Nothing Special   »   [go: up one dir, main page]

EP1355068A1 - Dispositif pour diviser ou réunir un débit de fluide - Google Patents

Dispositif pour diviser ou réunir un débit de fluide Download PDF

Info

Publication number
EP1355068A1
EP1355068A1 EP03290899A EP03290899A EP1355068A1 EP 1355068 A1 EP1355068 A1 EP 1355068A1 EP 03290899 A EP03290899 A EP 03290899A EP 03290899 A EP03290899 A EP 03290899A EP 1355068 A1 EP1355068 A1 EP 1355068A1
Authority
EP
European Patent Office
Prior art keywords
primary
distribution
orifices
cylinder block
casing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP03290899A
Other languages
German (de)
English (en)
Other versions
EP1355068B1 (fr
Inventor
Bernard Allart
Louis Bigo
Ante Bozic
Jacques Fontaine
Jean-Pierre Souply
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Poclain Hydraulics Industrie
Original Assignee
Poclain Hydraulics Industrie
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Poclain Hydraulics Industrie filed Critical Poclain Hydraulics Industrie
Publication of EP1355068A1 publication Critical patent/EP1355068A1/fr
Application granted granted Critical
Publication of EP1355068B1 publication Critical patent/EP1355068B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B1/00Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
    • F04B1/04Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinders in star- or fan-arrangement
    • F04B1/10Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinders in star- or fan-arrangement the cylinders being movable, e.g. rotary
    • F04B1/107Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinders in star- or fan-arrangement the cylinders being movable, e.g. rotary with actuating or actuated elements at the outer ends of the cylinders
    • F04B1/1071Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinders in star- or fan-arrangement the cylinders being movable, e.g. rotary with actuating or actuated elements at the outer ends of the cylinders with rotary cylinder blocks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03CPOSITIVE-DISPLACEMENT ENGINES DRIVEN BY LIQUIDS
    • F03C1/00Reciprocating-piston liquid engines
    • F03C1/02Reciprocating-piston liquid engines with multiple-cylinders, characterised by the number or arrangement of cylinders
    • F03C1/06Reciprocating-piston liquid engines with multiple-cylinders, characterised by the number or arrangement of cylinders with cylinder axes generally coaxial with, or parallel or inclined to, main shaft axis
    • F03C1/0636Reciprocating-piston liquid engines with multiple-cylinders, characterised by the number or arrangement of cylinders with cylinder axes generally coaxial with, or parallel or inclined to, main shaft axis having rotary cylinder block
    • F03C1/0644Component parts
    • F03C1/0655Valve means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03CPOSITIVE-DISPLACEMENT ENGINES DRIVEN BY LIQUIDS
    • F03C1/00Reciprocating-piston liquid engines
    • F03C1/22Reciprocating-piston liquid engines with movable cylinders or cylinder
    • F03C1/24Reciprocating-piston liquid engines with movable cylinders or cylinder in which the liquid exclusively displaces one or more pistons reciprocating in rotary cylinders
    • F03C1/247Reciprocating-piston liquid engines with movable cylinders or cylinder in which the liquid exclusively displaces one or more pistons reciprocating in rotary cylinders with cylinders in star- or fan-arrangement, the connection of the pistons with an actuated element being at the outer ends of the cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B1/00Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
    • F04B1/04Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinders in star- or fan-arrangement
    • F04B1/06Control
    • F04B1/063Control by using a valve in a system with several pumping chambers wherein the flow-path through the chambers can be changed, e.g. between series and parallel flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/16Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors
    • F15B11/22Synchronisation of the movement of two or more servomotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • F15B13/022Flow-dividers; Priority valves

