam generator 25, superheated steam 26 passes via a feed line 27 into a steam turbine interior 28. After flowing through the previously described blade areas 4, 5, 6 and 7 in the steam turbine interior 28, the superheated steam is expanded and flows via a discharge 29 to a capacitor 30. The rotation of the rotor 3 can be used to generate electrical energy.

Bei einer Ausführung als Axialverdichter stellt sich das Wirkprinzip wie nachfolgend beschrieben dar. Durch erzwungenes Drehen des Rotors 3 wird Atmosphärenluft oder ähnliches in einer Eintrittsöffnung 30a über eine Zuleitung 29a in ein Axialverdichterinneres 28a zugeführt. Im Axialverdichterinneren 28a wird die Atmosphärenluft durch ein im Vergleich zur Dampfturbine umgekehrte Richtung der Rotation des Rotors 3 und damit der vorbeschriebenen Schaufelbereiche 4,5,6 und 7 verdichtet und gelangt über eine Leitung 27a hochverdichtet zu einem Ausgang 25a.In an embodiment as an axial compressor, the operating principle is as described below. By forced rotation of the rotor 3, atmospheric air or the like is supplied in an inlet opening 30a via a feed line 29a into an axial compressor interior 28a. In the axial compressor interior 28a, the atmospheric air is compressed by a direction of rotation of the rotor 3 and thus of the previously described blade areas 4, 5, 6 and 7 in a direction opposite to that of the steam turbine, and reaches the outlet 25a in a highly compressed manner via a line 27a.

Claims (8)

  1. Fluid-flow machine (1) having an outer casing (2) in which a rotor (3) with three blade regions (4, 5, 6, 7) is mounted in a rotational manner, one of the blade regions being an inner region (5, 6) seen in an axial direction and the other blade regions seen in an axial direction being outer regions (4, 7), through which blade regions a flow medium flows in a respective direction of flow during operation, the inner blade region (5, 6) being enclosed by the outer blade regions (4, 7) along the rotor (3), the directions of flow in the outer blade regions (4, 7) being opposed to one another and being directed away from the inner region (5, 6) and it being possible for the flow medium, after flowing through the inner blade region (5, 6), to be separated by means of a backflow passage (19) in such a way that one part of the flow medium flows through an outer blade region (4) and a second part flows through the other outer blade region (7), characterized in that the outer casing (2) has an inlet opening (32) between the outer blade region (4) and the inner blade region (5, 6), and the outer casing (2) has an outlet opening (14) between the inner blade region (5, 6) and the other outer blade region (7), the outlet opening (14) being fluidically connected to the inlet opening (32) via the backflow passage (19).
  2. Fluid-flow machine (1) according to Claim 1, characterized in that the backflow passage (19) is provided with an axial compensator (22) for compensating for a thermal expansion.
  3. Fluid-flow machine (1) according to either of Claims 1 and 2, characterized in that, to compensate for the axial thrust, the rotor (3) is designed with a shaft step (23) provided in front of the inner blade region (5, 6).
  4. Fluid-flow machine (1) according to one of Claims 1 to 3, characterized in that, to reduce the leakages from the fluid-flow machine (1), sealing shells (24a, 24b) are arranged between rotor (3) and outer casing (2).
  5. Fluid-flow machine (1) according to one of Claims 1 to 4, having at least one inflow region (8) for the flow medium and an expansion region adjoining the inflow region (8), characterized in that the pressure of the flow medium in the expansion region can be expanded to a wheel space pressure by a control stage (9).
  6. Fluid-flow machine (1) according to one of Claims 1 to 5, characterized by a design as a steam turbine.
  7. Fluid-flow machine (1) according to one of Claims 1 to 5, characterized by a design as an axial-flow compressor.
  8. Method of operating a steam turbine having an outer casing (2) which is designed with a rotationally mounted rotor (3) having three blade regions (4, 5, 6, 7), one of the blade regions (5, 6) being an inner region (5, 6) seen in an axial direction and the other blade regions seen in an axial direction being outer regions (4, 7), through which blade regions a flow medium flows in a respective direction of flow during operation, the inner blade region (5, 6) being enclosed by the outer blade regions (4, 7) along the rotor (3), the flow medium, after flowing through the inner blade region (5, 6), being divided into two partial flows, the one partial flow flowing through an outer blade region (7) and the other partial flow flowing through the other blade region (4), characterized in that the flow medium flows through an outlet opening (14), arranged at the outer casing (2) between the inner blade region (5, 6) and the other outer blade region (7), via a backflow passage (19) to an inlet opening (32) arranged between the outer blade region (4) and the inner blade region (5, 6).
EP02002719A 2002-02-06 2002-02-06 Turbomachine with high and low pressure blade sections Expired - Lifetime EP1335110B1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
ES02002719T ES2278821T3 (en) 2002-02-06 2002-02-06 TURBOMAQUINA WITH REGIONS OF HIGH PRESSURE AND LOW PRESSURE PALLETS.
DE50209157T DE50209157D1 (en) 2002-02-06 2002-02-06 Turbomachine with high-pressure and low-pressure blade area
EP02002719A EP1335110B1 (en) 2002-02-06 2002-02-06 Turbomachine with high and low pressure blade sections
JP2003021454A JP2003239704A (en) 2002-02-06 2003-01-30 Turbomachine with high and low pressure parts
US10/359,229 US6851927B2 (en) 2002-02-06 2003-02-06 Fluid-flow machine with high-pressure and low-pressure regions
CNB031025021A CN1313704C (en) 2002-02-06 2003-02-08 Fluid machinery with high pressure and lower pressure sectors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP02002719A EP1335110B1 (en) 2002-02-06 2002-02-06 Turbomachine with high and low pressure blade sections

