EP1323809B1 - Co-current shaft reactor - Google Patents
Co-current shaft reactor Download PDFInfo
- Publication number
- EP1323809B1 EP1323809B1 EP02027458A EP02027458A EP1323809B1 EP 1323809 B1 EP1323809 B1 EP 1323809B1 EP 02027458 A EP02027458 A EP 02027458A EP 02027458 A EP02027458 A EP 02027458A EP 1323809 B1 EP1323809 B1 EP 1323809B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- gas
- shaft
- lock
- shaft body
- reactor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000001035 drying Methods 0.000 claims abstract description 26
- 238000010438 heat treatment Methods 0.000 claims abstract description 12
- 239000007789 gas Substances 0.000 claims description 109
- 238000002844 melting Methods 0.000 claims description 21
- 230000008018 melting Effects 0.000 claims description 21
- 238000005520 cutting process Methods 0.000 claims description 5
- 238000013461 design Methods 0.000 claims description 5
- 238000007599 discharging Methods 0.000 claims description 2
- 239000000463 material Substances 0.000 abstract description 35
- 238000002309 gasification Methods 0.000 description 29
- 238000007872 degassing Methods 0.000 description 17
- 238000000034 method Methods 0.000 description 13
- 230000008569 process Effects 0.000 description 12
- 239000003570 air Substances 0.000 description 11
- 238000006243 chemical reaction Methods 0.000 description 10
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 9
- 239000001301 oxygen Substances 0.000 description 9
- 229910052760 oxygen Inorganic materials 0.000 description 9
- 239000000155 melt Substances 0.000 description 6
- 238000000197 pyrolysis Methods 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 5
- 239000000428 dust Substances 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- 239000002893 slag Substances 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 239000011269 tar Substances 0.000 description 5
- 238000012546 transfer Methods 0.000 description 5
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- 239000000446 fuel Substances 0.000 description 4
- 229930195733 hydrocarbon Natural products 0.000 description 4
- 150000002430 hydrocarbons Chemical class 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 239000012071 phase Substances 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 3
- 238000003776 cleavage reaction Methods 0.000 description 3
- 239000000571 coke Substances 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 238000013021 overheating Methods 0.000 description 3
- 238000005204 segregation Methods 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 239000007858 starting material Substances 0.000 description 3
- 230000007704 transition Effects 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 239000012080 ambient air Substances 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000011049 filling Methods 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000002440 industrial waste Substances 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000007017 scission Effects 0.000 description 2
- 239000012265 solid product Substances 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 235000011941 Tilia x europaea Nutrition 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000005273 aeration Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000011449 brick Substances 0.000 description 1
- 239000013590 bulk material Substances 0.000 description 1
- 239000010782 bulky waste Substances 0.000 description 1
- 230000001914 calming effect Effects 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000000567 combustion gas Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 239000003546 flue gas Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 239000008240 homogeneous mixture Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 231100001240 inorganic pollutant Toxicity 0.000 description 1
- 239000012633 leachable Substances 0.000 description 1
- 239000004571 lime Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 235000012054 meals Nutrition 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000012768 molten material Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- JCXJVPUVTGWSNB-UHFFFAOYSA-N nitrogen dioxide Inorganic materials O=[N]=O JCXJVPUVTGWSNB-UHFFFAOYSA-N 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 238000004886 process control Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000012495 reaction gas Substances 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 239000004449 solid propellant Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000001149 thermolysis Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J3/00—Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
- C10J3/02—Fixed-bed gasification of lump fuel
- C10J3/20—Apparatus; Plants
- C10J3/32—Devices for distributing fuel evenly over the bed or for stirring up the fuel bed
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J3/00—Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
- C10J3/02—Fixed-bed gasification of lump fuel
- C10J3/06—Continuous processes
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J3/00—Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
- C10J3/02—Fixed-bed gasification of lump fuel
- C10J3/06—Continuous processes
- C10J3/08—Continuous processes with ash-removal in liquid state
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J3/00—Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
- C10J3/02—Fixed-bed gasification of lump fuel
- C10J3/06—Continuous processes
- C10J3/10—Continuous processes using external heating
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J3/00—Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
- C10J3/02—Fixed-bed gasification of lump fuel
- C10J3/06—Continuous processes
- C10J3/14—Continuous processes using gaseous heat-carriers
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J3/00—Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
- C10J3/02—Fixed-bed gasification of lump fuel
- C10J3/20—Apparatus; Plants
- C10J3/22—Arrangements or dispositions of valves or flues
- C10J3/24—Arrangements or dispositions of valves or flues to permit flow of gases or vapours other than upwardly through the fuel bed
- C10J3/26—Arrangements or dispositions of valves or flues to permit flow of gases or vapours other than upwardly through the fuel bed downwardly
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23G—CREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
- F23G5/00—Incineration of waste; Incinerator constructions; Details, accessories or control therefor
- F23G5/02—Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment
- F23G5/027—Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment pyrolising or gasifying stage
- F23G5/0276—Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment pyrolising or gasifying stage using direct heating
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23G—CREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
- F23G5/00—Incineration of waste; Incinerator constructions; Details, accessories or control therefor
- F23G5/02—Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment
- F23G5/04—Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment drying
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23G—CREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
- F23G5/00—Incineration of waste; Incinerator constructions; Details, accessories or control therefor
- F23G5/24—Incineration of waste; Incinerator constructions; Details, accessories or control therefor having a vertical, substantially cylindrical, combustion chamber
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23G—CREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
- F23G5/00—Incineration of waste; Incinerator constructions; Details, accessories or control therefor
- F23G5/44—Details; Accessories
- F23G5/46—Recuperation of heat
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27B—FURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
- F27B1/00—Shaft or like vertical or substantially vertical furnaces
- F27B1/02—Shaft or like vertical or substantially vertical furnaces with two or more shafts or chambers, e.g. multi-storey
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27B—FURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
- F27B1/00—Shaft or like vertical or substantially vertical furnaces
- F27B1/10—Details, accessories, or equipment peculiar to furnaces of these types
- F27B1/16—Arrangements of tuyeres
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27B—FURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
- F27B1/00—Shaft or like vertical or substantially vertical furnaces
- F27B1/10—Details, accessories, or equipment peculiar to furnaces of these types
- F27B1/20—Arrangements of devices for charging
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D1/00—Casings; Linings; Walls; Roofs
- F27D1/0003—Linings or walls
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D17/00—Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
- F27D17/001—Extraction of waste gases, collection of fumes and hoods used therefor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D3/00—Charging; Discharging; Manipulation of charge
- F27D3/0025—Charging or loading melting furnaces with material in the solid state
- F27D3/0032—Charging or loading melting furnaces with material in the solid state using an air-lock
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D7/00—Forming, maintaining, or circulating atmospheres in heating chambers
- F27D7/06—Forming or maintaining special atmospheres or vacuum within heating chambers
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2200/00—Details of gasification apparatus
- C10J2200/15—Details of feeding means
- C10J2200/156—Sluices, e.g. mechanical sluices for preventing escape of gas through the feed inlet
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/09—Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
- C10J2300/0903—Feed preparation
- C10J2300/0909—Drying
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/09—Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
- C10J2300/0913—Carbonaceous raw material
- C10J2300/0943—Coke
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/09—Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
- C10J2300/0953—Gasifying agents
- C10J2300/0956—Air or oxygen enriched air
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/09—Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
- C10J2300/0983—Additives
- C10J2300/0996—Calcium-containing inorganic materials, e.g. lime
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/12—Heating the gasifier
- C10J2300/1246—Heating the gasifier by external or indirect heating
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/16—Integration of gasification processes with another plant or parts within the plant
- C10J2300/1625—Integration of gasification processes with another plant or parts within the plant with solids treatment
- C10J2300/1628—Ash post-treatment
- C10J2300/1634—Ash vitrification
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/18—Details of the gasification process, e.g. loops, autothermal operation
- C10J2300/1861—Heat exchange between at least two process streams
- C10J2300/1869—Heat exchange between at least two process streams with one stream being air, oxygen or ozone
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/18—Details of the gasification process, e.g. loops, autothermal operation
- C10J2300/1861—Heat exchange between at least two process streams
- C10J2300/1884—Heat exchange between at least two process streams with one stream being synthesis gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23G—CREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
- F23G2202/00—Combustion
- F23G2202/20—Combustion to temperatures melting waste
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23G—CREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
- F23G2205/00—Waste feed arrangements
- F23G2205/16—Waste feed arrangements using chute
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23G—CREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
- F23G2205/00—Waste feed arrangements
- F23G2205/18—Waste feed arrangements using airlock systems
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23G—CREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
- F23G2206/00—Waste heat recuperation
- F23G2206/20—Waste heat recuperation using the heat in association with another installation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23G—CREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
- F23G2209/00—Specific waste
- F23G2209/26—Biowaste
- F23G2209/261—Woodwaste
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23G—CREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
- F23G2209/00—Specific waste
- F23G2209/28—Plastics or rubber like materials
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23G—CREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
- F23G2900/00—Special features of, or arrangements for incinerators
- F23G2900/70—Incinerating particular products or waste
- F23G2900/7004—Incinerating contaminated animal meals
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23J—REMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES
- F23J2900/00—Special arrangements for conducting or purifying combustion fumes; Treatment of fumes or ashes
- F23J2900/15081—Reheating of flue gases
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27M—INDEXING SCHEME RELATING TO ASPECTS OF THE CHARGES OR FURNACES, KILNS, OVENS OR RETORTS
- F27M2001/00—Composition, conformation or state of the charge
- F27M2001/05—Waste materials, refuse
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27M—INDEXING SCHEME RELATING TO ASPECTS OF THE CHARGES OR FURNACES, KILNS, OVENS OR RETORTS
- F27M2003/00—Type of treatment of the charge
- F27M2003/14—Pyrolising
Definitions
- the present invention relates to a DC shaft reactor for melting and gasifying feedstocks of different types and consistencies, such as pollutant-free and / or contaminated wood, domestic and bulky refuse, substitute fuels, pelleted dusts or animal meal, plastics, industrial and commercial waste.