Definitions

  • the present invention relates to a device for dividing or joining a fluid flow comprising a casing which has at least one orifice primary capable of being crossed by a primary flow of fluid and several secondary orifices which can each be crossed by a secondary flow of fluid, and means for dividing the primary flow into secondary flows or to combine secondary flows into primary flow.
  • dividers of this type are relatively unreliable when the flow entering through the primary orifice varies significantly.
  • dividers of flow formed by several coupled gear motors we also know, for example from FR 2 199 836, dividers of flow formed by several coupled gear motors. This technology is reliable, but dividers of this type are expensive and bulky. In some applications, it is necessary to split a primary flow in addition to two secondary flows. For these applications, the flow dividers of the aforementioned type include at least three or more gear motors which are coupled together. In this case, the cost of these flow dividers and their size are excessive.
  • the device of the invention not only serves as a flow divider, dividing an incoming flow through the primary orifice into several outgoing flows through its secondary ports, but also of flow reunifier, combining several flows entering through the secondary orifices in a flow exiting through the primary port.
  • the invention aims to improve the aforementioned prior art by proposing a flow divider / unifier that is both simple and reliable.
  • the device comprises a cylinder block, mounted in relative rotation with respect to the housing around an axis of rotation and having a plurality of cylinders arranged radially relative to this axis, pistons being able to slide in the cylinders and cooperating, by their ends distant from the axis of rotation, with a wavy reaction cam integral in rotation with the housing, the cylinder block including a cylinder duct for each cylinder, by the way that this device comprises a fluid distributor, integral in rotation of the casing and comprising primary distribution conduits connected to the primary orifice, and secondary distribution conduits respectively connected to the different secondary ports and to the fact that each cylinder duct is suitable, during the relative rotation of the cylinder block and casing, to be alternately connected to a conduit primary distribution and a secondary distribution conduit.
  • the flow divider according to the invention therefore comes close by its structure of a radial piston hydraulic motor. It thus includes a cylinder block and a cam having a plurality of cam lobes. According to direction of rotation of the cylinder block, the device according to the invention can be used as a flow divider or as a debit.
  • the distributor is fixed in rotation relative to the cam, so that the different distribution conduits are associated with the different cam lobes. Indeed, for a given direction of rotation, the communication of a cylinder duct with a distribution duct always produces the same effect for the piston which slides in the cylinder connected to this cylinder conduit. Considered in this direction of rotation, each the cam lobe has a rising part and a falling part.
  • this direction of rotation is that in which the device is a divider of flow, a piston cooperates with the rising part of a cam lobe in moving radially outward when the cylinder duct of the cylinder in which this piston is placed is connected to the primary distribution duct, and the same piston then cooperates with the descending part of the same cam lobe when this cylinder duct is put in communication with a secondary distribution conduit.
  • the fluid contained in the cylinder of this piston is then expelled through the orifice secondary to which said secondary distribution duct is connected.
  • This secondary distribution orifice is said to be associated with the cam lobe considered since it is when a piston cooperates with this cam lobe that the fluid contained in the cylinder of this piston passes through this secondary orifice.
  • several secondary distribution conduits can be connected at the same secondary port, so that a group of at least one lobe of cam is associated with each secondary port.
  • each group of at least one lobe of cam associated with a secondary orifice is homokinetic, that is to say that the flow passing through this secondary orifice is constant and regular for a constant speed of rotation of the cylinder block relative to the casing.
  • the devices according to the invention also allow, in a single housing, large flows with a greater number of secondary flows in a reduced footprint and can operate at higher pressures with better performance.
  • each group of cam lobes associated with a secondary orifice behaves like an elementary entity which itself must be homokinetic. For example, when all cam lobes cover the same angular sector, and if the device includes n cam lobes (where n is an integer at least equal to 2), then a device comprising 2 n + 1 pistons and n secondary orifices each associated with one of the cam lobes, fulfills the condition according to which each cam lobe associated with a secondary port can be CV. In this configuration, for example for a device with four secondary ports and four identical cam lobes, imperatively provide at least nine pistons.
  • the device according to the invention can comprise a single orifice primary and several associated secondary orifices, each with a single lobe cam.
  • p being a number integer greater than 2
  • it divides the primary flow of fluid passing through the primary orifice in p secondary flows passing through, each an orifice secondary, or it combines in a single primary flow p secondary flows entering, each through a secondary orifice.
  • the secondary flows being all equal to each other if the cam lobes are identical.
  • the device of the invention can also conceive with the device of the invention of divide a primary flow into several unequal secondary flows, or to combine several unequal secondary flows into a single primary flow.
  • the device can for example comprise four cam lobes and only three secondary ports, i.e. two ports each associated with a cam lobe, and a third secondary orifice associated with the two lobes cam remaining.
  • the primary flow passing through the primary orifice can be divided into two secondary flows each corresponding to a quarter of this primary flow and in a third secondary flow corresponding to half the flow primary.
  • the device may include several primary orifices, while having advantages of secondary orifices than of orifices primary. So for example, it can split two incoming primary rates each by a primary orifice in four secondary flows leaving by four secondary ports, or combine these four secondary flows in two primary flow rates.
  • cam lobes which are not not identical, in angular cover and / or in profile, to obtain groups of cam lobes constituting homokinetic and able entities to provide regular but different rates in reports determined to be precise and suitable for their use.
  • the device also comprises means for deactivation capable of communicating the primary conduits and the secondary distribution conduits.
  • the device When all the primary and secondary distribution conduits communicate with each other, the device is deactivated and the flow is no longer divided in the reports imposed during activation, but is divided into according to the flow requirements called at the secondary orifices.
  • the device is placed on the discharge line of a pump used to power two motors each driving a wheel of a machine.
  • the interposition a flow divider between the supply or exhaust pipe motors and the pump line connected to it allows to supply the two motors with the same flow rate and to avoid therefore skating situations in which if one of the wheels patina, the motor driving this wheel "consumes" the entire flow driven back by the pump, and the vehicle can no longer move.
  • the wheel When a vehicle is turning in a bend, the wheel must be outer is driven at a speed faster than the inner wheel. It is for example for this reason that it can be interesting to deactivate the flow divider device.
  • the device can be interposed between the discharge line or suction of a pump and four supply lines or exhaust each connected to an engine driving one of the wheels the craft.
  • the device therefore divides into four determined secondary flow rates (for example equal, if the wheels have equal diameters), the flow primary pumped back or combines four equal secondary flows into a primary conduit drawn in by the pump.
  • the flow divider can be activated to avoid a situation of skating when operating in a straight line, on difficult terrain, of the craft. For road operation, you may wish to only partially deactivate the device, for example to negotiate turns.
  • each cam lobe is associated with a primary conduit and a secondary distribution conduit; the hole secondary of the device to which this secondary conduit of distribution is also associated with the same cam lobe.
  • the deactivation means are produced by the that primary and secondary distribution lines (or all of these conduits) are capable of being connected to a bore by openings disposed in this bore, and the device comprises a selector, disposed in this bore and able to be controlled between a first position in which it isolates these openings from each other and a second position in which he communicates with each other at least some of these openings.
  • This bore is for example formed in the distributor.
  • the device has stop means hydrostatic for the cylinder block.
  • the device is thus simplified, since no axial stop such only a pad is required to hold the cylinder block vis-à-vis an axial displacement, but that the pressure of the fluid circulating in the device is used to form a hydrostatic stop.
  • the device includes a pressure limiter suitable for communicating a secondary orifice with a pressure limitation to limit the pressure of the fluid passing through said secondary port.
  • a pressure relief valve can be a component of the divider or unifier device debit.
  • the device can include as many pressure relief valves as secondary ports.
  • the device preferably includes a single pressure which can be used to limit the pressure in the secondary ducts thanks to a set of valves, each subject to pressure of a secondary orifice and allowing the passage of the the secondary orifice towards a common enclosure upstream of the limiter pressure.
  • the pressure limiting conduit is connected to the primary orifice, which simplifies the constitution of the pressure relief valve.
  • the device comprises a speed sensor of rotation of the cylinder block with respect to the casing and a converter able to process the data captured by this sensor to determine the flow of fluid passing through the primary orifice or a secondary orifice in function of this speed and thus realize a flow meter.
  • This flowmeter is reliable and simple because it uses the most data reliable to know the flow discharged through the secondary orifices, which is the rotational speed of the cylinder block, the calculated flow being the product of this speed of rotation of the cylinder block by the cubic capacity considered.
  • the converter can be a simple calculator or a microprocessor in the memory of which entered the flow of fluid passing through each orifice secondary for a complete turn of the cylinder block. For each orifice secondary, this flow is a function of the number and conformation of the cam lobes associated with this orifice, as well as with the displacement of the cylinder block.
  • the cylinder block has a transverse face with marks and the sensor is arranged opposite this transverse face.
  • the marks can be formed by notches, teeth or others, located on the transverse face of the cylinder block, and the sensor can be formed by an inductive, magnetic or optical sensor, opposite from which scroll the marks during the rotation of the cylinder block.
  • the device 10 of Figures 1 and 2 comprises a housing in three parts, respectively 10A, 10B and 10C, fixed together by screws 12 passing through axial holes 13. Inside the casing is disposed a cylinder block 14 mounted with relative rotation relative to the casing opposite an axis of rotation A.
  • This cylinder block has a plurality of cylinders 16 arranged radially with respect to the axis A, in which are arranged pistons 18 capable of sliding in these cylinders. By their ends 18A distant from the axis of rotation A, the pistons can cooperate with a wavy reaction cam 11 made at the periphery internal part 10B of the housing.
  • the cylinder block 14 includes a cylinder duct 20 for each cylinder, this conduit being able to be put in communication successively with a primary orifice OP of the casing and with an orifice secondary of this housing.
  • a primary orifice OP of the casing and with an orifice secondary of this housing.
  • FIG. 1 only one secondary orifice OS4, present in the section plane, is shown. However, the positions of all the secondary ports OS1, OS2, OS3 and OS4 and also that of the orifice OP are indicated in broken lines in FIG. 2, although these holes are not in the section of this figure.
  • the device comprises a fluid distributor 22, which is integral in rotation of the casing by any appropriate means such as one or more pins 21, and which has 24P primary distribution conduits connected at the primary port OP.
  • the device also includes conduits 24S distribution side panels respectively connected to the different secondary ports OS1 to OS4.
  • the primary orifice OP is the orifice, on the end face of the part 10C of the casing, of an axial duct 26 which is formed in this part 10C.
  • This conduit 26 opens into a groove 28 which is formed between an axial face 10'C of the part 10C and an axial face 22 'of the distributor 22.
  • the 24P primary distribution conduits all open into this groove 28 to be connected to the primary orifice. They lead also in a transverse distribution face 22A of the distributor, in which they open through the primary distribution orifices 30P.
  • the cylinder block has a transverse face of communication 14A in which the cylinder conduits 20 open by communication ports 20A. Ports 30P and 20A are located at the same distance from the axis of rotation A, so that they can be set communication with each other during the relative rotation of the cylinder block and crankcase.
  • the transverse communication face 14A and the transverse distribution face 22A which are both perpendicular to the axis A, are placed in mutual support, for example at using compression springs 32 which constantly repel the distributor 22 against the cylinder block 14 while resting on the bottom of part 10C of the housing.
  • the groove 28 forms an enclosure which is delimited around an area distributor 22 into which the primary conduits of 24P distribution to be connected to the primary distributor OP.
  • conduits 24S and their orifices 30S are indicated; the positions of the conduits 24P and their orifices 30P are also indicated, although these are not visible in the section plane.
  • the cylinder duct 20 is connected to a primary 24P distribution duct.
  • the cylinder duct 20 is connected to a secondary duct of 24S distribution.
  • the 24S secondary distribution conduits are not not practiced in the distributor 22 but they are formed in the part 10A from the housing.
  • the cylinder block 14 has a transverse face end 14B which is opposite the transverse communication face 14A and which is in abutment against a bearing face 34 belonging to a element integral with the casing, which in this case is part 10A of the casing, an internal transverse face of which forms the bearing face 34.
  • At least some cylinder conduits 20 have a portion 20B which extends between the transverse faces 14A and 14B of the cylinder block 14 and which is open, in the transverse communication face 14A, by a communication port 20A and, in the transverse face end, by an end orifice 20C.
  • 24S secondary distribution openings open in the face support 34 by secondary distribution orifices 305 which are suitable for communicate with the end holes 20C during rotation relative of the cylinder block and the crankcase.
  • the orifices 20C and 30S are located at the same radial distance from axis A.
  • the cylinder ducts have a T shape with a radial branch which opens into the bottom of the cylinders 16 and an axial branch which forms the portion 20B and extends rectilinearly between the faces 14A and 14B of the cylinder block.
  • the device could perfectly include other secondary distribution conduits, arranged in the distributor 22 and opening on the one hand in the transverse face of distribution 22A by secondary distribution orifices suitable for communicate with communication ports during rotation relative of the cylinder block and the crankcase and on the other hand in the face opposite transverse of the distributor opposite secondary orifices made in part 10C of the housing.
