EP1319912A1 - Device and process for obtaining gaseous oxygen under high pressure - Google Patents
Device and process for obtaining gaseous oxygen under high pressure Download PDFInfo
- Publication number
- EP1319912A1 EP1319912A1 EP02002634A EP02002634A EP1319912A1 EP 1319912 A1 EP1319912 A1 EP 1319912A1 EP 02002634 A EP02002634 A EP 02002634A EP 02002634 A EP02002634 A EP 02002634A EP 1319912 A1 EP1319912 A1 EP 1319912A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- pressure column
- high pressure
- secondary condenser
- line
- column
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04284—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
- F25J3/0429—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
- F25J3/04303—Lachmann expansion, i.e. expanded into oxygen producing or low pressure column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04006—Providing pressurised feed air or process streams within or from the air fractionation unit
- F25J3/04078—Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
- F25J3/0409—Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04006—Providing pressurised feed air or process streams within or from the air fractionation unit
- F25J3/04078—Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
- F25J3/04103—Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression using solely hydrostatic liquid head
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04151—Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
- F25J3/04187—Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
- F25J3/04193—Division of the main heat exchange line in consecutive sections having different functions
- F25J3/04206—Division of the main heat exchange line in consecutive sections having different functions including a so-called "auxiliary vaporiser" for vaporising and producing a gaseous product
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04151—Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
- F25J3/04187—Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
- F25J3/04236—Integration of different exchangers in a single core, so-called integrated cores
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04254—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using the cold stored in external cryogenic fluids
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04406—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
- F25J3/04412—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04763—Start-up or control of the process; Details of the apparatus used
- F25J3/04769—Operation, control and regulation of the process; Instrumentation within the process
- F25J3/04854—Safety aspects of operation
- F25J3/0486—Safety aspects of operation of vaporisers for oxygen enriched liquids, e.g. purging of liquids
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04763—Start-up or control of the process; Details of the apparatus used
- F25J3/04866—Construction and layout of air fractionation equipments, e.g. valves, machines
- F25J3/04872—Vertical layout of cold equipments within in the cold box, e.g. columns, heat exchangers etc.
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04763—Start-up or control of the process; Details of the apparatus used
- F25J3/04866—Construction and layout of air fractionation equipments, e.g. valves, machines
- F25J3/04872—Vertical layout of cold equipments within in the cold box, e.g. columns, heat exchangers etc.
- F25J3/04884—Arrangement of reboiler-condensers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2205/00—Processes or apparatus using other separation and/or other processing means
- F25J2205/02—Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2205/00—Processes or apparatus using other separation and/or other processing means
- F25J2205/02—Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum
- F25J2205/04—Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum in the feed line, i.e. upstream of the fractionation step
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2210/00—Processes characterised by the type or other details of the feed stream
- F25J2210/42—Nitrogen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2210/00—Processes characterised by the type or other details of the feed stream
- F25J2210/50—Oxygen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2245/00—Processes or apparatus involving steps for recycling of process streams
- F25J2245/40—Processes or apparatus involving steps for recycling of process streams the recycled stream being air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2250/00—Details related to the use of reboiler-condensers
- F25J2250/30—External or auxiliary boiler-condenser in general, e.g. without a specified fluid or one fluid is not a primary air component or an intermediate fluid
- F25J2250/40—One fluid being air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2250/00—Details related to the use of reboiler-condensers
- F25J2250/30—External or auxiliary boiler-condenser in general, e.g. without a specified fluid or one fluid is not a primary air component or an intermediate fluid
- F25J2250/50—One fluid being oxygen
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S62/00—Refrigeration
- Y10S62/902—Apparatus
- Y10S62/905—Column
Definitions
- a device of the type mentioned at the outset is known from DE 2323941 A, EP 384483 B1 and EP 1074805 A1.
- the secondary condenser is used for evaporation. He is usually arranged next to the high pressure column.
- the parts of the apparatus are preferably each direct in the following order arranged one above the other: secondary condenser (possibly with separator) - subcooling counterflow - Main heat exchanger - high pressure column - low pressure column.
- a cuboid or cylindrical cold box 101 Within a cuboid or cylindrical cold box 101 are one above the other all parts of the apparatus housed that require thermal insulation. As At the bottom are a secondary capacitor 102 and the associated separator 103 the floor. Above this are the supercooling counterflow 104, the Main heat exchanger 105, the high pressure column 106 and the low pressure column 107 arranged. The space 108 between the apparatus and the cold box wall is filled with insulating powder (perlite).