- a synthesis gas which is suitable for generating electrical energy and heat and / or is used as a basis for synthesis processes can be produced.
- the solid product formed is a non-leachable slag and a material processable metal phase or a non-recoverable liquid phase, which is available for further processing.
- DE 43 17 145 C1 describes a method and apparatus for degassing waste materials based on a coke-heated countercurrent shaft furnace.
- the resulting dust-containing gas is completely removed and burned in the underlying melting and overheating zone with oxygen at high temperatures.
- the countercurrent flow of the gas through the downwardly moving bed and the suction between the Kreislaufgasausaugung and the recirculation gas supply result in a variety of practical problems.
- the result is short circuit flows in the shaft and insufficient heat transfer to the upper shaft area, which creates a contaminated gas with tar and dust components.
- a complex gas treatment and purification is necessary.
- a coke-heated Kreislaufgaskupolofen for material and / or energy recovery of waste materials is described. It consists of a vertical furnace shaft with below-the-aeration large-volume Kreislaufgasabsaugö réelleen, which are connected by channels and nozzles with the melting and superheating zone, above which a large-volume excess gas discharge level, the resulting gas from the process.
- the furnace shaft part is narrowed in cross-section between the circulation gas and excess gas suction openings.
- the heat transfer takes place as well as in DE 43 17 145 C1 by the countercurrent principle to the feedstock rising process gases.
- the multiple countercurrent flow of the gas through the downwardly moving bed despite some modifications due to cross-sectional constriction in the shaft and cross-sectional widening in the gas outlet does not allow the processing of a wide range of feedstock.
- a reactor for gasifying and / or melting feedstocks with a feed, pyrolysis, melt and superheat section is described.
- the pyrolysis section has a cross-sectional widening as a gas feed space, into which at least one combustion chamber opens with at least one burner, through which hot combustion gases are fed to a forming bulk cone.
- high-energy media are introduced by means of upper and lower injection means in the region of the melting and superheating zone and above the melt by means of oxygen lances and / or nozzles.
- the disadvantage of this device is increased by the bulk cone
- US 4,813,179 is a DC-shaft reactor for melting and gasifying feed known
- the shaft body a Lock area is upstream with locks.
- the lock area ends at a screw conveyor, which introduces feed into the shaft body.
- the introduced feed is then conveyed in the vertical direction through a feed opening of the shaft body by means of a further screw conveyor to a rotating distribution plate, which spreads the feed over the entire cross-sectional area of the shaft body.
- preheated reaction gas is fed for drying the feedstock via a gas supply device.
- the object of the invention is to provide a direct current shaft reactor, with which useful gases, in particular combustible useful gases with a low particle load, can be produced even when different starting materials are used, the energy content of which can be used for the direct current shaft reactor.
- the inventive DC-shaft reactor for melting and gasifying feedstock has a vertical shaft body. Within the shaft body, the feedstock is dried, heated and gasified. The shaft body can thus usually be subdivided into the areas of drying zone, degassing zone and gasification zone. The shaft body is followed by a receiving body, which serves to receive molten feedstock. Within this body is the Melting zone of the reactor formed. The shaft body and / or the receiving body are connected to a gas discharge device for discharging the Nutzgase generated within the reactor. In particular, the discharge device is arranged in the region between the shaft body and the receiving body and designed as a tube. Further, the vertically oriented shaft body has a feeder through which the feedstock is fed to the shaft reactor.
- a gas supply device for supplying gas into the shaft body is connected to the shaft body.
- the supplied gas which is preferably air or oxygen-enriched air, serves to dry the feedstock.
- the gas supplied is preheated according to the invention.
- the gas supply device according to the invention is connected to the gas discharge device.
- the discharged from the reactor hot gas is thus used according to the invention for preheating the gas supplied to the shaft body.
- the feed opening of the reactor is followed by a lock arrangement which controls the introduction of the feedstock. In the area of the lock arrangement, at least part of the gas supply device is connected to the lock chamber.
- the inventive use of the discharged gas as an energy source means that no additional energy is required for preheating the gas and the feed already undergoes a first drying in the lock assembly.
- the lock arrangement is thereby additionally used for drying the feedstock.
- Another essential advantage of the invention is that heat is removed from the discharged gas. This simplifies the further processing or use of this gas.
- the lock arrangement preferably has at least one lock chamber.
- a first lock gate is opened to introduce the feed into the lock chamber.
- this first lock gate is closed, so that the lock chamber is closed. In this state, possibly contained air can be sucked out of the lock chamber and / or replaced by another gas.
- the second lock gate which leads in the direction of the interior of the shaft reactor, opened and the feed material passes from the lock chamber into the reactor.
- the lock arrangement is designed so that the introduction of feed into the DC shaft reactor takes place almost free of freeze or low-shear. This reduces the risk of larger pieces of feedstock rolling to the reactor wall and segregation of the feedstock.
- the adverse consequences of demixing, such as melting of Ofenausmautation, emergence of flow channels for the incoming gases and fluctuating gas qualities due to different reaction zones are thereby greatly reduced.
- a low-shear introduction of material into shaft reactors can be achieved, for example, by the fact that the reactor shaft, which follows the lock arrangement, has a similar cross-sectional geometry.
- the drop height of the supplied goods should be as low as possible. In particular not higher than three times the height of the feed in the lock arrangement.
- the second floodgate should open as quickly as possible, so that the underside of the falling feed remains as horizontal as possible.
- the feedstock in the lock assembly should not as far as possible already contain a bulk cone.
- the first lock gate is designed as a slide with cutting edge in an advantageous manner.
- the feedstock to be introduced almost corresponds to the geometry of the lock chamber and in particular has almost no bulk cone on.
- the second lock gate can be opened as quickly as possible, it is carried out in an advantageous manner as a flap or slide.
- the DC shaft reactor has a shaft body 10.
- the shaft body 10 can be subdivided into a lock arrangement 12, a drying zone 14 adjoining the lock arrangement 12, a degassing zone 16 adjoining the drying zone 14, and a gasification zone 18 connected thereto.
- a receiving body 20 connects, which serves to receive molten feedstock 22.
- the cross-section of the receiving body is widened, so that an annularly formed gas collecting space 24 is formed, which surrounds the lower part of the gasification zone 18.
- the gas collecting space 24 is connected to a gas discharge device 26 designed as a pipe in the illustrated embodiment.
- the feed is introduced through a supply port 28 into the well body 10 via the gate assembly 12.
- the feeding of the feed material takes place via the lock arrangement 12 in order to prevent the introduction of large amounts of ambient air, by means of which the melting and gasification process can be influenced in an uncontrolled manner.
- the lock arrangement 12 has two lock devices or lock gates 30, 32, between which the lock chamber 34 is formed, the lock chamber 34 already being part of the shaft body 10.
- a gas supply device 36 is provided in the region of the drying zone 14 of the shaft body 10.
- the gas supply device 36 has a ring conduit 38 surrounding the shaft body 10, which is connected to a plurality of nozzles 40 distributed uniformly around the circumference.
- About the gas feeder 36 is the feed in Area of the drying zone 14 preferably hot air, which may optionally be enriched with oxygen, fed to dry the feedstock.
- a further gas supply means 42 is arranged, which also has a surrounding the shaft body 10 ring line 44.
- the ring line 44 is connected to a plurality of circumferentially preferably uniformly distributed nozzle 46.
- High-energy gases, oxygen, air or other gases suitable for controlling the melting and gasification process can be supplied to the feedstock via the gas feed device 42.
- nozzles 48 are provided in the gasification zone 18. High-energy gas or other gases or substances controlling the melting and gasification process can in turn be supplied via the nozzles 48. Likewise, instead of the nozzles 48, it is also possible to provide burners which directly supply heat to the feedstock in the gasification zone 18.
- the end region of the shaft body 10, which is rotationally symmetrical with respect to the longitudinal axis 50, has a slightly tapered conical shape, so that the feed material is retained somewhat in the region of the gasification zone 18.
- a plurality of circumferentially distributed nozzles 54 are further arranged.
- the nozzles 54 serve to introduce high-energy gases or corresponding substances. By the nozzles 54 it is ensured that the melt 22 remains liquid. Likewise, burners may be provided instead of the nozzles 54.
- the gas supply device 36 is connected to the gas discharge device 26.
- the tube of the gas discharge device 26 through which the hot gases produced in the reactor are discharged, to a heat exchanger 56.
- the discharged gases or Nutzgase flow through the heat exchanger 56 and are then discharged from a pipe 58 preferably for further processing.
- a Pipeline 60 connected. Through the pipe 60, air or other gas is passed into the heat exchanger 56, takes in the heat exchanger 56 heat from the useful gas and is discharged through a pipe 62 back out of the heat exchanger.
- the tube 62 is then connected via a heater 64 and a pipe 66 to the ring line 38 of the gas supply device 36.