  • the device of Figure 1 has stop means hydrostatic for cylinder block 14. More specifically, in the example shown, the bearing face 34 has a blind hole 34A located in manhole of each of the 30P distribution orifices which are arranged in the transverse distribution face 22A. In the example in Figure 1, all these distribution ports are the primary ports 30P, but it may not not always go that way. So when a cylinder duct communicates with one of these 30P distribution ports, it communicates also with one of these blind holes. This forms a room whose communication with the cylinder duct opens or closes as the communication of this cylinder duct with the orifice of distribution considered. This results in a balancing of pressures and axial forces on either side of the cylinder block.
  • the transverse distribution face 22A has a hole blind 23A located opposite each of the secondary orifices of 24S distribution which are arranged in the support face 34.
  • the device also includes a bearing 36 for taking up the radial forces which is formed by a bearing supported by a central stud 37 of part 10A of the housing. This bearing cooperates with the wall of a central bore 14 'of the cylinder block.
  • the sum of pressures in the secondary ports is four times the pressure in the primary port, since the flow primary is equal to four times each secondary flow.
  • axial support could be used, for example example by choosing a studded distributor of the type described, for a hydraulic motor, in FR 2 701 736.
  • the device of FIG. 1 also comprises a return orifice for OF leaks.
  • This is connected to the interior of the housing by a return of leaks which, in this case, includes a first section of conduit 38A which opens into the region of the cam 11, and a second section of conduit 38B which opens into the region of the interior space of the distributor 22, the latter having the shape of a ring.
  • the device of FIG. 1 also comprises a sensor 40 of the rotation speed of the cylinder block with respect to the casing. It is by example of an inductive sensor placed in a bore 41 of part 10A of the casing and held tightly in this part using a retaining assembly 42 comprising a screw. The end of the sensor found in relation to a region of the transverse end face of the cylinder block which has marks 44 angularly spaced from each other other.
  • the senor 40 can be connected to a converter which counts the number of marks 44 scrolling next to this sensor per unit of time (which gives the rotation speed of the cylinder block) and which deduces the flow of fluid through the various secondary orifices of the device, based on stored parameters, relative to the displacement of each elementary entity constituted by a group of one or more cam lobes associated with a secondary orifice.
  • the cam 11 has four lobes of cam, respectively 11A, 11B, 11C and 11D each having a ramp up and down ramp.
  • a primary distribution conduit 24P whose port 30P is shown in Figure 2
  • a conduit 24S secondary distribution including the 30S secondary distribution orifice is shown in Figure 2
  • the device 110 of FIG. 3 comprises means for deactivation capable of communicating the primary conduits of distribution 124P and secondary distribution conduits 124S. More specifically, the primary distribution pipes 124P have 125P openings which are arranged in a bore 122B of the distributor 122. Similarly, the secondary distribution conduits 124S have openings 125S which are also arranged in this bore 122B.
  • the device 110 comprises a selector 150, which is arranged in the bore 122B and which is suitable for being controlled between a first position, shown in Figure 3, in which it isolates the openings 125P and 125S from each other and a second position in which it causes at least some of these openings to communicate with each other.
  • a selector 150 which is arranged in the bore 122B and which is suitable for being controlled between a first position, shown in Figure 3, in which it isolates the openings 125P and 125S from each other and a second position in which it causes at least some of these openings to communicate with each other.
  • the external periphery of the selector 150 has a groove 152 which, in the second position of this selector in which it is moved in the direction of the arrow F, is in look at both 125P openings and 125S openings.
  • control means of movement of the selector 150 between its two positions includes elastic return means 154 which permanently recall this selector in its first position.
  • control means also include a hydraulic control 156 capable of being supplied with fluid under press to move the selector to its second position.
  • a pilot duct 158 is disposed in the part 110C of the casing and opens into the chamber 156 which, in the position of the selector 150 shown in Figure 3, has a minimum volume.
  • the selector 150 is in its first position.
  • the flow divider or unifier device is enabled by default.
  • all means for controlling the movement of the selector can be used, such as hydraulic means, mechanical, electromechanical or electronic, in particular for rendering progressive and / or staggered switching depending on the selector position 150.
  • deactivation devices can be provided individual of each flow division by interposing a selector between each secondary distribution conduit and a distribution conduit primary to allow direct communication between these conduits.
  • selectors can be constituted by known components such as piloted valves, logic valves or slide valves.
  • the secondary orifices of OS distribution are made in the same part 110C of the casing as the primary distribution orifice OP.
  • Secondary conduits of distribution 124S are provided in distributor 122 and open in its transverse distribution face 122A through the secondary orifices of 130S distribution capable of communicating with communication ports 120A during the relative rotation of the cylinder block and the casing.
  • the 124S conduits each include a first section 124S1 which is arranged in the distributor 122. It is this first section which is connected, by a radial branch, to the 125S opening located in bore 122B.
  • These distribution conduits also include a second section 124S2 which is formed in the part 110C of the casing.
  • This ring 160 forms a seat for a compression spring 132 which biases permanently the distributor pressing against the cylinder block. She cooperates tightly with a distributor cavity in which it is housed and constitutes a balancing stud dimensioned so that all of these studs allow the distributor to be balanced.
  • the device 110 has an OF leakage return opening into which a leak return pipe having two sections, 138A and 138B.
  • the device 110 includes a pressure limiter 170 which is capable of communicating a OS secondary port with pressure limiting conduit for limit the pressure of the fluid passing through this secondary orifice.
  • this pressure limiting conduit is connected to the primary port OP. More specifically, the pressure relief valve includes first 170S conduits which are capable of being connected each to one of the OS secondary ports, a second 170L conduit which can be connected to the pressure limiting duct and an enclosure 170E which is connected to each first duct 170S by a non-return valve 172 and which is connected to the second conduit 170L by a valve 174.
  • Each non-return valve 172 can open to communicate the first 170S conduit with which it cooperates with the enclosure 170E when the pressure in this first conduit becomes greater than the pressure in the enclosure.
  • the valve 174 can open to communicate this enclosure with the second duct 170L when the pressure in the enclosure reaches a predetermined threshold. More precisely, the valve 174, in its differential valve variant shown in figure 3, opens when the difference in pressures in the enclosure 170E and in the duct 170L reaches a predetermined threshold.
  • Other valve variants pressure limitation can be used.
  • the valve includes a body valve 181, which is arranged in a 110D element integral with the casing, in which the ducts 170L and 170S are formed, as well as enclosure 170E.
  • the valve body is sealed in a bore 182 of this element 110D, and its interior space can communicate with enclosure 170E through communications such as holes 184.
  • the first conduits 170S are able to be connected to the secondary ports OS by via the secondary distribution conduits 124S.
  • the housing portion 110A which has the bearing face 134 against which the extreme transverse face 114B of the cylinder block is in support has 186S connecting conduits which open in this face support by 186'S connection orifices capable of communicating with 120C end holes of the axial portions 120B of the conduits cylinder which cross the cylinder block right through, between its face of communication 114A and its transverse end face 114B during the relative rotation of the cylinder block and the crankcase, which allows 186S link lines to communicate with secondary lines distribution system 124S.
  • the second 170L pressure relief conduit 170 communicates with the main orifice OP by another connecting conduit 186L produced in part 110A of the casing, itself in communication with a primary distribution pipe 124P via a cylinder conduit 120.
  • the 186L conduit opens in the face support 134 of part 110A of the casing by a connection hole 186′L suitable to communicate with the orifices 120 during the rotation of the cylinder block.
  • the number of pistons at least equal to 2n + 1, n being the number of secondary ports, guarantees permanent communication between duct 170L and primary distribution duct 124P, by through the conduit 186L and at least one cylinder conduit 120.
  • the element 110D in which the valve 174 is placed is flanged on part 110A of the casing.
  • it could be an element forming an integral part of the housing.
  • the cylinder block 214 has an internal bore 214 ′ in which the cylinder conduits 220 open through orifices of communication 220A.
  • the dispenser comprises an axial portion 222 integral with the casing which extends in this bore 214 'of the cylinder block.
  • the distribution lines 224P and 224S open on the external periphery 222 ′ of this axial portion 222 into distribution orifices, 230P and 230S respectively.
  • Communication ports 220A and distribution orifices are able to be arranged facing one of the others during the relative rotation of the cylinder block and the crankcase.
  • the axial portion 222 which forms the dispenser is actually a axial extension of the part 210C of the casing which crosses the bore 214 'of the cylinder block and also a bore 210'A of the part 210A of the casing which then has a disc shape whose center is hollowed out.
  • the primary distribution pipes 224P are arranged in a star inside the distributor 222 being all connected to the main orifice OP by an axial section of common conduit, 224PA.
  • the secondary distribution conduits 224S are all connected respectively to a secondary port OS by a branch respective axial link 224SL.
  • connection between the bore 214 'of the cylinder block and the periphery external axial 222 'of the distributor 222 is sealed by two seals or annular segments 227 arranged respectively in two planes transverse between which extend the communication and distribution.
  • the cylinder block is guided axially by two simple friction washers 229 or needle stops.
  • Variant consists in replacing the seals 227 by two annular grooves intended for receive leaks and promote the formation of a hydrostatic bearing.
  • the device of Figure 4 further comprises a setting device in pressure of the interior space 273 of the casing capable of putting this space in communication with the primary or secondary orifice which is at the most low pressure.
  • This device includes non-return valves 292 arranged on pressurization ducts 290 connecting respectively the primary orifice OP and the secondary orifices OS in space 273 and authorizing the passage of the fluid only from the space 273 of the casing towards the primary or secondary port which is at the lowest pressure.
  • each pressurization conduit (there is one for each primary or secondary port), the valve 292 is interposed between the pressurization duct and the space 273 inside the casing surrounding the cylinder block, the seat of the valve being the edge of a pressurization 292 'which extends between each duct 290 and the space 273.
  • Each pressurization duct 290 is connected to a primary orifice OP or secondary OS respectively via the axial section common 224PA of primary distribution conduits or through a branch axial connection 224SL of a secondary distribution conduit.
  • the flow divider of the Figure 4 does not have a leak return pipe and operating pressure in space 273 increases due to leaks internal.
  • the fluid pressure in this space 273 becomes too that of the valves 292 which is located in the duct of pressurization 290 at the lowest pressure opens to allow the circulation of the fluid from space 273 towards this pressurization duct 290, therefore towards the primary or secondary orifice at the lowest pressure.
  • Springs 217 arranged in the cylinders 216 allow hold the pistons 218 against the cam 211 even when the piston 218 is subjected to its two ends, in its cylinder and in space 273, at substantially equal pressures.
  • the advantage of the device of FIG. 4 lies in the fact that the pistons 218 of the flow divider are thus subject to differences in lower pressure than when the leakage return pipe (generally at a pressure of the order of 1 bar) is present.
  • the pistons, and consequently cam 211, are then subjected to forces less important.
  • the performance and the service life of the device are thus increased.
  • the pistons of the divider flow are not intended to provide a couple of drive, as this is the case in an engine of neighboring structure.
  • the implementation crankcase pressure which in an engine can cause leaks at the rotating seals on the engine outlet, presents no difficulty for a flow divider without a shaft exit.
  • the cylinder block 314 of the Figure 5 shows an axial bore 314 'in which extends a portion axial 322 which forms the distributor.
  • Cylinder conduits 320 open into bore 314 'into communication openings 320A to which can be connected, during the relative rotation of the cylinder block and the dispenser, the 330P and 330S distribution ports on the distribution pipes 324P and 324S.
  • the distributor 322 formed by an axial portion of the part 310C of the housing, has a bore 322B in which are arranged 325P and 325S openings of the distribution ducts, respectively 324P and 324S.
  • a selector 350 which is able to occupy a first position, shown in FIG. 5, in which it isolates the 325P openings and the 325S openings and a second position, in which it is moved in the direction of arrow G, to make at least some of the openings communicate with each other 325P and 325S.
  • the external periphery of the distributor 350 has a groove 352 which can be arranged opposite openings 325P and 325S, themselves arranged between two planes transverse.
  • Selector 350 control means include a spring 354 constantly recalling it to its first position and a control chamber 356 capable of being supplied with fluid by a pilot line 358.
  • the 324P primary distribution conduits are all communication with the primary orifice OP by being connected to a groove annular 328 with which said port permanently communicates primary OP.
  • the 324S secondary distribution conduits are connected to the OS secondary openings by radial branches.
  • the device of FIG. 6 is now described, in which the same references, increased by 300 compared to FIG. 3, describe the same elements as in FIG. 3.
  • the cylinder block 414 is rotatably supported against the three-part casing 410A, 410B and 410C by a bearing taking up the radial and axial forces.
  • a bearing 436 with four contact points, which cooperates with an extension 435 of the cylinder block, located under part 410B of the casing.
  • the conduits cylinder 420 open into a transverse communication face 414A of the cylinder block, in communication openings 420A.
  • the hole primary OP of the device is connected to primary distribution conduits 424P via an axial duct 426 in communication with a groove 428 formed between the stepped axial periphery of the distributor 422 and the stepped axial periphery of part 410C of the casing.
  • the device 410 of FIG. 6 can be deactivated, partially or totally, using a selector 450 generally similar to the selector 150 of FIG. 3.
  • the device 410 has a leak return orifice OF into which a leak return pipe having several sections, 438A and 438B.
  • the part 410A of the casing has the shape of a disc drilled in its center by a bore 410'A.
  • An axial extension 415 of the cylinder block extends in this bore, from which it is sealed with one or more several 415 'seals.
  • This extension of the cylinder block has a central cavity 490, provided with groove 492 which forms thus a motor output allowing the rotation of the cylinder block with an external element to train, such as a small tree engine.
  • the flow divider according to the invention is not specifically made to deliver a torque and that's why the device of Figures 1 to 5 is devoid of motor output.
  • the cylinder block is pierced by a hole 438C allowing to bring between the external transverse face 414B of the cylinder block and part 410A of the crankcase the fluid from leaks in the bore 422B of the distributor in which the selector 450 is disposed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Hydraulic Motors (AREA)

