EP1367221A1 - Double injector arrangement for cooling of the sideplate of a high pressure turbine - Google Patents
Double injector arrangement for cooling of the sideplate of a high pressure turbine Download PDFInfo
- Publication number
- EP1367221A1 EP1367221A1 EP03291258A EP03291258A EP1367221A1 EP 1367221 A1 EP1367221 A1 EP 1367221A1 EP 03291258 A EP03291258 A EP 03291258A EP 03291258 A EP03291258 A EP 03291258A EP 1367221 A1 EP1367221 A1 EP 1367221A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- flange
- labyrinth
- upstream
- air flow
- injectors
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/02—Blade-carrying members, e.g. rotors
- F01D5/08—Heating, heat-insulating or cooling means
- F01D5/081—Cooling fluid being directed on the side of the rotor disc or at the roots of the blades
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D11/00—Preventing or minimising internal leakage of working-fluid, e.g. between stages
- F01D11/02—Preventing or minimising internal leakage of working-fluid, e.g. between stages by non-contact sealings, e.g. of labyrinth type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/30—Fixing blades to rotors; Blade roots ; Blade spacers
- F01D5/3007—Fixing blades to rotors; Blade roots ; Blade spacers of axial insertion type
- F01D5/3015—Fixing blades to rotors; Blade roots ; Blade spacers of axial insertion type with side plates
Definitions
- the invention relates to the field of ventilation of rotors of high-pressure turbine of turbojets.
- a ventilation device of a high-pressure turbine rotor of a turbomachine this turbine being disposed downstream of the combustion chamber and comprising, on the one hand, a turbine disk having an inner bore and an upstream flange for fixing it on the downstream cone of a compressor, at high pressure, and on the other hand, a flange disposed upstream of said disc and separated from it last by a cavity, said flange having a portion radially massive interior also having an inner bore, through which extends the upstream flange of said disk, and an upstream flange for its attachment on said downstream cone, said device comprising a first circuit for the blade cooling fed by a first flow of air taken from chamber bottom and delivering this first air flow into said cavity via main injectors arranged upstream of said flange and the holes of provided in said flange, and a second circuit for the cooling of the flange, fed by a second air flow at through a labyrinth of discharge located downstream of the high-pressure compressor pressure, at
- FIG. 1 shows such a high-pressure turbine rotor 1, disposed downstream of a combustion chamber 2, and which comprises a turbine disc 3 equipped with blades 4, and a flange 5 disposed upstream 3.
- the disc 3 and the flange 5 each comprise a flange upstream, referenced 3a for the disc 3 and 5a for the flange 5, for their fixing at the downstream end 6 of the downstream cone 7 of the high-pressure compressor pressure driven by the rotor 1.
- the disc 3 has an inner bore 8 traversed by the shaft 9 of a low pressure turbine, and the flange 5 has a bore 10 surrounding the flange 3a of the disk 3, and ventilation holes 11 by which a first cooling air flow C1 taken from chamber bottom is delivered into the cavity 12 separating the downstream face of the flange 5 of the upstream face of the disc 3.
- This air flow C1 of cooling circulates radially outwards and enters the 4a cells containing the feet of the blades 4 to cool them.
- This air flow is taken from the chamber floor, circulates in a duct 13 disposed in the chamber 14 separating the flange 5 from the chamber bottom and is rotated by injectors 15 in order to lower the temperature of the air delivered into the cavity 12.
- a second cooling air flow C2 taken from the bottom of chamber circulates downstream in the chamber 16 separating the downstream cone 7 of the high pressure compressor of the inner casing 17 of the chamber of 12.
- This C2 airflow flows through a labyrinth of discharge 18 and enters the enclosure 14 from which a C2a part flows to through orifices 19 formed in the upstream flange 5a of the flange 5, passes through the bore 10 of the flange 5 to cool the part radially inner of the latter and rejoins the cooling air flow C1 4.
- Another part C2b of the second air flow C2 cools the upstream face of the flange 5, bypasses the injectors 15 and is discharged into the upstream bleed cavity 20 of the turbine rotor 1.
- a third part C2c of the third airflow C2 serves to ventilate the upstream upper face 21 of the flange 5 through a second labyrinth 22 located under the injectors 15.
- This third part C2c enters the enclosure 23 located downstream of the second labyrinth 22, between the flange 5 and the injectors 15, and is evacuated into the cavity of upstream purge 20 of the turbine rotor 1 through a third labyrinth 24 located above the injectors 15, or mixes with the first flow C1.
- the second air flow C2 serves to cool the downstream cone 7, the barrel connecting the high pressure compressor to the high pressure turbine, and the flange 5.
- the temperature of the upstream face of the flange downstream of second labyrinth is therefore quite high and poorly controlled. This requires to use special materials for the realization of the flange and a appropriate sizing.
- the object of the invention is to lower the temperature of the face upstream of the flange to facilitate its dimensioning in overspeed, to increase its life and to be able to use a material economic.