- the heating of the gas supplied to the feed material by the gas feed device 36 in the region of the drying zone 14 is thus preferably preheated in operation exclusively by the heat of the useful gases with the aid of the heat exchanger 56.
- the heating device 64 which may be, for example, an electric heater or a burner, the gas to be supplied via the gas supply device can be additionally heated.
- the heater 64 can be used to heat the gas.
- a part 35 of the gas feed device 36 is connected to the shaft body 10 in the region of the lock arrangement 12. Through this connection, the feedstock is already subjected to a first drying in the lock assembly 12.
- a side wall 68 of the lock assembly 12 is double-walled.
- heating and thus drying of the feed material in the lock chamber 34 can be achieved by passing a hot medium through the double-walled side wall 68.
- This is preferably air or another gas, which is likewise preheated by the useful gas, preferably with the aid of the heat exchanger 56.
- the ideal material input preferably requires a homogeneous mixture, in particular when adding additives such as coke and lime.
- the entry is carried out according to the invention centrally on the axis of the reactor. Of the Reactor should be kept as full as possible during operation. A level monitoring is therefore preferably mounted directly below the lock gate 32. The filling takes place in a high clock rate.
- the areas of the lock arrangement 12, the drying zone 14 and the degassing zone 16 are preferably cylindrical or slightly conically widening down to the gasification zone 18.
- the transition between the zones takes place without a step-shaped or sudden cross-sectional enlargement, i. the transition is the same cross-section and without formation of shake-free cavities, steps or edges.
- the drying zone 14 can also be designed with double walls, in particular for larger types. This allows indirect heating of the Gutcicle inside or ensuring a uniform temperature on the wall and a reduction of condensation phenomena on the inside.
- the heat transfer medium is preferably also hot air used. The use of standing up at the end of the process flue gas is also possible.
- the degassing zone 16 can also be designed double-walled in continuation of the drying zone 14.
- the double-walled version can be replaced by a silicate brick lining.
- the gasification zone 18 is the main reaction zone within the shaft reactor. Here, at temperatures of 1,200 to 1,400 ° C, the material and energetic conversion of the solids. The solid fuel produces gases and solid products from coke to ash. For the complete and uniform reaction, it is crucial that a homogeneous bed is flowed through uniformly by the degassing gas already produced and the gasification agent to be introduced here.
- the gasification zone 18 must have a sufficient height for these reasons. This is achieved in that the gasification zone 18 is formed as a straight cylindrical portion with transition into a conical reduction of the cross section or immediately as an increasing taper. Since the material grain is reduced by the material transformations and related destructive forces, the cavities increase within the pouring column. By reducing the size of the shaft cross section in this area, the sinking speed of the Material column are evened out, flow channels are destroyed and the formation of larger voids in the bed is avoided.
- the region of the gasification is likewise lined with a silicate mass.
- the lower cylindrical or tapered region of the gasification region 18 projects into the molten zone 20.
- the Schütt yarn located above it at least partially, at the same time prevail there high temperatures.
- cooling takes place by means of indirect water cooling in the shaft wall 70.
- the longer-chain hydrocarbons formed from the expired degassing and thermolysis reactions were thermally split here and at the same time participated in the gasification processes taking place.
- the result is a combustible gas average calorific value with the main components carbon monoxide, carbon dioxide, hydrogen and water vapor without constituents of condensable hydrocarbons. Many of the chemical reactions that have taken place are endothermic. The temperature of the gas as well as the bed thus decreases.
- the gas undergoes a deflection by about 180 ° and enters the shake-free space 24.
- the gas has a temperature of about 1,000 ° C.
- the gas collection chamber 24 is already part of the melting zone 20, which is substantially further up than the projecting gasification zone 18 above.
- the Cylindrical melt zone 20 tapers conically downward and closes with the bottom plate above which the molten phase collects.
- the melting zone 20 is provided in its entirety with a multi-layer ramming mass or equipped with a lining. The reason for this is the necessary high temperatures. Only in the area of the gas collection room a lining may not be necessary.
- the completely degassed and coked solid is already partially sintered or melted and sinks from the gasification zone 18 into the molten zone 20.
- Integrated into the molten zone 20 is a plane with a plurality of oxygen nozzles or injectors and / or oxidatively operated burners 54, which are also distributed symmetrically on the axis.
- the molten material collects as a melt at the bottom of the reactor.
- the emptying of this liquid melt takes place as usual in the foundry via a tap hole and a gutter 72.
- a design with a forehearth or siphon is possible.
- the melt With sufficiently large design and appropriate residence time of the melt, the melt will separate into a heavy metal-containing phase and a slag floating on it.
- the product slag contains no organic substances and the inorganic components are stably incorporated into a silicate matrix.
- the use as a material for harbor, landfill and road construction are known, as is possible the production of special molds and products, as they are common in the glass industry.
- a preferred embodiment of the lock arrangement 12 is that the second lock gate 32 is designed as a quick-opening slide ( Fig. 2 ).
- the floodgate 32 is designed in particular in several pieces.
- the feed material contained in the lock chamber 34 falls evenly into the drying zone 14 of the shaft body 10. Previously, the feed was pre-dried with the part 35 of the gas feeder 36 connected to the lock chamber 34.
- designed as a slide second lock gate 32 is advantageously provided with a cutting edge. As a result, the part of the feed material protruding into the lock chamber 34 can be cut off when the second lock gate 32 is closed, as a result of which the lock chamber 34 can be closed again.
- the lock chamber 34 is completely filled and the part of the feed material which does not fit in is cut off.
- the first lock gate 30 is designed as a slide with a cutting edge, which separates the upper part of the feed from the lock chamber 34.
- the first lock gate 30 can also be made in several pieces in this embodiment.
- the second lock gate 32 is initially closed and the first lock gate 30 is opened. As a result, feed material enters the lock chamber 34. After closing the first lock gate 30, the second lock gate 32 is opened, whereby the feed material falls into the shaft body 10. At the same time, additional feed material can already be introduced through the feed opening 28 which is provided on the first lock gate 30. Thereafter, the filling cycle begins again.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Organic Chemistry (AREA)
- Combustion & Propulsion (AREA)
- Environmental & Geological Engineering (AREA)
- Processing Of Solid Wastes (AREA)
- Vertical, Hearth, Or Arc Furnaces (AREA)
- Emergency Protection Circuit Devices (AREA)
- Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
- Furnace Charging Or Discharging (AREA)
- Gasification And Melting Of Waste (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
Abstract
Description
Die vorliegende Erfindung betrifft einen Gleichstrom-Schacht-Reaktor zum Schmelzen und Vergasen von Einsatzstoffen unterschiedlicher Art und Konsistenz, wie schadstofffreie und/oder schadstoffbelastete Hölzer, Hausund Sperrmüll, Ersatzbrennstoffe, pelletierte Stäube bzw. Tiermehl, Kunststoffe, Industrie- und Gewerbeabfallstoffe.The present invention relates to a DC shaft reactor for melting and gasifying feedstocks of different types and consistencies, such as pollutant-free and / or contaminated wood, domestic and bulky refuse, substitute fuels, pelleted dusts or animal meal, plastics, industrial and commercial waste.
In Schacht-Reaktoren kann ein Synthesegas, welches zur Erzeugung von elektrischer Energie sowie Wärme geeignet ist und/oder als Basis für Syntheseprozesse Verwendung findet, erzeugt werden. Als festes Produkt entsteht eine nichtauslaugbare Schlacke und eine stofflich weiterverarbeitbare Metallphase oder eine nichteluierbare flüssige Phase, welche für eine weitergehende Verarbeitung zur Verfügung steht.In shaft reactors, a synthesis gas which is suitable for generating electrical energy and heat and / or is used as a basis for synthesis processes can be produced. The solid product formed is a non-leachable slag and a material processable metal phase or a non-recoverable liquid phase, which is available for further processing.
In der
Weiterführend ist in
In
Reaktoroberfläche im Bereich der Querschnittserweiterung der Pyrolyse, da Wärmeverluste auftreten. Ferner rollen bei dem Schüttkegel die größeren Stücke der Einsatzstoffe an die Reaktorwand, wodurch eine nachteilige Entmischung auftritt. Die Folge ist eine stark einseitige Abschmelzung der Ofenausmauerung, die zu einer kürzeren Standzeit des Reaktors führt. Durch die Entmischung bilden sich in der Schüttung bevorzugte Strömungskanäle für die eintretenden Gase aus. Dies hat zur Folge, dass sich verschiedenartige inhomogene Reaktionszonen ausbilden, die zu schwankenden Gasqualitäten führen.Reactor surface in the area of cross-sectional expansion of pyrolysis, since heat losses occur. Furthermore, in the bulk cone, the larger pieces of feedstock roll to the reactor wall, causing a disadvantageous segregation occurs. The result is a strong one-sided melting of the Ofenausmauerung, which leads to a shorter service life of the reactor. As a result of the segregation, preferred flow channels for the incoming gases are formed in the bed. This has the consequence that form various heterogeneous reaction zones, which lead to fluctuating gas qualities.