Abstract

Dispositif (10) pour diviser ou réunir un débit de fluide comprenant un carter qui présente au moins un orifice primaire (OP) et des orifices secondaires (OS4) susceptibles d'être respectivement traversés par un débit primaire de fluide et par des débits secondaires de fluide. Le dispositif comprend un bloc-cylindres (14) présentant une pluralité de cylindres radiaux (16), et une came de réaction (11) solidaire du carter. Le bloc-cylindres comprend un conduit de cylindre (20) pour chaque cylindre et le dispositif comprend un distributeur de fluide (22), solidaire en rotation du carter et comportant des conduits primaires de distribution (24P) reliés à l'orifice primaire (OP), et des conduits secondaires de distribution (24S) respectivement reliés aux différents orifices secondaires (OS4). Chaque conduit de cylindre (20) est apte, au cours de la rotation relative du bloc-cylindres (14) et du carter, à être alternativement relié à un conduit primaire de distribution (24P) et à un conduit secondaire de distribution (24S). <IMAGE>

Description

La présente invention concerne un dispositif pour diviser ou réunir un débit de fluide comprenant un carter qui présente au moins un orifice primaire susceptible d'être traversé par un débit primaire de fluide et plusieurs orifices secondaires susceptibles d'être traversés, chacun, par un débit secondaire de fluide, et des moyens pour diviser le débit primaire en débits secondaires ou pour réunir les débits secondaires en débit primaire.
On connaít, par exemple par FR 2 476 770, des diviseurs de débit dans lesquels un débit entrant par l'orifice primaire est divisé en deux débits sortants par les orifices secondaires à l'aide d'un tiroir flottant qui raccorde, par des restrictions, les orifices secondaires à l'orifice primaire.
Malgré les améliorations apportées, à l'art antérieur préexistant, par FR 2 476 770, des diviseurs de ce type sont relativement peu fiables lorsque le débit entrant par l'orifice primaire varie de manière importante.
On connaít également, par exemple par FR 2 199 836, des diviseurs de débit constitués par plusieurs moteurs à engrenage accouplés. Cette technologie est fiable, mais les diviseurs de ce type sont coûteux et encombrants. Dans certaines applications, il est nécessaire de diviser un débit primaire en davantage de deux débits secondaires. Pour ces applications, les diviseurs de débit du type précité comprennent au moins trois moteurs à engrenage, voire davantage, qui sont accouplés entre eux. Dans ce cas, le coût de ces diviseurs de débit et leur encombrement sont excessifs.
Le dispositif de l'invention sert non seulement de diviseur de débit, divisant un débit entrant par l'orifice primaire en plusieurs débits sortant par ses orifices secondaires, mais également de réunificateur de débit, réunissant plusieurs débits entrant par les orifices secondaires en un débit sortant par l'orifice primaire.
L'invention vise à améliorer l'art antérieur précité en proposant un diviseur/réunificateur de débit qui soit à la fois simple et fiable.
Ce but est atteint grâce au fait que le dispositif comprend un bloc-cylindres, monté à rotation relative par rapport au carter autour d'un axe de rotation et présentant une pluralité de cylindres disposés radialement par rapport à cet axe, des pistons étant aptes à coulisser dans les cylindres et coopérant, par leurs extrémités éloignées de l'axe de rotation, avec une came de réaction ondulée solidaire en rotation du carter, le bloc-cylindres comprenant un conduit de cylindre pour chaque cylindre, au fait que ce dispositif comprend un distributeur de fluide, solidaire en rotation du carter et comportant des conduits primaires de distribution reliés à l'orifice primaire, et des conduits secondaires de distribution respectivement reliés aux différents orifices secondaires et au fait que chaque conduit de cylindre est apte, au cours de la rotation relative du bloc-cylindres et du carter, à être alternativement relié à un conduit primaire de distribution et à un conduit secondaire de distribution.
Le diviseur de débit selon l'invention se rapproche donc par sa structure d'un moteur hydraulique à pistons radiaux. Il comporte ainsi un bloc-cylindres et une came ayant une pluralité de lobes de came. Selon le sens de rotation du bloc-cylindres, le dispositif selon l'invention peut être utilisé comme un diviseur de débit ou bien comme un réunificateur de débit.
Le distributeur est fixe en rotation par rapport à la came, de sorte que les différents conduits de distribution sont associés aux différents lobes de came. En effet, pour un sens de rotation donné, la communication d'un conduit de cylindre avec un conduit de distribution produit toujours le même effet pour le piston qui coulisse dans le cylindre relié à ce conduit de cylindre. Considéré dans ce sens de rotation, chaque lobe de came présente une partie montante et une partie descendante. Si ce sens de rotation est celui dans lequel le dispositif est un diviseur de débit, un piston coopère avec la partie montante d'un lobe de came en se déplaçant radialement vers l'extérieur lorsque le conduit de cylindre du cylindre dans lequel est disposé ce piston est mis en relation avec le conduit primaire de distribution, et le même piston coopère ensuite avec la partie descendante du même lobe de came lorsque ce conduit de cylindre est mis en communication avec un conduit secondaire de distribution. Le fluide contenu dans le cylindre de ce piston est alors expulsé par l'orifice secondaire auquel est relié ledit conduit secondaire de distribution. Cet orifice secondaire de distribution est dit associé au lobe de came considéré puisque c'est lorsqu'un piston coopère avec ce lobe de came que le fluide contenu dans le cylindre de ce piston transite par cet orifice secondaire. Bien entendu, on peut relier plusieurs conduits secondaires de distribution au même orifice secondaire, de sorte qu'un groupe d'au moins un lobe de came est associé à chaque orifice secondaire.
Lorsque le dispositif fonctionne en diviseur de débit, le débit de fluide entrant par l'orifice primaire est divisé en plusieurs débits secondaires, sortant chacun par un orifice secondaire. Pour que ces débits soient réguliers, il convient que chaque groupe d'au moins un lobe de came associé à un orifice secondaire soit homocinétique, c'est-à-dire que le débit transitant par cet orifice secondaire est constant et régulier pour une vitesse de rotation constante du bloc-cylindres par rapport au carter.
Par rapport à l'art antérieur, les dispositifs conformes à l'invention autorisent en outre, dans un seul carter, des débits importants avec un plus grand nombre de débits secondaires dans un encombrement réduit et peuvent fonctionner à des pressions plus élevées avec un meilleur rendement.
L'homme du métier sait que pour réaliser des moteurs homocinétiques, il convient de choisir convenablement le nombre des pistons par rapport au nombre des lobes de came et à leur couverture angulaire, ainsi qu'au tracé de leur profil. Chaque groupe de lobe de came associé à un orifice secondaire se comporte comme une entité élémentaire qui doit elle-même être homocinétique. Par exemple, lorsque tous les lobes de came couvrent le même secteur angulaire, et si le dispositif comprend n lobes de came (où n est un nombre entier au moins égal à 2), alors un dispositif comprenant 2 n + 1 pistons et n orifices secondaires associés chacun à l'un des lobes de came, remplit la condition selon laquelle chaque lobe de came associé à un orifice secondaire peut être homocinétique. Dans cette configuration, par exemple pour un dispositif à quatre orifices secondaires et quatre lobes de came identiques, il faut impérativement prévoir au moins neuf pistons.
Le dispositif selon l'invention peut comprendre un seul orifice primaire et plusieurs orifices secondaires associés, chacun à un seul lobe de came. Dans ce cas, s'il comprend p lobes de came, p étant un nombre entier supérieur à 2, alors il divise le débit primaire de fluide traversant l'orifice primaire en p débits secondaires traversant, chacun un orifice secondaire, ou bien il réunit en un seul débit primaire p débits secondaires entrant, chacun par un orifice secondaire. Les débits secondaires étant tous égaux entre eux si les p lobes de came sont identiques.
On peut également concevoir avec le dispositif de l'invention de diviser un débit primaire en plusieurs débits secondaires inégaux, ou bien de réunir plusieurs débits secondaires inégaux en un seul débit primaire. Le dispositif peut par exemple comprendre quatre lobes de came et seulement trois orifices secondaires, soit deux orifices associés chacun à un lobe de came, et un troisième orifice secondaire associé aux deux lobes de came restants. Dans ce cas, si tous les lobes de came sont identiques, le débit primaire transitant par l'orifice primaire pourra être divisé en deux débits secondaires correspondant chacun au quart de ce débit primaire et en un troisième débit secondaire correspondant à la moitié du débit primaire.
De même, le dispositif peut comprendre plusieurs orifices primaires, tout en présentant d'avantages d'orifices secondaires que d'orifices primaires. Ainsi par exemple, il peut diviser deux débits primaires entrant chacun par un orifice primaire en quatre débits secondaires sortant par quatre orifices secondaires, ou bien réunir ces quatre débits secondaires en deux débits primaires.
Cependant on peut choisir d'avoir des lobes de came qui ne sont pas identiques, en couverture angulaire et/ou en profil, pour obtenir des groupes de lobe de came constituant des entités homocinétiques et aptes à fournir des débits réguliers mais différents, dans des rapports déterminés précis et adaptés à leur utilisation.
Avantageusement, le dispositif comporte, en outre, des moyens de désactivation aptes à faire communiquer les conduits primaires et les conduits secondaires de distribution.
Lorsque tous les conduits primaires et secondaires de distribution communiquent entre eux, le dispositif est désactivé et le débit n'est plus divisé dans les rapports imposés lors de l'activation, mais se répartit en fonction des besoins en débit appelés aux orifices secondaires. Par exemple, le dispositif est disposé sur la conduite de refoulement d'une pompe servant à alimenter deux moteurs entraínant chacun une roue d'un engin. On sait que pour éviter les situations de patinage, l'interposition d'un diviseur de débit entre la conduite d'alimentation ou d'échappement des moteurs et la conduite de la pompe qui lui est reliée permet d'alimenter les deux moteurs avec le même débit et d'éviter par conséquent les situations de patinage dans lesquelles, si l'une des roues patine, le moteur entraínant cette roue "consomme" l'intégralité du débit refoulé par la pompe, et le véhicule ne peut plus se déplacer. D'un autre côté, lorsqu'un véhicule circule en virage, il est nécessaire que la roue extérieure soit entraínée à une vitesse plus rapide que la roue intérieure. C'est par exemple pour cette raison qu'il peut être intéressant de désactiver le dispositif de diviseur de débit.
Il convient de noter que l'on peut choisir de ne désactiver que partiellement le diviseur de débit. Ainsi, pour un engin à quatre roues motrices, le dispositif peut être interposé entre la conduite de refoulement ou d'aspiration d'une pompe et quatre conduites d'alimentation ou d'échappement reliées chacune à un moteur entraínant l'une des roues de l'engin. Le dispositif divise donc en quatre débits secondaires déterminés (par exemple égaux, si les roues ont des diamètres égaux), le débit primaire refoulé par la pompe ou réunit quatre débits secondaires égaux en un conduit primaire aspiré par la pompe.
Le diviseur de débit peut être activé pour éviter une situation de patinage lors d'un fonctionnement en ligne droite, sur un terrain difficile, de l'engin. Pour un fonctionnement sur route, on peut souhaiter ne désactiver que partiellement le dispositif, par exemple pour négocier les virages.
Comme indiqué précédemment, chaque lobe de came est associé à un conduit primaire et à un conduit secondaire de distribution ; l'orifice secondaire du dispositif auquel est relié ce conduit secondaire de distribution est lui aussi associé au même lobe de came. On peut désactiver la division ou la réunification du débit à l'orifice secondaire considéré, selon les rapports imposés, en reliant entre eux le conduit primaire et le conduit secondaire de distribution associé au lobe de came considéré, tandis que, pour d'autres lobes de came, les conduits primaires et secondaires de distribution restent séparés. Ainsi, le dispositif diviseur/réunificateur de débit reste activé en ce qui concerne ces derniers lobes de came et les débits dans les derniers orifices secondaires auxquels ils sont associés continuent d'être refoulés selon des rapports imposés.
On parvient ainsi à cesser de diviser le débit, selon le rapport imposé, entre les moteurs entraínant les roues directrices d'un véhicule, pour permettre à ces roues de tourner à des vitesses différentes, notamment en virage, tout en continuant à diviser/réunir le débit, selon le rapport imposé, entre les conduites d'aiimentation/d'échappement des moteurs entraínant les deux autres roues, non directrices, du véhicule.
Avantageusement, les moyens de désactivation sont réalisés par le fait que des conduits primaires et secondaires de distribution (ou tous ces conduits) sont aptes à être reliés à un alésage par des ouvertures disposées dans cet alésage, et le dispositif comporte un sélecteur, disposé dans cet alésage et apte à être commandé entre une première position dans laquelle il isole ces ouvertures les unes des autres et une deuxième position dans laquelle il fait communiquer entre elles au moins certaines de ces ouvertures.
Cet alésage est par exemple formé dans le distributeur.
Avantageusement, le dispositif présente des moyens de butée hydrostatique pour le bloc-cylindres.
Le dispositif est ainsi simplifié, puisque aucune butée axiale telle qu'un coussinet n'est nécessaire pour retenir le bloc-cylindres vis-à-vis d'un déplacement axial, mais que la pression du fluide circulant dans le dispositif est utilisée pour former une butée hydrostatique.
Avantageusement, le dispositif comporte un limiteur de pression apte à faire communiquer un orifice secondaire avec un conduit de limitation de pression pour limiter la pression du fluide traversant ledit orifice secondaire.
Il est intéressant d'associer un limiteur de pression à un diviseur de débit, pour éviter les surpressions dans les conduites alimentées par ce diviseur, notamment lorsqu'elles servent chacune à l'alimentation d'un moteur hydraulique. En effet lorsque les moteurs hydrauliques entraínent les roues d'un engin, il arrive que la pression dans une conduite puisse atteindre une valeur trop élevée susceptible d'endommager le moteur hydraulique, par exemple en virage ou lorsque la roue entraínée par ce moteur rencontre un obstacle. Avec l'invention, un limiteur de pression peut être un élément constitutif du dispositif diviseur ou réunificateur de débit. Le dispositif peut comprendre autant de limiteurs de pression que d'orifices secondaires. Le dispositif comprend de préférence un limiteur de pression unique qui peut être utilisé pour limiter la pression dans les conduits secondaires grâce à un ensemble de clapets, soumis chacun à la pression d'un orifice secondaire et permettant le passage du fluide de l'orifice secondaire vers une enceinte commune en amont du limiteur de pression.
Selon une variante, le conduit de limitation de pression est relié à l'orifice primaire, ce qui simplifie la constitution du limiteur de pression.
Avantageusement, le dispositif comprend un capteur de la vitesse de rotation du bloc-cylindres par rapport au carter et un convertisseur apte à traiter les données captées par ce capteur pour déterminer le débit de fluide traversant l'orifice primaire ou un orifice secondaire en fonction de cette vitesse et réaliser ainsi un débitmètre.