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Emergency Medicine (AREA)
- Separation By Low-Temperature Treatments (AREA)
Abstract
Description
Die Erfindung betrifft eine Vorrichtung zur Erzeugung gasförmigen Sauerstoffs unter erhöhtem Druck mit einem Destilliersäulen-System, das eine Hochdrucksäule und eine Niederdrucksäule aufweist, wobei die Niederdrucksäule oberhalb der Hochdrucksäule angeordnet ist, mit einem Nebenkondensator, der einen Verflüssigungsraum und einen Verdampfungsraum aufweist und unterhalb des Sumpfs der Niederdrucksäule angeordnet ist, mit einer Einsatzluft-Leitung, die mit der Hochdrucksäule verbunden ist, mit mindestens einer Übergangsleitung zur Einleitung einer Fraktion aus der Hochdrucksäule in die Niederdrucksäule, mit einer Flüssigkeitsleitung zum Entnehmen einer flüssigen Sauerstofffraktion aus der Niederdrucksäule, wobei die Flüssigkeitsleitung in den Verdampfungsraum des Nebenkondensators führt, und mit einer Produktleitung für gasförmigen Sauerstoff unter erhöhtem Druck, die mit dem Verdampfungsraum des Kondensator-Verdampfers verbunden ist.The invention relates to a device for generating gaseous oxygen under increased pressure with a distillation column system that includes a high pressure column and a Has low pressure column, the low pressure column above the high pressure column is arranged, with a secondary condenser, which has a liquefaction space and Has evaporation space and below the bottom of the low pressure column is arranged, with a feed air line which is connected to the high pressure column, with at least one transition line for the introduction of a fraction from the High pressure column in the low pressure column, with a liquid line for removal a liquid oxygen fraction from the low pressure column, the Liquid line leads into the evaporation chamber of the secondary condenser, and with a product line for gaseous oxygen under increased pressure, which with the Evaporation chamber of the condenser-evaporator is connected.
Das Destilliersäulen-System, beispielsweise eine Linde-Doppelsäulen-Anlage, dient zur Tieftemperatur-Zerlegung der Einsatzluft in Sauerstoff und Stickstoff. Die Grundlagen der Tieftemperatur-Zerlegung von Luft im Allgemeinen sowie der Aufbau von Doppelsäulen-Anlagen im Speziellen sind in der Monografie "Tieftemperaturtechnik" von Hausen/Linde (2. Auflage, 1985) und in einem Aufsatz von Latimer in Chemical Engineering Progress (Vol. 63, No.2, 1967, Seite 35) beschrieben. Hochdrucksäule und Niederdrucksäule stehen im Regelfall über einen Hauptkondensator in Wärmeaustausch-Beziehung, in dem Kopfgas der Hochdrucksäule gegen verdampfende Sumpfflüssigkeit der Niederdrucksäule verflüssigt wird.The distillation column system, for example a Linde double column system, is used for the low-temperature decomposition of the feed air into oxygen and nitrogen. The Basics of the low-temperature decomposition of air in general as well as the structure of double column systems in particular are in the monograph "Low temperature technology" by Hausen / Linde (2nd edition, 1985) and in an article by Latimer in Chemical Engineering Progress (Vol. 63, No.2, 1967, page 35). High-pressure column and low-pressure column are usually above one Main condenser in heat exchange relationship, in the top gas of the High pressure column against evaporating sump liquid of the low pressure column is liquefied.
Eine Vorrichtung der eingangs genannten Art ist aus DE 2323941 A, EP 384483 B1 und EP 1074805 A1 bekannt. Der Nebenkondensator dient zur Verdampfung. Er ist üblicherweise neben der Hochdrucksäule angeordnet.A device of the type mentioned at the outset is known from DE 2323941 A, EP 384483 B1 and EP 1074805 A1. The secondary condenser is used for evaporation. He is usually arranged next to the high pressure column.
Destilliersäulen-System und Nebenkondensator, meist auch ein Hauptwärmetauscher zur Abkühlung der Einsatzluft und gegebenenfalls ein Unterkühlungs-Gegenströmer müssen gegen den Eintrag von Wärme isoliert werden. Hierzu dient im Allgemeinen eine oder mehrere mit Pulver (Perlite) gefüllte Hüllen, so genannte Coldboxen.Distillation column system and secondary condenser, usually also a main heat exchanger for cooling the feed air and, if necessary, a subcooling counterflow must be insulated against the entry of heat. This is generally used one or more envelopes filled with powder (perlite), so-called cold boxes.
Als "Nebenkondensator" (side condenser) wird hier ein Kondensator-Verdampfer bezeichnet, der außerhalb der Niederdrucksäule angeordnet ist und dessen Verdampfungsseite während des Betriebs der Anlage ein unter einem höheren Druck als die Niederdrucksäule steht. Dort verdampfter Sauerstoff wird dann unter einem entsprechend erhöhten Druck als gasförmiges Produkt gewonnen. Die Druckerhöhung wird durch das geodätische Gefälle bewirkt (und gegebenenfalls zusätzlich durch eine Pumpe). Der Nebenkondensator ist vorzugsweise als Flüssigkeitsbadverdampfer (Umlaufverdampfer) ausgeführt: Ein Plattenwärmetauscherblock enthält Verdampfungs- und Verflüssigungspassagen. Er ist in einem Behälter angeordnet, der während des Betriebs teilweise mit zu verdampfender Flüssigkeit gefüllt ist. Die Flüssigkeit wird mittels des Thermosiphon-Effekt durch die Verdampfungspassagen des Plattenwärmetauscherblocks umgeworfen. Der Verdampfungsraum wird durch diese Verdampfungspassagen und durch den Außenraum zwischen Block und Behälterwand gebildet, der Verflüssigungsraum durch die Verflüssigungspassagen.A "condenser" is used here as a "side condenser" referred to, which is arranged outside the low pressure column and its Evaporation side during operation of the plant under a higher pressure than the low pressure column stands. Evaporated oxygen there is then under one correspondingly increased pressure obtained as a gaseous product. The pressure increase is caused by the geodetic gradient (and possibly also by a Pump). The secondary condenser is preferably a liquid bath evaporator (Circulation evaporator): One plate heat exchanger block contains Evaporation and liquefaction passages. It is placed in a container that is partially filled with liquid to be evaporated during operation. The Liquid is released through the evaporation passages by means of the thermosiphon effect of the plate heat exchanger block overturned. The evaporation space is through these evaporation passages and through the outside space between block and Container wall formed, the liquefaction room through the liquefaction passages.
