EP1325289A1 - Level meter - Google Patents
Level meterInfo
- Publication number
- EP1325289A1 EP1325289A1 EP01965161A EP01965161A EP1325289A1 EP 1325289 A1 EP1325289 A1 EP 1325289A1 EP 01965161 A EP01965161 A EP 01965161A EP 01965161 A EP01965161 A EP 01965161A EP 1325289 A1 EP1325289 A1 EP 1325289A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- transmitting
- receiving elements
- antenna
- microwaves
- filling material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F23/00—Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
- G01F23/22—Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
- G01F23/28—Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring the variations of parameters of electromagnetic or acoustic waves applied directly to the liquid or fluent solid material
- G01F23/284—Electromagnetic waves
Definitions
- the invention relates to a level measuring device working with microwaves for measuring a level of a filling material in a container with a microwave generator and an antenna with a planar antenna structure, which serves to transmit the microwaves in the direction of the filling material and to receive microwaves reflected on a surface of the filling material.
- a transit time of the microwaves from the device to the product surface and back is usually determined by means of a reception and evaluation circuit, and the instantaneous level is determined therefrom.
- microwaves are sent to the surface of a medium by means of an antenna and echo waves reflected on the surface are received.
- An echo function representing the echo amplitudes as a function of the distance is formed, from which the probable useful echo and its transit time are determined.
- the distance between the product surface and the antenna is determined from the transit time.
- planar antennas are also in the book 'Introduction to the theory and technology of planar microwave antennas in microstrip line technology' Gregor Gronau, Nellissen-Wolff bookstore or in the journal article 'Impedance of radiation slot in the ground plane of a microstrip line', IEEE Trans.Antennas Propagat ., Vol AP-30, pages 922-926, May 1982.
- wave packets short microwave transmission pulses, referred to below as wave packets, are transmitted periodically, which are reflected by the product surface and be received again after a distance-dependent runtime.
- the received signal amplitude as a function of time represents the echo function.
- Each value of this echo function corresponds to the amplitude of an echo reflected at a certain distance from the antenna.
- a continuous microwave is transmitted, which is periodically linearly frequency-modulated, for example according to a sawtooth function.
- the frequency of the received echo signal therefore has a frequency difference compared to the instantaneous frequency that the transmission signal has at the time of reception, which depends on the transit time of the echo signal.
- the frequency difference between the transmitted signal and the received signal which can be obtained by mixing both signals and evaluating the Fourier spectrum of the mixed signal, thus corresponds to the distance of the reflecting surface from the antenna.
- the amplitudes of the spectral lines of the frequency spectrum obtained by Fourier transformation correspond to the echo amplitudes. This Fourier spectrum therefore represents the echo function in this case.
- level measurement with only one antenna arises that a meaningful level measurement is only possible if the level does not fall below a minimum distance from the antenna.
- This minimum distance which is often also referred to as the block distance, is due to the fact that a received signal caused by the transmission must first have decayed to an amplitude below the echo amplitude before the echo signal reflected from the product surface can be reliably recognized and evaluated.
- This problem can be largely solved by using two separate antennas, one for transmitting and one for receiving microwaves.
- This solution requires, however, that there are two openings on the container at a suitable distance through which the two antennas can be inserted. However, this is not the case for most applications.
- EP-B 592 584 describes a level measuring device working with microwaves
- an antenna which serves to send the microwaves in the direction of the filling material and to receive microwaves reflected on a filling material surface
- Crosstalk from the transmitter to the receiver is reduced here by generating linearly polarized microwaves in a first polarization plane and passing them through a phase shifter.
- the phase shifter is dimensioned so that the emerging microwaves e.g. are left circularly polarized.
- the right-hand circularly polarized microwaves are then received by the reflection on the product surface and converted into linearly polarized microwaves by means of the phase shifter.
- the polarization plane of these microwaves is perpendicular to the first polarization plane.
- the receiver is designed such that it only receives microwaves with this polarization, but does not pick up microwaves polarized along the first polarization plane.
- the invention consists in a level measuring device working with microwaves for measuring a level of a filling material in a container
- planar antenna structure has at least two transmitting and / or receiving elements.
- the transmitting and / or receiving elements are each located in a partial area of the antenna.
- the transmitting and / or receiving elements are arranged nested in one another.
- At least one of the transmitting and / or receiving elements is used exclusively as a receiver for measuring a fill level in a close range in front of the antenna.
- all of the transmitting and / or receiving elements serve as transmitters and receivers for measuring a fill level in a remote area in front of the antenna.
- At least one transmitting and / or receiving element serves exclusively as a transmitter and the other transmitting and / or receiving elements serve exclusively as a receiver, and a difference signal is determined which is the difference between the transmission signals applied to the transmitters and those received by the receivers Received signals corresponds.
- the microwaves to be transmitted have frequencies that are greater than 20 GHz.
- An advantage of the invention is that the antenna provides a very high degree of flexibility due to the planar antenna structure.
- the antenna structure can be divided at will into several transmitting and / or receiving elements and each transmitting and / or receiving element can be used optimally.
- a high transmission power is available, for example, for measurements in the long range, and for measurements in the close range, crosstalk from the transmitter to the receiver is significantly reduced by dividing the transmitting and / or receiving elements into pure transmitting elements and pure receiving elements.
- the only additional effort that is required to use these advantages is a corresponding wiring of the individual transmitting and / or receiving elements. This is easy to do and does not result in any loss of performance.
- Fig. 1 shows schematically a measuring arrangement with a level measuring device arranged on a container and working with microwaves
- FIG. 2 shows a schematic illustration of a planar antenna structure which has a first transmitting and / or receiving element and a second transmitting and / or receiving element arranged in another part of the antenna structure;
- Fig. 3 shows a schematic representation of a planar antenna structure which has two transmission and / or reception elements arranged opposite one another, which are separated from one another by two further transmission and / or reception elements arranged opposite one another;
- Fig. 4 shows a schematic representation of a planar antenna structure which has a plurality of transmitting and / or receiving elements arranged in a first antenna half and a plurality of transmitting and / or receiving elements arranged in a second antenna half;
- FIG. 5 shows a schematic representation of a planar antenna structure which has a plurality of transmission and / or reception elements arranged in a chessboard-like manner and nested in one another;
- FIG. 6 shows a basic circuit diagram of a fill level measuring device according to the invention, in which some transmitting and / or receiving elements operate as transmitters and some transmitting and / or receiving elements operate as receivers;
- FIG. 7 shows a basic circuit diagram of a fill level measuring device according to the invention, in which a part of the transmitting and / or receiving elements serve exclusively as a transmitter and the other transmitting and / or receiving elements serve exclusively as a receiver for measurements in the close range, and all transmitters are used for measurements in the far range - and / or receive elements serve as transmitters and receivers; and 8 shows a basic circuit diagram of a fill level measuring device according to the invention, in which some transmit and / or receive elements work as transmitters and some transmit and / or receive elements act as receivers and a difference is formed from a transmit signal and receive signal, which are used to determine the fill level becomes.
- Fig. 1 shows schematically a measuring arrangement with a level measuring device 3 arranged on a container 1 and working with microwaves.
- the level measuring device 3 is e.g. attached to the container 1 by means of a flange connection.
- the container 1 is filled with a filling material 5, the filling level of which is to be measured.
- the fill level measuring device 3 comprises an antenna 7, with a planar antenna structure described in more detail below in connection with the exemplary embodiments shown in FIGS. 2 to 5.
- the antenna 7 projects into the container 1 and serves to send microwaves in the direction of the filling material 5 and to receive microwaves reflected on a filling material surface.
- the planar antenna structure has at least two transmitting and / or receiving elements.
- the fill level measuring device 3 has a microwave generator 9.
- a suitable microwave generator 9 is e.g. a pulse radar device constructed in planar circuit technology, an FMCW device constructed in planar circuit technology or a continuously oscillating microwave oscillator constructed in planar circuit technology.
- the microwave generator 9 feeds those transmitting and / or receiving elements which either serve exclusively as transmitters or as transmitters and receivers.
- Microwaves with frequencies above 20 GHz, for example 24 GHz, are preferably generated and transmitted. Above 20 GHz, the wavelength of the microwaves is sufficiently short to be able to use relatively small planar antenna structures. At 24 GHz, for example, several transmitting and / or receiving elements can be accommodated comfortably on an antenna structure with a diameter of a few centimeters to one or two decimeters. These small dimensions offer the advantage that the Antenna 7 is correspondingly small and can therefore also be easily inserted through container openings of small nominal width.
- the microwaves are transmitted from the transmitting and / or receiving elements serving as transmitters to the product surface and the microwaves reflected on the product surface are received by the transmitting and / or receiving elements serving as receivers.
- the incoming microwaves are fed to a receiving and evaluation circuit 41, which determines the transit time of the microwaves to the product surface and back and determines the instantaneous fill level therefrom.
- FIG. 2 schematically shows an exemplary embodiment of a planar antenna structure which has a first transmitting and / or receiving element 11, 13, shown by solid lines in FIG. 2, and a second, shown by dotted lines in FIG. 2.
- the transmitting and / or receiving elements 11, 13 are metallic structures which are applied to a side of a dielectric substrate 15 facing away from the filling material 5.
- a conductive layer 17, for example in the form of a coating of the dielectric substrate 15 is provided, which has recesses 19, the shape and arrangement of which is preferably selected such that only electromagnetic waves of a desired mode are emitted , In the example shown, they are !
- the dielectric is therefore preferably a chemically resistant material, e.g. Polytetrafluoroethylene (PTFE) or a composite material made of polytetrafluoroethylene and ceramic and / or glass fiber.
- PTFE Polytetrafluoroethylene
- a further dielectric disk 23 is provided on a side of the substrate 15 facing away from the conductive layer 17 and in operation from the filling material 5.
- the disk 23 has a recess 25 through which a connection element (not shown in FIG. 2) can be inserted.
- the connection element must be designed so that it connects to each transmission and / or receiving element 11, 13.
- the electrical connection of the conductive layer 17 to ground or to a fixed reference potential is preferably also carried out via this connection element.
- either through holes 27 can be provided in the substrate, through which appropriately shaped and arranged pins of the connecting element can be guided to the conductive layer 17, or contact pins connected to the conductive layer 17 can pass through the substrate 15 at the same location be led.
- the first transmitting and / or receiving element 11 is arranged in a first part of the antenna structure and the second transmitting and / or receiving element 13 is arranged in a second part of the antenna structure.
- Each of the transmitting and / or receiving elements 11, 13 is a structure which extends radially outward in the manner of a branch and which in each case fills a semi-circle of the substrate 15.