Ce débitmètre est fiable et simple car il utilise la donnée la plus fiable pour connaítre le débit refoulé par les orifices secondaires, qui est la vitesse de rotation du bloc-cylindres, le débit calculé étant le produit de cette vitesse de rotation du bloc-cylindres par la cylindrée considérée. Le convertisseur peut être un calculateur simple ou un micro-processeur dans la mémoire duquel est entré le débit de fluide traversant chaque orifice secondaire pour un tour complet du bloc-cylindres. Pour chaque orifice secondaire, ce débit est fonction du nombre et de la conformation des lobes de came associés à cet orifice, ainsi qu'à la cylindrée du bloc-cylindres.
Selon une disposition avantageuse, le bloc-cylindres présente une face transversale avec des repères et le capteur est disposé en regard de cette face transversale.
Les repères peuvent être formés par des encoches, des dents ou autres, situées sur la face transversale du bloc-cylindres, et le capteur peut être formé par un capteur inductif, magnétique ou optique, en regard duquel défilent les repères lors de la rotation du bloc-cylindres.
L'invention sera bien comprise et ses avantages apparaítront mieux à la lecture de la description détaillée qui suit, de modes de réalisation représentés à titre d'exemples non limitatifs. La description se réfère aux dessins annexés sur lesquels :
  • la figure 1 est une vue en coupe axiale d'un dispositif conforme à l'invention, selon un premier mode de réalisation ;
  • la figure 2 est une coupe partielle de ce dispositif selon la ligne II-II de la figure 1 sur laquelle, pour simplifier, le bloc-cylindres n'est pas représenté ;
  • la figure 3 est une vue en coupe axiale du dispositif de l'invention, selon un deuxième mode de réalisation ;
  • la figure 4 est une vue analogue à celle de la figure 3, pour un autre mode de réalisation ;
  • les figures 5 et 6 sont des vues analogues, pour deux autres modes de réalisation.
Le dispositif 10 des figures 1 et 2 comprend un carter en trois parties, respectivement 10A, 10B et 10C, fixées entre elles par des vis 12 passant par des perçages axiaux 13. A l'intérieur du carter est disposé un bloc-cylindres 14 monté à rotation relative par rapport au carter vis-à-vis d'un axe de rotation A. Ce bloc-cylindres présente une pluralité de cylindres 16 disposés radialement par rapport à l'axe A, dans lesquels sont disposés des pistons 18 aptes à coulisser dans ces cylindres. Par leurs extrémités 18A éloignées de l'axe de rotation A, les pistons peuvent coopérer avec une came de réaction ondulée 11 réalisées à la périphérie interne de la partie 10B du carter.
Le bloc-cylindres 14 comprend un conduit de cylindre 20 pour chaque cylindre, ce conduit pouvant être mis en communication successivement avec un orifice primaire OP du carter et avec un orifice secondaire de ce carter. Sur la figure 1, seul un orifice secondaire OS4, présent dans le plan de coupe, est représenté. Toutefois, les positions de tous les orifices secondaires OS1, OS2, OS3 et OS4 et également celle de l'orifice OP sont indiquées en traits interrompus sur la figure 2, bien que ces orifices ne se trouvent pas dans la coupe de cette figure.
Le dispositif comprend un distributeur de fluide 22, qui est solidaire en rotation du carter par tous moyens appropriés tels qu'un ou plusieurs pions 21, et qui comporte des conduits primaires de distribution 24P reliés à l'orifice primaire OP. Le dispositif comporte également des conduits secondaires de distribution 24S respectivement reliés aux différents orifices secondaires OS1 à OS4.
Ainsi, l'orifice primaire OP est l'orifice, sur la face d'extrémité de la partie 10C du carter, d'un conduit axial 26 qui est pratiqué dans cette partie 10C. Ce conduit 26 débouche dans une gorge 28 qui est ménagée entre une face axiale 10'C de la partie 10C et une face axiale 22' du distributeur 22.
Les conduits primaires de distribution 24P débouchent tous dans cette gorge 28 pour être raccordés à l'orifice primaire. Ils débouchent également dans une face transversale de distribution 22A du distributeur, dans laquelle ils s'ouvrent par les orifices primaires de distribution 30P.
Le bloc-cylindres présente quant à lui une face transversale de communication 14A dans laquelle s'ouvrent les conduits de cylindre 20 par des orifices de communication 20A. Les orifices 30P et 20A sont situés à la même distance de l'axe de rotation A, de sorte qu'ils peuvent être mis en communication les uns avec les autres au cours de la rotation relative du bloc-cylindres et du carter. La face transversale de communication 14A et la face transversale de distribution 22A, qui sont toutes deux perpendiculaires à l'axe A, sont mises en appui mutuel, par exemple à l'aide de ressorts de compression 32 qui repoussent constamment le distributeur 22 contre le bloc-cylindres 14 en prenant appui dans le fond de la partie 10C du carter.
La gorge 28 forme une enceinte qui est délimitée autour d'une zone du distributeur 22 dans laquelle débouchent les conduits primaires de distribution 24P pour être reliés au distributeur primaire OP.
Sur la figure 2, les conduits 24S et leurs orifices 30S sont indiqués ; les positions des conduits 24P et de leurs orifices 30P sont également indiquées, bien que ceux-ci ne soient pas visibles dans le plan de coupe.
Sur la moitié supérieure de la figure 1, le conduit de cylindre 20 est relié à un conduit primaire de distribution 24P. Sur la moitié inférieure de cette figure, le conduit de cylindre 20 est relié à un conduit secondaire de distribution 24S.
En l'espèce, les conduits secondaires de distribution 24S ne sont pas pratiqués dans le distributeur 22 mais ils sont formés dans la partie 10A du carter. Le bloc-cylindres 14 présente une face transversale d'extrémité 14B qui est opposée à la face transversale de communication 14A et qui est en appui contre une face d'appui 34 appartenant à un élément solidaire du carter, qui est en l'espèce la partie 10A du carter, dont une face transversale interne forme la face d'appui 34.
Au moins certains conduits de cylindre 20 présentent une portion 20B qui s'étend entre les faces transversales 14A et 14B du bloc-cylindres 14 et qui est ouverte, dans la face transversale de communication 14A, par un orifice de communication 20A et, dans la face transversale d'extrémité, par un orifice d'extrémité 20C.
Les orifices secondaires de distribution 24S s'ouvrent dans la face d'appui 34 par des orifices secondaires de distribution 305 qui sont aptes à communiquer avec les orifices d'extrémité 20C au cours de la rotation relative du bloc-cylindres et du carter. En effet, les orifices 20C et 30S sont situées à la même distance radiale de l'axe A. Pour simplifier, les conduits de cylindre présentent une forme en T avec une branche radiale qui débouche dans le fond des cylindres 16 et une branche axiale qui forme la portion 20B et s'étend de manière rectiligne entre les faces 14A et 14B du bloc-cylindres.
Bien entendu, on pourrait prévoir que seuls certains conduits secondaires de distribution soient conformés comme les conduits secondaires 24S de la figure 1. Le dispositif pourrait parfaitement comporter d'autres conduits secondaires de distribution, ménagés dans le distributeur 22 et s'ouvrant d'une part dans la face transversale de distribution 22A par des orifices secondaires de distribution aptes à communiquer avec les orifices de communication au cours de la rotation relative du bloc-cylindres et du carter et d'autre part dans la face transversale opposée du distributeur en regard d'orifices secondaires réalisés dans la partie 10C du carter.
Le dispositif de la figure 1 présente des moyens de butée hydrostatique pour le bloc-cylindres 14. Plus précisément, dans l'exemple représenté, la face d'appui 34 présente un trou borgne 34A situé en regard de chacun des orifices de distribution 30P qui sont disposés dans la face transversale de distribution 22A. Dans l'exemple de la figure 1, tous ces orifices de distribution sont les orifices primaires 30P, mais il peut ne pas toujours en aller ainsi. Ainsi, lorsqu'un conduit de cylindre communique avec l'un de ces orifices de distribution 30P, il communique également avec l'un de ces trous borgnes. Celui-ci forme une chambre dont la communication avec le conduit de cylindre s'ouvre ou se ferme comme la communication de ce conduit de cylindre avec l'orifice de distribution considéré. Il en résulte un équilibrage des pressions et des efforts axiaux de part et d'autre du bloc-cylindres.
De même, la face transversale de distribution 22A présente un trou borgne 23A situé en regard de chacun des orifices secondaires de distribution 24S qui sont disposés dans la face d'appui 34.
Ces moyens de butée hydrostatique forment un palier axial pour le bloc-cylindres, au cours de sa rotation à l'intérieur du carter. Le dispositif comporte également un palier 36 de reprise des efforts radiaux qui est formé par un roulement supporté par un téton central 37 de la partie 10A du carter. Ce roulement coopère avec la paroi d'un alésage central 14' du bloc-cylindres.
Le mode de réalisation du distributeur 22, avec les faces axiales étagées 10'C et 22', permet d'utiliser la pression de fluide dans la gorge 28 pour équilibrer en permanence les poussées exercées sur le distributeur par la pression du fluide contenu dans les conduits de distribution 24P et 24S et pour pousser axialement le distributeur vers le bloc-cylindres. Plus précisément, sur la figure 1, le fluide contenu dans les conduits de distribution 24S exerce sa poussée sur le distributeur 22 par l'intermédiaire des conduits de cylindres 20 et des trous borgnes 23A. La forme de la gorge 28 est déterminée en tenant compte de la particularité du diviseur de débit conforme à l'invention au niveau de la relation entre les pressions aux orifices secondaires et la pression à l'orifice primaire : Σ(Ppi x Qpi) = Σ(Psi x Qsi)
  • Ppi est la pression à chaque orifice primaire,
  • Qpi est le débit à chaque orifice primaire,
  • Psi est la pression à chaque orifice secondaire,
  • Qsi est le débit à chaque orifice secondaire.
  • Par exemple, pour un diviseur de débit ayant un orifice primaire et quatre orifices secondaires avec division du débit en quatre débits secondaires égaux, la somme des pressions dans les orifices secondaires est égale à quatre fois la pression dans l'orifice primaire, puisque le débit primaire est égal à quatre fois chaque débit secondaire.
    Bien entendu, on pourrait utiliser d'autres types d'appui axial, par exemple en choisissant un distributeur à plots du type décrit, pour un moteur hydraulique, dans FR 2 701 736.
    Le dispositif de la figure 1 comprend encore un orifice de retour de fuites OF. Celui-ci est relié à l'espace intérieur du carter par un conduit de retour de fuites qui, en l'espèce, comprend un premier tronçon de conduit 38A qui débouche dans la région de la came 11, et un deuxième tronçon de conduit 38B qui débouche dans la région de l'espace intérieur du distributeur 22, celui-ci ayant la forme d'une bague.
    Le dispositif de la figure 1 comprend encore un capteur 40 de la vitesse de rotation du bloc-cylindres par rapport au carter. Il s'agit par exemple d'un capteur inductif disposé dans un perçage 41 de la partie 10A du carter et maintenu de manière étanche dans cette partie à l'aide d'un ensemble de retenue 42 comprenant une vis. L'extrémité du capteur se trouve au regard d'une région de la face transversale d'extrémité du bloc-cylindres qui présente des repères 44 espacés angulairement les uns des autres. Par des connexions 43, le capteur 40 peut être relié à un convertisseur qui compte le nombre de repères 44 défilant en regard de ce capteur par unité de temps (qui donne la vitesse de rotation du bloc-cylindres) et qui en déduit le débit de fluide traversant les différents orifices secondaires du dispositif, sur la base de paramètres mémorisés, relatifs à la cylindrée de chaque entité élémentaire constituée par un groupe d'un ou plusieurs lobes de came associés à un orifice secondaire.
    Sur la figure 2, on voit que la came 11 présente quatre lobes de came, respectivement 11A, 11B, 11C et 11D ayant chacun une rampe montante et une rampe descendante. Un conduit primaire de distribution 24P dont l'orifice 30P est représenté sur la figure 2, et un conduit secondaire de distribution 24S dont l'orifice secondaire de distribution 30S est indiqué sur la figure 2, sont respectivement associés aux rampes montante[s] 11A1 et descendante[s] 11A2 du lobe de came 11A dans le sens de rotation R du bloc-cylindres. Ceci signifie que quand un conduit de cylindre est en communication avec l'orifice 30P, le piston situé dans le cylindre de ce conduit se déplace radialement vers l'extérieur avec son extrémité au contact de la rampe 11A1, tandis que le même piston se déplace radialement vers l'intérieur avec son extrémité au contact de la rampe 11A2 lorsque ce même conduit de cylindre communique avec l'orifice 30S. L'orifice secondaire OS1 auquel est relié ce conduit secondaire de distribution 24S est associé au lobe de came 11A. En l'espèce, les quatre orifices secondaires OS1 à OS4 sont respectivement associés à chacun des quatre lobes de came 11A à 11D.
    On décrit maintenant la figure 3, sur laquelle les mêmes références que sur la figure 1, augmentées de 100, sont utilisées pour désigner les éléments du dispositif de la figure 3 qui sont analogues à ceux du dispositif de la figure 1.
    Le dispositif 110 de la figure 3 comporte des moyens de désactivation aptes à faire communiquer les conduits primaires de distribution 124P et les conduits secondaires de distribution 124S. Plus précisément, les conduits primaires de distribution 124P présentent des ouvertures 125P qui sont disposées dans un alésage 122B du distributeur 122. De même, les conduits secondaires de distribution 124S présentent des ouvertures 125S qui sont également disposées dans cet alésage 122B.
    Le dispositif 110 comporte un sélecteur 150, qui est disposé dans l'alésage 122B et qui est apte à être commandé entre une première position, représentée sur la figure 3, dans laquelle il isole les ouvertures 125P et 125S les unes des autres et une deuxième position dans laquelle il fait communiquer entre elles au moins certaines de ces ouvertures.
    Dans l'exemple représenté, la périphérie externe du sélecteur 150 présente une gorge 152 qui, dans la deuxième position de ce sélecteur dans laquelle il est déplacé dans le sens de la flèche F, se trouve en regard, à la fois, des ouvertures 125P et des ouvertures 125S.
    On peut prévoir que tous les conduits de distribution 124P, 124S aient des ouvertures qui débouchent dans l'alésage 122B, et que toutes ces ouvertures soient disposées de manière à être mises en communication dans la deuxième position du sélecteur 150, auquel cas l'ensemble du dispositif de division ou de réunification de débit est désactivé dans cette deuxième position de sélecteur.
    En variante, on peut prévoir que l'on désactive une partie du dispositif en choisissant par exemple que seuls certains conduits secondaires de distribution 124S aient des ouvertures 125S qui débouchent dans l'alésage 122B.
    Dans l'exemple représenté, les moyens de commande de déplacement du sélecteur 150 entre ses deux positions comprennent des moyens de rappel élastiques 154 qui rappellent en permanence ce sélecteur dans sa première position. Il s'agit en l'espèce d'un ressort qui prend appui contre l'extrémité du téton 137 de la partie 110A du carter. Ces moyens de commande comprennent également une chambre de commande hydraulique 156 susceptible d'être alimentée en fluide sous pression pour déplacer le sélecteur vers sa deuxième position. A cet effet, un conduit de pilotage 158 est disposé dans la partie 110C du carter et débouche dans la chambre 156 qui, dans la position du sélecteur 150 représenté sur la figure 3, a un volume minimal. Dans l'exemple de la figure 3, on a donc choisit que, sans pression dans la chambre 156, le sélecteur 150 est dans sa première position. En d'autres termes, le dispositif diviseur ou réunificateur de débit est activé par défaut. On pourrait choisir une situation inverse dans laquelle les moyens de commande seraient inversés par rapport à ceux de la figure 3 et comprendraient un ressort de rappel rappelant en permanence le sélecteur dans sa position dans laquelle il désactive le dispositif.
