Nothing Special   »   [go: up one dir, main page]

EP1309780B1 - Method and device for regulating an operating variable of a drive unit - Google Patents

Method and device for regulating an operating variable of a drive unit Download PDF

Info

Publication number
EP1309780B1
EP1309780B1 EP01956350A EP01956350A EP1309780B1 EP 1309780 B1 EP1309780 B1 EP 1309780B1 EP 01956350 A EP01956350 A EP 01956350A EP 01956350 A EP01956350 A EP 01956350A EP 1309780 B1 EP1309780 B1 EP 1309780B1
Authority
EP
European Patent Office
Prior art keywords
controller
output signal
parameter
switchover
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01956350A
Other languages
German (de)
French (fr)
Other versions
EP1309780A1 (en
Inventor
Mario Kustosch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1309780A1 publication Critical patent/EP1309780A1/en
Application granted granted Critical
Publication of EP1309780B1 publication Critical patent/EP1309780B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0215Introducing corrections for particular conditions exterior to the engine in relation with elements of the transmission
    • F02D41/0225Introducing corrections for particular conditions exterior to the engine in relation with elements of the transmission in relation with the gear ratio or shift lever position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/16Introducing closed-loop corrections for idling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1413Controller structures or design
    • F02D2041/1422Variable gain or coefficients
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1413Controller structures or design
    • F02D2041/1432Controller structures or design the system including a filter, e.g. a low pass or high pass filter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3017Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used
    • F02D41/3023Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the stratified charge spark-ignited mode
    • F02D41/3029Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the stratified charge spark-ignited mode further comprising a homogeneous charge spark-ignited mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3064Controlling fuel injection according to or using specific or several modes of combustion with special control during transition between modes

Definitions

  • the invention relates to a method and a device for controlling an operating variable of a drive unit.
  • control systems for drive units of motor vehicles are often used control systems, which an operating variable of the drive unit to a predetermined Control setpoint.
  • An example of such control systems are idle speed controllers, by which the speed in the Idling the drive unit to a predetermined setpoint is regulated.
  • Other examples are control systems for regulation the air flow rate through an internal combustion engine, the Exhaust composition, torque, etc.
  • the DE shows 30 39 435 A1 (US Pat. No. 4,441,471) an idle speed control system, in which to improve the control properties is provided, at least one parameter of the controller variable embody.
  • the proportional component of the controller is a function of the size adapted to the control deviation.
  • FIG. 1 shows an overview diagram of a controller while in Figure 2 is a flow chart of a controller using the example of a switchable proportional component with filtering shown is.
  • FIG. 3 shows time courses by means of which the Effect of filtering when switching the at least a controller parameter is clarified.
  • FIG. 1 shows an electronic control unit 10 for control a drive unit in which a controller for regulating is implemented at least one operating size.
  • a controller for regulating is implemented at least one operating size.
  • in the preferred embodiment is in the controller around an idle speed controller.
  • it can be an air flow regulator, a Load controller, a torque controller, a regulator of the exhaust gas composition, etc. act.
  • Figure 1 is a setpoint images 12, which depends on at least one via input lines 14 to 18 of the control unit 10 supplied operating variable a target value for forms the operating variable to be regulated.
  • an idle speed controller is at the quantities used for setpoint formation around engine temperature, the operating status of secondary consumers, such as For example, an air conditioner, etc.
  • control unit 10 is supplied via the input line 20 a signal, which is the actual size of the operating variable to be regulated represents.
  • Target and actual size are in the comparator 22 with each other compared.
  • the deviation between nominal and actual size is supplied to the controller 24 as a control deviation ⁇ .
  • This controller has at least one variable parameter on, in the preferred embodiment, it consists of Proportional, differential and integral parts, whereby proportional and / or differential component are variable.
  • each share makes a regulator output signal that combined (e.g., added) to form the output signal ⁇ .
  • the actuator 26 is an electrically actuable throttle or bypass damper, which the air to a Internal combustion engine adjusted such that the actual value approaches the setpoint. For diesel engines or gasoline direct injection does not become the air, but the force mass set by the output signal, so that actuator Represent adjusting devices for influencing the power supply.
  • further output signals be generated, for example, for control the ignition angle, which also approximates the actual size contribute to the target size.
  • the different parts of the controller 24 have parameters, For example, gain factors, whose value can be changed is.
  • gain factors whose value can be changed is.
  • the switchable parameters are the amplification factor the proportional controller and / or the of Differential component.
  • the switching means 32 is switched in the presence of the switching condition formed in 34, the Signal is also provided to the controller 24.
  • an idle control in Connection with a gasoline direct injection internal combustion engine the switching condition is given when the Operating mode of the internal combustion engine is switched, for example from a homogeneous operation to an unthrottled one Operation or operation with a lean mixture and vice versa.
  • the appropriate or the appropriate controller parameters are selected.
  • the parameter or parameters gain factors with which the control deviation and / or the temporal change of the speed or the control deviation is multiplied.
  • the output signal of the controller changes when switching over jump, because as a result of the change the size of the gain parameter as part of the multiplication a sudden change in the product occurs.
  • a filter preferably a first order low pass filter inserted, which at the time of the occurrence of the switching signal (Edge detection) is initialized.
  • the initialization value of the filter is set to the value which the difference between the controller output value before and after the Switching corresponds.
  • the filter is in the preferred embodiment designed such that its output signal Exponential to zero runs after the occurrence of a changeover.
  • the filter output value will then be from the controller output subtracted, so that the resulting control output signal has a steady time course.
  • FIG. 2 shows a flow chart illustrating the The procedure described above illustrates.
  • the flowchart represents a realization of the described Measure as a program of the computer of the control unit 10 is and describes the processes in the controller 24 using the example of a Proportional share.
  • FIG. 2 shows the regulator 24, to which, as already illustrated in FIG. 1, the control deviation ⁇ is supplied via the switching element 32 to a selected parameter P1, P2 as well as the switching signal B_s.
  • the selected by the switching element 32 in one embodiment, operating variable-dependent (eg on the speed, the deviation, etc.) Proportional (P1, P2) is multiplied in the multiplication 100 with the control deviation ⁇ to form an output dmllr1.
  • This product shows a jump behavior when switching from one parameter to the other.
  • the value formed in the multiplication point 100 is compared with the output value (dmllr1 (z -1 )) coming from the preceding computer clock. The latter is buffered in a memory cell 104.
  • the deviation between the new and the old output value is then fed to a filter 106, in particular a low-pass filter.
  • This filter is initialized in the presence of an edge change on the supply line 108. It has the value 0 as input value.
  • the initialization takes place at a change of the switching signal B_s detected in 110.
  • the filter is initialized with the value formed in the subtraction point 102.
  • the signal formed in the subtraction point 102 corresponds to the magnitude of the jump when switching in the output signal dmllr1. At the switching time, the filter is thus initialized with the value of the height of the jump.
  • the output of the dmumfil filter exponentially expands from the initialized value to zero.
  • the output signal of the filter is then compared in the subtraction point 112 with the output signal dmllr1 of the multiplication stage 100, in particular subtracted therefrom. This results in a controller output signal dmllr whose course is continuous in the switching phase.
  • This output signal is optionally output, taking into account the output signals of other controller components as drive signal ⁇ .
  • the described procedure is in one embodiment additionally or alternatively to the differential component of the regulator applied.
  • the integral part is with the described problematic not affected, since he due its function generally a steady output signal waveform having.
  • Figure 3 The mode of operation of the preferred embodiment shown in FIG Embodiment of the controller is shown in Figure 3 using timing diagrams shown.
  • Figure 3a shows the temporal Course of the switching signal B_s
  • Figure 3b that of the output signal dmumfil of the filter
  • Figure 3c the time course of the Output signal dmllr1 the multiplication stage
  • Figure 3d the time course of the output signal dmllr of the controller or Regulators share.
  • the controller with a first parameter Pl operated.
  • the parameter switching takes place, for example, as a result of a change of operating modes. Accordingly, the switching signal B_s becomes according to FIG. 3a is set to the value true.
  • the filter with a Value initializes which of the height of the jump in the output signal the multiplication level corresponds.
  • the filter function carries the filter output signal from Time t0 of this value exponential to zero (Fig. 3b). Since the filter output signal from the output of the multiplication stage is subtracted to form the output signal dmllr, then results in accordance with Figure 3d a steady Course of this output signal in the switching phase.
  • the embodiment of Figure 2 represents a preferred embodiment the general solution by using a filter, which with the value of the height of a jump in one Controller output signal initialized at a parameter changeover is, the resulting jump at the switching time to smooth.
  • Other specific embodiments relating to the concrete installation of the filter function are within the scope of this general solution also conceivable, in particular solutions, where the filter with the output value immediately initialized before switching during the changeover and the control output itself is exponential to the new value, the filter in normal operation outside switching is not active.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Feedback Control In General (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Abstract