- the branches of the first transmitting and / or receiving element 11 converge at a point 29 in the middle of the substrate, at which the first transmitting and / or receiving element 11 is connected to the connecting element.
- the branches of the second transmitting and / or receiving element 13 converge in a circular segment 31 near the center of the substrate, on which the second transmitting and / or receiving element 13 is connected to the connecting element.
- planar antenna structure shows a schematic representation of a further planar antenna structure.
- the planar antenna structure has two transmission and / or reception elements 33 arranged opposite one another, which are separated from one another by two further transmission and / or reception elements 35 arranged opposite one another.
- the circular surface of the substrate 15 is thereby divided into four quarter circles.
- transmission and / or reception elements 37 e.g. according to their function.
- all transmitting and / or receiving elements 37 arranged in the right part of the substrate and all transmitting and / or receiving elements 37 arranged in the left part can be interconnected to form a functional block.
- the assignment is symbolically entered in FIG. 4 by marking one half of the transmitting and / or receiving elements 37 with a cross.
- the embodiment of the antenna according to the invention with a planar antenna structure which has at least two transmission and / or reception elements offers a high degree of flexibility with regard to the use of the individual transmission and / or reception elements.
- At least one of the transmitting and / or receiving elements preferably serves exclusively as a receiver. It is thereby achieved that an interference signal caused by the transmission has decayed at the receiver much more quickly and has a much lower amplitude than would be the case if this transmission and / or reception signal were also used for transmission. Accordingly, the block distance of the level measuring device designed in this way is smaller.
- FIG. 6 The simplest form in which this can be implemented is shown in FIG. 6 in the form of a basic circuit diagram. All existing transmission and / or reception elements are divided into those which serve exclusively as transmitters designated as S in FIG. 6 and those which serve exclusively as receivers designated E in FIG. 6.
- the transmitters S are fed by the microwave generator 9 and the receivers E forward received signals received by you to the reception and evaluation circuit 41.
- the reception and evaluation circuit 41 determines the running time of the microwaves from the level measuring device to the product surface and back and determines the instantaneous level from this. This requires a time reference, which is only symbolically represented in FIG. 6 by a reference time t 0 .
- the reference time t 0 is, for example, a trigger pulse which at the same time triggers the transmission of a microwave pulse and starts an internal time measurement in the reception and evaluation circuit 41.
- the first transmitting and / or receiving element 11 serve exclusively as a transmitter and the second transmitting and / or receiving element 13 exclusively as a receiver.
- the two transmitting and / or receiving elements 33 can only serve as transmitters and the two transmitting and / or receiving elements 35 can only serve as receivers.
- the transmitting and / or receiving elements 37 provided with a cross can only serve as transmitters and the transmitting and / or receiving elements 37 without a cross can only serve as receivers. The separation of transmitter and receiver results in a significant reduction in the block distance.
- a test measurement can therefore be carried out during commissioning, which serves to determine the measuring range in which the fill level is. Then, in normal measuring operation, the level last measured, for example, can be used to determine this. As soon as the fill level comes close to the close range, at least one transmitting and / or receiving element is used exclusively as a receiver. In the far range, all transmitting and / or receiving elements are used as transmitters and receivers.
- FIG. 7 shows a basic circuit diagram of a fill level measuring device according to the invention, in which a part of the transmitting and / or receiving elements serve exclusively as a transmitter and the other transmitting and / or receiving elements serve exclusively as a receiver for measurements in the close range, and all transmitters are used for measurements in the far range - And / or receive elements serve as transmitters and receivers.
- the microwave generator 9 is connected via a directional coupler or circulator 43 to those transmitting and / or receiving elements denoted by S in FIG. 7, which serve exclusively as transmitters for measurements in the close range.
- the reception and evaluation circuit 41 for measurements in the close range is connected to those transmit and / or receive elements designated E in FIG. 7, which serve exclusively as receivers for measurements in the close range.
- the basic circuit diagram thus corresponds to the basic circuit diagram shown in FIG. 6.
- all of the transmitting and / or receiving elements are interconnected via a line 45 connecting the two functional blocks.
- the line 45 is provided with an electronic switch 47, which is open for a measurement in the close range and closed for a measurement in the far range.
- a switch 49 is provided in the connection between the receiving and evaluating circuit 41 and the transmitting and / or receiving elements E that serve exclusively as a receiver for a measurement in the near range, which switch 49 is closed for measurements in the near range and is open for measurements in the far range.
- the line 45 is brought together with the signals received by the transmitting and / or receiving elements S and led via the directional coupler or ziculator 43 via a connection 53 provided with a switch 51 to the receiving and evaluating circuit 41.
- the switch 51 is open for a measurement in the near range and closed for a measurement in the far range.
- the switches 47, 49, 51 are controlled by a control circuit 55, which is connected to the reception and evaluation circuit 41.
- the instantaneous fill level is determined in the reception and evaluation circuit 41 and e.g. compared to a reference value. If the fill level is above this reference value, the subsequent measurement is carried out as a measurement in the near range in that the control circuit 55 sets the associated switch positions by means of control signals. If the fill level is below this reference value, the subsequent measurement is carried out as a measurement in the far range in that the control circuit 55 sets the associated switch positions by means of control signals.
- a hysteresis function can be installed here, e.g. two different reference values are used, with a drop below the lower reference value only causing a change from the short-range mode to the long-range mode and only a transition from the long-range mode into the short-range mode causing the upper reference value to be exceeded.
- FIG. 8 shows a further basic circuit diagram for a level measuring device according to the invention.
- this fill level measuring device at least one transmitting and / or receiving element S is used exclusively as a transmitter. These transmitting and / or receiving elements S are connected to the microwave generator 9. The remaining transmission and / or reception elements E serve exclusively as receivers and are connected to an input of the reception and evaluation circuit 41.
- a difference-forming unit 57 is provided, which determines a difference signal which corresponds to the difference between transmission signals applied to the transmitters and reception signals received by the receivers.
- an input of the difference-forming unit 57 is connected to the microwave generator 9 and a further input is connected to the transmitting and / or receiving elements E.
- the difference can be made either by Corresponding direct superimposition of the signals take place or by the incoming signals being recorded and recorded in digital form.
- the difference between the recorded data is then carried out, for example, using a microcomputer.
- a delay unit 59 and a damping unit 61 are provided, which allow the signal coming from the microwave generator 9 to be delayed and damped by an adjustable delay time T and a damping factor ⁇ .
- T and a damping factor ⁇ can either be carried out in an analog manner by means of corresponding electronic components or can be carried out arithmetically on the stored data.
- the difference signal serves to improve the measurement accuracy and is fed to the reception and evaluation unit 41 for this purpose. For example, a small crosstalk existing despite the separation of transmitters and receivers from the transmitters to the receivers can be almost completely corrected by correspondingly superimposing the received signals with the difference signals.
- the required data of the level measuring device e.g. The delay time T and the damping factor ⁇ can be determined by means of a factory calibration and stored permanently in the device.
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Thermal Sciences (AREA)
- Fluid Mechanics (AREA)
- General Physics & Mathematics (AREA)
- Radar Systems Or Details Thereof (AREA)
- Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
Abstract
The invention relates to a level meter, which operates while using microwaves, for measuring the level of a filling material (5) in a container (1) and which requires only one antenna (7) of the simplest possible design, and in which a minimum distance of the filling material (5) from the antenna (7) required for conducting a measurement is as short as possible. The inventive level meter comprises a microwave generator (39) and an antenna (7) having a planar antenna structure, which serves to emit microwaves toward the filling material (5) and to receive microwaves reflected by a surface of the filling material. To this end, said planar structure has at least two emitting and/or receiving elements (11, 13, 33, 35, 37, S, E).
Description
Füllstandsmeßgerät level meter
Die Erfindung betrifft ein mit Mikrowellen arbeitendes Füilstandsmeßgerät zur Messung eines Füllstandes eines Füllgutes in einem Behälter mit einem Mikrowellengenerator und einer Antenne mit planarer Antennenstruktur, die dazu dient die Mikrowellen in Richtung des Füllgutes zu senden und an einer Füllgutoberfläche reflektierte Mikrowellen zu empfangen. Bei diesen Füllstandsmeßgeräten wird üblicher Weise mittels einer Empfangs- und Auswerteschaltung eine Laufzeit der Mikrowellen vom Gerät zur Füllgutoberfläche und zurück ermittelt und daraus der momentane Füllstand bestimmt.The invention relates to a level measuring device working with microwaves for measuring a level of a filling material in a container with a microwave generator and an antenna with a planar antenna structure, which serves to transmit the microwaves in the direction of the filling material and to receive microwaves reflected on a surface of the filling material. In these level measuring devices, a transit time of the microwaves from the device to the product surface and back is usually determined by means of a reception and evaluation circuit, and the instantaneous level is determined therefrom.
Bei der Füllstandsmessung werden Mikrowellen mittels einer Antenne zur Oberfläche eines Füllguts gesendet und an der Oberfläche reflektierte Echowellen empfangen. Es wird eine die Echoamplituden als Funktion der Entfernung darstellende Echofunktion gebildet, aus der das wahrscheinliche Nutzecho und dessen Laufzeit bestimmt werden. Aus der Laufzeit wird der Abstand zwischen der Füllgutoberfläche und der Antenne bestimmt.In the level measurement, microwaves are sent to the surface of a medium by means of an antenna and echo waves reflected on the surface are received. An echo function representing the echo amplitudes as a function of the distance is formed, from which the probable useful echo and its transit time are determined. The distance between the product surface and the antenna is determined from the transit time.
In der am 7.9.99 angemeldeten Europäischen Patentanmeldung mit der Anmeldenummer 99 11 7604.1 ist eine Antenne mit planarer Antennenstruktur beschrieben, die sich zur Füllstandsmessung eignet.The European patent application filed on September 7, 1999 with application number 99 11 7604.1 describes an antenna with a planar antenna structure that is suitable for level measurement.
Solche Planarantennen sind auch in dem Buch 'Einführung in die Theorie und Technik planarer Mikrowellenantennen in Mikrostreifenleitungstechnik' Gregor Gronau, Verlagsbuchhandlung Nellissen-Wolff oder in dem Zeitschriftenartikel 'Impedance of radiation slot in the ground plane of a microstrip line', IEEE Trans. Antennas Propagat., Vol AP-30, Seiten 922-926, Mai 1982 beschrieben.Such planar antennas are also in the book 'Introduction to the theory and technology of planar microwave antennas in microstrip line technology' Gregor Gronau, Nellissen-Wolff bookstore or in the journal article 'Impedance of radiation slot in the ground plane of a microstrip line', IEEE Trans.Antennas Propagat ., Vol AP-30, pages 922-926, May 1982.