- said device further comprises a shunt between the first circuit and the enclosure located downstream of the second labyrinth, said bypass delivering a third air flow for the cooling of the upper face upstream of the radially inner portion of said flange, this third flow of air being pre-rotated by means of additional injectors.
- This third flow of air pre-driven and injected downstream of the labyrinth under main injectors thus reduces the relative total temperature of the air coming to cool the upstream face of the flask downstream of the second labyrinth.
- This third airflow is mixture at the leakage rate of the labyrinth under injectors and is evacuated downstream of the main turbine injectors, into the feed circuit of the high pressure turbine wheels.
- Air injected into the turbine wheel supply circuit is thus colder than that of the air injected according to the state of the art.
- the additional injectors are made under boring tangentially in the direction of rotation of the rotor.
- said bores remove air from the main injectors, and deliver it immediately downstream of the second labyrinth.
- FIG. 2 shows a turbine rotor 1 which differs from that shown in FIG. 1 by the fact that the enclosure 23 situated downstream of second labyrinth 22 is supplied with air, on the one hand, by an air leak C2c coming from the enclosure 14 via the second labyrinth 22 and, on the other hand, on the other hand, by an air flow C1a delivered by a bypass arranged between the conduit 13 delivering the first air flow C1 and the enclosure 23.
- the bypass consists of a plurality of holes 30 opening, on the one hand, to the inlet of the main injectors 15 and, on the other hand, in the enclosure 23 immediately downstream of the second labyrinth 22.
- the holes 30 are cylindrical and inclined tangentially in the direction of rotation of the rotor turbine 1.
- the part radially inner 31 of the flange 5 has a massive shape, and extends axially towards the front of the engine to the radial flange 5a which serves to fix it to the downstream end 6 of the downstream cone 7 of the compressor.
- the labyrinth 22, located under the injectors 15 is disposed at the periphery of the radial flange 5a.
- the holes 30 are substantially radial and directed towards the face upper 32 of the radially inner portion of the flange 5.
- the air flow C1a delivered by the bores 30 is at a reduced relative total temperature relative to the air of cooling of the same regions in the state of the art.
- Air flow C1a is mixed with the C2c leakage rate of the labyrinth under injectors 22 and is discharged downstream of the main injectors 15, in the circuit feeding the turbine wheel.
- the radial flange 5a has no holes to feed the annular chamber 33 located between the radially inner portion 31 of the flange 5 and the downstream flange 3a of the turbine disc 3, because the third air flow C1a is sufficient to ensure by itself the cooling of the entire flange 5.
- Air injected into the turbine wheel supply circuit for the cooling of the blades thus pre-driven is colder, than air cooling blades in a conventional ventilation.
- Gain temperature can be estimated at 15 °, which equates to a gain of specific consumption of about 0.06%.
- the cold air flow C1a delivered by the holes 30 is not influenced by variations of labyrinth games surrounding, because this flow is calibrated by the holes 30.
- Figure 3 shows in dotted line the evolution of the temperature of the bore 31 of the flange 5 in a conventional ventilation rotor of turbine, and in full lines, the evolution of the temperature at the same place with the ventilation device according to the invention according to the game of labyrinth discharge 18 expressed in mm.
- Figure 4 shows the evolution of the temperature of the bore 31 flange 5 depending on the game of the second labyrinth 22 located under the main injectors 15, with conventional ventilation (curve in dotted) and with a ventilation device according to the invention.
- the temperature in this zone with the device according to the invention is substantially constant and less than that obtained with a classical ventilation.
- Figure 5 shows the evolution of temperature at the same place of the flange, depending on the game of the third labyrinth 24, for conventional ventilation (dashed curve) and for ventilation with the device according to the invention.
- the temperature in this region is substantially constant with a ventilation device according to the invention.
- the temperature of the flange 5 in the vicinity of third labyrinth 24 is substantially constant with the device of according to the invention, and less than that obtained with a conventional ventilation, the flange 5 is less stressed by constraints thermals, and it can be made of a less expensive material and more easy to work.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
Abstract
Description
L'invention concerne le domaine de la ventilation des rotors de turbine à haute pression des turboréacteurs.The invention relates to the field of ventilation of rotors of high-pressure turbine of turbojets.