The invention relates to a method and a device for regulating an operating variable of a drive unit. According to the invention, a controller with at least one variable parameter is provided. A switch is made from a first parameter value to a second parameter value in dependence on a switchover signal. At the time of the switchover, a filter is also initialised with a value which corresponds to the size of the change in the output signal of the controller at this time and by which means a constant curve is achieved for the controller output signal at the time of the switchover.

Description

Stand der TechnikState of the art

Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur Regelung einer Betriebsgröße einer Antriebseinheit.The invention relates to a method and a device for controlling an operating variable of a drive unit.

In modernen Steuersystemen für Antriebseinheiten von Kraftfahrzeugen werden vielfach Regelsysteme eingesetzt, welche eine Betriebsgröße der Antriebseinheit auf einen vorgegebenen Sollwert regeln. Ein Beispiel für derartige Regelsysteme sind Leerlaufdrehzahlregler, durch welche die Drehzahl im Leerlauf der Antriebseinheit auf einen vorgegebenen Sollwert geregelt wird. Andere Beispiele sind Regelsysteme zur Regelung des Luftdurchsatzes durch eine Brennkraftmaschine, der Abgaszusammensetzung, des Drehmoments, etc. So zeigt die DE 30 39 435 A1 (US-Patent 4 441 471) ein Leerlaufdrehzahlregelsystem, bei dem zur Verbesserung der Regeleigenschaften vorgesehen ist, wenigstens einen Parameter des Reglers variabel auszugestalten. Im gezeigten Ausführungsbeispiel wird der Proportionalanteil des Reglers in Abhängigkeit der Größe der Regelabweichung angepasst.In modern control systems for drive units of motor vehicles are often used control systems, which an operating variable of the drive unit to a predetermined Control setpoint. An example of such control systems are idle speed controllers, by which the speed in the Idling the drive unit to a predetermined setpoint is regulated. Other examples are control systems for regulation the air flow rate through an internal combustion engine, the Exhaust composition, torque, etc. Thus, the DE shows 30 39 435 A1 (US Pat. No. 4,441,471) an idle speed control system, in which to improve the control properties is provided, at least one parameter of the controller variable embody. In the illustrated embodiment is the proportional component of the controller as a function of the size adapted to the control deviation.