Der Erfindung liegt die Aufgabe zugrunde, eine Vorrichtung der eingangs genannten Art besonders kostengünstig und insbesondere besonders kompakt zu gestalten.The invention has for its object a device of the aforementioned Art to make particularly inexpensive and especially particularly compact.
Zu diesem Zweck war es bisher üblich, alle Apparateteile, sogar die Kolonnen, nebeneinander anzuordnen (siehe zum Beispiel DE 19904526).For this purpose it has been customary up to now to have all parts of the apparatus, even the columns, to be arranged side by side (see for example DE 19904526).
Bei der Erfindung wird diese Aufgabe dadurch gelöst, dass der Nebenkondensator unterhalb der Hochdrucksäule angeordnet ist. Vorzugsweise sind Nebenkondensator. Hochdrucksäule und Niederdrucksäule in einer Linie untereinander angeordnet. Eine gemeinsame Coldbox, die alle drei Apparateteile umschließt kann dadurch besonders kompakt und damit kostengünstig ausgeführt werden. Ein weiterer Vorteil ergibt sich durch den größeren vertikalen Abstand zwischen Niederdrucksäule und Nebenkondensator. Entsprechend stärker ist die Druckerhöhung, die sich allein durch das Gefälle zwischen Niederdrucksäule und Nebenkondensator ergibt, also ohne Energiezufuhr von außen. Das gasförmige Sauerstoffprodukt kann also unter einem besonders hohen Druck gewonnen werden, beispielsweise 1,5 bis 3,5 bar, vorzugsweise 2 bis 2,8 bar. Dabei beträgt der Betriebsdruck der Säulen des Destilliersäulen-Systems (jeweils am Kopf) beispielsweise 5 bis 9 bar, vorzugsweise 6,0 bis 7,5 bar in der Hochdrucksäule und beispielsweise 1,3 bis 2,0 bar, vorzugsweise 1,5 bis 1,8 bar in der NiederdrucksäuleIn the invention, this object is achieved in that the secondary capacitor is arranged below the high pressure column. Secondary capacitors are preferred. High pressure column and low pressure column arranged in a line one below the other. A Common cold box, which encloses all three parts of the apparatus, can be special compact and therefore inexpensive. Another advantage arises due to the larger vertical distance between the low pressure column and Besides capacitor. The increase in pressure, which is reflected solely by the gradient between the low pressure column and the secondary condenser results, i.e. without External energy supply. The gaseous oxygen product can therefore be under one particularly high pressure can be obtained, for example 1.5 to 3.5 bar, preferably 2 to 2.8 bar. The operating pressure of the columns is Distillation column system (each at the head), for example 5 to 9 bar, preferably 6.0 to 7.5 bar in the high pressure column and for example 1.3 to 2.0 bar, preferably 1.5 to 1.8 bar in the low pressure column
Vorzugsweise wird die Einsatzluft-Leitung durch den Verflüssigungsraum des Nebenkondensators geführt. Die Einsatzluft dient damit als Heizmittel für die Verdampfung der flüssigen Sauerstofffraktion und kondensiert dabei teilweise oder vollständig.Preferably, the feed air line through the liquefaction room of the Secondary condenser performed. The feed air thus serves as a heating medium for the Evaporation of the liquid oxygen fraction and partially condenses or Completely.