Aus
Generell kann davon ausgegangen werden, dass bei Einsatzstoffen mit hohen Zündpunkten bei schlechter Wärmeleitung und bei Stoffen mit hoher Feuchte die zugeführte Wärme im Pyrolyseabschnitt nicht zu einer ausreichenden Erwärmung und Pyrolyse bzw. Entgasung der Stoffe führt. Die Prozesse der Ent- und Vergasung verschieben sich in den Bereich des Schmelz- und Überhitzungsabschnittes und verringern so die Reaktionszeit zur Zerstörung aller sich bildenden Teere und Öle in Form längerkettiger Kohlenwasserstoffe.In general, it can be assumed that in the case of feedstocks with high ignition points in poor heat conduction and in the case of substances with high humidity, the heat supplied in the pyrolysis section is not sufficient Heating and pyrolysis or degassing of the substances leads. The degassing and gasification processes shift to the melting and overheating section, reducing the reaction time to destroy all the tars and oils that form in the form of longer-chain hydrocarbons.
Sämtliche vorstehende beschriebene Schacht-Reaktoren sind nur für einen geringen Bereich an Einsatzstoffen einsetzbar. Ferner muss zum Vergasen der Einsatzstoffe eine erhebliche Menge an Energie zugeführt werden. Dies erfolgt durch unterschiedliche Düsensysteme, die in den vertikalen Schachtkörpern angeordnet sind, sowie über zusammen mit dem Schüttgut in den Schachtkörper eingebrachtes Brennmaterial, wie Koks oder dergleichen. Ferner besteht bei bekannten Schacht-Reaktoren unabhängig davon, ob sie im Gleichstrom- oder Gegenstromprinzip arbeiten, das Problem, dass das entnommene Gas stark partikelbelastet ist und somit vor einer Weiterverarbeitung beispielsweise gefiltert werden muss.All of the above described shaft reactors can only be used for a small range of starting materials. Furthermore, a significant amount of energy must be supplied for gasifying the feedstocks. This is done by different nozzle systems, which are arranged in the vertical shaft bodies, as well as introduced via together with the bulk material in the shaft body fuel, such as coke or the like. Furthermore, in known shaft reactors, irrespective of whether they operate on the cocurrent or countercurrent principle, there is the problem that the withdrawn gas is heavily loaded with particles and thus has to be filtered before further processing, for example.
Die Aufgabe der Erfindung besteht darin, einen Gleichstrom-Schacht-Reaktor zu schaffen, mit dem auch beim Einsatz unterschiedlicher Einsatzstoffe Nutzgase, insbesondere brennbare Nutzgase mit einer geringen Partikelbelastung, erzeugt werden können, deren Energieinhalt für den Gleichstrom-Schacht-Reaktor genutzt werden kann.The object of the invention is to provide a direct current shaft reactor, with which useful gases, in particular combustible useful gases with a low particle load, can be produced even when different starting materials are used, the energy content of which can be used for the direct current shaft reactor.
Die Lösung der Aufgabe erfolgt erfindungsgemäß durch die Merkmale des Anspruchs 1.The object is achieved according to the invention by the features of claim 1.
Der erfindungsgemäße Gleichstrom-Schacht-Reaktor zum Schmelzen und Vergasen von Einsatzmaterial, weist einen vertikalen Schachtkörper auf. Innerhalb des Schachtkörpers wird das Einsatzmaterial getrocknet, erwärmt und vergast. Der Schachtkörper lässt sich somit üblicherweise in die Bereiche Trockenzone, Entgasungszone und Vergasungszone unterteilen. An den Schachtkörper schließt sich ein Aufnahmekörper an, der zur Aufnahme von geschmolzenem Einsatzmaterial dient. Innerhalb dieses Körpers ist die Schmelzzone des Reaktors ausgebildet. Der Schachtkörper und/oder der Aufnahmekörper sind mit einer Gas-Abführeinrichtung zum Abführen der innerhalb des Reaktors erzeugten Nutzgase verbunden. Insbesondere ist die Abführeinrichtung im Bereich zwischen dem Schachtkörper und dem Aufnahmekörper angeordnet und als Rohr ausgebildet. Ferner weist der vertikal ausgerichtete Schachtkörper eine Zuführeinrichtung auf, durch die das Einsatzmaterial dem Schacht-Reaktor zugeführt wird.The inventive DC-shaft reactor for melting and gasifying feedstock, has a vertical shaft body. Within the shaft body, the feedstock is dried, heated and gasified. The shaft body can thus usually be subdivided into the areas of drying zone, degassing zone and gasification zone. The shaft body is followed by a receiving body, which serves to receive molten feedstock. Within this body is the Melting zone of the reactor formed. The shaft body and / or the receiving body are connected to a gas discharge device for discharging the Nutzgase generated within the reactor. In particular, the discharge device is arranged in the region between the shaft body and the receiving body and designed as a tube. Further, the vertically oriented shaft body has a feeder through which the feedstock is fed to the shaft reactor.
Erfindungsgemäß ist mit dem Schachtkörper eine Gas-Zuführeinrichtung zum Zuführen von Gas in den Schachtkörper verbunden. Das zugeführte Gas, bei dem es sich vorzugsweise um Luft oder mit Sauerstoff angereicherte Luft handelt, dient zum Trocknen des Einsatzmaterials. Um eine gute und effektive Trocknung des Einsatzmaterials zu erzielen, ist das zugeführte Gas erfindungsgemäß vorgewärmt. Zum Vorwärmen des Gases ist erfindungsgemäß die Gas-Zuführeinrichtung mit der Gas-Abführeinrichtung verbunden. Das aus dem Reaktor abgeführte heiße Gas wird erfindungsgemäß somit zum Vorwärmen des dem Schachtkörper zugeführten Gases genutzt. Der Zuführöffnung des Reaktors ist eine Schleusenanordnung nachgeordnet, die das Einbringen des Einsatzmaterials steuert. Im Bereich der Schleusenanordnung ist zumindest ein Teil der Gaszuführeinrichtung mit der Schleusenkammer verbunden. Die erfindungsgemäße Nutzung des abgeführten Gases als Energieträger führt dazu, dass zum Vorwärmen des Gases keine zusätzliche Energie erforderlich ist und das Einsatzmaterial bereits in der Schleusenanordnung eine erste Trocknung erfährt. Die Schleusenanordnung wird dadurch zusätzlich zum Trocknen des Einsatzmaterials genutzt. Ein weiterer wesentlicher Vorteil der Erfindung besteht darin, dass dem abgeführten Gas Wärme entzogen wird. Hierdurch ist die Weiterverarbeitung bzw. Nutzung dieses Gases vereinfacht.According to the invention, a gas supply device for supplying gas into the shaft body is connected to the shaft body. The supplied gas, which is preferably air or oxygen-enriched air, serves to dry the feedstock. In order to achieve a good and effective drying of the feedstock, the gas supplied is preheated according to the invention. For preheating the gas, the gas supply device according to the invention is connected to the gas discharge device. The discharged from the reactor hot gas is thus used according to the invention for preheating the gas supplied to the shaft body. The feed opening of the reactor is followed by a lock arrangement which controls the introduction of the feedstock. In the area of the lock arrangement, at least part of the gas supply device is connected to the lock chamber. The inventive use of the discharged gas as an energy source means that no additional energy is required for preheating the gas and the feed already undergoes a first drying in the lock assembly. The lock arrangement is thereby additionally used for drying the feedstock. Another essential advantage of the invention is that heat is removed from the discharged gas. This simplifies the further processing or use of this gas.
Aufgrund des Vorwärmens des Einsatzmaterials, was erfindungsgemäß bereits unmittelbar nach dem Zuführen des Einsatzmaterials in der Schleusenanordnung erfolgt, kann eine größere Produktpalette an Einsatzmaterial in dem Schachtreaktor verarbeitet werden, da das Einsatzmaterial während seines Aufenthalts im Schachtreaktor stärker erwärmt wird und somit auch bei schlechter verarbeitbaren Materialien eine Ent- und Vergasung erzielt werden kann. Insbesondere ist hierdurch auch erreicht, dass innerhalb des Reaktors eine bessere Ent- und Vergasung stattfindet, so dass das Nutzgas weniger Partikel aufweist. Insbesondere ist es aufgrund der erfindungsgemäßen Ausgestaltung des Gleichstrom-Schacht-Reaktors möglich, Nutzgase zu erzeugen, die einen erheblich geringeren Ölund Teeranteil sowie einen erheblich geringeren Schadstoffgehalt aufweisen.Due to the preheating of the feedstock, which according to the invention already takes place immediately after feeding the feedstock in the lock arrangement, a larger product range can Feedstock can be processed in the shaft reactor, since the feedstock is heated more during his stay in the shaft reactor and thus even with less processable materials degassing and gasification can be achieved. In particular, this also achieves that within the reactor better degassing and gasification takes place, so that the Nutzgas has fewer particles. In particular, it is possible due to the inventive design of the DC-shaft reactor to produce Nutzgase having a significantly lower oil and tar content and a significantly lower pollutant content.