Elle concerne plus précisément un dispositif de ventilation d'un rotor de turbine à haute pression d'une turbomachine, cette turbine étant disposée en aval de la chambre de combustion et comportant, d'une part, un disque de turbine présentant un alésage intérieur et une bride amont pour sa fixation sur le cône aval d'un compresseur, à haute pression, et, d'autre part, un flasque disposé en amont dudit disque et séparé de ce dernier par une cavité, ledit flasque comportant une partie radialement intérieure massive ayant également un alésage intérieur, à travers lequel s'étend la bride amont dudit disque, et une bride amont pour sa fixation sur ledit cône aval, ledit dispositif comportant un premier circuit pour le refroidissement des aubes alimenté par un premier débit d'air prélevé en fond de chambre et délivrant ce premier débit d'air dans ladite cavité via des injecteurs principaux disposés en amont dudit flasque et des trous de ventilation ménagés dans ledit flasque, et un deuxième circuit pour le refroidissement du flasque, alimenté par un deuxième débit d'air au travers d'un labyrinthe de décharge situé en aval du compresseur à haute pression, une partie au moins dudit deuxième débit d'air servant à ventiler la face supérieure amont dudit flasque au travers d'un deuxième labyrinthe situé sous les injecteurs.It relates more specifically to a ventilation device of a high-pressure turbine rotor of a turbomachine, this turbine being disposed downstream of the combustion chamber and comprising, on the one hand, a turbine disk having an inner bore and an upstream flange for fixing it on the downstream cone of a compressor, at high pressure, and on the other hand, a flange disposed upstream of said disc and separated from it last by a cavity, said flange having a portion radially massive interior also having an inner bore, through which extends the upstream flange of said disk, and an upstream flange for its attachment on said downstream cone, said device comprising a first circuit for the blade cooling fed by a first flow of air taken from chamber bottom and delivering this first air flow into said cavity via main injectors arranged upstream of said flange and the holes of provided in said flange, and a second circuit for the cooling of the flange, fed by a second air flow at through a labyrinth of discharge located downstream of the high-pressure compressor pressure, at least a part of said second air flow serving to ventilate the upstream upper face of said flange through a second labyrinth located under the injectors.
La figure 1 montre un tel rotor de turbine 1 à haute pression,
disposé en aval d'une chambre de combustion 2, et qui comporte un
disque de turbine 3 équipé d'aubes 4, et un flasque 5 disposé en amont
du disque 3. Le disque 3 et le flasque 5 comportent chacun une bride
amont, référencée 3a pour le disque 3 et 5a pour le flasque 5, pour leur
fixation à l'extrémité aval 6 du cône aval 7 du compresseur à haute
pression entraíné par le rotor 1.FIG. 1 shows such a high-
Le disque 3 comporte un alésage intérieur 8 traversé par l'arbre
9 d'une turbine à basse pression, et le flasque 5 présente un alésage
intérieur 10 entourant la bride 3a du disque 3, et des trous de ventilation
11 par lesquels un premier débit d'air C1 de refroidissement prélevé en
fond de chambre est délivré dans la cavité 12 séparant la face aval du
flasque 5 de la face amont du disque 3. Ce débit d'air C1 de
refroidissement circule radialement vers l'extérieur et pénètre dans les
alvéoles 4a contenant les pieds des aubes 4 afin de refroidir ces dernières.
Ce débit d'air est prélevé dans le fond de chambre, circule dans un conduit
13 disposé dans l'enceinte 14 séparant le flasque 5 du fond de chambre et
est mis en rotation par des injecteurs 15 afin d'abaisser la température de
l'air délivré dans la cavité 12.The
Un deuxième débit d'air C2 de refroidissement prélevé en fond
de chambre circule vers l'aval dans l'enceinte 16 séparant le cône aval 7
du compresseur à haute pression du carter intérieur 17 de la chambre de
combustion 12. Ce débit d'air C2 s'écoule à travers un labyrinthe de
décharge 18 et pénètre dans l'enceinte 14 d'où une partie C2a s'écoule à
travers des orifices 19 ménagés dans la bride amont 5a du flasque 5,
passe à travers l'alésage 10 du flasque 5 afin de refroidir la partie
radialement intérieure de ce dernier et rejoint le débit d'air C1 de refroidissement
des aubes 4. Une autre partie C2b du deuxième débit d'air C2
refroidit la face amont du flasque 5, contourne les injecteurs 15 et est
évacuée dans la cavité de purge amont 20 du rotor de turbine 1.A second cooling air flow C2 taken from the bottom
of chamber circulates downstream in the
Enfin, une troisième partie C2c du troisième débit d'air C2 sert à
ventiler la face supérieure amont 21 du flasque 5 au travers d'un
deuxième labyrinthe 22 situé sous les injecteurs 15. Cette troisième partie
C2c pénètre dans l'enceinte 23 située en aval du deuxième labyrinthe 22,
entre le flasque 5 et les injecteurs 15, et est évacuée dans la cavité de
purge amont 20 du rotor de turbine 1 à travers un troisième labyrinthe 24
situé au-dessus des injecteurs 15, ou vient se mélanger au premier débit
d'air C1.Finally, a third part C2c of the third airflow C2 serves to
ventilate the upstream
Le deuxième débit d'air C2 sert à refroidir le cône aval 7, le fût