Zur Bestimmung des Füllstandes können alle bekannten Verfahren angewendet werden, die es ermöglichen, verhältnismäßig kurze Entfernungen mittels reflektierter Mikrowellen zu messen. Die bekanntesten Beispiele sind das Pulsradar und das Frequenzmodulations-Dauerstrichradar (FMCW-Radar).To determine the fill level, all known methods can be used which make it possible to measure relatively short distances using reflected microwaves. The best known examples are the pulse radar and the frequency modulation continuous wave radar (FMCW radar).
Beim Pulsradar werden periodisch kurze Mikrowellen-Sendeimpulse, im folgenden als Wellenpakete bezeichnet, gesendet, die von der Füllgutoberfläche reflektiert
und nach einer abstandsabhängigen Laufzeit wieder empfangen werden. Die empfangene Signalamplitude als Funktion der Zeit stellt die Echofunktion dar. Jeder Wert dieser Echofunktion entspricht der Amplitude eines in einem bestimmten Abstand von der Antenne reflektierten Echos.In the case of pulse radar, short microwave transmission pulses, referred to below as wave packets, are transmitted periodically, which are reflected by the product surface and be received again after a distance-dependent runtime. The received signal amplitude as a function of time represents the echo function. Each value of this echo function corresponds to the amplitude of an echo reflected at a certain distance from the antenna.
Beim FMCW- Verfahren wird eine kontinuierliche Mikrowelle gesendet, die periodisch linear frequenzmoduliert ist, beispielsweise nach einer Sägezahnfunktion. Die Frequenz des empfangenen Echosignals weist daher gegenüber der Augenblicksfrequenz, die das Sendesignal zum Zeitpunkt des Empfangs hat, eine Frequenzdifferenz auf, die von der Laufzeit des Echosignals abhängt. Die Frequenzdifferenz zwischen Sendesignal und Empfangssignal, die durch Mischung beider Signale und Auswertung des Fourierspektrums des Mischsignals gewonnen werden kann, entspricht somit dem Abstand der reflektierenden Fläche von der Antenne. Ferner entsprechen die Amplituden der Spektrallinien des durch Fouriertransformation gewonnenen Frequenzspektrums den Echoamplituden. Dieses Fourierspektrum stellt daher in diesem Fall die Echofunktion dar.In the FMCW method, a continuous microwave is transmitted, which is periodically linearly frequency-modulated, for example according to a sawtooth function. The frequency of the received echo signal therefore has a frequency difference compared to the instantaneous frequency that the transmission signal has at the time of reception, which depends on the transit time of the echo signal. The frequency difference between the transmitted signal and the received signal, which can be obtained by mixing both signals and evaluating the Fourier spectrum of the mixed signal, thus corresponds to the distance of the reflecting surface from the antenna. Furthermore, the amplitudes of the spectral lines of the frequency spectrum obtained by Fourier transformation correspond to the echo amplitudes. This Fourier spectrum therefore represents the echo function in this case.
Bei der Füllstandsmessung mit nur einer Antenne tritt das Problem auf, daß eine sinnvolle Füllstandsmessung nur dann möglich ist, wenn der Füllstand eine Mindestentfernung zur Antenne nicht unterschreitet. Diese Mindestentfernung, die häufig auch als Blockdistanz bezeichnet wird, ist dadurch bedingt, daß ein durch das Senden bedingtes Empfangssignal erst auf eine unterhalb der Echoamplitude liegende Amplitude abgeklungen sein muß, bevor das von der Füllgutoberfläche reflektierte Echosignal zuverlässig erkannt und ausgewertet werden kann.The problem with level measurement with only one antenna arises that a meaningful level measurement is only possible if the level does not fall below a minimum distance from the antenna. This minimum distance, which is often also referred to as the block distance, is due to the fact that a received signal caused by the transmission must first have decayed to an amplitude below the echo amplitude before the echo signal reflected from the product surface can be reliably recognized and evaluated.
Dieses Problem läßt sich weitestgehend lösen, indem zwei getrennte Antennen eingesetzt werden, von denen eine zum Senden und eine zum Empfangen von Mikrowellen dient. Diese Lösung setzt aber voraus, daß am Behälter zwei Öffnungen in passendem Abstand vorhanden sind, durch die die beiden Antenne eingeführt werden können. Dies ist jedoch bei den meisten Anwendungen nicht der Fall.This problem can be largely solved by using two separate antennas, one for transmitting and one for receiving microwaves. This solution requires, however, that there are two openings on the container at a suitable distance through which the two antennas can be inserted. However, this is not the case for most applications.
In der EP-B 592 584 ist ein mit Mikrowellen arbeitendes Füllstandsmeßgerät beschrieben mitEP-B 592 584 describes a level measuring device working with microwaves
- einem Mikrowellengenerator und- a microwave generator and
- einer Antenne ,
-- die dazu dient die Mikrowellen in Richtung des Füllgutes zu senden und an einer Füllgutoberfläche reflektierte Mikrowellen zu empfangen,- an antenna, which serves to send the microwaves in the direction of the filling material and to receive microwaves reflected on a filling material surface,
- in der ein Sendeelement und ein Empfangselement angeordnet sind.- In which a transmitting element and a receiving element are arranged.
Ein Übersprechen vom Sender auf den Empfänger wird hier reduziert, indem in einer ersten Polarisationsebene linear polarisierte Mikrowellen erzeugt und durch einen Phasenschieber geleitet werden. Der Phasenschieber ist so dimensioniert, daß die austretenden Mikrowellen z.B. links-zirkular polarisiert sind. Durch die Reflektion an der Füllgutoberfläche werden dann entsprechend rechts-zirkular polarisierte Mikrowellen empfangen und mittels des Phasenschiebers in linear polarisierte Mikrowellen umgewandelt. Die Polarisationsebene dieser Mikrowellen liegt senkrecht zur ersten Polarisationsebene. Der Empfänger ist so ausgebildet, daß er nur Mikrowellen mit dieser Polarisation empfängt, entlang der ersten Polarisationsebene polarisierte Mikrowellen jedoch nicht aufnimmt.Crosstalk from the transmitter to the receiver is reduced here by generating linearly polarized microwaves in a first polarization plane and passing them through a phase shifter. The phase shifter is dimensioned so that the emerging microwaves e.g. are left circularly polarized. The right-hand circularly polarized microwaves are then received by the reflection on the product surface and converted into linearly polarized microwaves by means of the phase shifter. The polarization plane of these microwaves is perpendicular to the first polarization plane. The receiver is designed such that it only receives microwaves with this polarization, but does not pick up microwaves polarized along the first polarization plane.
Eine solche Antenne ist jedoch sehr aufwendig in der Herstellung, da sie entsprechende Filter und Phasenschieber benötigt. Außerdem ist sie hierdurch verhältnismäßig groß und es geht durch jeden Durchgang der Mikrowellen durch einen Filter oder Phasenschieber Leistung verloren.However, such an antenna is very complex to manufacture because it requires appropriate filters and phase shifters. It is also relatively large and power is lost each time the microwaves pass through a filter or phase shifter.
Es ist eine Aufgabe der Erfindung ein mit Mikrowellen arbeitendes Füllstandsmeßgerät anzugeben, das mit einer einzigen möglichst einfach aufgebauten Antenne auskommt und bei dem ein zur Messung erforderlicher Mindestabstand des Füllgutes zur Antenne möglichst gering ist.It is an object of the invention to provide a level measuring device working with microwaves, which manages with a single antenna that is as simple as possible and in which a minimum distance of the filling material from the antenna required for measurement is as small as possible.
Hierzu besteht die Erfindung in einem mit Mikrowellen arbeitenden Füllstandsmeßgerät zur Messung eines Füllstandes eines Füllgutes in einem Behälter mitFor this purpose, the invention consists in a level measuring device working with microwaves for measuring a level of a filling material in a container
- einem Mikrowellengenerator,- a microwave generator,
- einer Antenne mit planarer Antennenstruktur,an antenna with a planar antenna structure,
- die dazu dient die Mikrowellen in Richtung des Füllgutes zu senden und an einer Füllgutoberfläche reflektierte Mikrowellen zu empfangen,which serves to send the microwaves in the direction of the filling material and to receive microwaves reflected on a filling material surface,
-- bei der die planare Antennenstruktur mindestens zwei Sende- und/oder Empfangselemente aufweist.
Gemäß einer Ausgestaltung befinden sich die Sende- und/oder Empfangselemente jeweils in einem Teilbereich der Antenne.- In which the planar antenna structure has at least two transmitting and / or receiving elements. According to one embodiment, the transmitting and / or receiving elements are each located in a partial area of the antenna.
Gemäß einer Ausgestaltung sind die Sende- und/oder Empfangselemente ineinander verschachtelt angeordnet.According to one embodiment, the transmitting and / or receiving elements are arranged nested in one another.
Gemäß einer Ausgestaltung dient zur Messung eines Füllstandes in einem Nahbereich vor der Antenne mindestens eines der Sende- und/oder Empfangselemente ausschließlich als Empfänger.According to one embodiment, at least one of the transmitting and / or receiving elements is used exclusively as a receiver for measuring a fill level in a close range in front of the antenna.
Gemäß einer Weiterbildung dienen zur Messung eines Füllstandes in einem Fernbereich vor der Antenne alle Sende- und/oder Empfangselemente als Sender und als Empfänger.According to a further development, all of the transmitting and / or receiving elements serve as transmitters and receivers for measuring a fill level in a remote area in front of the antenna.
Gemäß einer Weiterbildung dient mindestens ein Sende- und/oder Empfangselement ausschließlich als Sender und die übrigen Sende- und/oder Empfangselemente dienen ausschließlich als Empfänger, und es wird ein Differenzsignal ermittelt, das der Differenz aus an den Sendern anliegenden Sendesignalen und von den Empfängern empfangenen Empfangssignalen entspricht.According to a further development, at least one transmitting and / or receiving element serves exclusively as a transmitter and the other transmitting and / or receiving elements serve exclusively as a receiver, and a difference signal is determined which is the difference between the transmission signals applied to the transmitters and those received by the receivers Received signals corresponds.
Gemäß einer vorteilhaften Ausgestaltung weisen die zu sendenden Mikrowellen Frequenzen auf, die größer als 20 GHz sind.According to an advantageous embodiment, the microwaves to be transmitted have frequencies that are greater than 20 GHz.