Das Einbringen von Einsatzmaterial in den Schachtkörper erfolgt über die Schleusenanordnung. Mit Hilfe der Schleusenanordnung kann sichergestellt werden, dass beispielsweise nur eine begrenzte Menge an Umgebungsluft in den Schachtreaktor über die Zuführöffnung gelangt. Hierdurch kann der Prozess innerhalb des Schachtreaktors besser gesteuert werden. Die Schleusenanordnung weist vorzugsweise mindestens eine Schleusenkammer auf. Es wird somit ein erstes Schleusentor geöffnet, um das Einsatzmaterial in die Schleusenkammer einzubringen. Sodann wird dieses erste Schleusentor geschlossen, so dass die Schleusenkammer verschlossen ist. In diesem Zustand kann ggf. enthaltene Luft aus der Schleusenkammer abgesaugt und/oder durch anderes Gas ersetzt werden. Anschließend wird das zweite Schleusentor, die in Richtung des Innenraums des Schachtreaktors führt, geöffnet und das Einsatzmaterial gelangt aus der Schleusenkammer in den Reaktor.The introduction of feed into the shaft body via the lock assembly. With the help of the lock arrangement can be ensured that, for example, only a limited amount of ambient air enters the shaft reactor via the feed opening. This allows better control of the process within the shaft reactor. The lock arrangement preferably has at least one lock chamber. Thus, a first lock gate is opened to introduce the feed into the lock chamber. Then this first lock gate is closed, so that the lock chamber is closed. In this state, possibly contained air can be sucked out of the lock chamber and / or replaced by another gas. Subsequently, the second lock gate, which leads in the direction of the interior of the shaft reactor, opened and the feed material passes from the lock chamber into the reactor.
In vorteilhafter Weise ist die Schleusenanordnung so gestaltet, dass das Einbringen von Einsatzmaterial in den Gleichstrom-Schacht-Reaktor nahezu schüttkegelfrei bzw. schüttkegelarm erfolgt. Dadurch wird die Gefahr verringert, dass größere Stücke der Einsatzstoffe an die Reaktorwand rollen und eine Entmischung des Einsatzmaterials stattfindet. Die nachteiligen Folgen der Entmischung, wie beispielsweise Abschmelzung der Ofenausmauerung, Entstehung von Strömungskanälen für die eintretenden Gase und schwankende Gasqualitäten durch verschiedenartige Reaktionszonen, werden dadurch stark reduziert. Ein schüttkegelarmes Einbringen von Material in Schachtreaktoren lässt sich beispielsweise dadurch erreichen, dass der Reaktorschacht, welcher der Schleusenanordnung nachfolgt, eine ähnliche Querschnittsgeometrie aufweist. Ferner sollte die Fallhöhe des zugeführten Gutes möglichst niedrig sein. Insbesondere nicht höher als die dreifache Höhe des Einsatzmaterials in der Schleusenanordnung. Zusätzlich sollte sich das zweite Schleusentor möglichst schnell öffnen, damit die Unterseite des fallenden Einsatzmaterials möglichst waagerecht bleibt.Advantageously, the lock arrangement is designed so that the introduction of feed into the DC shaft reactor takes place almost free of freeze or low-shear. This reduces the risk of larger pieces of feedstock rolling to the reactor wall and segregation of the feedstock. The adverse consequences of demixing, such as melting of Ofenausmauerung, emergence of flow channels for the incoming gases and fluctuating gas qualities due to different reaction zones are thereby greatly reduced. A low-shear introduction of material into shaft reactors can be achieved, for example, by the fact that the reactor shaft, which follows the lock arrangement, has a similar cross-sectional geometry. Furthermore, the drop height of the supplied goods should be as low as possible. In particular not higher than three times the height of the feed in the lock arrangement. In addition, the second floodgate should open as quickly as possible, so that the underside of the falling feed remains as horizontal as possible.
Ferner sollte das Einsatzmaterial in der Schleusenanordnung möglichst nicht selber bereits einen Schüttkegel enthalten. Dies lässt sich beispielsweise dadurch erreichen, dass die Schleusenkammer in der Schleusenanordnung vollständig mit Einsatzmaterial gefüllt wird und mit dem Schließen des ersten Schleusentores das Einsatzmaterial, das nicht in die Schleusenkammer passt, vom einzubringenden Einsatzmaterial abgeschnitten wird. Dazu ist in vorteilhafter Weise das erste Schleusentor als Schieber mit Schneidkante ausgebildet. Dadurch entspricht das einzubringende Einsatzmaterial nahezu der Geometrie der Schleusenkammer und weist insbesondere nahezu keinen Schüttkegel auf.Furthermore, the feedstock in the lock assembly should not as far as possible already contain a bulk cone. This can be achieved, for example, in that the lock chamber in the lock arrangement is completely filled with feed material and, as the first lock gate is closed, the feed which does not fit into the lock chamber is cut off from the feed material to be introduced. For this purpose, the first lock gate is designed as a slide with cutting edge in an advantageous manner. As a result, the feedstock to be introduced almost corresponds to the geometry of the lock chamber and in particular has almost no bulk cone on.
Damit das zweite Schleusentor möglichst schnell geöffnet werden kann, ist es in vorteilhafter Weise als Klappe oder Schieber ausgeführt.Thus, the second lock gate can be opened as quickly as possible, it is carried out in an advantageous manner as a flap or slide.
Nachfolgend wird die Erfindung anhand einer bevorzugten Ausführungsform unter Bezugnahme auf die anliegende Zeichnung erläutert.
- Figur 1
- zeigt eine schematische Seitenansicht eines Gleichstrom-Schacht-Reaktors.
- Figur 2
- zeigt eine schematische Seitenansicht einer bevorzugten Ausgestaltung einer Schleusenanordnung.
- FIG. 1
- shows a schematic side view of a DC reactor shaft.
- FIG. 2
- shows a schematic side view of a preferred embodiment of a lock assembly.
Der Gleichstrom-Schacht-Reaktor weist einen Schachtkörper 10 auf. Der Schachtkörper 10 kann im dargestellten Ausführungsbeispiel in eine Schleusenanordnung 12, eine sich an die Schleusenanordnung 12 anschließende Trocknungszone 14, eine sich an die Trocknungszone 14 anschließende Entgasungszone 16 sowie eine sich hieran anschließende Vergasungszone 18 unterteilt werden. An die Vergasungszone 18 des Schachtkörpers 10 schließt sich ein Aufnahmekörper 20 an, der zur Aufnahme von geschmolzenem Einsatzmaterial 22 dient. Im Grenzbereich zwischen der Vergasungszone 18 und dem Aufnahmekörper 20 ist der Querschnitt des Aufnahmekörpers erweitert, so dass ein ringförmig ausgebildeter Gassammelraum 24 ausgebildet ist, der den unteren Teil der Vergasungszone 18 umgibt. Der Gassammelraum 24 ist mit einer im dargestellten Ausführungsbeispiel als Rohr ausgebildeten Gas-Abführeinrichtung 26 verbunden.The DC shaft reactor has a
Das Einsatzmaterial wird durch eine Zuführöffnung 28 in den Schachtkörper 10 über die Schleusenanordnung 12 eingeführt. Das Zuführen des Einsatzmaterials erfolgt über die Schleusenanordnung 12 um das Einbringen großer Mengen an Umgebungsluft, durch die der Schmelz- und Vergasungsprozess unkontrolliert beeinflusst werden kann, zu verhindern. Hierzu weist die Schleusenanordnung 12 zwei Schleuseneinrichtungen bzw. Schleusentore 30,32 auf, zwischen denen die Schleusenkammer 34 ausgebildet ist, wobei die Schleusenkammer 34 bereits ein Teil des Schachtkörpers 10 ist.The feed is introduced through a
Im dargestellten Ausführungsbeispiel ist im Bereich der Trockenzone 14 des Schachtkörpers 10 eine Gas-Zuführeinrichtung 36 vorgesehen. Die Gas-Zuführeinrichtung 36 weist eine den Schachtkörper 10 umgebende Ringleitung 38 auf, die mit mehreren gleichmäßig an Umfang verteilten Düsen 40 verbunden ist. Über die Gas-Zuführeinrichtung 36 wird dem Einsatzmaterial im Bereich der Trockenzone 14 vorzugsweise heiße Luft, die ggf. mit Sauerstoff angereichert sein kann, zum Trocknen des Einsatzmaterials zugeführt.In the illustrated embodiment, a
In der sich an die Trockenzone 14 anschließenden Entgasungszone 16 ist eine weitere Gas-Zuführeinrichtung 42 angeordnet, die ebenfalls eine den Schachtkörper 10 umgebende Ringleitung 44 aufweist. Die Ringleitung 44 ist mit mehreren am Umfang vorzugsweise gleichmäßig verteilten Düse 46 verbunden. Über die Gas-Zuführeinrichtung 42 können energiereiche Gase, Sauerstoff, Luft oder andere zur Steuerung des Schmelz- und Vergasungsprozesses geeignete Gase dem Einsatzmaterial zugeführt werden.In the subsequent to the drying
Weitere Düsen 48 sind in der Vergasungszone 18 vorgesehen. Über die Düsen 48 kann wiederum energiereiches Gas oder andere den Schmelz- und Vergasungsprozess steuernde Gase oder Stoffe zugeführt werden. Ebenso können anstatt der Düsen 48 auch Brenner vorgesehen sein, die in der Vergasungszone 18 unmittelbar Wärme dem Einsatzmaterial zuführen. Der Endbereich des zur Längsachse 50 rotationssymmetrischen Schachtkörpers 10 ist sich leicht verjüngend konisch ausgebildet, so dass das Einsatzmaterial im Bereich der Vergasungszone 18 etwas zurückgehalten wird.