    Par ailleurs, tous moyens de commande du déplacement du sélecteur peuvent être utilisés, tels que des moyens hydrauliques, mécaniques, électromécaniques ou électroniques, notamment pour rendre les commutations progressives et/ou échelonnées en fonction de la position du sélecteur 150.
    En variante, on peut prévoir des dispositifs de désactivation individuelle de chaque division de débit en interposant un sélecteur entre chaque conduit de distribution secondaire et un conduit de distribution primaire pour permettre la communication directe entre ces conduits. Ces sélecteurs peuvent être constitués par des composants connus tels que des clapets pilotés, des clapets logiques ou des valves à tiroir.
    Dans l'exemple de la figure 3, les orifices secondaires de distribution OS sont pratiqués dans la même partie 110C du carter que l'orifice primaire de distribution OP. Les conduits secondaires de distribution 124S sont ménagés dans le distributeur 122 et s'ouvrent dans sa face transversale de distribution 122A par les orifices secondaires de distribution 130S aptes à communiquer avec les orifices de communication 120A au cours de la rotation relative du bloc-cylindres et du carter. Plus précisément, les conduits 124S comprennent chacun un premier tronçon 124S1 qui est disposé dans le distributeur 122. C'est ce premier tronçon qui est relié, par une branche radiale, à l'ouverture 125S située dans l'alésage 122B. Ces conduits de distribution comprennent également un deuxième tronçon 124S2 qui est ménagé dans la partie 110C du carter. Ces deux parties sont mises en communication par une bague 160 dont le perçage central est aligné avec les parties 124S1 et 124S2. Cette bague forme un siège pour un ressort de compression 132 qui sollicite en permanence le distributeur en appui contre le bloc-cylindres. Elle coopère de manière étanche avec une cavité du distributeur dans laquelle elle est logée et constitue un plot d'équilibrage dimensionné de telle sorte que l'ensemble de ces plots permette l'équilibrage du distributeur.
    Outre les orifices primaires et secondaires, le dispositif 110 comporte un orifice de retour de fuites OF dans lequel débouche un conduit de retour de fuites ayant deux tronçons, 138A et 138B.
    Dans le mode de réalisation de la figure 3, le dispositif 110 comporte un limiteur de pression 170 qui est apte à faire communiquer un orifice secondaire OS avec un conduit de limitation de pression pour limiter la pression du fluide traversant cet orifice secondaire.
    Sur la figure 3, ce conduit de limitation de pression est relié à l'orifice primaire OP. Plus précisément, le limiteur de pression comprend des premiers conduits 170S qui sont aptes à être reliés chacun à un des orifices secondaires OS, un deuxième conduit 170L qui est apte à être relié au conduit de limitation de pression et une enceinte 170E qui est raccordée à chaque premier conduit 170S par un clapet anti-retour 172 et qui est raccordée au deuxième conduit 170L par une soupape 174.
    Chaque clapet anti-retour 172 peut s'ouvrir pour faire communiquer le premier conduit 170S avec lequel il coopère avec l'enceinte 170E quand la pression dans ce premier conduit devient supérieure à la pression dans l'enceinte. La soupape 174 peut s'ouvrir pour faire communiquer cette enceinte avec le deuxième conduit 170L quand la pression dans l'enceinte atteint un seuil prédéterminé. Plus précisément la soupape 174, dans sa variante de soupape différentielle représentée sur la figure 3, s'ouvre quand la différence des pressions dans l'enceinte 170E et dans le conduit 170L atteint un seuil prédéterminé. D'autres variantes de soupape de limitation de pression peuvent être utilisées.
    Pour cela, l'organe mobile 176 de la soupape est rappelée en permanence contre son siège par un ressort précontraint 178, dont la précontrainte a une valeur prédéterminée. La soupape comprend un corps de soupape 181, qui est disposé dans un élément 110D solidaire du carter, dans lequel sont ménagés les conduits 170L et 170S, ainsi que l'enceinte 170E. Le corps de soupape est disposé de manière étanche dans un alésage 182 de cet élément 110D, et son espace intérieur peut communiquer avec l'enceinte 170E par des communications telles que des perçages 184. Lorsque l'organe mobile 176 de la soupape 174 est repoussé contre son siège, il obture la communication entre l'enceinte 170E et le conduit 170L.
    Dans l'exemple représenté sur la figure 3, les premiers conduits 170S sont aptes à être reliés aux orifices secondaires OS par l'intermédiaire des conduits secondaires de distribution 124S. Plus précisément, la partie de carter 110A qui présente la face d'appui 134 contre laquelle la face transversale extrême 114B du bloc-cylindres est en appui présente des conduits de liaison 186S qui s'ouvrent dans cette face d'appui par des orifices de liaison 186'S aptes à communiquer avec les orifices d'extrémité 120C des portions axiales 120B des conduits de cylindre qui traversent le bloc-cylindres de part en part, entre sa face de communication 114A et sa face transversale d'extrémité 114B au cours de la rotation relative du bloc-cylindres et du carter, ce qui permet aux conduits de liaison 186S de communiquer avec les conduits secondaires de distribution 124S. Le deuxième conduit 170L du limiteur de pression 170 communique avec l'orifice principal OP par un autre conduit de liaison 186L réalisé dans la partie 110A du carter, lui-même en communication avec un conduit primaire de distribution 124P par l'intermédiaire d'un conduit de cylindre 120. En effet, le conduit 186L s'ouvre dans la face d'appui 134 de la partie 110A du carter par un orifice de liaison 186'L apte à communiquer avec les orifices 120 au cours de la rotation du bloc-cylindres. Le nombre de pistons au moins égal à 2n + 1, n étant le nombre d'orifices secondaires, garantit une communication permanente entre le conduit 170L et le conduit primaire de distribution 124P, par l'intermédiaire du conduit 186L et d'au moins un conduit de cylindre 120.
    Ainsi, lorsque la pression de fluide traversant un orifice secondaire OS devient excessive, c'est-à-dire supérieure à un seuil prédéterminé, ou supérieure à la pression dans l'orifice OP primaire augmentée d'une valeur prédéterminée, l'excès de pression est ramené vers l'orifice primaire.
    L'élément 110D dans lequel est disposé la soupape 174 est flasqué sur la partie 110A du carter. Bien entendu, il pourrait s'agir d'un élément faisant partie intégrante du carter.
    On décrit maintenant le mode de réalisation de la figure 4, sur lequel les éléments communs à celui de la figure 1 sont affectés des mêmes références que sur cette figure, augmentés de 200.
    Sur la figure 4, le bloc-cylindres 214 présente un alésage intérieur 214' dans lequel s'ouvrent les conduits de cylindre 220 par des orifices de communication 220A.
    Le distributeur comprend quant à lui une portion axiale 222 solidaire du carter qui s'étend dans cet alésage 214' du bloc-cylindres. Les conduits de distribution 224P et 224S s'ouvrent sur la périphérie externe 222' de cette portion axiale 222 en des orifices de distribution, respectivement 230P et 230S. Les orifices de communication 220A et les orifices de distribution sont aptes à être disposés en regard des uns des autres au cours de la rotation relative du bloc-cylindres et du carter. Par exemple, la portion axiale 222 qui forme le distributeur est en réalité une extension axiale de la partie 210C du carter qui traverse l'alésage 214' du bloc-cylindres et également un alésage 210'A de la partie 210A du carter qui présente alors une forme en disque dont le centre est évidé.
    Par exemple, les conduits primaires de distribution 224P sont disposés en étoile à l'intérieur du distributeur 222 en étant tous reliés à l'orifice principal OP par un tronçon axial de conduit commun, 224PA.
    De leur côté, les conduits secondaires de distribution 224S sont tous reliés respectivement à un orifice secondaire OS par une branche axiale respective de liaison 224SL.
    La liaison entre l'alésage 214' du bloc-cylindres et la périphérie axiale externe 222' du distributeur 222 est rendue étanche par deux joints ou segments annulaires 227 disposés respectivement dans deux plans transversaux entre lesquels s'étendent les orifices de communication et de distribution. Le bloc-cylindres est guidé axialement par deux simples rondelles de frottement 229 ou des butées à aiguilles. Une variante consiste à remplacer les joints 227 par deux gorges annulaires destinées à recevoir les fuites et à favoriser la formation d'un palier hydrostatique.
    Le dispositif de la figure 4 comprend en outre un dispositif de mise en pression de l'espace intérieur 273 du carter apte à mettre cet espace en communication avec l'orifice primaire ou secondaire qui est à la plus basse pression. Ce dispositif comprend des clapets anti-retour 292 disposés sur des conduits de pressurisation 290 reliant respectivement l'orifice primaire OP et les orifices secondaires OS à l'espace 273 et autorisant le passage du fluide uniquement de l'espace 273 du carter vers l'orifice primaire ou secondaire qui est à la plus basse pression. Plus précisément, pour chaque conduit de pressurisation (il y en a un pour chaque orifice primaire ou secondaire), le clapet 292 est interposé entre le conduit de pressurisation et l'espace 273 intérieur du carter entourant le bloc-cylindres, le siège du clapet étant le bord d'un perçage de pressurisation 292' qui s'étend entre chaque conduit 290 et l'espace 273. Chaque conduit de pressurisation 290 est relié à un orifice primaire OP ou secondaire OS respectivement par l'intermédiaire du tronçon axial commun 224PA des conduits primaires de distribution ou par une branche axiale de liaison 224SL d'un conduit secondaire de distribution.
    Contrairement aux figures précédentes, le diviseur de débit de la figure 4 ne comporte pas de conduit de retour de fuites et en fonctionnement la pression dans l'espace 273 augmente à cause des fuites internes. Lorsque la pression de fluide dans cet espace 273 devient trop élevée, celui des clapets 292 qui est situé dans le conduit de pressurisation 290 à la plus basse pression s'ouvre pour autoriser la circulation du fluide de l'espace 273 vers ce conduit de pressurisation 290, donc vers l'orifice primaire ou secondaire à la plus basse pression.
    Des ressorts 217 disposés dans les cylindres 216 permettent de maintenir les pistons 218 contre la came 211 même lorsque le piston 218 est soumis à ses deux extrémités, dans son cylindre et dans l'espace 273, à des pressions sensiblement égales.
    L'intérêt du dispositif de la figure 4 réside dans le fait que les pistons 218 du diviseur de débit sont ainsi soumis à des différences de pression moins élevées que lorsque le conduit de retour de fuites (généralement à une pression de l'ordre de 1 bar) est présent. Les pistons, et par conséquent la came 211, sont alors soumis à des efforts moins importants. Le rendement et la durée de vie du dispositif sont ainsi augmentés. Ceci est rendu possible parce que les pistons du diviseur de débit ne sont pas destinés à fournir un couple d'entraínement, comme c'est le cas dans un moteur de structure voisine. De plus, la mise en pression du carter, qui dans un moteur peut poser des problèmes de fuites au niveau des joints d'étanchéité tournante sur la sortie du moteur, ne présente pas de difficulté pour un diviseur de débit sans arbre de sortie.
    On décrit maintenant la figure 5 sur laquelle les éléments communs à la figure 3 sont affectés des mêmes références, augmentées de 200.
    Comme dans l'exemple de la figure 4, le bloc-cylindres 314 de la figure 5 présente un alésage axial 314' dans lequel s'étend une portion axiale 322 qui forme le distributeur. Les conduits de cylindre 320 débouchent dans l'alésage 314' en des orifices de communication 320A auxquels peuvent être reliés, au cours de la rotation relative du bloc-cylindres et du distributeur, les orifices de distribution 330P et 330S des conduits de distribution 324P et 324S.
    Le distributeur 322, formé par une portion axiale de la partie 310C du carter, présente un alésage 322B dans lequel sont disposées des ouvertures 325P et 325S des conduits de distribution, respectivement 324P et 324S. Dans cet alésage 322B est disposé un sélecteur 350 qui est apte à occuper une première position, représentée sur la figure 5, dans laquelle il isole les ouvertures 325P et les ouvertures 325S et une deuxième position, dans laquelle il est déplacé dans le sens de la flèche G, pour faire communiquer entre elles au moins certaines des ouvertures 325P et 325S.
    Pour cela, dans l'exemple représenté, la périphérie externe du distributeur 350 présente une gorge 352 qui peut être disposée en regard des ouvertures 325P et 325S, elles-mêmes disposées entre deux plans transversaux. Des moyens de commande du sélecteur 350 comprennent un ressort 354 le rappelant constamment dans sa première position et une chambre de commande 356 susceptible d'être alimentée en fluide par un conduit de pilotage 358.
    Les conduits primaires de distribution 324P sont tous mis en communication avec l'orifice primaire OP en étant reliés à une gorge annulaire 328 avec laquelle communique en permanence ledit orifice primaire OP. Les conduits secondaires de distribution 324S sont reliés aux orifices secondaires OS par des branches radiales.
    On décrit maintenant le dispositif de la figure 6, sur laquelle les mêmes références, augmentées de 300 par rapport à la figure 3, décrivent les mêmes éléments que sur la figure 3. Le bloc-cylindres 414 est supporté à rotation vis-à-vis du carter en trois parties 410A, 410B et 410C par un palier reprenant les efforts radiaux et axiaux. En l'espèce, il s'agit d'un palier 436 à quatre points de contact, qui coopère avec une extension 435 du bloc-cylindres, située sous la partie 410B du carter. Les conduits de cylindre 420 débouchent dans une face transversale de communication 414A du bloc-cylindres, en des orifices de communication 420A. L'orifice primaire OP du dispositif est relié à des conduits primaires de distribution 424P par un conduit axial 426 en communication avec une gorge 428 ménagée entre la périphérie axiale étagée du distributeur 422 et la périphérie axiale étagée de la partie 410C du carter.
    Globalement, les conduits de distribution 424P et 424S sont analogues à ceux de la figure 3.
    Le dispositif 410 de la figure 6 peut être désactivé, partiellement ou totalement, à l'aide d'un sélecteur 450 globalement analogue au sélecteur 150 de la figure 3. Le dispositif 410 comporte un orifice de retour de fuites OF dans lequel débouche un conduit de retour de fuites ayant plusieurs tronçons, 438A et 438B.
    La partie 410A du carter a la forme d'un disque percé en son centre par un alésage 410'A. Un prolongement axial 415 du bloc-cylindres s'étend dans cet alésage, par rapport auquel il est étanché à l'aide d'un ou plusieurs joints d'étanchéité 415'. Ce prolongement du bloc-cylindres présente une cavité centrale 490, pourvue de cannelure 492 qui forme ainsi une sortie motrice permettant la solidarisation en rotation du bloc-cylindres avec un élément externe à entraíner, tel qu'un petit arbre moteur.
    En effet, le diviseur de débit conforme à l'invention n'est pas spécifiquement fait pour délivrer un couple-moteur et c'est pourquoi le dispositif des figures 1 à 5 est dépourvu de sortie motrice. Toutefois, on peut utiliser la rotation du bloc-cylindres pour entraíner un petit arbre moteur, par exemple pour des applications telles que une pompe auxiliaire, un codeur angulaire ou tout élément de machine à entraíner à une vitesse proportionnelle au débit traversant le diviseur de débit.
    Il convient de noter que le bloc-cylindres est percé par un perçage 438C permettant de ramener entre la face transversale externe 414B du bloc-cylindres et la partie 410A du carter le fluide provenant de fuites dans l'alésage 422B du distributeur dans lequel est disposé le sélecteur 450.