Ein Vorteil der Erfindung besteht darin, daß die Antenne durch die planare Antennenstruktur ein sehr hohes Maß an Flexibilität liefert. Die Antennenstruktur kann nach belieben in mehrere Sende- und/oder Empfangselemente aufgeteilt werden und jedes Sende- und/oder Empfangselement kann optimal genutzt werden. Hierdurch steht z.B. bei Messungen im Fernbereich eine hohe Sendeleistung zur Verfügung und bei Messungen im Nahbereich ist durch die Aufteilung der Sende- und/oder Empfangselemente in reine Sendeelemente und reine Empfangselemente ein Übersprechen vom Sender zum Empfänger deutlich reduziert. Der einzige zusätzliche Aufwand, der zur Nutzung dieser Vorteile erforderlich ist, ist eine entsprechende Beschaltung der einzelnen Sende- und/oder Empfangselemente. Diese ist einfach zu bewerkstelligen und hat keinerlei Leistungseinbußen zur Folge.
Die Erfindung und weitere Vorteile werden nun anhand der Figuren der Zeichnung, in denen vier Ausführungsbeispiele dargestellt sind, näher erläutert; gleiche Teile sind in den Figuren mit gleichen Bezugszeichen versehen.An advantage of the invention is that the antenna provides a very high degree of flexibility due to the planar antenna structure. The antenna structure can be divided at will into several transmitting and / or receiving elements and each transmitting and / or receiving element can be used optimally. As a result, a high transmission power is available, for example, for measurements in the long range, and for measurements in the close range, crosstalk from the transmitter to the receiver is significantly reduced by dividing the transmitting and / or receiving elements into pure transmitting elements and pure receiving elements. The only additional effort that is required to use these advantages is a corresponding wiring of the individual transmitting and / or receiving elements. This is easy to do and does not result in any loss of performance. The invention and further advantages will now be explained in more detail with reference to the figures of the drawing, in which four exemplary embodiments are shown; Identical parts are provided with the same reference symbols in the figures.
Fig. 1 zeigt schematisch eine Meßanordnung mit einem auf einem Behälter angeordneten mit Mikrowellen arbeitenden Füllstandsmeßgerät;Fig. 1 shows schematically a measuring arrangement with a level measuring device arranged on a container and working with microwaves;
Fig. 2 zeigt eine schematische Darstellung einer planaren Antennenstruktur, die ein erstes Sende- und/oder Empfangselement und ein in einem anderen Teil der Antennenstruktur angeordnetes zweites Sende- und/oder Empfangselement aufweist;2 shows a schematic illustration of a planar antenna structure which has a first transmitting and / or receiving element and a second transmitting and / or receiving element arranged in another part of the antenna structure;
Fjg. 3 zeigt eine schematische Darstellung einer planaren Antennenstruktur, die zwei einander gegenüberliegend angeordnete Sende- und/oder Empfangselemente aufweist, die durch zwei weitere einander gegenüberliegend angeordnete Sende- und/oder Empfangselemente voneinander getrennt sind;Fig. 3 shows a schematic representation of a planar antenna structure which has two transmission and / or reception elements arranged opposite one another, which are separated from one another by two further transmission and / or reception elements arranged opposite one another;
Fig. 4 zeigt eine schematische Darstellung einer planaren Antennenstruktur, die eine Vielzahl von in einer ersten Antennen hälfte angeordneten Sende- und/oder Empfangselementen und eine Vielzahl von in einer zweite Antennenhälfte angeordneten Sende- und/oder Empfangselementen aufweist;Fig. 4 shows a schematic representation of a planar antenna structure which has a plurality of transmitting and / or receiving elements arranged in a first antenna half and a plurality of transmitting and / or receiving elements arranged in a second antenna half;
Fig. 5 zeigt eine schematische Darstellung einer planaren Antennenstruktur, die eine Vielzahl von schachbrettartig ineinander verschachtelt angeordneten Sende- und/oder Empfangselementen aufweist;5 shows a schematic representation of a planar antenna structure which has a plurality of transmission and / or reception elements arranged in a chessboard-like manner and nested in one another;
Fig. 6 zeigt ein Prinzipschaltbild eines erfindungsgemäßen Füllstandsmeßgeräts, bei dem einige Sende- und/oder Empfangselemente als Sender und einige Sende- und/oder Empfangselemente als Empfänger arbeiten;6 shows a basic circuit diagram of a fill level measuring device according to the invention, in which some transmitting and / or receiving elements operate as transmitters and some transmitting and / or receiving elements operate as receivers;
Fig. 7 zeigt ein Prinzipschaltbild eines erfindungsgemäßen Füllstandsmeßgeräts, bei dem bei Messungen in Nahbereich ein Teil der Sende- und/oder Empfangselemente ausschließlich als Sender und die übrigen Sende- und/oder Empfangselemente ausschließlich als Empfänger dienen und bei der bei Messungen im Fernbereich alle Sende- und/oder Empfangselemente als Sender und als Empfänger dienen; und
Fig. 8 zeigt ein Prinzipschaltbild eines erfindungsgemäßen Füllstandsmeßgeräts, bei dem einige Sende- und/oder Empfangselemente als Sender und einige Sende- und/oder Empfangselemente als Empfänger arbeiten und eine Differenz aus einem Sendesignal und Empfangssignal gebildet wird, die zur Bestimmung des Füllstandes mit herangezogen wird.FIG. 7 shows a basic circuit diagram of a fill level measuring device according to the invention, in which a part of the transmitting and / or receiving elements serve exclusively as a transmitter and the other transmitting and / or receiving elements serve exclusively as a receiver for measurements in the close range, and all transmitters are used for measurements in the far range - and / or receive elements serve as transmitters and receivers; and 8 shows a basic circuit diagram of a fill level measuring device according to the invention, in which some transmit and / or receive elements work as transmitters and some transmit and / or receive elements act as receivers and a difference is formed from a transmit signal and receive signal, which are used to determine the fill level becomes.
Fig. 1 zeigt schematisch eine Meßanordnung mit einem auf einem Behälter 1 angeordneten mit Mikrowellen arbeitenden Füllstandsmeßgerät 3. Das Füllstandsmeßgerät 3 ist z.B. mittels einer Flanschverbindung auf dem Behälter 1 befestigt. Der Behälter 1 ist mit einem Füllgut 5, dessen Füllstand zu messen ist, gefüllt.Fig. 1 shows schematically a measuring arrangement with a level measuring device 3 arranged on a container 1 and working with microwaves. The level measuring device 3 is e.g. attached to the container 1 by means of a flange connection. The container 1 is filled with a filling material 5, the filling level of which is to be measured.
Das Füllstandsmeßgerät 3 umfaßt eine Antenne 7, mit einer nachfolgend in Verbindung mit den in den Figuren 2 bis 5 dargestellten Ausführungsbeispielen näher beschriebenen planaren Antennenstruktur. Die Antenne 7 ragt in den Behälter 1 hinein und dient dazu Mikrowellen in Richtung des Füllgutes 5 zu senden und an einer Füllgutoberfläche reflektierte Mikrowellen zu empfangen. Hierzu weist die planare Antennenstruktur mindestens zwei Sende- und/oder Empfangselemente auf. Das Füllstandsmeßgerät 3 weist einen Mikrowellengenerator 9 auf. Als Mikrowellengenerator 9 eignet sich z.B. ein in planarer Schaltungstechnik aufgebautes Pulsradar-Gerät, ein in planarer Schaltungstechnik aufgebautes FMCW-Gerät oder ein in planarer Schaltungstechnik aufgebauter kontinuierlich schwingender Mikrowellen-Oszillator.The fill level measuring device 3 comprises an antenna 7, with a planar antenna structure described in more detail below in connection with the exemplary embodiments shown in FIGS. 2 to 5. The antenna 7 projects into the container 1 and serves to send microwaves in the direction of the filling material 5 and to receive microwaves reflected on a filling material surface. For this purpose, the planar antenna structure has at least two transmitting and / or receiving elements. The fill level measuring device 3 has a microwave generator 9. A suitable microwave generator 9 is e.g. a pulse radar device constructed in planar circuit technology, an FMCW device constructed in planar circuit technology or a continuously oscillating microwave oscillator constructed in planar circuit technology.
Der Mikrowellengenerator 9 speist jeweils diejenigen Sende- und/oder Empfangselemente, die entweder ausschließlich als Sender oder als Sender und als Empfänger dienen.The microwave generator 9 feeds those transmitting and / or receiving elements which either serve exclusively as transmitters or as transmitters and receivers.
Vorzugsweise werden Mikrowellen mit Frequenzen oberhalb von 20 GHz, z.B. 24 GHz, erzeugt und gesendet. Oberhalb von 20 GHz ist die Wellenlänge der Mikrowellen ausreichend gering, um verhältnismäßig kleine planare Antennenstrukturen verwenden zu können. Bei 24 GHz können z.B. auf einer Antennenstruktur mit einem Durchmesser von einigen Zentimetern bis zu ein bis zwei Dezimetern bequem mehrere Sende- und/oder Empfangselemente untergebracht sein. Diese geringen Abmessungen bieten den Vorteil, daß die
Antenne 7 entsprechend klein ist und somit leicht auch durch Behälteröffnungen von geringer Nennweite eingeführt werden kann.Microwaves with frequencies above 20 GHz, for example 24 GHz, are preferably generated and transmitted. Above 20 GHz, the wavelength of the microwaves is sufficiently short to be able to use relatively small planar antenna structures. At 24 GHz, for example, several transmitting and / or receiving elements can be accommodated comfortably on an antenna structure with a diameter of a few centimeters to one or two decimeters. These small dimensions offer the advantage that the Antenna 7 is correspondingly small and can therefore also be easily inserted through container openings of small nominal width.
Die Mikrowellen werden von den als Sender dienenden Sende- und/oder Empfangselementen zur Füllgutoberfläche gesendet und die an der Füllgutoberfläche reflektierten Mikrowellen werden von den als Empfänger dienenden Sende- und/oder Empfangselementen empfangen. Die eingehenden Mikrowellen werden einer Empfangs- und Auswerteschaltung 41 zugeführt, die eine Laufzeit der Mikrowellen zur Füllgutoberfläche und zurück ermittelt und daraus den momentanen Füllstand bestimmt.The microwaves are transmitted from the transmitting and / or receiving elements serving as transmitters to the product surface and the microwaves reflected on the product surface are received by the transmitting and / or receiving elements serving as receivers. The incoming microwaves are fed to a receiving and evaluation circuit 41, which determines the transit time of the microwaves to the product surface and back and determines the instantaneous fill level therefrom.