de liaison du compresseur à haute pression à la turbine à haute pression,
et le flasque 5. Ce deuxième débit d'air circulant axialement dans un
espace annulaire délimité par des parois fixes solidaires de la chambre et
des parois mobiles en rotation solidaires du rotor, subit des échauffements
liés aux puissances dissipées entre le rotor et le stator.The second air flow C2 serves to cool the
Pour abaisser la température du flasque amont suivant les
spécifications de sa tenue mécanique, il est donc nécessaire d'augmenter
le débit d'air C2 traversant le labyrinthe de décharge 18 situé en aval du
compresseur à haute pression, et de le rejeter soit dans le circuit de
refroidissement des aubes, soit dans la veine en amont de la roue de
turbine à haute pression. Cette augmentation de débit génère une
augmentation de la température de l'air de refroidissement des aubes du
fait du rejet d'un air réchauffé dans le circuit de refroidissement des
aubes, et une chute des performances de la turbine du fait du rejet dans
la veine.To lower the temperature of the upstream flange following
specifications of its mechanical strength, so it is necessary to increase
the air flow C2 passing through the
En outre le débit d'air C2c servant au refroidissement du flasque
en aval du deuxième labyrinthe 22 situé sous les injecteurs 15, est peu
maítrisable car il subit les évolutions des jeux du labyrinthe de décharge
18, du deuxième labyrinthe 22 et du troisième labyrinthe 24 situé au-dessus
des injecteurs 15, au cours du fonctionnement et au cours de la
vie du moteur.In addition the C2c air flow for cooling the flange
downstream of the
La température de la face amont du flasque en aval du deuxième labyrinthe est donc assez élevée et mal maítrisée. Ceci nécessite d'utiliser des matériaux spéciaux pour la réalisation du flasque et un dimensionnement approprié.The temperature of the upstream face of the flange downstream of second labyrinth is therefore quite high and poorly controlled. This requires to use special materials for the realization of the flange and a appropriate sizing.
Le but de l'invention est d'abaisser la température de la face amont du flasque afin de faciliter son dimensionnement en survitesse, d'augmenter sa durée de vie et de pouvoir utiliser un matériau économique.The object of the invention is to lower the temperature of the face upstream of the flange to facilitate its dimensioning in overspeed, to increase its life and to be able to use a material economic.
Ce but est atteint selon l'invention par le fait que ledit dispositif comporte en outre une dérivation entre le premier circuit et l'enceinte interne située en aval du deuxième labyrinthe, ladite dérivation délivrant un troisième débit d'air pour le refroidissement de la face supérieure amont de la partie radialement intérieure dudit flasque, ce troisième débit d'air étant mis en pré-rotation au moyen d'injecteurs additionnels.This object is achieved according to the invention by the fact that said device further comprises a shunt between the first circuit and the enclosure located downstream of the second labyrinth, said bypass delivering a third air flow for the cooling of the upper face upstream of the radially inner portion of said flange, this third flow of air being pre-rotated by means of additional injectors.
Ce troisième débit d'air pré-entraíné et injecté en aval du labyrinthe sous injecteurs principaux permet ainsi de réduire la température totale relative de l'air venant refroidir la face amont du flasque en aval du deuxième labyrinthe. Ce troisième débit d'air se mélange au débit de fuite du labyrinthe sous injecteurs et est évacué en aval des injecteurs principaux de turbine, dans le circuit d'alimentation des roues de turbine à haute pression.This third flow of air pre-driven and injected downstream of the labyrinth under main injectors thus reduces the relative total temperature of the air coming to cool the upstream face of the flask downstream of the second labyrinth. This third airflow is mixture at the leakage rate of the labyrinth under injectors and is evacuated downstream of the main turbine injectors, into the feed circuit of the high pressure turbine wheels.
L'air injecté dans le circuit d'alimentation de la roue de turbine est ainsi plus froid que celui de l'air injecté selon l'état de la technique.Air injected into the turbine wheel supply circuit is thus colder than that of the air injected according to the state of the art.
Avantageusement, les injecteurs additionnels sont réalisés sous forme de perçages inclinés tangentiellement dans le sens de rotation du rotor. Advantageously, the additional injectors are made under boring tangentially in the direction of rotation of the rotor.
De préférence, lesdits perçages prélèvent de l'air dans les injecteurs principaux, et le délivrent immédiatement en aval du deuxième labyrinthe.Preferably, said bores remove air from the main injectors, and deliver it immediately downstream of the second labyrinth.
D'autres avantages et caractéristiques de l'invention ressortiront
à la lecture de la description suivante faite à titre d'exemple et en
référence aux dessins annexés dans lesquels :
L'état de la technique montré sur la figure 1 a été discuté dans l'introduction et ne nécessite pas d'autres explications.The state of the art shown in Figure 1 has been discussed in introduction and does not require further explanation.