Dabei ist es günstig, wenn die Einsatzluft-Leitung und der Nebenkondensator so ausgebildet sind, dass während des Betriebs der Vorrichtung die Einsatzluft in dem Nebenkondensator nur partiell kondensiert wird, beispielsweise zu 30 mol% oder weniger, vorzugsweise zu 25 bis 30 mol%. Damit kann einerseits die gesamte Einsatzluft (ggf. abzüglich einer Turbinenluftmenge) durch den Nebenkondensator geführt werden, und weitere Einsatzluft-Leitungen sind unnötig. Andererseits wird bei der nur teilweisen Kondensation eine höhere Verdampfungstemperatur bei gleichem Druck erreicht; umgekehrt reicht bei gleichem Sauerstoff-Produktdruck ein niedrigerer Luftdruck aus. Der Druck im Verflüssigungsraum des Nebenkondensators beträgt vorzugsweise 6 bis 8 bar. Die partiell kondensierte Einsatzluft aus dem Nebenkondensator kann in einen Abscheider (Phasentrenner) eingeleitet werden, der beispielsweise unmittelbar neben dem Nebenkondensator innerhalb der Coldbox angeordnet ist.It is advantageous if the feed air line and the secondary condenser are so are formed so that the feed air in the Auxiliary condenser is only partially condensed, for example 30 mol% or less, preferably 25 to 30 mol%. On the one hand, the entire Feed air (possibly less a turbine air quantity) through the secondary condenser out, and additional emergency air lines are unnecessary. On the other hand, at the only partial condensation a higher evaporation temperature at the same Pressure reached; conversely, a lower one is sufficient for the same oxygen product pressure Air pressure off. The pressure in the liquefaction chamber of the secondary condenser is preferably 6 to 8 bar. The partially condensed feed air from the Auxiliary capacitor can be introduced into a separator (phase separator) for example, right next to the secondary condenser inside the cold box is arranged.
Jede Luftzerlegungs-Anlage weist einen Hauptwärmetauscher zur Abkühlung von Einsatzluft gegen Produktströme auf. Bei der erfindungsgemäßen Vorrichtung ist es günstig, wenn dieser Hauptwärmetauscher unterhalb der Hochdrucksäule angeordnet ist, insbesondere zwischen Hochdrucksäule und Nebenkondensator. Dadurch kann auch der Hauptwärmetauscher von der gemeinsamen, kompakten Coldbox umschlossen werden. Eine separate Isolierung und eine voluminöse Gestaltung der Box können vermieden werden. Die zusätzliche Höhe des Hauptwärmetauschers bringt eine zusätzliche Druckerhöhung im Sauerstoffprodukt mit sich.Each air separation plant has a main heat exchanger for cooling Operating air against product flows. It is with the device according to the invention favorable if this main heat exchanger is arranged below the high pressure column is, especially between the high pressure column and secondary condenser. This can also the main heat exchanger from the common, compact cold box be enclosed. Separate insulation and a voluminous design of the Boxes can be avoided. The additional height of the main heat exchanger brings with it an additional pressure increase in the oxygen product.
Häufig werden die Einsatzflüssigkeit(en) für die Niederdrucksäule gegen das oder die Gasprodukte der Niederdrucksäule durch indirekten Wärmeaustausch in einem Unterkühlungs-Gegenströmer unterkühlt. Im Rahmend er Erfindung ist es günstig, wenn dieser weitere Wärmetauscher ebenfalls zwischen der Hochdrucksäule und dem Nebenkondensator angeordnet ist. Er kann damit ebenfalls von der gemeinsamen, kompakten Coldbox umschlossen werden. Eine separate Isolierung und eine voluminöse Gestaltung der Box können vermieden werden. Die zusätzliche Höhe des Hauptwärmetauschers bringt eine zusätzliche Druckerhöhung im Sauerstoffprodukt mit sich.Often, the feed liquid (s) for the low pressure column against the or Low pressure column gas products through indirect heat exchange in one Supercooling countercurrent supercooled. In the context of the invention, it is favorable if this additional heat exchanger also between the high pressure column and the Auxiliary capacitor is arranged. He can also use the common compact cold box. Separate insulation and one voluminous design of the box can be avoided. The additional amount of The main heat exchanger brings an additional pressure increase in the oxygen product yourself.
Vorzugsweise sind die Apparateteile in folgender Reihenfolge jeweils unmittelbar übereinander angeordnet: Nebenkondensator (ggf. mit Abscheider)- Unterkühlungs-Gegenströmer - Hauptwärmetauscher - Hochdrucksäule -Niederdrucksäule.The parts of the apparatus are preferably each direct in the following order arranged one above the other: secondary condenser (possibly with separator) - subcooling counterflow - Main heat exchanger - high pressure column - low pressure column.
Die Erfindung betrifft außerdem ein Verfahren zur Erzeugung gasförmigen Sauerstoffs
unter erhöhtem Druck gemäß den Patentansprüchen 6 bis 10The invention also relates to a method for producing gaseous oxygen
under increased pressure according to
Die Erfindung sowie weitere Einzelheiten der Erfindung werden im Folgenden anhand von in den Zeichnungen schematisch dargestellten Ausführungsbeispielen näher erläutert. Hierbei zeigen:
- Figur 1
- ein beispielhafte räumliche Anordnung der verschiedenen Apparateteile,
Figuren 2 und 3- zwei Ausführungsformen der Erfindung mit Details zur Abfolge der Verfahrensschritte, mit Kälteerzeugung durch Turbine (Figur 2) beziehungsweise mit Kältezufuhr von außen (Figur 3).
- Figure 1
- an exemplary spatial arrangement of the various parts of the apparatus,
- Figures 2 and 3
- two embodiments of the invention with details on the sequence of the process steps, with cooling by means of a turbine (FIG. 2) or with cooling from outside (FIG. 3).