Ist die Anpassung des wenigstens eines Reglerparameters als Umschaltung zwischen wenigstens zwei Werten realisiert, so entsteht ein an sich unbefriedigender Umschaltdruck, welcher den Regelkomfort beeinträchtigen kann.Is the adaptation of the at least one controller parameter as Switching between at least two values realized, so creates an inherently unsatisfactory switching pressure, which can affect the control comfort.

Vorteile der ErfindungAdvantages of the invention

Durch die Filterung eines Reglerausgangssignals beim Umschaltvorgang wenigstens eines Reglerparameters zwischen wenigstens zwei Werten wird eine erhebliche Verbesserung des Regelkomforts erreicht, da ein Umschaltdruck wirksam vermieden wird.By filtering a controller output signal during the switching process at least one controller parameter between at least two values will be a significant improvement of the Regular comfort achieved because a switching pressure effectively avoided becomes.

Besonders vorteilhaft ist, dass die Umschaltung momentenneutral verläuft, d. h. es treten keine sprungförmigen Verläufe im Drehmoment der Antriebseinheit auf. Eine erhebliche Verbesserung des Fahrkomforts ist die Folge. Diese Vorteile ergeben sich sowohl bei einem Proportional- als auch bei einem Differentialanteil eines Reglers.It is particularly advantageous that the switching torque-neutral runs, d. H. there are no jump-like courses in the torque of the drive unit. A significant improvement the ride comfort is the result. These advantages result in both a proportional and a Differential component of a regulator.

Besondere Vorteile mit Blick auf den Fahrkomfort werden erreicht, wenn das verwendete Filter beim Umschalten mit dem unmittelbar vor dem Umschalten vorhandenem Reglerausgangssignal initialisiert wird.Special advantages with regard to driving comfort are achieved if the filter used when switching with the immediately before the switch over existing controller output signal is initialized.

Besondere Vorteile zeigt die nachfolgend im Detail beschriebene Vorgehensweise bei der Anwendung im Rahmen einer momentenorientierten Motorsteuerstruktur, bei welcher der Ausgang eines Leerlaufdrehzahlreglers das Solldrehmoment, in dessen Abhängigkeit das Drehmoment der Antriebseinheit eingestellt wird, verändert wird. Durch den Einsatz des nachfolgend beschriebenen Filters wird ein momentenneutraler Verlauf des Solldrehmoments auch beim Umschalten des Reglerparameters erreicht. Diese Vorteile ergeben sich insbesondere bei Brennkraftmaschinen mit Benzindirekteinspritzung, bei welchen ein momentenneutraler Verlauf des Drehmoments und/oder des Solldrehmoments auch bei einem Betriebsartenwechsel und dem damit verbundenen Umschalten des oder der Reglerparameter erreicht wird.Particular advantages are shown below in detail Approach in the application in the context of a torque-oriented Motor control structure in which the output of an idle speed controller, the target torque in which Dependence the torque of the drive unit is set is being changed. By using the below described Filters will be a moment-neutral course of the Target torque also when switching the controller parameter reached. These advantages are particularly evident in Internal combustion engines with gasoline direct injection, in which a torque-neutral course of the torque and / or the setpoint torque even with a change of operating mode and the associated switching of the controller parameters is reached.

Weitere Vorteile ergeben sich aus der nachfolgenden Beschreibung von Ausführungsbeispielen bzw. aus den abhängigen Patentansprüchen.Further advantages will become apparent from the following description of embodiments or of the dependent Claims.

Zeichnungdrawing

Die Erfindung wird nachstehend anhand der in der Zeichnung dargestellten Ausführungsformen näher erläutert. Figur 1 zeigt dabei ein Übersichtsschaltbild eines Reglers, während in Figur 2 ein Ablaufdiagramm eines Reglers am Beispiel eines umschaltbaren Proportionalanteils mit Filterung dargestellt ist. Figur 3 zeigt Zeitverläufe, anhand derer die Wirkungsweise der Filterung beim Umschalten des wenigstens einen Reglerparameters verdeutlicht ist.The invention will be described below with reference to the drawing illustrated embodiments illustrated. FIG. 1 shows an overview diagram of a controller while in Figure 2 is a flow chart of a controller using the example of a switchable proportional component with filtering shown is. FIG. 3 shows time courses by means of which the Effect of filtering when switching the at least a controller parameter is clarified.

Beschreibung von AusführungsbeispielenDescription of exemplary embodiments

Figur 1 zeigt eine elektronische Steuereinheit 10 zur Steuerung einer Antriebseinheit, in welcher ein Regler zur Regelung wenigstens einer Betriebsgröße implementiert ist. Im bevorzugten Ausführungsbeispiel handelt es sich bei dem Regler um einen Leerlaufdrehzahlregler. In anderen Ausführungsbeispielen kann es sich um einen Luftdurchsatzregler, einen Lastregler, einen Drehmomentenregler, einen Regler der Abgaszusammensetzung, etc. handeln. In Figur 1 ist ein Sollwertbilder 12 dargestellt, welcher in Abhängigkeit von wenigstens einer über Eingangsleitungen 14 bis 18 der Steuereinheit 10 zugeführte Betriebsgröße einen Sollwert SOLL für die zu regelnde Betriebsgröße bildet. Im bevorzugten Ausführungsbeispiel eines Leerlaufdrehzahlreglers handelt es sich bei den zur Sollwertbildung herangezogenen Größen um Motortemperatur, den Betriebsstatus von Nebenverbrauchern, wie beispielsweise einer Klimaanlage, etc. Ferner wird der Steuereinheit 10 über die Eingangsleitung 20 ein Signal zugeführt, welches die Istgröße der zu regelnden Betriebsgröße darstellt. Soll- und Istgröße werden im Vergleicher 22 miteinander verglichen. Die Abweichung zwischen Soll- und Istgröße wird als Regelabweichung Δ dem Regler 24 zugeführt. Dieser Regler weist wenigstens einen veränderlichen Parameter auf, im bevorzugten Ausführungsbeispiel besteht er aus Proportional-, Differential- und Integralanteil, wobei Proportional- und/oder Differentialanteil veränderlich sind.FIG. 1 shows an electronic control unit 10 for control a drive unit in which a controller for regulating is implemented at least one operating size. in the preferred embodiment is in the controller around an idle speed controller. In other embodiments it can be an air flow regulator, a Load controller, a torque controller, a regulator of the exhaust gas composition, etc. act. In Figure 1 is a setpoint images 12, which depends on at least one via input lines 14 to 18 of the control unit 10 supplied operating variable a target value for forms the operating variable to be regulated. In the preferred embodiment an idle speed controller is at the quantities used for setpoint formation around engine temperature, the operating status of secondary consumers, such as For example, an air conditioner, etc. Further, the control unit 10 is supplied via the input line 20 a signal, which is the actual size of the operating variable to be regulated represents. Target and actual size are in the comparator 22 with each other compared. The deviation between nominal and actual size is supplied to the controller 24 as a control deviation Δ. This controller has at least one variable parameter on, in the preferred embodiment, it consists of Proportional, differential and integral parts, whereby proportional and / or differential component are variable.