In einer Seitenwand 52 des Aufnahmekörpers 20 sind ferner mehrere am Umfang verteilte Düsen 54 angeordnet. Die Düsen 54 dienen zum Einbringen energiereicher Gase oder entsprechender Stoffe. Durch die Düsen 54 ist sichergestellt, dass die Schmelze 22 flüssig bleibt. Ebenso können anstelle der Düsen 54 auch Brenner vorgesehen sein.In a
Die Gas-Zuführeinrichtung 36 ist mit der Gas-Abführeinrichtung 26 verbunden. Hierzu führt das Rohr der Gas-Abführeinrichtung 26 durch das die heißen in dem Reaktor entstandenen Gase abgeführt werden, zu einem Wärmetauscher 56. Die abgeführten Gase bzw. Nutzgase strömen durch den Wärmetauscher 56 und werden sodann von einem Rohr 58 vorzugsweise zur Weiterverarbeitung abgeführt. Ferner ist mit dem Wärmetauscher 56 eine Rohrleitung 60 verbunden. Durch die Rohrleitung 60 wird Luft oder ein anderes Gas in den Wärmetauscher 56 geleitet, nimmt in dem Wärmetauscher 56 Wärme von dem Nutzgas auf und wird durch ein Rohr 62 wieder aus dem Wärmetauscher abgeleitet. Das Rohr 62 ist sodann über eine Heizeinrichtung 64 und ein Rohr 66 mit der Ringleitung 38 der Gas-Zuführeinrichtung 36 verbunden. Das Erwärmen der durch die Gas-Zuführeinrichtung 36 im Bereich der Trockenzone 14 dem Einsatzmaterial zugeführte Gas wird somit im Betrieb vorzugsweise ausschließlich durch die Wärme der Nutzgase mit Hilfe des Wärmetauschers 56 vorgewärmt. Mit Hilfe der Heizeinrichtung 64, bei der es sich beispielsweise um eine elektrische Heizung oder einen Brenner handeln kann, kann das über die Gas-Zuführeinrichtung zuzuführende Gas zusätzlich erwärmt werden. Insbesondere während des Start-Zyklus' des Reaktors, in dem noch keine heißen Nutzgase durch die Gas-Abführeinrichtung 26 abgeführt werden oder die Temperatur dieser Nutgase noch nicht hoch genug ist, kann die Heizeinrichtung 64 zum Erwärmen des Gases genutzt werden.The
Erfindungsgemäß wird im Bereich der Schleusenanordnung 12 ein Teil 35 der Gas-Zuführeinrichtung 36 mit dem Schachtkörper 10 verbunden. Durch diese Verbindung wird das Einsatzgut bereits in der Schleusenanordnung 12 einer ersten Trocknung unterzogen.According to the invention, a
Vorzugsweise ist eine Seitenwand 68 der Schleusenanordnung 12 doppelwandig ausgebildet. Hierdurch kann eine Erwärmung und somit eine Trocknung des Einsatzmaterials in der Schleusenkammer 34 erzielt werden indem ein heißes Medium durch die doppelwandige Seitenwand 68 geleitet wird. Vorzugsweise handelt es sich hierbei um Luft oder ein anderes Gas, das ebenfalls durch das Nutzgas vorzugsweise mit Hilfe des Wärmetauschers 56 vorgewärmt wird.Preferably, a
Der ideale Materialeintrag setzt vorzugsweise eine homogene Mischung voraus, insbesondere bei Zudosierung von Zusätzen wie Koks und Kalk. Der Eintrag erfolgt erfindungsgemäß zentral auf der Achse des Reaktors. Der Reaktor ist im laufenden Betrieb möglichst voll zu halten. Eine Füllstandsüberwachung ist demzufolge vorzugsweise direkt unter dem Schleusentor 32 angebracht. Die Befüllung erfolgt in einer hohen Taktrate. Durch diese Maßnahmen wird gleichzeitig der Falschlufteintrag verringert und die Druckhaltung im Gesamtsystem verbessert.The ideal material input preferably requires a homogeneous mixture, in particular when adding additives such as coke and lime. The entry is carried out according to the invention centrally on the axis of the reactor. Of the Reactor should be kept as full as possible during operation. A level monitoring is therefore preferably mounted directly below the
Erfindungsgemäß sind die Bereiche Schleusenanordnung 12, Trocknungszone 14 und Entgasungszone 16 bis in die Vergasungszone 18 vorzugsweise zylindrisch oder leicht konisch sich nach unten erweiternd ausgebildet. Der Übergang zwischen den Zonen erfolgt ohne stufenförmige oder sprunghafte Querschnittserweiterung, d.h. der Übergang ist gleichen Querschnitts und ohne Ausbildung von schüttschichtfreien Hohlräumen, Stufen oder Kanten.According to the invention, the areas of the
Die Trocknungszone 14 kann insbesondere bei größeren Bauarten ebenfalls doppelwandig ausgeführt sein. Dies ermöglicht die indirekte Erwärmung der Gutsäule im Innern bzw. die Sicherstellung einer gleichmäßigen Temperatur an der Wandung und eine Verringerung von Kondensationserscheinungen an der Innenseite. Als Wärmeträgermedium wird vorzugsweise ebenfalls heiße Luft eingesetzt. Der Einsatz des am Ende des Prozesses aufstehenden Rauchgases ist ebenfalls möglich.The drying
Bei der Erwärmung des Ausgangsgutes findet in der Trocknungszone 14 die Verdampfung des Wassers statt. Die Temperatur im Gut steigt dabei nur wenig über 100°C an. Mit zunehmender Temperatur werden im weiteren Verlauf adsorbierte Gase wie Stickstoff und Kohlendioxid freigesetzt, welche nicht durch Spaltreaktionen entstanden sind. Spätestens hier kann von der Entgasung gesprochen werden. Oberhalb 250 bis 300 °C setzt dann die Entwicklung von Gasen und Dämpfen ein, bei denen es sich um abdestillierte niedrigmolekulare Verbindungen und erste Spaltprodukte handelt. Ein weiteres Ansteigen der Temperatur bewirkt den Ablauf von Reaktionen, die zur Bildung von Methan und Wasserstoff führen.When heating the starting material takes place in the drying
Die Entgasungszone 16 kann in Fortführung der Trocknungszone 14 ebenfalls doppelwandig gestaltet sein.The
Im unteren Drittel der Trocknungs- und Entgasungszone 14,16 ergibt sich ein Bereich, in welchem die Reaktorinnentemperatur größer als die Heißlufttemperatur ist. Hier kann die doppelwandige Ausführung durch eine silikatische Ausmauerung ersetzt werden. Eine Ausführung der gesamten Trocknungs- und Entgasungszone 14,16 mit einer Stampfmasse, auch bei einer doppelwandigen Gestaltung, ist vorteilhaft. Geringerem Verschleiß der Stahlbauhülle stehen geringerer Wärmeübergang und niedrigere Temperaturwechselbeständigkeit gegenüber.In the lower third of the drying and
Bei der weiteren Erwärmung der Schüttsäule ab etwa 700°C erfolgt neben der Spaltung des Brennstoffes unter dem Einfluss der Wärme die heterogene Reaktion zwischen dem Brennstoff und dem noch nicht reagierten Sauerstoff der Luft.In the further heating of the pouring column from about 700 ° C is carried out in addition to the cleavage of the fuel under the influence of heat, the heterogeneous reaction between the fuel and the unreacted oxygen in the air.
Die Vergasungszone 18 ist die Hauptreaktionszone innerhalb des Schachtreaktors. Hier erfolgt bei Temperaturen von 1.200 bis 1.400 °C die stoffliche und energetische Umsetzung der Feststoffe. Aus dem festen Brennstoff entstehen Gase und feste Produkte von Koks bis Asche. Für die vollständige und gleichmäßige Reaktion ist entscheidend, dass eine homogene Schüttung durch das bereits entstandene Entgasungsgas und das hier einzubringende Vergasungsmittel gleichmäßig durchströmt wird. Die Vergasungszone 18 muss aus diesen Gründen eine ausreichende Höhe besitzen. Dies wird insofern dadurch erreicht, dass die Vergasungszone 18 als ein gerader zylindrischer Bereich mit Übergang in eine konische Verkleinerung des Querschnittes oder sofort als zunehmende Verjüngung ausgebildet ist. Da sich durch die stofflichen Umsetzungen und damit zusammenhängende zerstörende Kräfte das Materialkorn verkleinert, vergrößern sich die Hohlräume innerhalb der Schüttsäule. Durch die Verkleinerung des Schachtquerschnittes in diesem Bereich kann die Sinkgeschwindigkeit der Materialsäule vergleichmäßigt werden, Strömungskanäle werden zerstört und die Ausbildung von größeren Hohlräumen in der Schüttung wird vermieden.The
In Fortführung der darüber befindlichen Entgasungszone 16 ist der Bereich der Vergasung ebenfalls mit einer silikatischen Masse ausgekleidet.In continuation of the
Der untere zylindrische oder sich verjüngende Bereich des Vergasungsbereiches 18 ragt in die Schmelzzone 20 hinein. Auf diesen Teil liegt die darüber befindliche Schüttsäule zumindest teilweise auf, gleichzeitig herrschen dort hohe Temperaturen. Für die Sicherung der mechanischen Festigkeit und des Schutzes vor zu hohen Temperaturen erfolgt eine Kühlung mittels indirekter Wasserkühlung in der Schachtwand 70.The lower cylindrical or tapered region of the
Das Gas durchströmte im Gleichstrom mit dem Einsatzmaterial die Zone der Hochtemperaturvergasung 18. Die aus den abgelaufenen Entgasungs- und Thermolysereaktionen entstandenen längerkettigen Kohlenwasserstoffe sind hier thermisch gespalten worden und waren gleichzeitig an den ablaufenden Vergasungsprozesse beteiligt. Es entsteht ein brennbares Gas mittleren Heizwertes mit den Hauptkomponenten Kohlenmonoxid, Kohlendioxid, Wasserstoff und Wasserdampf ohne Bestandteile an kondensierbaren Kohlenwasserstoffen. Viele der dabei abgelaufenen chemischen Reaktionen sind endotherm. Die Temperatur des Gases wie der Schüttung verringert sich somit.The gas flowed through the zone of high-temperature gasification in co-current with the feed material. The longer-chain hydrocarbons formed from the expired degassing and thermolysis reactions were thermally split here and at the same time participated in the gasification processes taking place. The result is a combustible gas average calorific value with the main components carbon monoxide, carbon dioxide, hydrogen and water vapor without constituents of condensable hydrocarbons. Many of the chemical reactions that have taken place are endothermic. The temperature of the gas as well as the bed thus decreases.