Einander entsprechende Bauteile beziehungsweise Verfahrensschritte tragen in allen Zeichnungen dieselben Bezugszeichen.Corresponding components or process steps bear in all Drawings the same reference numerals.
In Figur 1 ist der räumliche Aufbau einer erfindungsgemäßen Vorrichtung schematisch dargestellt. Details wie Rohrleitungen, Ventile, Mess- und Stelleinrichtungen werden nicht gezeigt.In Figure 1 , the spatial structure of a device according to the invention is shown schematically. Details such as pipes, valves, measuring and actuating devices are not shown.
Innerhalb einer quader- oder zylinderförmigen Coldbox 101 sind übereinander
sämtliche Apparateteile untergebracht, die einer Wärmeisolierung bedürfen. Als
Unterstes stehen ein Nebenkondensator 102 und der zugehörige Abscheider 103 auf
dem Boden. Darüber sind nacheinander der Unterkühlungs-Gegenströmer 104, der
Hauptwärmetauscher 105, die Hochdrucksäule 106 und die Niederdrucksäule 107
angeordnet. Der Zwischenraum 108 zwischen den Apparaten und der Coldbox-Wand
ist mit isolierendem Pulver (Perlite) gefüllt.Within a cuboid or cylindrical
Unterkühlungs-Gegenströmer 104 und Hauptwärmetauscher 105 können auch als
gemeinsamer, integrierten Wärmeaustauscher-Block ausgebildet sein (in Figur 1 nicht
dargestellt).
In den Figuren 2 und 3 ist die räumliche Anordnung der Apparateteile nicht vollständig dargestellt. Es gilt hierfür die in Figur 1 dargestellte Konstruktion.In Figures 2 and 3, the spatial arrangement of the parts of the apparatus is not complete shown. The construction shown in FIG. 1 applies here.
Bei dem Ausführungsbeispiel von Figur 2 wird verdichtete und gereinigte Luft 1 unter
einem Druck von beispielsweise 8,2 bar herangeführt und tritt am warmen Ende in
einen Hauptwärmetauscher 105 ein. Der Hauptteil der Luft wird über Leitung 2 am
kalten Ende des Hauptwärmetauschers 105 entnommen und dem Verflüssigungsraum
eines Nebenkondensators 102 zugeführt. Dort kondensiert die Luft partiell. Über
Leitung 3 tritt ein Zwei-Phasen-Gemisch aus dem Nebenkondensator 102 aus, das
etwa 26 mol% Flüssigkeit enthält. Es wird in einen Abscheider 103 eingeleitet. Der
gasförmig verbliebene Luftanteil 4 wird auf etwa 6 bar abgedrosselt (5) und in die
Hochdrucksäule 106 eines Destilliersäulen-Systems eingespeist, das außerdem ein
Niederdrucksäule 107 aufweist. (Die Leitungen 1, 2, 3 und 4 stellen in dem
Ausführungsbeispiel die "Einsatzluft-Leitung" dar.) Die Flüssigkeit 6 wird nach
Durchgang durch ein andere Drosselventil 7 unter etwa 1,5 bar in die Niederdrucksäule
107 eingeführt.In the embodiment of FIG. 2 , compressed and cleaned air 1 is brought in under a pressure of, for example, 8.2 bar and enters a
Gasförmiger Kopfstickstoff 8 der Hochdrucksäule 106 wird mindestens zu einem Teil 9
in einem Hauptkondensator gegen verdampfende Sumpfflüssigkeit der
Niederdrucksäule 107 kondensiert. Der dabei gebildete flüssige Stickstoff 11 wird zu
einem ersten Teil 12 als Rücklauf in die Hochdrucksäule 106 zurückgeleitet. Ein
zweiter Teil 14 wird in einem Unterkühlungs-Gegenströmer 104 unterkühlt und über
Leitung 15 und Ventil 16 auf den Kopf der Niederdrucksäule 107 aufgegeben. (Der
Unterkühlungs-Gegenströmer 104 und der Hauptwärmetauscher sind bei dem
Ausführungsbeispiel als integrierter Wärmeaustauscher-Block ausgebildet.) Der
Flüssigstickstoff 15 dient hauptsächlich als Rücklauf in der Niederdrucksäule 107; er
kann aber auch zu einem Teil 17 als druckloses Flüssigprodukt (LIN) entnommen
werden. Ein weiterer Teil 13 des flüssigen Stickstoffs 11 aus dem Hauptkondensator
10 kann als Druck-Flüssigprodukt (PLIN) abgezogen werden.Gaseous top nitrogen 8 of the
Die Sumpfflüssigkeit 18 der Hochdrucksäule 106 wird über den Unterkühlungs-Gegenströmer
104, Leitung 19 und Ventil 20 in die Niederdrucksäule übergeführt
("Übergangsleitung").The
Als gasförmige Produkte der Niederdrucksäule 107 werden reiner und unreiner
Stickstoff über die Produktleitung 21/22 beziehungsweise über die Restgasleitung
23/24/25 durch den Unterkühlungs-Gegenströmer 104 und den Hauptwärmetauscher
105 geführt und schließlich als Produkt (GAN) abgezogen beziehungsweise in die
Atmosphäre abgeblasen beziehungsweise als Regeneriergas in einer Molekularsieb-Anlage
zur Reinigung der Luft (nicht dargestellt) eingesetzt. Auch direkt aus der
Hochdrucksäule kann ein Produkt gewonnen werden. Hierzu wird ein Teil 26 des
Kopfstickstoffs 8 im Hauptwärmetauscher 105 angewärmt und als gasförmiges
Druckstickstoff-Produkt 27 (PGAN) gewonnen.The gaseous products of the