Fig. 2 zeigt schematisch ein Ausführungsbeispiel einer planaren Antennenstruktur, die ein erstes, in Fig. 2 durch durchgezogenen Linien dargestelltes, und ein zweites, in Fig. 2 durch gepunktete Linien dargestelltes, Sende- und/oder Empfangselement 11 , 13 aufweist. Die Sende- und/oder Empfangselemente 11 , 13 sind metallische Strukturen, die auf einer vom Füllgut 5 abgewandten Seite eines dielektrischen Substrats 15 aufgebracht sind. Auf einer dem Füllgut zugewandten Seite des dielektrischen Substrats ist eine leitfähige Schicht 17, z.B. in Form einer Beschichtung des dielektrischen Substrats 15, vorgesehen, die Ausnehmungen 19 aufweist, deren Form und Anordnung vorzugsweise so gewählt ist, daß nur elektromagnetische Wellen eines gewünschten Modes abgestrahlt werden. In dem dargestellten Ausführungbeispiel sind die ! FIG. 2 schematically shows an exemplary embodiment of a planar antenna structure which has a first transmitting and / or receiving element 11, 13, shown by solid lines in FIG. 2, and a second, shown by dotted lines in FIG. 2. The transmitting and / or receiving elements 11, 13 are metallic structures which are applied to a side of a dielectric substrate 15 facing away from the filling material 5. On a side of the dielectric substrate facing the filling material, a conductive layer 17, for example in the form of a coating of the dielectric substrate 15, is provided, which has recesses 19, the shape and arrangement of which is preferably selected such that only electromagnetic waves of a desired mode are emitted , In the example shown, they are !
Ausnehmungen 19 sich radial nach außen erstreckende Schlitze, die zum Senden des TE-01 Modes besonders geeignet sind.Recesses 19 slots extending radially outwards, which are particularly suitable for transmitting the TE-01 mode.
Auf einer von dem dielektrischen Substrat 15 abgewandten Seite der leitfähigen Schicht 17 ist eine Schutzschicht 21 vorgesehen, die aus einem Dielektrikum besteht. Diese Schutzschicht 21 bildet den Abschluß der Antenne in füllgutzugewandter Richtung. Als Dielektrikum ist daher vorzugsweise ein chemisch beständiger Werkstoff, z.B. Polytetrafluorethylen (PTFE) oder ein Verbundwerkstoff aus Polytetrafluorethylen und Keramik und/oder Glasfaser, einzusetzten.A protective layer 21, which consists of a dielectric, is provided on a side of the conductive layer 17 facing away from the dielectric substrate 15. This protective layer 21 forms the termination of the antenna in the direction facing the product. The dielectric is therefore preferably a chemically resistant material, e.g. Polytetrafluoroethylene (PTFE) or a composite material made of polytetrafluoroethylene and ceramic and / or glass fiber.
Auf einer von der leitfähigen Schicht 17 und im Betrieb vom Füllgut 5 abgewandten Seite des Substrats 15 ist eine weitere dielektrische Scheibe 23 vorgesehen. Die Scheibe 23 weist eine Ausnehmung 25 auf, durch die ein in Fig. 2 nicht dargestelltes Anschlußelement eingeführt werden kann. Das Anschlußelement ist so auszubilden, daß es eine Verbindung zu jedem Sende-
und/oder Empfangselement 11 , 13 herstellt. Vorzugsweise erfolgt der elektrische Anschluß der leitfähigen Schicht 17 an Masse oder an ein festes Bezugspotential ebenfalls über dieses Anschlußelement.A further dielectric disk 23 is provided on a side of the substrate 15 facing away from the conductive layer 17 and in operation from the filling material 5. The disk 23 has a recess 25 through which a connection element (not shown in FIG. 2) can be inserted. The connection element must be designed so that it connects to each transmission and / or receiving element 11, 13. The electrical connection of the conductive layer 17 to ground or to a fixed reference potential is preferably also carried out via this connection element.
Hierzu können entweder in dem Substrat durchgehende Bohrungen 27 vorgesehen sein, durch die entsprechend geformte und angeordnete Stifte des Anschlußelements hindurch zu der leitfähigen Schicht 17 geführt werden können, oder es können an der gleichen Stelle mit der leitfähigen Schicht 17 verbundene Kontaktstifte durch das Substrat 15 hindurch geführt sein.For this purpose, either through holes 27 can be provided in the substrate, through which appropriately shaped and arranged pins of the connecting element can be guided to the conductive layer 17, or contact pins connected to the conductive layer 17 can pass through the substrate 15 at the same location be led.
In dem in Fig. 2 dargestellten Ausführungsbeispiel ist das erste Sende- und/oder Empfangselement 11 in einem ersten Teil der Antennenstruktur und das zweite Sende- und/oder Empfangselement 13 in einem zweiten Teil der Antennenstruktur angeordnet. Jedes der Sende- und/oder Empfangselemente 11 , 13 ist eine sich astartig radial nach außen erstreckende Struktur, die jeweils einen Halbkreis des Substrats 15 füllt. Die Äste des ersten Sende- und/oder Empfangselements 11 laufen in einem Punkt 29 in der Mitte des Substrats zusammen, an dem der Anschluß des ersten Sende- und/oder Empfangselements 11 mit dem Anschlußelement erfolgt. Die Äste des zweiten Sende- und/oder Empfangselments 13 laufen in einem Kreissegment 31 nahe der Mitte des Substrats zusammen, an dem der Anschluß des zweiten Sende- und/oder Empfangselements 13 mit dem Anschlußelement erfolgt.In the exemplary embodiment shown in FIG. 2, the first transmitting and / or receiving element 11 is arranged in a first part of the antenna structure and the second transmitting and / or receiving element 13 is arranged in a second part of the antenna structure. Each of the transmitting and / or receiving elements 11, 13 is a structure which extends radially outward in the manner of a branch and which in each case fills a semi-circle of the substrate 15. The branches of the first transmitting and / or receiving element 11 converge at a point 29 in the middle of the substrate, at which the first transmitting and / or receiving element 11 is connected to the connecting element. The branches of the second transmitting and / or receiving element 13 converge in a circular segment 31 near the center of the substrate, on which the second transmitting and / or receiving element 13 is connected to the connecting element.
Fig. 3 zeigt eine schematische Darstellung einer weiteren planaren Antennenstruktur. Es ist hier der Einfachheit halber nur das Substrat 15 mit der darauf aufgebrachten Struktur dargestellt. Die anderen Komponenenten können identisch aus dem vorherigen Ausführungsbeispiel übernommen werden. Die planare Antennestruktur weist zwei einander gegenüberliegend angeordnete Sende- und/oder Empfangselemente 33 auf, die durch zwei weitere einander gegenüberliegend angeordnete Sende- und/oder Empfangselemente 35 voneinander getrennt sind. Die kreisförmige Oberfläche des Substrats 15 wird hierdurch in vier Viertelkreise aufgeteilt. Durch entsprechende Ausbildung des Anschlußelements können die vier Sende- und/oder Empfangselemente 33, 35 entweder jeweils einzeln oder paarweise angeschlossen werden.3 shows a schematic representation of a further planar antenna structure. For the sake of simplicity, only the substrate 15 with the structure applied thereon is shown. The other components can be adopted identically from the previous embodiment. The planar antenna structure has two transmission and / or reception elements 33 arranged opposite one another, which are separated from one another by two further transmission and / or reception elements 35 arranged opposite one another. The circular surface of the substrate 15 is thereby divided into four quarter circles. By appropriately designing the connecting element, the four transmitting and / or receiving elements 33, 35 can be connected either individually or in pairs.
In den Figuren 4 und 5 sind zwei weitere Ausführungsbeispiele von planaren Antennenstrukturen dargestellt, die jeweils eine Vielzahl von Sende- und/oder Empfangselementen 37 aufweisen. Es ist auch bei diesen Ausführungsbeispielen
der Einfachheit halber nur das Substrat 15 mit der darauf aufgebrachten Struktur dargestellt. Die anderen Komponenenten können identisch aus dem vorherigen Ausführungsbeispiel übernommen werden.FIGS. 4 and 5 show two further exemplary embodiments of planar antenna structures, each of which has a large number of transmission and / or reception elements 37. It is also in these embodiments for the sake of simplicity, only the substrate 15 is shown with the structure applied thereon. The other components can be adopted identically from the previous embodiment.
Jedes Sende- und/oder Empfangselement 37 nimmt eine im Vergleich zur Substratoberfläche kleine Fläche ein und ist symbolisch durch ein Kästchen dargestellt. Natürlich kann auch hier jedes Sende- und/oder Empfangselement 37 einzeln angeschlossen werden, indem z.B. in der dielektrischen Schicht 23 entsprechend viele Bohrungen vorgesehen werden, durch die der Anschluß erfolgt.Each transmitting and / or receiving element 37 occupies a small area compared to the substrate surface and is symbolically represented by a box. Of course, each transmitting and / or receiving element 37 can also be connected individually here, for example by A corresponding number of bores through which the connection is made are provided in the dielectric layer 23.
Vorzugsweise erfolgt jedoch der Zusammenschluß mehrer Sende- und/oder Empfangselemente 37, z.B. nach deren Funktion. So können z.B. wie in Fig. 4 dargestellt, alle im rechten Teil des Substrats angeordneten Sende- und/oder Empfangselemente 37 und alle im linken Teil angeordneten Sende- und/oder Empfangselemente 37 zu einem Funktionsblock zusammengeschaltet sein. Die Zuordnung ist in Fig. 4 symbolisch eingetragen, indem die eine Hälfte der Sende- und/oder Empfangselemente 37 mit einem Kreuz markiert wurde.Preferably, however, several transmission and / or reception elements 37, e.g. according to their function. For example, As shown in FIG. 4, all transmitting and / or receiving elements 37 arranged in the right part of the substrate and all transmitting and / or receiving elements 37 arranged in the left part can be interconnected to form a functional block. The assignment is symbolically entered in FIG. 4 by marking one half of the transmitting and / or receiving elements 37 with a cross.
Bei dem in Fig. 5 dargestellten Ausführungsbeispiel ist ebenfalls eine solche Zuordnung zu Funktionsblöcken durch Kreuze markiert. Hier sind zwei Funktionsblöcke vorgesehen und die zugehörigen Sende- und/oder Empfangselemente 37 sind schachbrettartig ineinander verschachtelt angeordnet.In the exemplary embodiment shown in FIG. 5, such an assignment to function blocks is also marked by crosses. Two function blocks are provided here and the associated transmitting and / or receiving elements 37 are arranged in a chessboard-like manner, nested within one another.
Die erfindungsgemäße Ausbildung der Antenne mit einer planaren Antennenstruktur, die mindestens zwei Sende- und/oder Empfangselemente aufweist bietet ein hohes Maß an Flexibilität hinsichtlich der Nutzung der einzelnen Sende- und/oder Empfangselemente.The embodiment of the antenna according to the invention with a planar antenna structure which has at least two transmission and / or reception elements offers a high degree of flexibility with regard to the use of the individual transmission and / or reception elements.