Unterhalb des wassergekühlten Bereiches des Vergasungsbereiches 18 erfährt das Gas eine Umlenkung um etwa 180° und gelangt in den schüttschichtfreien Raum 24. Durch vorstehend beschriebene endotherme Vorgänge besitzt das Gas eine Temperatur von ca. 1.000 °C. Nach einer gewissen Gasberuhigung und -vergleichmäßigung wird das Gas oberhalb aus dem Reaktor abgesaugt.Below the water-cooled region of the
Der Gassammelraum 24 ist bereits Bestandteil der Schmelzzone 20, welche oben wesentlich weiter als die hineinragende Vergasungszone 18 ist. Die zylindrische Schmelzzone 20 verkleinert sich konisch nach unten und schließt mit der Bodenplatte ab, oberhalb welcher sich die aufgeschmolzene Phase sammelt.The
Die Schmelzzone 20 ist in ihrer Gesamtheit mit einer mehrschichtigen Stampfmasse versehen oder mit einer Ausmauerung ausgestattet. Grund hierfür sind die notwendigen hohen Temperaturen. Nur im Bereich des Gassammelraumes ist unter Umständen eine Ausmauerung nicht notwendig.The
Der vollständig entgaste und verkokte Feststoff, ist stellenweise bereits gesintert bzw. geschmolzen und sinkt aus der Vergasungszone 18 weiter in die Schmelzzone 20.The completely degassed and coked solid is already partially sintered or melted and sinks from the
In die Schmelzzone 20 integriert ist eine Ebene mit mehreren Sauerstoffdüsen oder -Injektoren und/oder oxidierend betriebenen Brennern 54, welche ebenso symmetrisch auf der Achse verteilt sind.Integrated into the
Durch die Zuführung von Gas mit einem hohen Sauerstoffanteil kommt es zu starken exothermen Reaktionen mit dem Gas und dem Feststoff aus der Vergasungszone 18. Es ergeben sich Temperaturen, welche deutlich über dem Schmelzpunkt des Materials liegen, üblicherweise ca. 1400 °C bis 1600 °C. Im Bereich der Sauerstoffdüsen ergeben sich sogar heiße Temperaturzonen von 1800 bis 2000 °C. Unter diesen Bedingungen und durch die Zugabe von Schlackebildnern und/ oder Materialien, welche den Schmelzpunkt absenken, werden alle anorganischen Schadstoffen sicher aufgeschmolzen.The supply of gas with a high oxygen content leads to strong exothermic reactions with the gas and the solid from the
Das aufgeschmolzene Material sammelt sich als Schmelze am Boden des Reaktors. Die Entleerung dieser flüssigen Schmelze erfolgt wie in der Gießerei üblich über ein Abstichloch und eine Rinne 72. Eine Bauart mit Vorherd oder Siphon ist möglich.The molten material collects as a melt at the bottom of the reactor. The emptying of this liquid melt takes place as usual in the foundry via a tap hole and a gutter 72. A design with a forehearth or siphon is possible.
Bei ausreichend großer Bauart und entsprechender Verweilzeit der Schmelze wird sich die Schmelze in eine schwere metallhaltige Phase und eine darauf schwimmende Schlacke trennen. Hier besteht die Möglichkeit, über verschieden hohe Entleerungen eine verwertbare metallische Phase und eine Schlacke gewinnen zu können. Im Produkt Schlacke sind keine organischen Stoffe enthalten und die anorganischen Bestandteile sind in einer silikatischen Matrix stabil eingebaut. Die Nutzung als Material für den Hafen-, Deponie- und Straßenbau sind bekannt, ebenso möglich ist die Herstellung spezieller Gussformen und Produkten, wie sie in der Glasindustrie üblich sind.With sufficiently large design and appropriate residence time of the melt, the melt will separate into a heavy metal-containing phase and a slag floating on it. Here it is possible to gain a usable metallic phase and a slag via different high emptying. The product slag contains no organic substances and the inorganic components are stably incorporated into a silicate matrix. The use as a material for harbor, landfill and road construction are known, as is possible the production of special molds and products, as they are common in the glass industry.
Eine bevorzugte Ausführungsform der Schleusenanordnung 12 besteht darin, dass das zweite Schleusentor 32 als schnellöffnender Schieber ausgestaltet ist (
Damit sich in der Schleusenkammer 34 nahezu kein Schüttkegel ausbildet, wird die Schleusenkammer 34 vollständig gefüllt und der Teil des Einsatzmaterials, der nicht hereinpasst, abgeschnitten. Dazu ist das erste Schleusentor 30 als Schieber mit einer Schneidkante ausgeführt, der den oberen Teil des Einsatzmaterials von der Schleusenkammer 34 abtrennt. Das erste Schleusentor 30 kann in dieser Ausführungsform ebenfalls mehrstückig ausgeführt werden.In order that almost no pour cone is formed in the
Zum Einbringen von Einsatzmaterial in den Schachtkörper 10 ist das zweite Schleusentor 32 zunächst geschlossen und das erste Schleusentor 30 geöffnet. Dadurch gelangt Einsatzmaterial in die Schleusenkammer 34. Nach dem Schließen des ersten Schleusentors 30 wird das zweite Schleusentor 32 geöffnet, wodurch das Einsatzmaterial in den Schachtkörper 10 fällt. Gleichzeitig kann durch die Zuführöffnung 28 bereits weiteres Einsatzmaterial eingefüllt werden, das auf dem ersten Schleusentor 30 bereitgestellt wird. Danach beginnt der Befüllungszyklus von Neuem.For introducing feed into the
Claims (10)
- A co-current shaft reactor for melting and gasifying feedstock, comprisinga vertical shaft body (10) for drying, heating and gasifying the feedstock, said shaft body (10) comprising a feed opening (28) for feeding the feedstock,a receiving body (20) adjoining the shaft body (10), for receiving molten feedstock (22),a gas discharge means (26) for discharging gases produced, said gas discharge means being connected with the shaft body (10) and/or the receiving body (20),a gas feed means (36) connected with the shaft body (10), for feeding gas into the shaft body (10) to dry the feedstock, said gas feed means (36) being connected with the gas discharge means (36) to heat up the gas, anda lock arrangement (12) comprising at least one lock chamber (34),
characterized in thatthe lock arrangement (12) is arranged downstream of the feed opening (28), andat least a part (35) of the gas feed means (36) and/or at least a part of the gas discharge means (26) is connected with the lock chamber (34). - The co-current shaft reactor of claim 1, characterized in that the gas feed means (36) and the gas discharge means (26) are interconnected via a heat exchanger (56).
- The co-current shaft reactor of claim 1 or 2, characterized in that the gas feed means (36) is connected with a heating means (64).
- The co-current shaft reactor of one of claims 1-3, characterized in that the lock arrangement (12) is arranged substantially asymmetrically with respect to the shaft body (10).
- The co-current shaft reactor of one of claims 1-4, characterized in that a side wall (68) of the shaft body (10) is of a double-walled structure, especially in the region of the lock arrangement (12) for heating the feedstock.
- The co-current shaft reactor of claim 5, characterized in that the double side wall (68) is connected with the gas feed means (36).
- The co-current shaft reactor of one of claims 1-6, characterized in that, in the region of the drying zone (14), the cross-sectional area of the shaft body (10) is similar to the cross-sectional surface of the lock arrangement (12).
- The co-current shaft reactor of one of claims 1-7, characterized by a first lock gate (30) which is designed in particular as a slide with a cutting edge, and/or a quick-opening second lock gate (32) which is designed in particular as a slide with a cutting edge.
- The co-current shaft reactor of claim 8, characterized in that the first lock gate (30) and/or the second lock gate (32) are of multi-part design.