La figure 2 montre un rotor de turbine 1 qui se différencie de
celui montré sur la figure 1 par le fait que l'enceinte 23 située en aval du
deuxième labyrinthe 22 est alimentée en air, d'une part, par une fuite d'air
C2c provenant de l'enceinte 14 via le deuxième labyrinthe 22 et, d'autre
part, par un débit d'air C1a délivré par une dérivation ménagée entre le
conduit 13 délivrant le premier débit d'air C1 et l'enceinte 23. La dérivation
est constituée d'une pluralité de perçages 30 débouchant, d'une part, à
l'entrée des injecteurs principaux 15 et, d'autre part, dans l'enceinte 23
immédiatement en aval du deuxième labyrinthe 22. Les perçages 30 sont
cylindriques et inclinés tangentiellement dans le sens de rotation du rotor
de turbine 1.Figure 2 shows a
Ainsi que cela est visible sur la figure 2, la partie radialement
intérieure 31 du flasque 5 a une forme massive, et s'étend axialement vers
l'avant du moteur jusqu'à la bride radiale 5a qui sert à sa fixation à
l'extrémité aval 6 du cône aval 7 du compresseur. Le labyrinthe 22, situé
sous les injecteurs 15 est disposé à la périphérie de la bride radiale 5a.
Les perçages 30 sont sensiblement radiaux et dirigés vers la face
supérieure 32 de la partie radialement intérieure du flasque 5.As can be seen in FIG. 2, the part radially
inner 31 of the
Du fait que les perçages 30 sont inclinés dans le sens de
rotation du rotor de turbine 1, le débit d'air C1a délivré par les perçages
30 est à une température totale relative réduite par rapport à l'air de
refroidissement des mêmes régions dans l'état de la technique.Because the
Le gain de température peut être estimé à 30°C. Le débit d'air
C1a se mélange au débit de fuite C2c du labyrinthe sous injecteurs 22 et
est évacué en aval des injecteurs principaux 15, dans le circuit
d'alimentation de la roue de turbine.The temperature gain can be estimated at 30 ° C. Air flow
C1a is mixed with the C2c leakage rate of the labyrinth under
Ainsi que cela se voit sur la figure 2, la bride radiale 5a ne
comporte pas d'orifices pour alimenter la chambre annulaire 33 située
entre la partie radialement intérieure 31 du flasque 5 et la bride aval 3a du
disque de turbine 3, du fait que le troisième débit d'air C1a, est suffisant
pour assurer à lui seul le refroidissement de la totalité du flasque 5.As can be seen in FIG. 2, the
L'air injecté dans le circuit d'alimentation de la roue de turbine pour le refroidissement des aubes ainsi pré-entraíné est plus froid, que l'air de refroidissement des aubes dans une ventilation classique. Le gain de température peut être estimé à 15°, ce qui équivaut à un gain de consommation spécifique de 0,06 % environ.Air injected into the turbine wheel supply circuit for the cooling of the blades thus pre-driven is colder, than air cooling blades in a conventional ventilation. Gain temperature can be estimated at 15 °, which equates to a gain of specific consumption of about 0.06%.
En outre, le débit d'air froid C1a délivré par les perçages
30 n'est pas influencé par les variations des jeux des labyrinthes
environnants, car ce débit est calibré par les perçages 30.In addition, the cold air flow C1a delivered by the
La figure 3 montre en pointillé l'évolution de la température de
l'alésage 31 du flasque 5 dans une ventilation classique de rotor de
turbine, et en traits pleins, l'évolution de la température au même endroit
avec le dispositif de ventilation selon l'invention en fonction du jeu du
labyrinthe de décharge 18 exprimé en mm.Figure 3 shows in dotted line the evolution of the temperature of
the
On constate que l'évolution de cette température avec le dispositif selon l'invention est sensiblement constante et toujours inférieure à la température obtenue à cet endroit avec une ventilation classique.It can be seen that the evolution of this temperature with the device according to the invention is substantially constant and always less than the temperature obtained at this location with ventilation classic.
La figure 4 montre l'évolution de la température de l'alésage 31
du flasque 5 en fonction du jeu du deuxième labyrinthe 22 situé sous les
injecteurs principaux 15, avec une ventilation classique (courbe en
pointillé) et avec un dispositif de ventilation selon l'invention. Figure 4 shows the evolution of the temperature of the
On constate également que, toutes choses étant égales par ailleurs, la température dans cette zone avec le dispositif selon l'invention est sensiblement constante et inférieure à celle obtenue avec une ventilation classique.We also note that, all things being equal elsewhere, the temperature in this zone with the device according to the invention is substantially constant and less than that obtained with a classical ventilation.