Vom Sumpf der Niederdrucksäule 107 wird eine flüssige Sauerstofffraktion 28
abgezogen, erfährt eine hydrostatische Druckerhöhung und wird in den
Verdampfungsraum des Nebenkondensators 102 eingeleitet und dort wird teilweise
verdampft. Der dabei gebildete gasförmige Sauerstoff 29 wird zum
Hauptwärmetauscher geführt und schließlich über Leitung 30 als Druckgasprodukt
(GOX) zu einem Verbraucher geführt. Der flüssig verbliebene Sauerstoff wird als
Spülflüssigkeit 31 aus dem Verdampfungsraum des Nebenkondensators 102
abgezogen und entweder verworfen oder (wie in Figur 2 dargestellt) als Flüssigprodukt
(LOX) gewonnen; alternativ oder zusätzlich ist eine Eindüsung in Leitung 30 möglich.A
Die für den Augleich der Isolationsverluste und für die Produktverflüssigung benötigte
Kälte wird bei dem Ausführungsbeispiel von Figur 2 durch arbeitsleistende
Entspannung eines Prozessstroms erzeugt. Hierzu wird ein Teilstrom 32 der Einsatzluft
1 bei einer Zwischentemperatur aus dem Hauptwärmetauscher 105 abgezogen, einer
Entspannungsmaschine (beispielsweise Turbine) 33 zugeführt, dort auf etwa den
Betriebsdruck der Niederdrucksäule 107 entspannt und über die Leitungen 34 und 35
in die Niederdrucksäule 107 eingeleitet. Insbesondere bei relativ großer
Flüssigproduktion kann ein Teil 36 Turbinenluft 34 dem Restgas 23 zugemischt und
gemeinsam mit diesem aus dem Verfahren entfernt werden.The one required for the equalization of the insulation losses and for the product liquefaction
Cold is in the embodiment of Figure 2 by work
Relaxation of a process stream generated. For this purpose, a
Figur 3 unterscheidet sich von Figur 2 durch die abweichende Form der Kältezufuhr.
Hier wird auf eine Turbine verzichtet. Der Kältebedarf wird stattdessen durch
Flüssigzufuhr von außen (liquid assist) gedeckt. Hierzu wird flüssiger Sauerstoff 337
aus einem Flüssigtank in den unteren Bereich der Niederdrucksäule 107 eingeleitet.
Alternativ oder ergänzend ist die Zufuhr von tiefkalter Flüssigkeit aus einem Stickstoff-Flüssigtank.
Der flüssige Stickstoff kann über Leitung 338 in den oberen Bereich der
Niederdrucksäule 107 eingeführt werden und/oder über Leitung 339 in den oberen
Bereich der Hochdrucksäule 106. Ebenso kann verflüssigte Luft oder jedes andere
flüssige Gemisch aus Luftkomponenten zur Deckung des Kältebedarfs eingesetzt
werden. Figure 3 differs from Figure 2 in the different form of cold supply. There is no turbine here. The cooling requirement is instead covered by liquid supply from outside (liquid assist). For this purpose,
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP02027308A EP1319913A1 (en) | 2001-12-14 | 2002-12-06 | Device and process for producing gaseous oxygen under elevated pressure |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10161584A DE10161584A1 (en) | 2001-12-14 | 2001-12-14 | Device and method for generating gaseous oxygen under increased pressure |
DE10161584 | 2001-12-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1319912A1 true EP1319912A1 (en) | 2003-06-18 |
Family
ID=7709273
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP02002634A Withdrawn EP1319912A1 (en) | 2001-12-14 | 2002-02-05 | Device and process for obtaining gaseous oxygen under high pressure |
EP02027308A Withdrawn EP1319913A1 (en) | 2001-12-14 | 2002-12-06 | Device and process for producing gaseous oxygen under elevated pressure |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP02027308A Withdrawn EP1319913A1 (en) | 2001-12-14 | 2002-12-06 | Device and process for producing gaseous oxygen under elevated pressure |
Country Status (3)
Country | Link |
---|---|
US (1) | US6662594B2 (en) |
EP (2) | EP1319912A1 (en) |
DE (1) | DE10161584A1 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101846435A (en) * | 2009-03-24 | 2010-09-29 | 林德股份公司 | Method and device for low-temperature air separation |
WO2011116871A3 (en) * | 2010-03-26 | 2012-08-30 | Linde Aktiengesellschaft | Device for the cryogenic separation of air |
WO2011116981A3 (en) * | 2010-03-26 | 2012-08-30 | Linde Aktiengesellschaft | Device for the cryogenic separation of air |
FR2979422A1 (en) * | 2011-08-23 | 2013-03-01 | Air Liquide | Apparatus for production of carbon dioxide-enriched flow of fluid by distillation at sub-ambient temperature, has envelope surrounding fractionating column and separating chamber, and perlite placed between envelope and column |