    Claims (26)

    1. Dispositif (10 ; 110 ; 210 ; 310 ; 410) pour diviser ou réunir un débit de fluide comprenant un carter (10A, 10B, 10C ; 110A, 110B, 110C ; 210A, 210B, 210C ; 310A, 310B, 310C ; 410A, 410B, 410C) qui présente au moins un orifice primaire (OP) susceptible d'être traversé par un débit primaire de fluide et plusieurs orifices secondaires (OS1, OS2, OS3, OS4 ; 0S) susceptibles d'être traversés, chacun, par un débit secondaire de fluide, et des moyens pour diviser le débit primaire en débits secondaires ou pour réunir les débits secondaires en débit primaire,
         caractérisé en ce qu'il comprend un bloc-cylindres (14 ; 114 ; 214 ; 314 ; 414), monté à rotation relative par rapport au carter autour d'un axe de rotation (A) et présentant une pluralité de cylindres (16 ; 116 ; 216 ; 316 ; 416) disposés radialement par rapport à cet axe, des pistons (18 ; 118 ; 218 ; 318 ; 418) étant aptes à coulisser dans les cylindres et coopérant, par leurs extrémités éloignées de l'axe de rotation, avec une came de réaction ondulée (11 ; 111 ; 211 ; 311 ; 411) solidaire en rotation du carter, le bloc-cylindres comprenant un conduit de cylindre (20 ; 120 ; 220 ; 320 ; 420) pour chaque cylindre, en ce qu'il comprend un distributeur de fluide (22 ; 122 ; 222 ; 322 ; 422), solidaire en rotation du carter et comportant des conduits primaires de distribution (24P ; 124P ; 224P ; 324P ; 424P) reliés à l'orifice primaire (OP), et des conduits secondaires de distribution (24S ; 124S ; 224S ; 324S ; 424S) respectivement reliés aux différents orifices secondaires (OS) et en ce que chaque conduit de cylindre est apte, au cours de la rotation relative du bloc-cylindres et du carter, à être alternativement relié à un conduit primaire de distribution et à un conduit secondaire de distribution.
    2. Dispositif selon la revendication 1, caractérisé en ce qu'il comporte, en outre, des moyens de désactivation (150, 350, 450) aptes à faire communiquer les conduits primaires et les conduits secondaires de distribution.
    3. Dispositif selon la revendication 2, caractérisé en ce que des conduits primaires et secondaires de distribution (124P, 124S ; 324P, 324S ; 424P, 424S) sont aptes à être reliés à un alésage (122B ; 322B ; 422B) par des ouvertures (125P, 125S ; 325P, 325S) disposées dans cet alésage et en ce qu'il comporte un sélecteur (150 ; 350 ; 450), disposé dans cet alésage et apte à être commandé entre une première position dans laquelle il isole lesdites ouvertures les unes des autres et une deuxième position dans laquelle il fait communiquer entre elles au moins certaines de ces ouvertures.
    4. Dispositif selon l'une quelconque des revendications 1 à 3, caractérisé en ce que le bloc-cylindres (214 ; 314) présente un alésage intérieur (214' ; 314') dans lequel s'ouvrent les conduits de cylindres (220 ; 320) par des orifices de communication (220A ; 320A) et en ce que le distributeur comprend une portion axiale (222 ; 322) qui s'étend dans cet alésage du bloc-cylindres, les conduits de distribution (224P, 224S ; 324P, 324S) s'ouvrant sur la périphérie externe de cette portion axiale (222 ; 322) en des orifices de distribution (230P, 230S ; 330P, 330S), les orifices de communication et les orifices de distribution étant aptes à être disposés en regard les uns des autres au cours de la rotation relative du bloc-cylindres et du carter.
    5. Dispositif selon l'une quelconque des revendications 1 à 3, caractérisé en ce que le bloc-cylindres (14 ; 114 ; 414) présente une face de communication (14A ; 114A ; 414A) transversale à l'axe de rotation dans laquelle s'ouvrent les conduits de cylindres (20 ; 120 ; 420) par des orifices de communication (20A ; 120A ; 420A), tandis que le distributeur (22 ; 122 ; 422) présente une face transversale de distribution (22A ; 122A ; 422A) dans laquelle s'ouvrent au moins les conduits primaires de distribution (24P ; 124P ; 424P) par des orifices primaires de distribution (30P ; 130P ; 430P), lesdites faces transversales étant en appui mutuel et les orifices de communication (20A ; 120A ; 420A) et les orifices primaires de distribution (30P ; 130P ; 430P) étant aptes à être disposés en regard les uns des autres au cours de la rotation relative du bloc-cylindres (14 ; 114 ; 414) et du distributeur (22 ; 122 ; 422) et en ce que l'orifice primaire (OP) est relié à une enceinte (28 ; 128 ; 428) délimitée autour d'une zone du distributeur (22 ; 122 ; 422) dans laquelle débouchent les conduits primaires de distribution (24P ; 124P ; 424P) pour être reliés audit orifice primaire (OP).
    6. Dispositif selon la revendication 5, caractérisé en ce que le bloc-cylindres (14 ; 114) présente une face transversale d'extrémité (14B ; 114B), opposée à ladite face transversale de communication (14A ; 114A) et en appui contre une face d'appui (34 ; 134) appartenant à un élément (10A ; 110A) solidaire du carter et en ce que au moins certains conduits de cylindres (20 ; 120) présentent une portion (20B ; 120B) qui s'étend entre lesdites faces transversales (14A ; 14B ; 114A ; 114B) du bloc-cylindres (14 ; 114) et qui est ouverte, dans la face transversale de communication (14A ; 114A), par un orifice de communication (20A ; 120A) et, dans la face transversale d'extrémité (14B ; 114B), par un orifice d'extrémité (20C ; 120C).
    7. Dispositif selon l'une quelconque des revendications 5 et 6, caractérisé en ce que au moins certains conduits secondaires de distribution (124S ; 424S) sont ménagés dans le distributeur (122 ; 422) et s'ouvrent dans la face transversale de distribution (122A ; 422A) par des orifices secondaires de distribution (130S ; 430S) aptes à communiquer avec les orifices de communication (120A ; 420A) au cours de la rotation relative du bloc-cylindres et du carter.
    8. Dispositif selon la revendication 6 ou les revendications 6 et 7, caractérisé en ce que au moins certains conduits secondaires de distribution (24S) sont ménagés dans ledit élément solidaire (10A) du carter et s'ouvrent dans ladite face d'appui (34) par des orifices secondaires de distribution (30S) aptes à communiquer avec les orifices d'extrémité (20C) au cours de la rotation relative du bloc-cylindres et du carter.
    9. Dispositif selon l'une quelconque des revendications 1 à 7, caractérisé en ce qu'il présente des moyens de butée hydrostatique (34A ; 23A) pour le bloc-cylindres (14).
    10. Dispositif selon les revendications 6 et 9, caractérisé en ce que la face d'appui (34) présente un trou borgne (34A) situé en regard de chacun des orifices de distribution (30P) qui sont disposés dans la face transversale de distribution (22A).
    11. Dispositif selon la revendication 9 et l'une quelconque des revendications 7 à 10, caractérisé en ce que la face transversale de distribution (22A) présente un trou borgne (23A) situé en regard de chacun des orifices secondaires de distribution (30S) qui sont disposés dans la face d'appui (34).
    12. Dispositif selon l'une quelconque des revendications 1 à 11, caractérisé en ce qu'il comporte un limiteur de pression (170) apte à faire communiquer un orifice secondaire (OS) avec un conduit de limitation de pression (186, 120, 124P, 126) pour limiter la pression du fluide traversant ledit orifice secondaire.
    13. Dispositif selon la revendication 12, caractérisé en ce que le conduit de limitation de pression (186 ou 186L, 120, 124P, 126) est relié à l'orifice primaire (OP).
    14. Dispositif selon la revendication 12 ou 13, caractérisé en ce que le limiteur de pression (170) comprend des premiers conduits (170S) qui sont aptes à être reliés chacun à un des orifices secondaires (OS), un deuxième conduit (170L) qui est apte à être relié au conduit de limitation de pression, et une enceinte (170E) qui est raccordée à chaque premier conduit par un clapet anti-retour (172) et qui est raccordée au deuxième conduit par une soupape (174), chaque clapet anti-retour étant susceptible de s'ouvrir pour faire communiquer le premier conduit (170S) avec lequel il coopère avec l'enceinte (170E) quand la pression dans ce premier conduit devient supérieure à la pression dans l'enceinte et la soupape (174) étant susceptible de s'ouvrir pour faire communiquer l'enceinte avec le deuxième conduit quand la pression dans cette enceinte atteint un seuil déterminé.
    15. Dispositif selon la revendication 14, caractérisé en ce que les premiers conduits (170S) sont aptes à être reliés aux orifices secondaires (OS) par l'intermédiaire des conduits secondaires de distribution (124S).
    16. Dispositif selon la revendication 6 et l'une quelconque des revendications 14 et 15, caractérisé en ce que les premiers conduits (170S) sont aptes à être reliés aux orifices secondaires de distribution (124S) par l'intermédiaire de conduits de liaison (186S) ménagés dans ledit élément (110A) solidaire du carter et s'ouvrant dans la face d'appui (134) de cet élément par des orifices de liaison (186S') aptes à communiquer avec les orifices d'extrémité (120C) au cours de la rotation relative du bloc-cylindres et du carter.
    17. Dispositif selon l'une quelconque des revendications 14 à 16, caractérisé en ce que le deuxième conduit (170L) est apte relié à l'orifice primaire (OP) par l'intermédiaire des conduits primaires de distribution (124P).
    18. Dispositif selon la revendication 6 et l'une quelconque des revendications 14 à 17, caractérisé en ce que le deuxième conduit (170L) est apte à être relié aux orifices primaires de distribution (130P) par l'intermédiaire de conduits de liaison (186L) ménagés dans ledit élément (110A) solidaire du carter et s'ouvrant dans la face d'appui (134) de cet élément par des orifices de liaison (186'L) aptes à communiquer avec les orifices d'extrémité (120C) au cours de la rotation relative du bloc-cylindres et du carter.
    19. Dispositif selon l'une quelconque des revendications 1 à 18, caractérisé en ce qu'il comporte un conduit de retour de fuites (38A, 38B ; 138A, 138B ; 338 ; 438A, 438B 438C), relié à un espace intérieur du carter.
    20. Dispositif selon les revendications 1 à 11, caractérisé en ce qu'il comporte des moyens de mise en pression de l'espace intérieur du carter (273) aptes à mettre en communication cet espace avec l'orifice primaire (OP) ou secondaire (OS) qui est à la plus basse pression.
    21. Dispositif selon la revendication 20, caractérisé en ce que chaque orifice primaire (OP) ou secondaire (OS) est relié à l'espace intérieur du carter (273) par un conduit de pressurisation (290) dans lequel est disposé un clapet anti-retour (292) autorisant seulement la circulation de fluide dans le sens allant de l'espace intérieur du carter vers le conduit de pressurisation qui est à la plus basse pression.
    22. Dispositif selon l'une quelconque des revendications 1 à 21, caractérisé en ce qu'il comprend un capteur (40) de la vitesse de rotation du bloc-cylindres (14) par rapport au carter (10A, 10B, 10C) et un convertisseur apte à déterminer le débit de fluide traversant l'orifice primaire (OP) ou un orifice secondaire (OS) en fonction de cette vitesse et à réaliser ainsi un débitmètre.
    23. Dispositif selon la revendication 22, caractérisé en ce que le bloc-cylindres (14) présente une face transversale (14B) avec des repères (44) et en ce que le capteur (40) est disposé en regard de cette face transversale.
    24. Dispositif selon l'une quelconque des revendications 1 à 23, caractérisé en ce que le carter présente plus de deux orifices secondaires (OS1, OS2, OS3, OS4 ; OS).
    25. Dispositif selon l'une quelconque des revendications 1 à 24, caractérisé en ce qu'il est dépourvu de sortie motrice.
    26. Dispositif selon l'une quelconque des revendications 1 à 24, caractérisé en ce qu'il comporte une sortie motrice (490).
    EP20030290899 2002-04-19 2003-04-10 Dispositif pour diviser ou réunir un débit de fluide Expired - Lifetime EP1355068B1 (fr)