Publications (2)

Publication Number Publication Date
EP1335110A1 EP1335110A1 (en) 2003-08-13
EP1335110B1 true EP1335110B1 (en) 2007-01-03

Family

ID=27589083

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02002719A Expired - Lifetime EP1335110B1 (en) 2002-02-06 2002-02-06 Turbomachine with high and low pressure blade sections

Country Status (6)

Country Link
US (1) US6851927B2 (en)
EP (1) EP1335110B1 (en)
JP (1) JP2003239704A (en)
CN (1) CN1313704C (en)
DE (1) DE50209157D1 (en)
ES (1) ES2278821T3 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11352912B2 (en) 2018-07-04 2022-06-07 Mitsubishi Power, Ltd. Steam turbine facility and combined cycle plant
US11359520B2 (en) 2018-06-18 2022-06-14 Mitsubishi Power, Ltd. Steam turbine facility and combined cycle plant

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100340740C (en) * 2004-09-17 2007-10-03 北京全三维动力工程有限公司 Superhigh pressure impact steam turbine
AU2008307077B2 (en) * 2007-10-04 2014-10-02 Braddell Limited Turbine assembly
IT1402377B1 (en) 2010-09-03 2013-09-04 Alstom Technology Ltd STEAM TURBINE SYSTEM
CN102444426B (en) * 2010-09-30 2015-05-27 阿尔斯通技术有限公司 Method of modifying a steam turbine
JP5615150B2 (en) * 2010-12-06 2014-10-29 三菱重工業株式会社 Nuclear power plant and method of operating nuclear power plant
DE102014224283A1 (en) * 2014-11-27 2016-06-02 Robert Bosch Gmbh Compressor with a sealing channel
CN104963728B (en) * 2015-06-25 2017-07-07 北京全三维能源科技股份有限公司 A kind of superhigh pressure impact steam turbine