Auf der Basis der implementierten Regelstrategie bildet der Regler 24 in Abhängigkeit der Regelabweichung wenigstens ein Ausgangssignal τ, welches von der Steuereinheit 10 zu Ansteuerung eines Stellglieds 26 ausgegeben wird. Im obigen Beispiel bildet jeder Anteil ein Reglerausgangssignal, die zusammengeführt (z.B. addiert) das Ausgangssignal τ bilden. Im bevorzugten Ausführungsbeispiel einer Leerlaufregelung stellt das Stellelement 26 eine elektrisch betätigbare Drosselklappe oder Bypassklappe dar, welche die Luft zu einer Brennkraftmaschine derart einstellt, dass sich der Istwert dem Sollwert annähert. Bei Dieselmotoren oder Benzindirekteinspritzern wird nicht die Luft, sondern die Kraftmasse von dem Ausgangssignal eingestellt, so dass Stellelement Stelleinrichtungen zur Beeinflussung der Kraftzuführung darstellen. Ergänzend können je nach Ausführung weitere Ausgangssignale erzeugt werden, beispielsweise zur Steuerung des Zündwinkels, welche ebenfalls zur Annäherung der Istgröße an die Sollgröße beitragen.On the basis of the implemented control strategy forms the Regulator 24 as a function of the control deviation at least one Output signal τ, which from the control unit 10 to control an actuator 26 is output. In the above Example, each share makes a regulator output signal that combined (e.g., added) to form the output signal τ. In the preferred embodiment of an idle control the actuator 26 is an electrically actuable throttle or bypass damper, which the air to a Internal combustion engine adjusted such that the actual value approaches the setpoint. For diesel engines or gasoline direct injection does not become the air, but the force mass set by the output signal, so that actuator Represent adjusting devices for influencing the power supply. In addition, depending on the design, further output signals be generated, for example, for control the ignition angle, which also approximates the actual size contribute to the target size.

Die verschiedenen Anteile des Reglers 24 weisen Parameter, beispielsweise Verstärkungsfaktoren, auf, deren Wert veränderbar ist. Im dargestellten Beispiel der Figur 1 sind zwei Parameterwerte bzw. Parameterwertesätze 28 und 30 vorgesehen, welche über ein Schaltmittel 32 dem Regler 24 zur Verfügung gestellt werden. Im bevorzugten Ausführungsbeispiel handelt es sich bei den umschaltbaren Parametern um den Verstärkungsfaktor des Proportionalreglers und/oder den des Differentialanteils. Das Schaltmittel 32 wird umgeschaltet bei Vorliegen der in 34 gebildeten Umschaltbedingung, deren Signal dem Regler 24 ebenfalls zur Verfügung gestellt wird. Im bevorzugten Ausführungsbeispiel einer Leerlaufregelung im Zusammenhang mit einer Benzindirekteinspritzungsbrennkraftmaschine ist die Umschaltbedingung dann gegeben, wenn die Betriebsart der Brennkraftmaschine umgeschaltet wird, beispielsweise von einem homogenen Betrieb in einen ungedrosselten Betrieb bzw. einen Betrieb mit magerem Gemisch und umgekehrt. Beim Umschalten zwischen zwei Betriebsarten wird dann vom ersten auf den zweiten Parameter des Reglers umgewechselt. Dies deshalb, weil bei einer Änderung der Betriebsart eine signifikante Änderung der Eigenschaften der Regelstrecke (z.B. dynamisches Verhalten, Schwingungsverhalten, etc.) auftritt. Die Parameterwerte sind den unterschiedlichen Anforderungen angepasst. Neben der Betriebsartenumschaltung oder alternativ dazu wird die Parameterumschaltung auch in Abhängigkeit anderer Betriebszustände ausgelöst, die eine solche Änderung der Regelstrecke nach sich ziehen, beispielsweise wenn ein Gang ein- oder ausgelegt wird, wenn die Kupplung betätigt wird, wenn leistungsstarke Verbraucher angekoppelt werden, etc. Liegt ein derartiger Betriebsphasenwechsel vor, führt dies zur Erzeugung eines Umschaltsignals durch die Einheit 34 und zur Umschaltung des Parameters.The different parts of the controller 24 have parameters, For example, gain factors, whose value can be changed is. In the illustrated example of Figure 1 are two Parameter values or parameter value sets 28 and 30 are provided, which via a switching means 32 to the controller 24 be put. In the preferred embodiment the switchable parameters are the amplification factor the proportional controller and / or the of Differential component. The switching means 32 is switched in the presence of the switching condition formed in 34, the Signal is also provided to the controller 24. In the preferred embodiment of an idle control in Connection with a gasoline direct injection internal combustion engine the switching condition is given when the Operating mode of the internal combustion engine is switched, for example from a homogeneous operation to an unthrottled one Operation or operation with a lean mixture and vice versa. When switching between two modes is then switched from the first to the second parameter of the controller. This is because when changing the operating mode a significant change in the properties of the Controlled system (e.g., dynamic behavior, vibration behavior, etc.) occurs. The parameter values are different Adapted requirements. In addition to the operating mode changeover or alternatively, the parameter switching also triggered depending on other operating states, such a change of the controlled system after itself pull, for example, when a gear on or laid out when the clutch is pressed when powerful Consumers are coupled, etc. Is such a Operating phase change, this leads to the generation of a Switching signal through the unit 34 and the switching of the Parameter.