WO2013178901A3 (en) * | 2012-05-31 | 2015-10-29 | L'air Liquide,Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Device and method for cryogenically separating a mixture of carbon monoxide and methane plus hydrogen and/or nitrogen |
FR3119884A1 (en) * | 2021-02-18 | 2022-08-19 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Air separation process by cryogenic distillation |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1582830A1 (en) * | 2004-03-29 | 2005-10-05 | Air Products And Chemicals, Inc. | Process and apparatus for the cryogenic separation of air |
FR2902858A1 (en) * | 2006-06-27 | 2007-12-28 | Air Liquide | INSTALLATION COMPRISING AT LEAST ONE THERMALLY INSULATED EQUIPMENT |
DE102007024168A1 (en) * | 2007-05-24 | 2008-11-27 | Linde Ag | Method and apparatus for cryogenic air separation |
FR2938320B1 (en) * | 2008-11-10 | 2013-03-15 | Air Liquide | INTEGRATED AIR SEPARATION AND WATER HEATING SYSTEM FOR A BOILER |
US20130042647A1 (en) * | 2011-08-18 | 2013-02-21 | Air Liquide Process & Construction, Inc. | Production Of High-Pressure Gaseous Nitrogen |
AU2013369596A1 (en) | 2012-12-27 | 2015-07-02 | Linde Aktiengesellschaft | Method and device for low-temperature air separation |
WO2019126927A1 (en) | 2017-12-25 | 2019-07-04 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Single packaged air separation apparatus with reverse main heat exchanger |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4133662A (en) * | 1975-12-19 | 1979-01-09 | Linde Aktiengesellschaft | Production of high pressure oxygen |
US4560398A (en) * | 1984-07-06 | 1985-12-24 | Union Carbide Corporation | Air separation process to produce elevated pressure oxygen |
US4781739A (en) * | 1984-08-20 | 1988-11-01 | Erickson Donald C | Low energy high purity oxygen increased delivery pressure |
EP0464630A1 (en) * | 1990-06-27 | 1992-01-08 | Praxair Technology, Inc. | Cryogenic air separation with dual product boiler |
US5582032A (en) * | 1995-08-11 | 1996-12-10 | Liquid Air Engineering Corporation | Ultra-high purity oxygen production |
DE19904526A1 (en) * | 1998-02-06 | 1999-09-02 | Air Liquide | Air distillation system and associated cold box |
US5979182A (en) * | 1997-03-13 | 1999-11-09 | Kabushiki Kaisha Kobe Seiko Sho | Method of and apparatus for air separation |
EP1041353A2 (en) * | 1999-03-30 | 2000-10-04 | The Boc Group, Inc. | Distillation column arrangement for air separation |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4702757A (en) * | 1986-08-20 | 1987-10-27 | Air Products And Chemicals, Inc. | Dual air pressure cycle to produce low purity oxygen |
US4704147A (en) * | 1986-08-20 | 1987-11-03 | Air Products And Chemicals, Inc. | Dual air pressure cycle to produce low purity oxygen |
US4817394A (en) * | 1988-02-02 | 1989-04-04 | Erickson Donald C | Optimized intermediate height reflux for multipressure air distillation |
US5410885A (en) * | 1993-08-09 | 1995-05-02 | Smolarek; James | Cryogenic rectification system for lower pressure operation |
US5386692A (en) * | 1994-02-08 | 1995-02-07 | Praxair Technology, Inc. | Cryogenic rectification system with hybrid product boiler |
-
2001
- 2001-12-14 DE DE10161584A patent/DE10161584A1/en not_active Withdrawn
-
2002
- 2002-02-05 EP EP02002634A patent/EP1319912A1/en not_active Withdrawn
- 2002-12-06 EP EP02027308A patent/EP1319913A1/en not_active Withdrawn
- 2002-12-16 US US10/319,582 patent/US6662594B2/en not_active Expired - Fee Related
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4133662A (en) * | 1975-12-19 | 1979-01-09 | Linde Aktiengesellschaft | Production of high pressure oxygen |
US4560398A (en) * | 1984-07-06 | 1985-12-24 | Union Carbide Corporation | Air separation process to produce elevated pressure oxygen |
US4781739A (en) * | 1984-08-20 | 1988-11-01 | Erickson Donald C | Low energy high purity oxygen increased delivery pressure |
EP0464630A1 (en) * | 1990-06-27 | 1992-01-08 | Praxair Technology, Inc. | Cryogenic air separation with dual product boiler |
US5582032A (en) * | 1995-08-11 | 1996-12-10 | Liquid Air Engineering Corporation | Ultra-high purity oxygen production |
US5979182A (en) * | 1997-03-13 | 1999-11-09 | Kabushiki Kaisha Kobe Seiko Sho | Method of and apparatus for air separation |
DE19904526A1 (en) * | 1998-02-06 | 1999-09-02 | Air Liquide | Air distillation system and associated cold box |
EP1041353A2 (en) * | 1999-03-30 | 2000-10-04 | The Boc Group, Inc. | Distillation column arrangement for air separation |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101846435A (en) * | 2009-03-24 | 2010-09-29 | 林德股份公司 | Method and device for low-temperature air separation |