    Applications Claiming Priority (2)

    Application Number Priority Date Filing Date Title
    FR0204958 2002-04-19
    FR0204958A FR2838791B1 (fr) 2002-04-19 2002-04-19 Dispositif pour diviser ou reunir un debit de fluide

    Publications (2)

    Publication Number Publication Date
    EP1355068A1 true EP1355068A1 (fr) 2003-10-22
    EP1355068B1 EP1355068B1 (fr) 2009-12-23

    Family

    ID=28459935

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP20030290899 Expired - Lifetime EP1355068B1 (fr) 2002-04-19 2003-04-10 Dispositif pour diviser ou réunir un débit de fluide

    Country Status (3)

    Country Link
    EP (1) EP1355068B1 (fr)
    DE (1) DE60330619D1 (fr)
    FR (1) FR2838791B1 (fr)

    Cited By (2)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    WO2008068206A1 (fr) * 2006-12-07 2008-06-12 Zf Friedrichshafen Ag Moteur hydraulique à pistons radiaux
    WO2014048842A1 (fr) * 2012-09-28 2014-04-03 Poclain Hydraulics Industrie Appareil hydraulique présentant une structure améliorée pour sa mise en cylindrée

    Citations (8)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE2248009A1 (de) * 1972-09-29 1974-04-04 Bosch Gmbh Robert Radialkolbenmaschine
    FR2199836A5 (fr) 1972-09-20 1974-04-12 Peltier Raymond
    JPS50128030A (fr) * 1974-03-28 1975-10-08
    FR2292854A1 (fr) * 1974-11-29 1976-06-25 Rexroth Sigma Perfectionnements apportes aux machines a fluide a pistons radiaux
    FR2476770A1 (fr) 1980-02-27 1981-08-28 Poclain Hydraulics Sa Diviseur de debit
    US4475870A (en) * 1980-08-19 1984-10-09 Karl Eickmann Hydraulic arrangement
    US5285641A (en) * 1990-11-10 1994-02-15 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Flow dividing pump
    FR2701736A1 (fr) * 1993-02-19 1994-08-26 Poclain Hydraulics Sa Mécanisme à fluide sous pression comportant des plots tubulaires, tel qu'un moteur ou une pompe hydraulique.

    Patent Citations (8)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    FR2199836A5 (fr) 1972-09-20 1974-04-12 Peltier Raymond
    DE2248009A1 (de) * 1972-09-29 1974-04-04 Bosch Gmbh Robert Radialkolbenmaschine
    JPS50128030A (fr) * 1974-03-28 1975-10-08
    FR2292854A1 (fr) * 1974-11-29 1976-06-25 Rexroth Sigma Perfectionnements apportes aux machines a fluide a pistons radiaux
    FR2476770A1 (fr) 1980-02-27 1981-08-28 Poclain Hydraulics Sa Diviseur de debit
    US4475870A (en) * 1980-08-19 1984-10-09 Karl Eickmann Hydraulic arrangement
    US5285641A (en) * 1990-11-10 1994-02-15 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Flow dividing pump
    FR2701736A1 (fr) * 1993-02-19 1994-08-26 Poclain Hydraulics Sa Mécanisme à fluide sous pression comportant des plots tubulaires, tel qu'un moteur ou une pompe hydraulique.

    Cited By (9)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    WO2008068206A1 (fr) * 2006-12-07 2008-06-12 Zf Friedrichshafen Ag Moteur hydraulique à pistons radiaux
    US8225707B2 (en) 2006-12-07 2012-07-24 Zf Friedrichshafen Ag Hydraulic radial piston engine
    WO2014048842A1 (fr) * 2012-09-28 2014-04-03 Poclain Hydraulics Industrie Appareil hydraulique présentant une structure améliorée pour sa mise en cylindrée
    FR2996268A1 (fr) * 2012-09-28 2014-04-04 Poclain Hydraulics Ind Appareil hydraulique presentant une structure amelioree pour sa mise en cylindree.
    FR2996267A1 (fr) * 2012-09-28 2014-04-04 Poclain Hydraulics Ind Appareil hydraulique presentant une structure amelioree pour sa mise en cylindree
    CN104797817A (zh) * 2012-09-28 2015-07-22 波克兰液压工业设备公司 具有用于其汽缸执行的改进结构的液压设备
    US9518466B2 (en) 2012-09-28 2016-12-13 Poclain Hydraulics Industrie Hydraulic apparatus having an improved structure for its commissioning
    RU2619436C2 (ru) * 2012-09-28 2017-05-15 Поклэн Гидроликс Индастри Гидравлическое устройство, обладающее улучшенной конструкцией в отношении его перевода в рабочий режим
    CN104797817B (zh) * 2012-09-28 2017-12-01 波克兰液压工业设备公司 具有用于试运行的改进结构的液压设备

    Also Published As

    Publication number Publication date
    DE60330619D1 (de) 2010-02-04
    EP1355068B1 (fr) 2009-12-23
    FR2838791B1 (fr) 2005-11-25
    FR2838791A1 (fr) 2003-10-24

    Similar Documents

    Publication Publication Date Title
    EP0223656B1 (fr) Mécanisme, moteur ou pompe, à au moins deux cylindrées actives distinctes
    EP0284460B1 (fr) Mécanisme à fluide sous pression, moteur ou pompe, à plusieurs cylindrées
    EP2617985B1 (fr) Circuit de transmission hydraulique à cylindrées multiples
    WO1989009144A1 (fr) Groupe motopropulseur, notamment pour vehicule automobile et vehicule comportant un tel groupe
    EP0969205B1 (fr) Moteur hydraulique compact
    EP0601916B1 (fr) Groupe moteur hydraulique d&#39;entraînement d&#39;un outil de forage
    EP0921309B1 (fr) Moteur hydraulique à sélecteur de fonction
    FR2706538A1 (fr) Mécanisme à fluide sous pression tel qu&#39;un moteur ou une pompe, réversible, à au moins deux cylindrées de fonctionnement.
    FR2462582A1 (fr) Moteur hydraulique
    FR2536475A1 (fr) Dispositif hydrostatique de commande, notamment de direction
    EP1355068A1 (fr) Dispositif pour diviser ou réunir un débit de fluide
    EP0365420B1 (fr) Mécanisme à fluide sous pression à deux cylindrées et circuit fermé en faisant application
    EP0526333B1 (fr) Mécanisme à fluide sous pression muni d&#39;enceintes d&#39;équilibrage particulières
    EP1573198A1 (fr) Pompe ou moteur hydraulique
    FR2794496A1 (fr) Selecteur de cylindree pour un moteur hydraulique evitant un freinage brutal lors du passage de petite cylindree en grande cylindree
    EP3685075B1 (fr) Bloc d&#39;alimentation pour au moins une machine hydraulique
    FR2554768A1 (fr) Dispositif de transmission de puissance destine a un vehicule
    FR2661456A1 (fr) Mecanisme a fluide sous pression, tel qu&#39;un moteur ou une pompe hydraulique, a plusieurs cylindrees de fonctionnement.
    FR2519402A1 (fr) Distributeur rotatif pour servomecanisme hydraulique
    FR2889262A1 (fr) Mecanisme hydrostatique reglable a pistons axiaux de refoulement effectuant des mouvements de refoulement dephases.
    CA1189388A (fr) Dispositif hydraulique rotatif convertisseur et repartiteur a multi-cylindrees synchronisees
    EP0263218A1 (fr) Mécanisme hydraulique comportant des glace et contre-glace de distribution du fluide
    WO2024231636A1 (fr) Adaptateur de pression ameliore pour systeme hydraulique
    WO2024231634A1 (fr) Adaptateur de pression ameliore pour systeme hydraulique
    FR3005106A1 (fr) Machine volumique rotative a trois pistons

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

    AX Request for extension of the european patent

    Extension state: AL LT LV MK

    17P Request for examination filed

    Effective date: 20040318

    AKX Designation fees paid

    Designated state(s): DE FR GB

    17Q First examination report despatched

    Effective date: 20080130

    GRAP Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOSNIGR1

    GRAS Grant fee paid

    Free format text: ORIGINAL CODE: EPIDOSNIGR3

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): DE FR GB

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    REF Corresponds to:

    Ref document number: 60330619

    Country of ref document: DE

    Date of ref document: 20100204

    Kind code of ref document: P

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed

    Effective date: 20100924

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20140422

    Year of fee payment: 12

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20140411

    Year of fee payment: 12

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R119

    Ref document number: 60330619

    Country of ref document: DE

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20150410

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20150410

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20151103

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: PLFP

    Year of fee payment: 14

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: PLFP

    Year of fee payment: 15

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: PLFP

    Year of fee payment: 16

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20190423

    Year of fee payment: 17

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20200430