La figure 5 montre l'évolution de la température au même
endroit du flasque, en fonction du jeu du troisième labyrinthe 24, pour
une ventilation classique (courbe en pointillé) et pour une ventilation avec
le dispositif selon l'invention. La température dans cette région est
sensiblement constante avec un dispositif de ventilation selon l'invention.Figure 5 shows the evolution of temperature at the same
place of the flange, depending on the game of the
Du fait que la température du flasque 5 au voisinage du
troisième labyrinthe 24 est sensiblement constante avec le dispositif de
ventilation selon l'invention, et inférieure à celle obtenue avec une
ventilation classique, le flasque 5 est moins sollicité par des contraintes
thermiques, et il peut être réalisé dans un matériau moins coûteux et plus
facile à travailler.Since the temperature of the
Claims (6)
caractérisé par le fait que ledit dispositif comporte en outre une dérivation entre le premier circuit (13) et l'enceinte (23) située en aval du deuxième labyrinthe (22), ladite dérivation délivrant un troisième débit d'air (C1a) pour le refroidissement de la face supérieure amont (32) de la partie radialement intérieure (31) dudit flasque (5), ce troisième débit d'air (C1a) étant mis en pré-rotation au moyen d'injecteurs additionnels (30).Device for ventilating a high-pressure turbine rotor of a turbomachine, this turbine being disposed downstream of the combustion chamber and comprising, on the one hand, a turbine disc having an inner bore and an upstream flange for its fixing on the downstream cone of a compressor, at high pressure, and, secondly, a flange disposed upstream of said disk and separated from the latter by a cavity, said flange having a solid inner radial portion also having an inner bore , through which the upstream flange of said disk extends, and an upstream flange for its attachment to said downstream cone, said device comprising a first circuit for cooling the blades fed by a first air flow taken at the bottom of the chamber and delivering this first air flow into said cavity via main injectors arranged upstream of said flange and ventilation holes formed in said flange, and a second circ for cooling the flange, fed by a second air flow through a discharge labyrinth located downstream of the high-pressure compressor, at least a portion of said second air flow serving to ventilate the upstream upper face of said flask through a second labyrinth located under the injectors,
characterized in that said device further comprises a bypass between the first circuit (13) and the enclosure (23) located downstream of the second labyrinth (22), said bypass delivering a third air flow (C1a) for the cooling the upstream upper face (32) of the radially inner portion (31) of said flange (5), this third air flow (C1a) being pre-rotated by means of additional injectors (30).
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0206600 | 2002-05-30 | ||
FR0206600A FR2840351B1 (en) | 2002-05-30 | 2002-05-30 | COOLING THE FLASK BEFORE A HIGH PRESSURE TURBINE BY A DOUBLE INJECTOR SYSTEM BOTTOM BOTTOM |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1367221A1 true EP1367221A1 (en) | 2003-12-03 |
EP1367221B1 EP1367221B1 (en) | 2006-07-26 |
Family
ID=29415148
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP03291258A Expired - Lifetime EP1367221B1 (en) | 2002-05-30 | 2003-05-27 | Double injector arrangement for cooling of the sideplate of a high pressure turbine |
Country Status (7)
Country | Link |
---|---|
US (1) | US6787947B2 (en) |
EP (1) | EP1367221B1 (en) |
JP (1) | JP3940377B2 (en) |
CA (1) | CA2430143C (en) |
DE (1) | DE60306990T2 (en) |
FR (1) | FR2840351B1 (en) |
RU (1) | RU2318120C2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1736635A2 (en) * | 2005-05-31 | 2006-12-27 | Rolls-Royce Deutschland Ltd & Co KG | Air transfer system between compressor and turbine of a gas turbine engine |
RU2443869C2 (en) * | 2010-02-19 | 2012-02-27 | Вячеслав Евгеньевич Беляев | Gas turbine rotor cooling device |
EP2942483A1 (en) * | 2014-04-01 | 2015-11-11 | United Technologies Corporation | Vented tangential on-board injector for a gas turbine engine |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2861129A1 (en) * | 2003-10-21 | 2005-04-22 | Snecma Moteurs | Labyrinth seal device for gas turbine device, has ventilation orifices provided at proximity of fixation unit, and compressor with last stage from which upward air is collected immediately |
GB0412476D0 (en) * | 2004-06-04 | 2004-07-07 | Rolls Royce Plc | Seal system |
GB2426289B (en) * | 2005-04-01 | 2007-07-04 | Rolls Royce Plc | Cooling system for a gas turbine engine |
GB0620430D0 (en) * | 2006-10-14 | 2006-11-22 | Rolls Royce Plc | A flow cavity arrangement |
FR2950656B1 (en) * | 2009-09-25 | 2011-09-23 | Snecma | VENTILATION OF A TURBINE WHEEL IN A TURBOMACHINE |