- The co-current shaft reactor of one of claims 1-9, characterized in that the drop height of the feedstock introduced via the lock arrangement (12) is not higher than three times the height of the lock chamber (34).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SI200230833T SI1323809T1 (en) | 2001-12-14 | 2002-12-10 | Co-current shaft reactor |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE20120189U DE20120189U1 (en) | 2001-12-14 | 2001-12-14 | Co-current shaft reactor |
DE20120189U | 2001-12-14 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP1323809A2 EP1323809A2 (en) | 2003-07-02 |
EP1323809A3 EP1323809A3 (en) | 2004-01-02 |
EP1323809B1 true EP1323809B1 (en) | 2009-04-01 |
Family
ID=7965116
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP02027458A Expired - Lifetime EP1323809B1 (en) | 2001-12-14 | 2002-12-10 | Co-current shaft reactor |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP1323809B1 (en) |
AT (1) | ATE427347T1 (en) |
DE (2) | DE20120189U1 (en) |
SI (1) | SI1323809T1 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10226862B3 (en) * | 2002-06-15 | 2004-01-29 | Gesellschaft für Nachhaltige Stoffnutzung mbH | Method and device for generating a fuel gas from biomass |
DE10327178B3 (en) * | 2003-06-17 | 2005-05-04 | Hans Ulrich Feustel | Plant for producing metal and slag melts and synthesis gas from waste has gasification unit with tapping outlet at its base, unit being connected to gas quenching and cooling unit containing hydrocyclone and foam- and oil separator |
EP1493799A1 (en) * | 2003-07-04 | 2005-01-05 | von Görtz & Finger Technische Entwicklungs Ges.m.b.H. | Flash water vapour gasification of biomass |
FR2903168B1 (en) * | 2006-06-30 | 2008-08-22 | Fayard Eliane | BURNER FOR REALIZING THE COMBUSTION OF SUBSTANCES REPUTEES DIFFICULTLY COMBUSTIBLE |
MD3959C2 (en) * | 2007-07-04 | 2010-04-30 | Dinano Ecotechnology Llc | Loader of the carboniferous raw material processing installation |
GB2453111B (en) * | 2007-09-25 | 2010-12-08 | Refgas Ltd | Gasification |
DE102013218521A1 (en) * | 2013-09-16 | 2015-03-19 | Sgl Carbon Se | Shaft furnace and process for working up a fluorine-containing waste product |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE966459C (en) * | 1952-06-29 | 1957-08-08 | Paul Hahnel Dr Ing | Process for the oxidizing and reducing treatment of oxidic ores in shaft furnaces |
DE2633128C3 (en) * | 1976-07-23 | 1980-06-26 | Kernforschungsanlage Juelich, Gmbh, 5170 Juelich | Firing grate for a device for incinerating waste materials |
BR7706858A (en) * | 1976-10-26 | 1978-07-04 | Union Steel Corp South Africa | PROCESS AND APPARATUS FOR THE CONTINUOUS PRODUCTION OF A REDUCING GAS CONTAINING CARBON AND HYDROGEN MONOXIDE |
US4530702A (en) * | 1980-08-14 | 1985-07-23 | Pyrenco, Inc. | Method for producing fuel gas from organic material, capable of self-sustaining operation |
US4584947A (en) * | 1985-07-01 | 1986-04-29 | Chittick Donald E | Fuel gas-producing pyrolysis reactors |
FR2596409B1 (en) * | 1986-04-01 | 1988-07-08 | Distrigaz Sa | CO-CURRENT COAL GASIFICATION METHOD AND APPARATUS |
FR2610087B1 (en) * | 1987-01-22 | 1989-11-24 | Aerospatiale | PROCESS AND DEVICE FOR THE DESTRUCTION OF SOLID WASTE BY PYROLYSIS |
DE3734988A1 (en) * | 1987-10-15 | 1989-04-27 | Voest Alpine Ind Anlagen | Process for continuously operating a heat recovery installation and apparatus for carrying out the process |
CA2036581C (en) * | 1990-02-23 | 1998-09-22 | Gunter H. Kiss | Method of transporting, intermediate storage and energetic and material utilization of waste goods of all kinds and device for implementing said method |
DE4030554A1 (en) * | 1990-09-27 | 1992-04-09 | Bergmann Michael Dr | Procedure and device for thermal treatment of waste materials - comprises reactor combustion zone charged with waste, coke and lime, and gas produced passes through hot coke be also located in reactor |
DE4317145C1 (en) * | 1993-05-24 | 1994-04-28 | Feustel Hans Ulrich Dipl Ing | Scrap disposal in coke-fired shaft furnace - involves circulation of organic content gasification gas to metal content melting zone |
DE19640497C2 (en) * | 1996-10-01 | 1999-01-28 | Hans Ulrich Dipl Ing Feustel | Coke-heated cycle gas cupola for material and / or energy recovery of waste materials |
DE19816864C2 (en) * | 1996-10-01 | 2001-05-10 | Hans Ulrich Feustel | Coke-heated cycle gas cupola furnace for material and / or energy recovery of waste materials of different compositions |
DE10007115C2 (en) * | 2000-02-17 | 2002-06-27 | Masch Und Stahlbau Gmbh Rolan | Process and reactor for gasifying and melting feedstocks with descending gas flow |
DE10127138C2 (en) * | 2000-06-23 | 2003-12-24 | Nachhaltige Stoffnutzung Mbh G | Method and device for generating a fuel gas from biomass |
JP2002081624A (en) * | 2000-09-05 | 2002-03-22 | Kawasaki Heavy Ind Ltd | Waste gasification melting furnace and operation method of the melting furnace |
-
2001
- 2001-12-14 DE DE20120189U patent/DE20120189U1/en not_active Expired - Lifetime
-
2002
- 2002-12-10 EP EP02027458A patent/EP1323809B1/en not_active Expired - Lifetime
- 2002-12-10 DE DE50213409T patent/DE50213409D1/en not_active Expired - Lifetime
- 2002-12-10 AT AT02027458T patent/ATE427347T1/en not_active IP Right Cessation
- 2002-12-10 SI SI200230833T patent/SI1323809T1/en unknown
Also Published As
Publication number | Publication date |
---|---|
SI1323809T1 (en) | 2009-08-31 |
EP1323809A3 (en) | 2004-01-02 |
ATE427347T1 (en) | 2009-04-15 |
DE20120189U1 (en) | 2003-04-24 |
EP1323809A2 (en) | 2003-07-02 |
DE50213409D1 (en) | 2009-05-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE19930071C2 (en) | Method and device for pyrolysis and gasification of organic substances and mixtures | |
AT402964B (en) | METHOD FOR THE USE OF DISPOSAL GOODS | |
DE69027302T2 (en) | Process for preheating scrap by pyrolysis of the resinous residues with total recovery of their energy content and steel manufacturing process | |
EP1261827B1 (en) | Reactor and method for gasifying and/or melting materials | |
EP0055840B1 (en) | Process and plant for the combustion of organic materials | |
EP1248828B1 (en) | Device and method for the production of fuel gases | |
DE112011100718T5 (en) | Carbon conversion system with integrated processing zones | |
CH615215A5 (en) | ||
DE69724617T2 (en) | MELTING PROCESS FOR GASIFYING SOLID WASTE | |
DE4030554C2 (en) | ||
DE60033782T2 (en) | METHOD FOR GASIFYING CARBON CONTAINING FUELS IN A FIXED BEDGED GASER | |
DE102016121046B4 (en) | Duplex-TEK multistage gasifier | |
EP1187891B1 (en) | Method and device for disposing of waste products | |
EP0767342B2 (en) | Process for disposal of irregular waste | |
EP1323809B1 (en) | Co-current shaft reactor | |
DE3614048A1 (en) | METHOD AND DEVICE FOR GASIFYING LOW-QUALITY FUELS IN A FLUID METAL MELTING BATH | |
DD202176A5 (en) | METHOD AND DEVICE FOR CONTINUOUS PRODUCTION OF FUEL GAS FROM ORGANIC WASTE MATERIAL | |
EP1338847B1 (en) | Cocurrent Shaft Reactor | |
DE19937188C1 (en) | Processing of industrial or domestic refuse to produce synthesis gas includes aspirating gases from a coolant water settling tank | |
DE202009002781U1 (en) | Reactor for the thermal treatment of a feedstock | |
DE3005205C2 (en) | Discharge device for a waste pyrolysis plant | |
DE69204948T2 (en) | Method and device for gasifying solid fuels containing meltable non-combustible materials. | |
EP1325950B1 (en) | Co-current shaft reactor | |
DE102015009458A1 (en) | reduction recycling | |
DE202016106184U1 (en) | Duplex-TEK multistage gasifier |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK RO |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: OXYTEC ENERGY GMBH |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK RO |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: 7F 23G 5/24 B Ipc: 7C 10J 3/26 A Ipc: 7C 10J 3/22 B |
|
17P | Request for examination filed |
Effective date: 20040630 |
|
AKX | Designation fees paid |
Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SI SK TR |
|
17Q | First examination report despatched |
Effective date: 20050117 |
|
17Q | First examination report despatched |
Effective date: 20050117 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: UMWELTKONTOR RENEWABLE ENERGY AG |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: SMILE BETEILIGUNGS GMBH |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REF | Corresponds to: |
Ref document number: 50213409 Country of ref document: DE Date of ref document: 20090514 Kind code of ref document: P |
|
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090401 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090902 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090712 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090401 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090701 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090401 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090401 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090401 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20091217 Year of fee payment: 8 Ref country code: CZ Payment date: 20091201 Year of fee payment: 8 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SK Payment date: 20091202 Year of fee payment: 8 Ref country code: SI Payment date: 20091201 Year of fee payment: 8 |
|
26N | No opposition filed |
Effective date: 20100105 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BG Payment date: 20091223 Year of fee payment: 8 |
|
BERE | Be: lapsed |
Owner name: SMILE BETEILIGUNGS G.M.B.H. Effective date: 20091231 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20091229 Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100701 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20091210 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20100831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20091231 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20091231 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090702 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20091231 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20091231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20091210 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090401 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20091210 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20101210 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090401 Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20101210 |
|
REG | Reference to a national code |
Ref country code: SI Ref legal event code: KO00 Effective date: 20110729 |
|
REG | Reference to a national code |
Ref country code: SK Ref legal event code: MM4A Ref document number: E 5719 Country of ref document: SK Effective date: 20101210 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090401 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 50213409 Country of ref document: DE Effective date: 20110701 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20101210 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110701 Ref country code: SI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20101211 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090401 |