Beim Umschalten des oder der Parameter ändert sich der Ausgang des Reglers sprunghaft, was als Ruck am Fahrzeug zu spüren ist. Es wird jedoch ein stetiger Verlauf des Regelausgangs angestrebt, um einen solchen spürbaren Ruck am Fahrzeug zu verhindern. Dies gilt insbesondere bei Steuersystemen mit momentenorientierter Steuerstruktur, bei welcher der Ausgang des Leerlaufreglers unter anderem zur Korrektur eines der Steuerung zugrunde liegenden Sollwertes (Solldrehmoment, Fahrerwunsch) dient.Switching the parameter (s) changes the output of the regulator leaps and bounds, causing the truck to jerk feel. However, it will be a steady course of the control output aspired to such a noticeable jerk on Prevent vehicle. This applies in particular to tax systems with torque-oriented tax structure, in which the output of the idle controller, among other things for correction one of the control underlying setpoint (Target torque, driver's request) is used.

Abhängig vom binären Umschaltsignal wird der passenden bzw. die passenden Reglerparameter ausgewählt. Im bevorzugten Ausführungsbeispiel stellen der oder die Parameter Verstärkungsfaktoren dar, mit dem die Regelabweichung und/oder die zeitliche Änderung der Drehzahl oder der Regelabweichung multipliziert wird. Das Ausgangssignal des Reglers verändert sich beim Umschalten sprungförmig, da infolge der Änderung der Größe des Verstärkungsparameters im Rahmen der Multiplikation eine sprungförmige Veränderung des Produkts sich einstellt. Zur Verbesserung dieser Situation wird ein Filter, vorzugsweise ein Tiefpassfilter erster Ordnung eingefügt, welches zum Zeitpunkt des Auftretens des Umschaltsignals (Flankenerkennung) initialisiert wird. Der Initialisierungswert des Filters wird auf den Wert gesetzt, welcher dem Unterschied zwischen dem Reglerausgangswert vor und nach der Umschaltung entspricht. Das Filter ist im bevorzugten Ausführungsbeispiel derart gestaltet, dass sein Ausgangssignal exponentiell gegen Null läuft nach Auftreten einer Umschaltung. Der Filterausgangswert wird dann vom Reglerausgang subtrahiert, so dass das resultierende Regelausgangssignal einen stetigen zeitlichen Verlauf aufweist. Diese Maßnahmen werden bei Proportionalanteilen und/oder Differentialanteilen angewendet.Depending on the binary switching signal, the appropriate or the appropriate controller parameters are selected. In the preferred Embodiment provide the parameter or parameters gain factors with which the control deviation and / or the temporal change of the speed or the control deviation is multiplied. The output signal of the controller changes when switching over jump, because as a result of the change the size of the gain parameter as part of the multiplication a sudden change in the product occurs. To improve this situation, a filter, preferably a first order low pass filter inserted, which at the time of the occurrence of the switching signal (Edge detection) is initialized. The initialization value of the filter is set to the value which the difference between the controller output value before and after the Switching corresponds. The filter is in the preferred embodiment designed such that its output signal Exponential to zero runs after the occurrence of a changeover. The filter output value will then be from the controller output subtracted, so that the resulting control output signal has a steady time course. These measures are proportional proportions and / or differential proportions applied.

In Figur 2 ist ein Ablaufdiagramm dargestellt, welches die vorstehend beschriebene Vorgehensweise verdeutlicht.. Das Ablaufdiagramm stellt eine Realisierung der beschriebenen Massnahme als Programm des Rechners der Steuereinheit 10 dar und beschreibt die Abläufe im Regler 24 am Beispiel eines Proportionalanteils. FIG. 2 shows a flow chart illustrating the The procedure described above illustrates. The flowchart represents a realization of the described Measure as a program of the computer of the control unit 10 is and describes the processes in the controller 24 using the example of a Proportional share.