US9091173B2 (en) | 2012-05-31 | 2015-07-28 | United Technologies Corporation | Turbine coolant supply system |
US20150241067A1 (en) * | 2012-09-26 | 2015-08-27 | United Technologies Corporation | Fastened joint for a tangential on board injector |
US9388698B2 (en) * | 2013-11-13 | 2016-07-12 | General Electric Company | Rotor cooling |
EP3097292B1 (en) | 2014-01-20 | 2019-04-03 | United Technologies Corporation | Non-round, septum tied, conformal high pressure tubing |
CN105525992B (en) | 2014-10-21 | 2020-04-14 | 联合工艺公司 | Additive manufactured ducted heat exchanger system with additive manufactured cowling |
JP6174655B2 (en) | 2014-10-21 | 2017-08-02 | ユナイテッド テクノロジーズ コーポレイションUnited Technologies Corporation | Ducted heat exchanger system for gas turbine engine and method for manufacturing heat exchanger for gas turbine engine |
JP6484430B2 (en) * | 2014-11-12 | 2019-03-13 | 三菱重工業株式会社 | Turbine cooling structure and gas turbine |
EP3130750B1 (en) * | 2015-08-14 | 2018-03-28 | Ansaldo Energia Switzerland AG | Gas turbine cooling system |
CN106523043B (en) * | 2016-12-21 | 2018-04-03 | 中国南方航空工业(集团)有限公司 | Gas turbine is with dividing gas path device and gas turbine |
US11021962B2 (en) * | 2018-08-22 | 2021-06-01 | Raytheon Technologies Corporation | Turbulent air reducer for a gas turbine engine |
CN111878178B (en) * | 2020-07-30 | 2022-10-25 | 中国航发湖南动力机械研究所 | Turbine rotor disk and turbine rotor |
CN112049688B (en) * | 2020-08-19 | 2021-08-10 | 西北工业大学 | Over-prerotation blade type receiving hole for equal-radius prerotation air supply system |
CN112855283B (en) * | 2021-01-11 | 2022-05-20 | 中国科学院工程热物理研究所 | Engine prerotation system capable of improving receiving hole flow coefficient |
US20240353104A1 (en) * | 2023-04-18 | 2024-10-24 | Rtx Corporation | Intercooled combustor nozzle guide vane and secondary air configuration |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2541371A1 (en) * | 1983-02-22 | 1984-08-24 | Gen Electric | COOLING CIRCUIT FOR GAS TURBINE ENGINE |
US4807433A (en) * | 1983-05-05 | 1989-02-28 | General Electric Company | Turbine cooling air modulation |
US4822244A (en) * | 1987-10-15 | 1989-04-18 | United Technologies Corporation | Tobi |
FR2707698A1 (en) * | 1993-07-15 | 1995-01-20 | Snecma | Turbomachine provided with means for blowing air on a rotor element. |
US5816776A (en) * | 1996-02-08 | 1998-10-06 | Societe Nationale D'etude Et De Construction De Moteurs D'aviation "Snecma" | Labyrinth disk with built-in stiffener for turbomachine rotor |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3832090A (en) * | 1972-12-01 | 1974-08-27 | Avco Corp | Air cooling of turbine blades |
GB2108202B (en) * | 1980-10-10 | 1984-05-10 | Rolls Royce | Air cooling systems for gas turbine engines |
US5143512A (en) * | 1991-02-28 | 1992-09-01 | General Electric Company | Turbine rotor disk with integral blade cooling air slots and pumping vanes |
US5310319A (en) * | 1993-01-12 | 1994-05-10 | United Technologies Corporation | Free standing turbine disk sideplate assembly |
US5402636A (en) * | 1993-12-06 | 1995-04-04 | United Technologies Corporation | Anti-contamination thrust balancing system for gas turbine engines |
-
2002
- 2002-05-30 FR FR0206600A patent/FR2840351B1/en not_active Expired - Fee Related
-
2003
- 2003-05-23 JP JP2003145777A patent/JP3940377B2/en not_active Expired - Fee Related
- 2003-05-27 US US10/445,354 patent/US6787947B2/en not_active Expired - Lifetime
- 2003-05-27 DE DE60306990T patent/DE60306990T2/en not_active Expired - Lifetime
- 2003-05-27 EP EP03291258A patent/EP1367221B1/en not_active Expired - Lifetime
- 2003-05-28 CA CA2430143A patent/CA2430143C/en not_active Expired - Fee Related
- 2003-05-30 RU RU2003116095/06A patent/RU2318120C2/en not_active IP Right Cessation
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2541371A1 (en) * | 1983-02-22 | 1984-08-24 | Gen Electric | COOLING CIRCUIT FOR GAS TURBINE ENGINE |
US4807433A (en) * | 1983-05-05 | 1989-02-28 | General Electric Company | Turbine cooling air modulation |
US4822244A (en) * | 1987-10-15 | 1989-04-18 | United Technologies Corporation | Tobi |
FR2707698A1 (en) * | 1993-07-15 | 1995-01-20 | Snecma | Turbomachine provided with means for blowing air on a rotor element. |
US5816776A (en) * | 1996-02-08 | 1998-10-06 | Societe Nationale D'etude Et De Construction De Moteurs D'aviation "Snecma" | Labyrinth disk with built-in stiffener for turbomachine rotor |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1736635A2 (en) * | 2005-05-31 | 2006-12-27 | Rolls-Royce Deutschland Ltd & Co KG | Air transfer system between compressor and turbine of a gas turbine engine |
EP1736635A3 (en) * | 2005-05-31 | 2009-10-14 | Rolls-Royce Deutschland Ltd & Co KG | Air transfer system between compressor and turbine of a gas turbine engine |