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB100369A (en) * 1915-04-28 1917-04-12 Oerlikon Maschf High Power and Speed Turbine Plant.
GB102741A (en) * 1915-12-15 1917-06-14 Oerlikon Maschf High Power Turbine Plant.
US1622805A (en) * 1924-02-08 1927-03-29 Bergmann Elek Citatswerke Ag Steam turbine
FR813337A (en) * 1936-02-06 1937-05-31 Rateau Soc Device for stabilizing the operation of high efficiency rotary compressors
US2823891A (en) * 1953-05-20 1958-02-18 Westinghouse Electric Corp Steam turbine
US2796231A (en) * 1954-03-24 1957-06-18 Westinghouse Electric Corp High pressure steam turbine casing structure
DE1919734A1 (en) * 1969-04-18 1970-11-05 Siemens Ag Steam turbine plant
CH527364A (en) * 1970-08-10 1972-08-31 Pellaux Roger Jet engine, especially for aircraft
JPS549641B2 (en) * 1974-01-23 1979-04-26
DE2435153B2 (en) * 1974-07-22 1977-06-30 Kraftwerk Union AG, 4330 Mülheim TURBO MACHINE, IN PARTICULAR STEAM TURBINE WITH HIGH STEAM INLET TEMPERATURE
US4362464A (en) * 1980-08-22 1982-12-07 Westinghouse Electric Corp. Turbine cylinder-seal system
FR2646466B1 (en) * 1989-04-26 1991-07-05 Alsthom Gec INTERNAL STATOR HP-MP SINGLE STEAM TURBINE WITH CONTROLLED AIR CONDITIONING
DE19700899A1 (en) 1997-01-14 1998-07-23 Siemens Ag Steam turbine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11359520B2 (en) 2018-06-18 2022-06-14 Mitsubishi Power, Ltd. Steam turbine facility and combined cycle plant
US11352912B2 (en) 2018-07-04 2022-06-07 Mitsubishi Power, Ltd. Steam turbine facility and combined cycle plant

Also Published As

Publication number Publication date
JP2003239704A (en) 2003-08-27
CN1436918A (en) 2003-08-20
CN1313704C (en) 2007-05-02
ES2278821T3 (en) 2007-08-16
US20030175117A1 (en) 2003-09-18
US6851927B2 (en) 2005-02-08
EP1335110A1 (en) 2003-08-13
DE50209157D1 (en) 2007-02-15

Similar Documents

Publication Publication Date Title
DE69936184T2 (en) Abzapfringraum at the blade tips of a gas turbine engine
EP1004748B1 (en) Runner for a turbomachine
EP0491134B1 (en) Inlet casine for steam turbine
EP0170938A1 (en) Blade and seal clearance optimization device for compressors of gas turbine power plants, particularly of gas turbine jet engines
EP1898067B1 (en) Liquid return in baffles of fluid-flow engines with bypass flow configuration
DE60024362T2 (en) Shroud configuration for turbine blades
EP2596213B1 (en) Steam turbine with an internal cooling
CH702000A2 (en) Swirl chambers to the gap flow control.
DE3315914C2 (en)
DE19701020A1 (en) Steam turbine
EP1335110B1 (en) Turbomachine with high and low pressure blade sections
EP2718545B1 (en) Steamturbine comprising a dummy piston
WO2017178203A1 (en) Turbine blade, associated device, turbomachine and use
EP3495639B1 (en) Compressor module for a turbomachine reducing the boundary layer in an intermediate compressor case
WO2009156270A2 (en) Steam power unit
EP2802748A1 (en) Screw cooling for a fluid flow machine
EP1735525A1 (en) Turbine machine
EP3034784A1 (en) Cooling means for flow engines
EP3109407A1 (en) Stator device for a turbo engine with a housing device and multiple guide vanes
EP3183426B1 (en) Controlled cooling of turbine shafts
EP3147458B1 (en) Low pressure system for a steam turbine and steam turbine
DE102014017393B4 (en) Turbomachine and process
WO2023025827A1 (en) Rotor and turbomachine comprising the rotor
EP4015829A1 (en) Radial turbomachine, in particular compressor
DE19901564A1 (en) High-pressure turbine with a double spiral inlet

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17P Request for examination filed

Effective date: 20030916

17Q First examination report despatched

Effective date: 20031127

AKX Designation fees paid

Designated state(s): DE ES FR GB IT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50209157

Country of ref document: DE

Date of ref document: 20070215

Kind code of ref document: P

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2278821

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20071005

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20090310

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20090216

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20090420

Year of fee payment: 8

Ref country code: IT

Payment date: 20090225

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20090217

Year of fee payment: 8

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20100206

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20101029

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100206

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100206

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20110406

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110324

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100207