Figur 2 zeigt den Regler 24, dem, wie bereits in Figur 1 dargestellt, die Regelabweichung Δ, über das Schaltelement 32 ein ausgewählter Parameter P1, P2 sowie das Umschaltsignal B_s zugeführt wird. Die mittels des Schaltelements 32 ausgewählte, in einem Ausführungsbeispiel betriebsgrößenabhängige (z.B. von der Drehzahl, der Regelabweichung, etc.) Proportionalkonstante (P1, P2) wird in der Multiplikationsstelle 100 mit der Regelabweichung Δ zur Bildung eines Ausgangssignals dmllr1 multipliziert. Dieses Produkt zeigt beim Umschalten von dem einen auf den anderen Parameter ein sprungförmiges Verhalten. In der darauffolgenden Subtraktionsstelle 102 wird der in der Multiplikationsstelle 100 gebildete Wert mit dem aus dem vorhergehenden Rechnertakt stammende Ausgangswert (dmllr1 (z-1)) verglichen. Letzterer wird in einer Speicherzelle 104 zwischengespeichert. Die Abweichung zwischen dem neuen und dem alten Ausgangswert wird dann einem Filter 106 zugeführt, insbesondere einem Tiefpassfilter. Dieses Filter wird bei Vorliegen eines Flankenwechsels auf der Zuleitung 108 initialisiert. Es weist als Eingangswert den Wert 0 auf. Die Initialisierung erfolgt bei einem in 110 erkannten Wechsel des Umschaltsignals B_s. Findet also eine Umschaltung vom einen auf den anderen Parameter oder umgekehrt statt, wird das Filter mit dem in der Subtraktionsstelle 102 gebildeten Wert initialisiert. Das in der Subtraktionsstelle 102 gebildete Signal entspricht der Höhe des Sprungs bei Umschaltung im Ausgangssignal dmllr1. Zum Umschaltzeitpunkt wird also das Filter initialisiert mit dem Wert der Höhe des Sprunges. Zwischen zwei Umschaltungen läuft dann das Ausgangssignal des Filters dmumfil exponentiell vom initialisierten Wert gegen Null. Das Ausgangssignal des Filters wird dann in der Subtraktionsstelle 112 mit dem Ausgangssignal dmllr1 der Multiplikationsstufe 100 verglichen, insbesondere von diesem subtrahiert. Dadurch entsteht ein Reglerausgangssignal dmllr, dessen Verlauf in der Umschaltphase stetig ist. Diese Ausgangssignal wird gegebenenfalls unter Berücksichtigung der Ausgangssignale von weiteren Reglerkomponenten als Ansteuersignal τ ausgegeben.FIG. 2 shows the regulator 24, to which, as already illustrated in FIG. 1, the control deviation Δ is supplied via the switching element 32 to a selected parameter P1, P2 as well as the switching signal B_s. The selected by the switching element 32, in one embodiment, operating variable-dependent (eg on the speed, the deviation, etc.) Proportional (P1, P2) is multiplied in the multiplication 100 with the control deviation Δ to form an output dmllr1. This product shows a jump behavior when switching from one parameter to the other. In the subsequent subtraction point 102, the value formed in the multiplication point 100 is compared with the output value (dmllr1 (z -1 )) coming from the preceding computer clock. The latter is buffered in a memory cell 104. The deviation between the new and the old output value is then fed to a filter 106, in particular a low-pass filter. This filter is initialized in the presence of an edge change on the supply line 108. It has the value 0 as input value. The initialization takes place at a change of the switching signal B_s detected in 110. Thus, if a switchover takes place from one parameter to the other or vice versa, the filter is initialized with the value formed in the subtraction point 102. The signal formed in the subtraction point 102 corresponds to the magnitude of the jump when switching in the output signal dmllr1. At the switching time, the filter is thus initialized with the value of the height of the jump. Between two switches, the output of the dmumfil filter exponentially expands from the initialized value to zero. The output signal of the filter is then compared in the subtraction point 112 with the output signal dmllr1 of the multiplication stage 100, in particular subtracted therefrom. This results in a controller output signal dmllr whose course is continuous in the switching phase. This output signal is optionally output, taking into account the output signals of other controller components as drive signal τ.

Die geschilderte Vorgehensweise wird in einem Ausführungsbeispiel ergänzend oder alternativ auf den Differentialanteil des Reglers angewendet. Der Integralanteil ist mit der geschilderten Problematik nicht behaftet, da er aufgrund seiner Funktion generell einen stetigen Ausgangssignalverlauf aufweist.The described procedure is in one embodiment additionally or alternatively to the differential component of the regulator applied. The integral part is with the described problematic not affected, since he due its function generally a steady output signal waveform having.

Die Wirkungsweise der in Figur 2 dargestellten bevorzugten Ausführungsform des Reglers ist in Figur 3 anhand von Zeitdiagrammen dargestellt. Figur 3a zeigt dabei den zeitlichen Verlauf des Umschaltsignals B_s, Figur 3b den des Ausgangssignals dmumfil des Filters, Figur 3c den Zeitverlauf des Ausgangssignals dmllr1 der Multiplikationsstufe und Figur 3d den Zeitverlauf des Ausgangssignals dmllr des Reglers bzw. Regleranteils.The mode of operation of the preferred embodiment shown in FIG Embodiment of the controller is shown in Figure 3 using timing diagrams shown. Figure 3a shows the temporal Course of the switching signal B_s, Figure 3b that of the output signal dmumfil of the filter, Figure 3c the time course of the Output signal dmllr1 the multiplication stage and Figure 3d the time course of the output signal dmllr of the controller or Regulators share.