RU2443869C2 (en) * | 2010-02-19 | 2012-02-27 | Вячеслав Евгеньевич Беляев | Gas turbine rotor cooling device |
EP2942483A1 (en) * | 2014-04-01 | 2015-11-11 | United Technologies Corporation | Vented tangential on-board injector for a gas turbine engine |
US10697321B2 (en) | 2014-04-01 | 2020-06-30 | Raytheon Technologies Corporation | Vented tangential on-board injector for a gas turbine engine |
US10920611B2 (en) | 2014-04-01 | 2021-02-16 | Raytheon Technologies Corporation | Vented tangential on-board injector for a gas turbine engine |
Also Published As
Publication number | Publication date |
---|---|
EP1367221B1 (en) | 2006-07-26 |
US20030223893A1 (en) | 2003-12-04 |
FR2840351A1 (en) | 2003-12-05 |
US6787947B2 (en) | 2004-09-07 |
FR2840351B1 (en) | 2005-12-16 |
DE60306990D1 (en) | 2006-09-07 |
CA2430143C (en) | 2010-10-05 |
RU2003116095A (en) | 2005-01-27 |
DE60306990T2 (en) | 2007-03-08 |
RU2318120C2 (en) | 2008-02-27 |
JP3940377B2 (en) | 2007-07-04 |
CA2430143A1 (en) | 2003-11-30 |
JP2004132352A (en) | 2004-04-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2430143C (en) | Cooling of upstream flange of high pressure turbine by chamber end twin injectors | |
EP2440746B1 (en) | Turbine engine including an improved means for adjusting the flow rate of a cooling air flow extracted at the output of a high-pressure compressor | |
EP1445421B1 (en) | Apparatus for the ventilation of a high pressure turbine rotor | |
CA2758175C (en) | Double-body gas turbine engine provided with an inter-shaft bearing | |
EP2337929B1 (en) | Ventilation of a high-pressure turbine in a turbomachine | |
CA2475404C (en) | Exchanger on turbine ventilation system | |
CA2564491C (en) | Ventilation device for turbine discs in a gas turbine engine | |
EP1552111A1 (en) | Gas turbine ventilation circuitry | |
WO2003040524A1 (en) | Gas turbine stator | |
WO2015128563A1 (en) | Fan rotor for a turbo machine such as a multiple flow turbojet engine driven by a reduction gear | |
FR2872541A1 (en) | FIXED WATER TURBINE WITH IMPROVED COOLING | |
EP3698022B1 (en) | Turbomachine and method of cooling a low pressure turbine of a turbomachine | |
FR2598179A1 (en) | COOLING AIR TRANSFER DEVICE FOR A TURBINE | |
FR3108655A1 (en) | Double-flow turbomachine comprising a device for regulating the flow of cooling fluid | |
FR2923263A1 (en) | TURBOMOTEUR COMPRISING MEANS FOR HEATING THE AIR ENTERING THE FREE TURBINE | |
FR2464363A1 (en) | TURBINE ROTOR FOR TURBOMACHINES WITH COOLANT TRANSFER SYSTEM | |
FR3096071A1 (en) | Clearance control between aircraft rotor blades and a housing | |
FR2881472A1 (en) | Gas turbine engine for propulsion of aircraft, has outer radial seal arranged between conduit and turbine and permitting to withdraw cooling air from enclosure of combustion chamber in downstream of diffuser | |
FR3097907A1 (en) | Active control of the high pressure compressor cooling flow | |
FR2960020A1 (en) | Device for cooling discs of rotor of aeronautical turbine engine, has sending units sending air injected into cavity on interior surfaces of discs in order to cool discs, and evacuating unit evacuating air that cools discs | |
FR3053727A1 (en) | DEVICE FOR CIRCULATING AIR BETWEEN A COMPRESSOR AND A TURBINE OF A DOUBLE-FLOW AIRCRAFT TURBOMACHINE FOR VENTURI EFFECT SUCTION OF THE AIR IN AN INTER-VEIN COMPARTMENT | |
FR3106624A1 (en) | improved aircraft turbine engine cooling anomaly detection device | |
FR3025835A1 (en) | TURBOMACHINE TURBINE AUB COOLING AIR CIRCULATION SYSTEM |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK |
|
17P | Request for examination filed |
Effective date: 20040601 |
|
AKX | Designation fees paid |
Designated state(s): DE FR GB |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: SNECMA |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REF | Corresponds to: |
Ref document number: 60306990 Country of ref document: DE Date of ref document: 20060907 Kind code of ref document: P |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20061018 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20070427 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20150422 Year of fee payment: 13 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 14 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 60306990 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 15 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161201 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: CD Owner name: SAFRAN AIRCRAFT ENGINES Effective date: 20170713 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20220426 Year of fee payment: 20 Ref country code: FR Payment date: 20220421 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: PE20 Expiry date: 20230526 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20230526 |