Vorzugsweise dient bei einer Messung eines Füllstandes in einem Nahbereich vor der Antenne 7 mindestens eines der Sende- und/oder Empfangselemente ausschließlich als Empfänger. Hierdurch wird erreicht, das ein durch das Senden verursachtes Störsignal am Empfänger sehr viel schneller Abgeklungen ist und eine sehr viel geringere Amplitude aufweist, als dies der Fall wäre, wenn dieses Sende- und/oder Empfangssignal auch zum Senden dienen würde. Entsprechend ist die Blockdistanz des so ausgebildeten Füllstandsmeßgeräts geringer.
Die einfachste Form, in der dies realisiert werden kann ist in Fig. 6 in Form eines Prinzipschaltbildes dargestellt. Es sind alle vorhandenen Sende- und/oder Empfangselemente eingeteilt in solche, die ausschließlich als iin Fig. 6 mit S bezeichnete Sender dienen und solche die ausschließlich als in Fig. 6 mit E bezeichnete Empfänger dienen. Die Sender S werden von dem Mikrowellengenerator 9 gespeist und die Empfänger E leiten von Ihnen empfangene Empfangssignale an die Empfangs- und Auswerteschaltung 41 weiter. Die Empfangs- und Auswerteschaltung 41 ermittelt die Laufzeit der Mikrowellen vom Füllstandsmeßgerät zur Füllgutoberfläche und zurück und bestimmt daraus den momentanen Füllstand. Hierzu ist ein Zeitbezug erforderlich, der in Fig. 6 lediglich symbolisch durch eine Referenzzeit t0 dargestellt ist. Die Refere zzeit t0 ist beispielsweise ein Triggerimpuls, der gleichzeitig das Senden eines Mikrowellenpulses auslöst und eine interne Zeitmessung in der Empfangs- und Auswerteschaltung 41 startet.When measuring a fill level in a close range in front of the antenna 7, at least one of the transmitting and / or receiving elements preferably serves exclusively as a receiver. It is thereby achieved that an interference signal caused by the transmission has decayed at the receiver much more quickly and has a much lower amplitude than would be the case if this transmission and / or reception signal were also used for transmission. Accordingly, the block distance of the level measuring device designed in this way is smaller. The simplest form in which this can be implemented is shown in FIG. 6 in the form of a basic circuit diagram. All existing transmission and / or reception elements are divided into those which serve exclusively as transmitters designated as S in FIG. 6 and those which serve exclusively as receivers designated E in FIG. 6. The transmitters S are fed by the microwave generator 9 and the receivers E forward received signals received by you to the reception and evaluation circuit 41. The reception and evaluation circuit 41 determines the running time of the microwaves from the level measuring device to the product surface and back and determines the instantaneous level from this. This requires a time reference, which is only symbolically represented in FIG. 6 by a reference time t 0 . The reference time t 0 is, for example, a trigger pulse which at the same time triggers the transmission of a microwave pulse and starts an internal time measurement in the reception and evaluation circuit 41.
Es kann z.B. bei dem in Fig. 2 dargestellten Ausführungsbeispiel das erste Sende- und/oder Empfangselement 11 ausschließlich als Sender und das zweite Sende- und/oder Empfangselement 13 ausschließlich als Empfänger dienen. Bei dem in Fig. 3 dargestellten Ausführungsbeispiel können die beiden Sende- und/oder Empfangselement 33 ausschließlich als Sender und die beiden Sende- und/oder Empfangselement 35 ausschließlich als Empfänger dienen. Bei dem in den Figuren 4 und 5 dargestellten Ausführungsbeispielen können die mit einem Kreuz versehenen Sende- und/oder Empfangselemente 37 ausschließlich als Sender und die Sende- und/oder Empfangselemente 37 ohne Kreuz ausschließlich als Empfänger dienen. Die Trennung in Sender und Empfänger bewirkt eine deutliche Reduzierung der Blockdistanz.For example, in the exemplary embodiment shown in FIG. 2, the first transmitting and / or receiving element 11 serve exclusively as a transmitter and the second transmitting and / or receiving element 13 exclusively as a receiver. In the exemplary embodiment shown in FIG. 3, the two transmitting and / or receiving elements 33 can only serve as transmitters and the two transmitting and / or receiving elements 35 can only serve as receivers. In the exemplary embodiments illustrated in FIGS. 4 and 5, the transmitting and / or receiving elements 37 provided with a cross can only serve as transmitters and the transmitting and / or receiving elements 37 without a cross can only serve as receivers. The separation of transmitter and receiver results in a significant reduction in the block distance.
Bei einer Messung im Fernbereich vor der Antenne 7 steht allerdings in diesem Fall weniger Sendeleistung zur Verfügung. Während die Trennung in Sender und Empfänger im Nahbereich sehr wichtig ist, ist sie bei einer Messung im Fernbereich unerheblich, da die Laufzeit der Mikrowellen bei diesen Messungen groß ist im Vergleich zu der Zeit, in der ein durch das Senden verursachtes Störsignal abgeklungen ist. Vorzugsweise werden daher bei einer Messung eines Füllstandes in einem Fernbereich vor der Antenne 7 alle Sende- und/oder Empfangselemente als Sender und als Empfänger dienen. Ein Maß dafür, ob ein Messergebnis im Nahbereich oder im Fernbereich liegt ist z.B. die Blockdistanz, die das Füllstandmeßgerät aufweist, wenn alle Sende- und/oder
Empfangselemente als Sender und als Empfänger dienen. Es kann daher bei der Inbetriebnahme eine Testmesssung vorgenommen werden, die dazu dient festzustellen, in welchem Meßbereich sich der Füllstand befindet. Anschließend kann im normalen Meßbetrieb z.B. der zuletzt gemessene Füllstand herangezogen werden, um dies festzustellen. Sobald der Füllstand in die Nähe des Nahbereichs gelangt, wird mindestens ein Sende- und/oder Empfangselement ausschließlich als Empfänger eingesetzt. Im Fernbereich werden alle Sende- und/oder Empfangselemente als Sender und als Empfänger eingesetzt.In the case of a measurement in the far range in front of the antenna 7, however, less transmission power is available in this case. While the separation between transmitter and receiver in the near range is very important, it is irrelevant for a measurement in the far range, since the running time of the microwaves for these measurements is long compared to the time in which an interference signal caused by the transmission has decayed. Therefore, when measuring a fill level in a remote area in front of the antenna 7, all the transmitting and / or receiving elements are preferably used as transmitters and receivers. A measure of whether a measurement result is in the near range or in the far range is, for example, the block distance that the fill level measuring device has when all transmit and / or Receiving elements serve as transmitters and receivers. A test measurement can therefore be carried out during commissioning, which serves to determine the measuring range in which the fill level is. Then, in normal measuring operation, the level last measured, for example, can be used to determine this. As soon as the fill level comes close to the close range, at least one transmitting and / or receiving element is used exclusively as a receiver. In the far range, all transmitting and / or receiving elements are used as transmitters and receivers.
Fig. 7 zeigt ein Prinzipschaltbild eines erfindungsgemäßen Füllstandsmeßgeräts, bei dem bei Messungen in Nahbereich ein Teil der Sende- und/oder Empfangselemente ausschließlich als Sender und die übrigen Sende- und/oder Empfangselemente ausschließlich als Empfänger dienen und bei der bei Messungen im Fernbereich alle Sende- und/oder Empfangselemente als Sender und als Empfänger dienen.FIG. 7 shows a basic circuit diagram of a fill level measuring device according to the invention, in which a part of the transmitting and / or receiving elements serve exclusively as a transmitter and the other transmitting and / or receiving elements serve exclusively as a receiver for measurements in the close range, and all transmitters are used for measurements in the far range - And / or receive elements serve as transmitters and receivers.
Der Mikrowellengenerator 9 ist hier über einen Richtkoppler oder Zirkulator 43 mit denjenigen in Fig. 7 mit S bezeichneten Sende- und/oder Empfangselemten vebunden, die bei Messungen im Nahbereich ausschließlich als Sender dienen. Entsprechend ist die Empfangs- und Auswerteschaltung 41 bei Messungen im Nahbereich mit denjenigen in Fig. 7 mit E bezeichneten Sende- und/oder Empfangselemten verbunden, die bei Messungen im Nahbereich ausschließlich als Empfänger dienen.Here, the microwave generator 9 is connected via a directional coupler or circulator 43 to those transmitting and / or receiving elements denoted by S in FIG. 7, which serve exclusively as transmitters for measurements in the close range. Correspondingly, the reception and evaluation circuit 41 for measurements in the close range is connected to those transmit and / or receive elements designated E in FIG. 7, which serve exclusively as receivers for measurements in the close range.
Bei einer Messung im Nahbereich entspricht das Prinzipschaltbild also dem in Fig. 6 dargestellten Prinzipschaltbild. Bei einer Messung im Fernbereich werden dagegen alle Sende- und/oder Empfangselemente über eine die beiden Funktionsblöcke verbindende Leitung 45 zusammengeschaltet. Die Leitung 45 ist mit einem elektronischen Schalter 47 versehen, der bei einer Messung im Nahbereich geöffnet und bei einer Messung im Fernbereich geschlossen ist. Entsprechend ist in der Verbindung zwischen der Empfangs- und Auswerteschaltung 41 und den bei einer Messung im Nahbereich aussschließlich als Empfänger dienenden Sende- und/oder Empfangselementen E ein Schalter 49 vorgesehen, der bei Messungen im Nahbereich geschlossen ist und bei Messungen im Fernbereich geöffnet ist. Bei Messungen im Fernbereich werden die von den Sende- und/oder Empfangselementen E empfangenen Signale über
die Leitung 45 mit den von den Sende- und/oder Empfangselementen S empfangenen Signalen zusammengeführt und über den Richtkoppler oder Zikulator 43 über eine mit einem Schalter 51 versehene Verbindung 53 zur Empfangs- und Auswerteschaltung 41 geführt. Der Schalter 51 ist bei einer Messung im Nahbereich geöffnet und bei einer Messung im Fernbereich geschlossen.For a measurement in the near range, the basic circuit diagram thus corresponds to the basic circuit diagram shown in FIG. 6. In the case of a measurement in the far range, on the other hand, all of the transmitting and / or receiving elements are interconnected via a line 45 connecting the two functional blocks. The line 45 is provided with an electronic switch 47, which is open for a measurement in the close range and closed for a measurement in the far range. Correspondingly, a switch 49 is provided in the connection between the receiving and evaluating circuit 41 and the transmitting and / or receiving elements E that serve exclusively as a receiver for a measurement in the near range, which switch 49 is closed for measurements in the near range and is open for measurements in the far range. For measurements in the far range, the signals received by the transmitting and / or receiving elements E are transmitted the line 45 is brought together with the signals received by the transmitting and / or receiving elements S and led via the directional coupler or ziculator 43 via a connection 53 provided with a switch 51 to the receiving and evaluating circuit 41. The switch 51 is open for a measurement in the near range and closed for a measurement in the far range.