Bis zum Zeitpunkt t0 wird der Regler mit einem ersten Parameter Pl betrieben. Zum Zeitpunkt t0 erfolgt die Parameterumschaltung, beispielsweise infolge eines Wechsels der Betriebsarten. Entsprechend wird das Umschaltsignal B_s gemäß Figur 3a auf den Wert true gesetzt. Dies hat zur Folge, dass zum Zeitpunkt t0 gemäß Figur 3c ein sprungförmiger Verlauf im Ausgangssignal dmllr1 auftritt. Zu dessen Kompensation wird gemäß Figur 3b zum Zeitpunkt t0 das Filter mit einem Wert initialisiert, welcher der Höhe des Sprungs im Ausgangssignal der Multiplikationsstufe entspricht. Entsprechend der Filterfunktion führt das Filterausgangssignal vom Zeitpunkt t0 von diesem Wert exponentiell gegen Null (Fig. 3b). Da das Filterausgangssignal vom Ausgangssignal der Multiplikationsstufe abgezogen wird zur Bildung des Ausgangssignals dmllr, so ergibt sich gemäß Figur 3d ein stetiger Verlauf dieses Ausgangssignals in der Umschaltphase. Until the time t0, the controller with a first parameter Pl operated. At the time t0, the parameter switching takes place, for example, as a result of a change of operating modes. Accordingly, the switching signal B_s becomes according to FIG. 3a is set to the value true. This has the consequence that at time t0 according to Figure 3c a jump-shaped course occurs in the output signal dmllr1. To its compensation becomes according to figure 3b at the time t0 the filter with a Value initializes which of the height of the jump in the output signal the multiplication level corresponds. Corresponding the filter function carries the filter output signal from Time t0 of this value exponential to zero (Fig. 3b). Since the filter output signal from the output of the multiplication stage is subtracted to form the output signal dmllr, then results in accordance with Figure 3d a steady Course of this output signal in the switching phase.

Die Ausführungsform nach Figur 2 stellt eine bevorzugte Ausführung der allgemeinen Lösung dar, durch Einsatz eines Filters, welches mit dem Wert der Höhe eines Sprunges im einem Reglerausgangssignal bei einer Parameterumschaltung initialisiert wird, den entstehenden Sprung im Umschaltzeitpunkt zu glätten. Andere spezielle Ausführungsformen in Bezug auf den konkreten Einbau der Filterfunktion sind im Rahmen dieser allgemeinen Lösung ebenfalls denkbar, insbesondere Lösungen, bei denen das Filter mit dem Ausgangswert unmittelbar vor der Umschaltung bei der Umschaltung initialisiert wird und das Regelausgangssignal selbst exponentiell auf den neuen Wert heranführt, wobei das Filter im Normalbetrieb außerhalb des Umschaltens nicht aktiv ist.The embodiment of Figure 2 represents a preferred embodiment the general solution by using a filter, which with the value of the height of a jump in one Controller output signal initialized at a parameter changeover is, the resulting jump at the switching time to smooth. Other specific embodiments relating to the concrete installation of the filter function are within the scope of this general solution also conceivable, in particular solutions, where the filter with the output value immediately initialized before switching during the changeover and the control output itself is exponential to the new value, the filter in normal operation outside switching is not active.

Claims (12)

  1. Method for controlling an operating variable of a drive unit, a controller being provided which has at least one variable parameter, the controller generating an output signal as a function of a control error taking into consideration the variable parameter, switching over being carried out from a first parameter value to a second parameter value when a switchover signal is present, characterized in that a filter is provided which is activated when switching over occurs from one parameter value to the other parameter value, and is initialized with a value which brings about a continuous profile of the output signal at the switchover time.
  2. Method according to Claim 1, characterized in that the switchover signal is formed when a change occurs in the control system, in particular when there is a switchover in the operating mode in an engine with direct gasoline injection, a gear is engaged or disengaged, a clutch is activated or a high-power load is connected into the circuit.
  3. Method according to one of the preceding claims, characterized in that the at least one parameter is a gain factor of a proportional controller and/or a constant of a differential controller.
  4. Method according to one of the preceding claims, characterized in that, in the proportional controller, the at least one variable parameter is multiplied by the control error in order to form an output signal.
  5. Method according to one of the preceding claims, characterized in that a variable is formed which corresponds to the level of the jump in the output signal of the controller when switching over occurs from the first parameter value to the second parameter value.
  6. Method according to Claim 4 or 5, characterized in that, when the switchover signal is present, a filter is initialized which is initialized with the signal representing the magnitude of the jump, and the output signal of said filter tends exponentially towards zero starting from this time.
  7. Method according to Claim 4, 5 or 6, characterized in that the filter output signal is subtracted from the output signal in order to form a smoothed output signal.
  8. Method according to one of the preceding claims, characterized in that the controller is an idling speed controller.
  9. Method according to one of the preceding claims, characterized in that the output signal constitutes the output signal of an element of the controller or the entire output signal of the controller.
  10. Method according to one of the preceding claims, characterized in that the output signal of the controller is added to a setpoint value in order to control an internal combustion engine, in particular a setpoint torque.
  11. Method according to one of the preceding claims, characterized in that, with a differential controller, the time derivative of the rotational speed signal and/or the control error are formed with the constant which can be switched over.
  12. Method for controlling an operating variable of a drive unit, having a control unit which comprises at least one controller which generates an output signal for influencing the operating variable, the controller having at least one parameter which can be switched over, having switchover means which switch over from a first parameter value to a second parameter value when at least one switchover signal is present, characterized in that the controller comprises a filter which is initialized when the switchover signal is present, having a value which corresponds to the change in the output signal when the parameter is switched over, and which brings about a continuous profile of the output signal of the controller over the switchover time.
EP01956350A 2000-08-10 2001-07-20 Method and device for regulating an operating variable of a drive unit Expired - Lifetime EP1309780B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10038990A DE10038990A1 (en) 2000-08-10 2000-08-10 Method and device for controlling an operating variable of a drive unit
DE10038990 2000-08-10
PCT/DE2001/002747 WO2002012695A1 (en) 2000-08-10 2001-07-20 Method and device for regulating an operating variable of a drive unit

Publications (2)

Publication Number Publication Date
EP1309780A1 EP1309780A1 (en) 2003-05-14
EP1309780B1 true EP1309780B1 (en) 2005-10-26

Family

ID=7651928

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01956350A Expired - Lifetime EP1309780B1 (en) 2000-08-10 2001-07-20 Method and device for regulating an operating variable of a drive unit

Country Status (7)