WO2011116871A3 (en) * | 2010-03-26 | 2012-08-30 | Linde Aktiengesellschaft | Device for the cryogenic separation of air |
WO2011116981A3 (en) * | 2010-03-26 | 2012-08-30 | Linde Aktiengesellschaft | Device for the cryogenic separation of air |
US9170048B2 (en) | 2010-03-26 | 2015-10-27 | Linde Aktiengesellschaft | Device for the cryogenic separation of air |
FR2979422A1 (en) * | 2011-08-23 | 2013-03-01 | Air Liquide | Apparatus for production of carbon dioxide-enriched flow of fluid by distillation at sub-ambient temperature, has envelope surrounding fractionating column and separating chamber, and perlite placed between envelope and column |
WO2013178901A3 (en) * | 2012-05-31 | 2015-10-29 | L'air Liquide,Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Device and method for cryogenically separating a mixture of carbon monoxide and methane plus hydrogen and/or nitrogen |
FR3119884A1 (en) * | 2021-02-18 | 2022-08-19 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Air separation process by cryogenic distillation |
WO2022175194A1 (en) * | 2021-02-18 | 2022-08-25 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Method for separating air by cryogenic distillation |
Also Published As
Publication number | Publication date |
---|---|
US20030110796A1 (en) | 2003-06-19 |
DE10161584A1 (en) | 2003-06-26 |
US6662594B2 (en) | 2003-12-16 |
EP1319913A1 (en) | 2003-06-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1308680B1 (en) | Process and system for production of krypton and/or xenon by cryogenic air separation | |
EP0716280B1 (en) | Method and apparatus for the low temperature air separation | |
EP2235460B1 (en) | Process and device for the cryogenic separation of air | |
EP0669509B1 (en) | Process and apparatus for obtaining pure argon | |
EP1243882B1 (en) | Production of argon using a triple pressure air separation system with an argon column | |
EP1482266B1 (en) | Process and device for the recovery of Krypton and/or Xenon by cryogenic separation of air | |
EP0948730B1 (en) | Method and device for producing compressed nitrogen | |
EP1319912A1 (en) | Device and process for obtaining gaseous oxygen under high pressure | |
DE19954593A1 (en) | Fractionated distillation of air to oxygen and nitrogen uses little energy and facilitates the production of oxygen of any purity level | |
DE10332863A1 (en) | Krypton and xenon recovery by low-temperature fractionation of air yields higher purity products and higher argon productivity, using low nitrogen content scrubbing liquid stream | |
EP2758734B1 (en) | Method and device for cryogenic decomposition of air | |
EP1309827B1 (en) | Low temperature air fractionation system | |
DE10302389A1 (en) | Device for the low temperature decomposition of air comprises a rectification system consisting of a high pressure column, a low pressure column, and a condenser-evaporator system for heating the low pressure column | |
WO2016146246A1 (en) | Plant for producing oxygen by cryogenic air separation | |
DE10232430A1 (en) | Process for recovering krypton and/or xenon comprises feeding a liquid from the lower region of a krypton-xenon enriching column to a condenser-vaporizer, and contacting an argon-enriched vapor with the liquid from the enriching column | |
EP3067650B1 (en) | Installation and method for producing gaseous oxygen by cryogenic air decomposition | |
DE20319823U1 (en) | Device for extracting krypton and / or xenon by cryogenic decomposition | |
EP3067648A1 (en) | Distillation column system and method for the production of oxygen by cryogenic decomposition of air | |
EP2865978A1 (en) | Method for low-temperature air separation and low temperature air separation plant | |
EP1284403B1 (en) | Process and apparatus for the production of oxygen by low temperature air separation | |
DE102011113668A1 (en) | Method and apparatus for the cryogenic separation of air | |
EP2503270A1 (en) | Method and device for creating an oxygen product by cryogenic decomposition of air | |
EP3614084A1 (en) | Method and installation for cryogenic decomposition of air | |
DE102013018664A1 (en) | Process for the cryogenic separation of air and cryogenic air separation plant | |
EP4396508A2 (en) | Plant and process for low-temperature air separation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK RO SI |
|
AKX | Designation fees paid | ||
REG | Reference to a national code |
Ref country code: DE Ref legal event code: 8566 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20031219 |