Die Steuerung der Schalter 47, 49, 51 erfolgt durch eine Steuerschaltung 55, die an die Empfangs- und Auswerteschaltung 41 angegliedert ist. Es wird in der Empfangs- und Auswerteschaltung 41 der momentane Füllstand bestimmt und z.B. mit einem Referenzwert verglichen. Liegt der Füllstand oberhalb dieses Referenzwerts, so wird die nachfolgende Messung als eine Messung im Nahbereich durchgeführt indem die Steuerschaltung 55 die zugehörigen Schalterstellungen durch Steuersignale einstellt. Liegt der Füllstand unterhalb dieses Referenzwerts, so wird die nachfolgende Messung als eine Messung im Fernbereich durch geführt indem die Steuerschaltung 55 die zugehörigen Schalterstellungen durch Steuersignale einstellt. Um im Grenzbereich am Übergang vom Nahbereich zum Fernbereich einen ständigen Meßmoduswechsel zu verhindern kann hier eine Hysteresefunktion eingebaut sein, indem z.B. zwei unterschiedliche Referenzwerte eingesetzt werden, wobei erst ein Unterschreiten des unteren Referenzwertes einen Wechsel vom Nahbereichsmodus in den Fernbereichsmodus bewirkt und erst ein Überschreiten des oberen Referenzwertes einen Wechsel vom Fernbereichsmodus in den Nahbereichsmodus bewirkt.The switches 47, 49, 51 are controlled by a control circuit 55, which is connected to the reception and evaluation circuit 41. The instantaneous fill level is determined in the reception and evaluation circuit 41 and e.g. compared to a reference value. If the fill level is above this reference value, the subsequent measurement is carried out as a measurement in the near range in that the control circuit 55 sets the associated switch positions by means of control signals. If the fill level is below this reference value, the subsequent measurement is carried out as a measurement in the far range in that the control circuit 55 sets the associated switch positions by means of control signals. In order to prevent a constant change of measuring mode in the border area at the transition from the close-up area to the far area, a hysteresis function can be installed here, e.g. two different reference values are used, with a drop below the lower reference value only causing a change from the short-range mode to the long-range mode and only a transition from the long-range mode into the short-range mode causing the upper reference value to be exceeded.
Fig. 8 zeigt ein weiteres Prinzipschaltbild für ein erfindungsgemäßes Füllstandsmeßgerät. Es dient bei diesem Füllstandsmeßgerät mindestens ein Sende- und/oder Empfangselement S ausschließlich als Sender. Diese Sende- und/oder Empfangselemente S sind mit dem Mikrowellengenerator 9 verbunden. Die übrigen Sende- und/oder Empfangselemente E dienen ausschließlich als Empfänger und sind mit einem Eingang der Empfangs- und Auswerteschaltung 41 verbunden. Zusätzlich ist eine Differenzbildungseinheit 57 vorgesehen, die ein Differenzsignal ermittelt, das der Differenz aus an den Sendern anliegenden Sendesignalen und von den Empfängern empfangenen Empfangssignalen entspricht. Hierzu ist ein Eingang der Differenzbildungeinheit 57 mit dem Mikrowellengenerator 9 und ein weiterer Eingang mit den Sende- und/oder Empfangselementen E verbunden. Die Differenzbildung kann entweder durch
entsprechende direkte Überlagerung der Signale erfolgen oder indem die eingehenden Signale erfaßt und in digitaler Form aufgezeichnet werden. Die Differenzbildung der aufgezeichneten Daten erfolgt dann z.B. mittels eines Mikrocomputers. Vorzugsweise sind eine Verzögerungseinheit 59 und eine Dämpfungseinheit 61 , die eine Verzögerung und eine Dämpfung des vom Mikrowellengenerator 9 eingehenden Signals um eine einstellbare Verzögerungszeit T und einen Dämpfungsfaktor ά erlauben, vorgesehen. Diese Umskalierungen können entweder auf analogem Wege mittels entsprechender elektronischer Komponenten erfolgen oder an den abgespeicherten Daten rechnerisch vorgenommen werden.8 shows a further basic circuit diagram for a level measuring device according to the invention. In this fill level measuring device, at least one transmitting and / or receiving element S is used exclusively as a transmitter. These transmitting and / or receiving elements S are connected to the microwave generator 9. The remaining transmission and / or reception elements E serve exclusively as receivers and are connected to an input of the reception and evaluation circuit 41. In addition, a difference-forming unit 57 is provided, which determines a difference signal which corresponds to the difference between transmission signals applied to the transmitters and reception signals received by the receivers. For this purpose, an input of the difference-forming unit 57 is connected to the microwave generator 9 and a further input is connected to the transmitting and / or receiving elements E. The difference can be made either by Corresponding direct superimposition of the signals take place or by the incoming signals being recorded and recorded in digital form. The difference between the recorded data is then carried out, for example, using a microcomputer. Preferably, a delay unit 59 and a damping unit 61 are provided, which allow the signal coming from the microwave generator 9 to be delayed and damped by an adjustable delay time T and a damping factor ά. These rescalings can either be carried out in an analog manner by means of corresponding electronic components or can be carried out arithmetically on the stored data.
Das Differenzsignal dient der Verbesserung der Messgenauigkeit und ist hierzu der Empfangs- und Auswerteinheit 41 zugeführt. Es kann z.B. ein trotz der Trennung von Sendern und Empfängern bestehendes geringes Übersprechen von den Sendern auf die Empfänger durch entsprechende Überlagerung der Empfangssignale mit den Differenzsignalen nahzu vollständig korrigiert werden. Die hierzu erforderlichen Kenndaten des Füllstandsmeßgeräts, z.B. die Verzögerungszeit T und der Dämpfungsfaktor ά können mittels einer Werkskalibration ermittelt und fest im Gerät abgespeichert werden.
The difference signal serves to improve the measurement accuracy and is fed to the reception and evaluation unit 41 for this purpose. For example, a small crosstalk existing despite the separation of transmitters and receivers from the transmitters to the receivers can be almost completely corrected by correspondingly superimposing the received signals with the difference signals. The required data of the level measuring device, e.g. The delay time T and the damping factor ά can be determined by means of a factory calibration and stored permanently in the device.
Claims
1. Mit Mikrowellen arbeitendes Füllstandsmeßgerät zur Messung eines Füllstandes eines Füllgutes (5) in einem Behälter (1) mit1. Microwave level measuring device for measuring a level of a filling material (5) in a container (1) with
- einem Mikrowellengenerator (39), und- A microwave generator (39), and
- einer Antenne (7) mit planarer Antennenstruktur,- an antenna (7) with a planar antenna structure,
- die dazu dient die Mikrowellen in Richtung des Füllgutes (5) zu senden und an einer Füllgutoberfläche reflektierte Mikrowellen zu empfangen,- Which serves to send the microwaves in the direction of the filling material (5) and to receive microwaves reflected on a filling material surface,
-- bei der die planare Antennenstruktur mindestens zwei Sende- und/oder Empfangselemente (11 , 13, 33, 35, 37, S, E) aufweist.- In which the planar antenna structure has at least two transmitting and / or receiving elements (11, 13, 33, 35, 37, S, E).
2. Mit Mikrowellen arbeitendes Füllstandsmeßgerät nach Anspruch 1 , bei dem sich die Sende- und/oder Empfangselemente (11 , 13, 33, 35, 37) jeweils in einem Teilbereich der Antenne (7) befinden.2. Microwave level measuring device according to claim 1, in which the transmitting and / or receiving elements (11, 13, 33, 35, 37) are each located in a partial area of the antenna (7).
3. Mit Mikrowellen arbeitendes Füllstandsmeßgerät nach Anspruch 1 , bei dem die Sende- und/oder Empfangselemente (37) ineinander verschachtelt angeordnet sind.3. Microwave level measuring device according to claim 1, wherein the transmitting and / or receiving elements (37) are arranged nested in one another.
4. Mit Mikrowellen arbeitendes Füllstandsmeßgerät nach Anspruch 1 , bei dem zur Messung eines Füllstandes in einem Nahbereich vor der Antenne mindestens eines der Sende- und/oder Empfangselemente (E) ausschließlich als Empfänger dient.4. Microwave level meter according to claim 1, wherein at least one of the transmitting and / or receiving elements (E) is used exclusively as a receiver for measuring a level in a close range in front of the antenna.
5. Mit Mikrowellen arbeitendes Füllstandsmeßgerät nach Anspruch 1 oder 4, bei dem zur Messung eines Füllstandes in einem Fernbereich vor der Antenne alle Sende- und/oder Empfangselemente (S, E) als Sender und als Empfänger dienen.5. Microwave level measuring device according to claim 1 or 4, in which all the transmitting and / or receiving elements (S, E) serve as transmitters and receivers for measuring a level in a remote area in front of the antenna.
6. Mit Mikrowellen arbeitendes Füllstandsmeßgerät nach Anspruch 1 , bei dem mindestens ein Sende- und/oder Empfangselement (S) ausschließlich als Sender dient und die übrigen Sende- und/oder Empfangselemente ausschließlich als Empfänger (E) dienen und bei dem ein Differenzsignal ermittelt wird, das der Differenz aus an den Sendern anliegenden Sendesignalen und von den Empfängern empfangenen Empfangssignalen entspricht. 6. Microwave level measuring device according to claim 1, in which at least one transmitting and / or receiving element (S) serves exclusively as a transmitter and the other transmitting and / or receiving elements serve exclusively as a receiver (E) and in which a difference signal is determined , which corresponds to the difference between transmission signals applied to the transmitters and reception signals received by the receivers.