Country Link
US (1) US20030172904A1 (en)
EP (1) EP1309780B1 (en)
JP (1) JP2004506118A (en)
KR (1) KR20030036679A (en)
CN (1) CN1436279A (en)
DE (2) DE10038990A1 (en)
WO (1) WO2002012695A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2398393B (en) * 2003-02-12 2005-01-19 Visteon Global Tech Inc Internal combustion engine idle control
DE102013021523A1 (en) 2013-12-13 2015-07-02 Mtu Friedrichshafen Gmbh Method for speed control of an internal combustion engine
CN104833514A (en) * 2015-05-19 2015-08-12 成都诚邦动力测试仪器有限公司 Engine test and control system based on adjustable filtering frequency
CN111577475A (en) * 2020-05-15 2020-08-25 奇瑞汽车股份有限公司 Method and device for switching working modes of engine and storage medium

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3130080A1 (en) * 1981-07-30 1983-02-17 Robert Bosch Gmbh, 7000 Stuttgart SPEED CONTROL SYSTEM FOR AN INTERNAL COMBUSTION ENGINE WITH AUTO IGNITION
DE3149097A1 (en) * 1981-12-11 1983-06-16 Robert Bosch Gmbh, 7000 Stuttgart DEVICE FOR REGULATING THE IDLE SPEED IN AN INTERNAL COMBUSTION ENGINE
DE4112848C2 (en) * 1991-04-19 2001-11-15 Bosch Gmbh Robert System for controlling the idle speed of an internal combustion engine
JP2855952B2 (en) * 1992-04-24 1999-02-10 三菱自動車工業株式会社 Idle speed control method for internal combustion engine
JP3152106B2 (en) * 1995-05-16 2001-04-03 三菱自動車工業株式会社 Control device for in-cylinder injection spark ignition internal combustion engine
JP3155694B2 (en) * 1995-11-09 2001-04-16 株式会社日立製作所 Apparatus and method for controlling throttle valve
JP3228137B2 (en) * 1996-07-31 2001-11-12 株式会社デンソー Throttle control device for internal combustion engine
JP3211677B2 (en) * 1996-08-28 2001-09-25 三菱自動車工業株式会社 Ignition timing control system for in-cylinder injection internal combustion engine
JP3541591B2 (en) * 1996-12-17 2004-07-14 日産自動車株式会社 Vehicle driving force control device
DE19722253A1 (en) * 1997-05-28 1998-11-05 Daimler Benz Ag Electronic bucking device for internal combustion engines
JPH11159377A (en) * 1997-12-01 1999-06-15 Hitachi Ltd Engine control device
JP2000274295A (en) * 1999-03-19 2000-10-03 Unisia Jecs Corp Idle rotation controller for internal combustion engine

Also Published As

Publication number Publication date
KR20030036679A (en) 2003-05-09
DE10038990A1 (en) 2002-02-21
US20030172904A1 (en) 2003-09-18
JP2004506118A (en) 2004-02-26
EP1309780A1 (en) 2003-05-14
DE50107851D1 (en) 2005-12-01
WO2002012695A1 (en) 2002-02-14
CN1436279A (en) 2003-08-13

Similar Documents

Publication Publication Date Title
EP0853723B1 (en) Process and device for controlling an internal combustion engine
DE4239711B4 (en) Method and device for controlling a vehicle
DE3333392A1 (en) METHOD FOR FEEDBACK CONTROL OF THE IDLE SPEED OF AN INTERNAL COMBUSTION ENGINE
WO2002008595A1 (en) Method and device for controlling a drive unit
DE19619320A1 (en) Method and device for controlling an internal combustion engine
EP0771943A2 (en) Method and apparatus for controlling a diesel engine for vehicles
DE19501299B4 (en) Method and device for controlling an internal combustion engine of a vehicle
EP1613852B1 (en) Method for operating an internal combustion engine comprising torque monitoring
EP0768455B1 (en) Method and apparatus for controlling an internal combustion engine
DE10241059A1 (en) Method and device for limiting the speed of a vehicle
DE60001824T2 (en) VIBRATION DAMPING FRONT AND REAR IN A VEHICLE
EP1242731A2 (en) Method and device for controlling the drive unit of a vehicle
DE4405340B4 (en) Method and device for adjusting the speed of a drive unit of a vehicle in idle
EP1309780B1 (en) Method and device for regulating an operating variable of a drive unit
EP1242732B1 (en) Method and device for controlling the drive unit of a vehicle
EP1277940B1 (en) Method and device for the operation of a drive engine
DE19807126C2 (en) Method for adjusting the drive power of a motor vehicle
DE10135077A1 (en) Method and device for operating a drive motor of a vehicle
EP0415048B1 (en) Control method for an engine/transmission assembly
WO2001073281A1 (en) Method and device for controlling the drive unit of a motor vehicle
DE102016214820B4 (en) DIGITAL FILTER AND VEHICLE DRIVE FORCE CONTROL DEVICE
EP1309784B1 (en) Method and device for regulating an operating variable of an internal combustion engine
EP0931211B1 (en) Internal combustion engine control according to running time
DE102017219785A1 (en) Method for controlling a speed of an internal combustion engine with compensation of a dead time
DE102004032537B4 (en) Method and apparatus for controlling fuel injection

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030310

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: KUSTOSCH, MARIO

RBV Designated contracting states (corrected)

Designated state(s): DE FR IT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR IT

REF Corresponds to:

Ref document number: 50107851

Country of ref document: DE

Date of ref document: 20051201

Kind code of ref document: P

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20060727

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20080718

Year of fee payment: 8

Ref country code: IT

Payment date: 20080726

Year of fee payment: 8

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090720

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20160927

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50107851

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180201