7. Mit Mikrowellen arbeitendes Füllstandsmeßgerät nach Anspruch 1 , bei dem die zu sendenden Mikrowellen Frequenzen aufweisen, die größer als 207. Microwave level meter according to claim 1, wherein the microwaves to be transmitted have frequencies greater than 20
GHz sind. GHz.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10049995A DE10049995A1 (en) | 2000-10-10 | 2000-10-10 | level meter |
DE10049995 | 2000-10-10 | ||
PCT/EP2001/008962 WO2002031450A1 (en) | 2000-10-10 | 2001-08-02 | Level meter |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1325289A1 true EP1325289A1 (en) | 2003-07-09 |
Family
ID=7659180
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP01965161A Withdrawn EP1325289A1 (en) | 2000-10-10 | 2001-08-02 | Level meter |
Country Status (5)
Country | Link |
---|---|
US (1) | US6606904B2 (en) |
EP (1) | EP1325289A1 (en) |
AU (1) | AU2001285862A1 (en) |
DE (1) | DE10049995A1 (en) |
WO (1) | WO2002031450A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1434974B1 (en) * | 2001-10-10 | 2016-12-28 | Endress + Hauser GmbH + Co. KG | Device and method for determining the filling level of a substance in a container |
Families Citing this family (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6938475B2 (en) * | 2001-03-28 | 2005-09-06 | Endress + Hauser Gmbh + Co. Kg | Device for establishing and/or monitoring a predetermined fill level in a container |
SE0102881D0 (en) * | 2001-08-30 | 2001-08-30 | Saab Marine Electronics | radar Level Meter |
SE0103816D0 (en) * | 2001-11-16 | 2001-11-16 | Saab Marine Electronics | Slot antenna |
AU2003240252A1 (en) | 2002-05-16 | 2003-12-02 | Vega Grieshaber Kg | Planar antenna and antenna system |
EP1546665B1 (en) * | 2002-09-24 | 2016-02-24 | Rosemount Tank Radar AB | A device in a level gauging system |
US6629458B1 (en) * | 2002-09-24 | 2003-10-07 | Saab Marine Electronics Ab | Device in a level gauging system |
US6859166B2 (en) * | 2002-12-04 | 2005-02-22 | Saab Marine Electronics Ab | Antenna device for radar-based level gauging |
US6759976B1 (en) * | 2002-12-20 | 2004-07-06 | Saab Marine Electronics Ab | Method and apparatus for radar-based level gauging |
US6959598B2 (en) * | 2004-02-03 | 2005-11-01 | Emerson Electric Co. | Liquid level sensor for appliance and associated method |
US20060000276A1 (en) * | 2004-07-02 | 2006-01-05 | Bran Ferren | Method of measuring amount of substances |
US7453393B2 (en) * | 2005-01-18 | 2008-11-18 | Siemens Milltronics Process Instruments Inc. | Coupler with waveguide transition for an antenna in a radar-based level measurement system |
US7467548B2 (en) * | 2005-10-14 | 2008-12-23 | Rosemount Tank Radar Ab | Radar level gauge system and coupling |
DE102005057053A1 (en) * | 2005-11-30 | 2007-05-31 | Vega Grieshaber Kg | High frequency module for e.g. liquid level radar device, has tap for decoupling reference signal from transmission line, and delay unit arranged after tap for delaying transmission signal on its path to antenna or sensor |
DE102006003742A1 (en) * | 2006-01-25 | 2007-08-02 | Endress + Hauser Gmbh + Co. Kg | Device for determining and monitoring filling level of medium in tank, has dielectric filling body that comprises hermetically sealed recess volume in its inerior one, and antenna with antenna coupling-in region is also provided |
US7924217B2 (en) * | 2008-06-03 | 2011-04-12 | Rosemount Tank Radar Ab | High sensitivity frequency modulated radar level gauge system |
US8350751B2 (en) * | 2010-03-10 | 2013-01-08 | Rosemount Tank Radar Ab | Radar level gauge with improved radar window |
US8869612B2 (en) | 2011-03-08 | 2014-10-28 | Baxter International Inc. | Non-invasive radio frequency liquid level and volume detection system using phase shift |
RU2561309C1 (en) * | 2014-04-22 | 2015-08-27 | Закрытое акционерное общество ЛИМАКО | Radar level indicator |
RU2558631C1 (en) * | 2014-05-23 | 2015-08-10 | Федеральное государственное бюджетное учреждение науки Институт проблем управления им. В.А. Трапезникова Российской академии наук | Non-contact radio wave device to determine fluid level in tank |
RU2573627C1 (en) * | 2014-11-10 | 2016-01-20 | Федеральное государственное бюджетное учреждение науки Институт проблем управления им. В.А. Трапезникова Российской академии наук | Contactless radiowave device to measure thickness of dielectric materials |
DE102015100415A1 (en) * | 2015-01-13 | 2016-07-14 | Krohne Messtechnik Gmbh | Device for determining the level of a medium |
DE102015100414A1 (en) * | 2015-01-13 | 2016-07-14 | Krohne Messtechnik Gmbh | Device for determining the level of a medium in a container |
DE102015100417A1 (en) * | 2015-01-13 | 2016-07-14 | Krohne Messtechnik Gmbh | Method for determining the level of a medium in a container |
US20160209261A1 (en) * | 2015-01-16 | 2016-07-21 | Savage Services Corporation | Vessel fluid measurement assemblies and related systems and methods |
EP3073229B1 (en) * | 2015-03-27 | 2022-06-22 | VEGA Grieshaber KG | Radar fill level measuring device with integrated limit level sensor |
RU2653578C1 (en) * | 2017-06-08 | 2018-05-11 | Акционерное общество "ЛИМАКО" | Radar-location level gage for measuring volume of bulk product in tanks |
EP3467450B1 (en) | 2017-10-06 | 2020-12-09 | VEGA Grieshaber KG | Radar fill level measuring device with a radar system on chip |
EP3910326A1 (en) | 2020-05-12 | 2021-11-17 | Rechner Industrie-Elektronik GmbH | System for detecting and / or determining the volume of bodies or materials made from dielectric and / or conductive material |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3023055A1 (en) * | 1979-07-12 | 1981-02-05 | Emi Ltd | ANTENNA |
DE3339984A1 (en) * | 1983-11-04 | 1985-05-23 | Endress U. Hauser Gmbh U. Co, 7867 Maulburg | SOUND AND ULTRASONIC DISTANCE MEASURING DEVICE |
DE3438045C2 (en) * | 1983-11-04 | 1986-12-18 | Endress U. Hauser Gmbh U. Co, 7867 Maulburg | Arrangement for signal transmission in ultrasonic echo sounders |
US4785664A (en) * | 1986-04-28 | 1988-11-22 | Kay-Ray, Inc. | Ultrasonic sensor |
EP0524275A1 (en) * | 1991-02-12 | 1993-01-27 | Krohne Messtechnik Gmbh & Co. Kg | Electric circuit for a device for measuring the level in industrial tanks and the like |
SE504682C2 (en) * | 1991-07-04 | 1997-04-07 | Saab Marine Electronics | Device for measuring the level of a medium contained in a container |
DE4241910C2 (en) * | 1992-12-11 | 1996-08-01 | Endress Hauser Gmbh Co | Level measuring device working with microwaves |
DE4345242A1 (en) * | 1993-09-15 | 1995-04-06 | Endress Hauser Gmbh Co | Frequency conversion circuit for a radar distance measuring device |
US5406842A (en) * | 1993-10-07 | 1995-04-18 | Motorola, Inc. | Method and apparatus for material level measurement using stepped frequency microwave signals |
US5818391A (en) * | 1997-03-13 | 1998-10-06 | Southern Methodist University | Microstrip array antenna |
DE19800306B4 (en) * | 1998-01-07 | 2008-05-15 | Vega Grieshaber Kg | Antenna device for a level-measuring radar device |
EP0955528B1 (en) * | 1998-05-06 | 2006-11-08 | Endress + Hauser GmbH + Co. KG | Method for measuring the level of a product in a container following the radar principle |
EP1083413B1 (en) * | 1999-09-07 | 2003-04-23 | Endress + Hauser GmbH + Co. KG | Device for measuring the level of a product in a container |
-
2000
- 2000-10-10 DE DE10049995A patent/DE10049995A1/en not_active Withdrawn
-
2001
- 2001-08-02 AU AU2001285862A patent/AU2001285862A1/en not_active Abandoned
- 2001-08-02 WO PCT/EP2001/008962 patent/WO2002031450A1/en active Application Filing
- 2001-08-02 EP EP01965161A patent/EP1325289A1/en not_active Withdrawn
- 2001-08-08 US US09/923,431 patent/US6606904B2/en not_active Expired - Fee Related
Non-Patent Citations (1)
Title |
---|
See references of WO0231450A1 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1434974B1 (en) * | 2001-10-10 | 2016-12-28 | Endress + Hauser GmbH + Co. KG | Device and method for determining the filling level of a substance in a container |
Also Published As
Publication number | Publication date |
---|---|
WO2002031450A1 (en) | 2002-04-18 |
US20020040596A1 (en) | 2002-04-11 |
AU2001285862A1 (en) | 2002-04-22 |
DE10049995A1 (en) | 2002-04-11 |
US6606904B2 (en) | 2003-08-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1325289A1 (en) | Level meter | |
EP1285239B1 (en) | Level meter | |
EP0882955B1 (en) | Level measuring apparatus using microwaves | |
DE102010063167B4 (en) | Level meter working with high-frequency microwaves | |
EP0821431B1 (en) | Device for generating and emitting microwaves, especially for a filling level measuring device | |
EP2331917A1 (en) | Filling level measuring device operating with microwaves | |
DE102017210781A1 (en) | Radar antenna for a level gauge | |
EP0204259B1 (en) | Two-frequency instrument-landing system | |
WO1995008128A1 (en) | Radar telemeter | |
EP1774616B1 (en) | Device for transmitting broadband high-frequency signals | |
EP0797104B1 (en) | Monostatic homodyne radar system | |
DE10252091A1 (en) | Multi-static sensor arrangement for object distance measurement, e.g. for vehicle parking, has pulse generators receiving clock signals via common data bus to produce deterministic HF oscillator signal phase relationship | |
EP3467450A1 (en) | Radar fill level measuring device with a radar system on chip | |
DE10056002A1 (en) | Radar device has received echo pulses split between at least 2 reception paths controlled for providing different directional characteristics | |
DE102004044130A1 (en) | Monostatic planar multi-beam radar sensor | |
DE102010020022A1 (en) | Driver assistance device for a vehicle, vehicle and method for operating a radar device | |
DE102015107419A1 (en) | radar device | |
DE10051297A1 (en) | Microwave level measurement device has microwave generator, transmit and receive antennas, reception and evaluation circuit that determines level from transition time of microwaves | |
DE102013104699A1 (en) | Device for determining the filling level by means of a helical antenna | |
DE4331353C2 (en) | Radar distance measuring device | |
WO2014090565A1 (en) | Fill state measuring device | |
WO2002057723A1 (en) | Filling level measuring device with a coupling device | |
DE10118009B4 (en) | Device for determining and / or monitoring the fill level of a product in a container | |
EP2002505B1 (en) | Waveguide transition for generating circularly polarized waves | |
DE10108993B4 (en) | Device for determining the level of a product in a container |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20030327 |
|
AK | Designated contracting states |
Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK RO SI |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: LUETKE, WOLFRAM Inventor name: MUELLER, ROLAND |
|
17Q | First examination report despatched |
Effective date: 20091028 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20140301 |