Nothing Special   »   [go: up one dir, main page]

EP1342101A1 - Pulse radar method, pulse radar sensor and corresponding system - Google Patents

Pulse radar method, pulse radar sensor and corresponding system

Info

Publication number
EP1342101A1
EP1342101A1 EP01998845A EP01998845A EP1342101A1 EP 1342101 A1 EP1342101 A1 EP 1342101A1 EP 01998845 A EP01998845 A EP 01998845A EP 01998845 A EP01998845 A EP 01998845A EP 1342101 A1 EP1342101 A1 EP 1342101A1
Authority
EP
European Patent Office
Prior art keywords
radar
time
time slot
time slots
radar sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP01998845A
Other languages
German (de)
French (fr)
Inventor
Karl-Heinz Richter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1342101A1 publication Critical patent/EP1342101A1/en
Ceased legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/023Interference mitigation, e.g. reducing or avoiding non-intentional interference with other HF-transmitters, base station transmitters for mobile communication or other radar systems, e.g. using electro-magnetic interference [EMI] reduction techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/10Systems for measuring distance only using transmission of interrupted, pulse modulated waves
    • G01S13/22Systems for measuring distance only using transmission of interrupted, pulse modulated waves using irregular pulse repetition frequency
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/023Interference mitigation, e.g. reducing or avoiding non-intentional interference with other HF-transmitters, base station transmitters for mobile communication or other radar systems, e.g. using electro-magnetic interference [EMI] reduction techniques
    • G01S7/0231Avoidance by polarisation multiplex
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/023Interference mitigation, e.g. reducing or avoiding non-intentional interference with other HF-transmitters, base station transmitters for mobile communication or other radar systems, e.g. using electro-magnetic interference [EMI] reduction techniques
    • G01S7/0235Avoidance by time multiplex
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/0209Systems with very large relative bandwidth, i.e. larger than 10 %, e.g. baseband, pulse, carrier-free, ultrawideband
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/86Combinations of radar systems with non-radar systems, e.g. sonar, direction finder
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9327Sensor installation details
    • G01S2013/93275Sensor installation details in the bumper area

Definitions

  • Pulse radar method as well as pulse radar sensor and system
  • the invention is based on a pulse radar method, in particular for motor vehicles, in which interference signals are observed.
  • the cause of this interference is the high bandwidth of the radar pulses from the SRR. Broadband is necessary in principle in order to ensure a spatial resolution of the radar sensors.
  • a radar sensor transmits at least one radar pulse and receives the echo signal (s). This measurement function is used for the actual obstacle detection. The second measuring function is used for location detection d. H. the radar sensor observes the electromagnetic environment during the remaining time slots of the time frame. On the basis of the interference signals occurring per time slot, it is observed whether a respective time slot is free of interference or not. A decision is then made as to whether the radar sensor should continue to transmit and receive in this time slot or switch to one of the other time slots in the time frame.
  • the average interference emission is reduced. This reduces the electromagnetic pollution.
  • a radar sensor and possibly further radar sensors discard his / her measurements if interference occurs in the time slot (s) used for the transmission and reception mode. This leads to reliable measurements.
  • radar sensors randomly search for little disturbed or undisturbed time slots and maintain such time slots until interference occurs there.
  • Radar sensors belonging to a common system or vehicle, particularly if they are arranged adjacent, are advantageously precontrolled according to claim 8 in such a way that they occupy different time slots within the time frame. A complex search for undisturbed time slots is then unnecessary.
  • Claim 11 shows an advantageous embodiment of a
  • Pulse radar sensor in particular for carrying out the method according to the invention, with which a simple change of a time slot for the transmission and reception of the radar pulses is possible. All that is required is a reversal depending on an evaluated signal.
  • Claim 12 shows how an evaluation of radar pulses with respect to interference can be carried out in a simple manner.
  • Claims 14 to 16 show measures which effectively reduce mutual interference from radar sensors.
  • the simultaneous use of different time slots for different radar sensors and the use of different polarizations results in a high level of immunity to interference within a system.
  • FIG. 1 shows a basic structure of a radar sensor for performing the method according to the invention
  • FIG. 2 shows the staggered use of time slots by different radar sensors
  • Figure 3 shows the mutual interference of radar sensors of two vehicles.
  • a microwave carrier oscillator 2 generates a carrier frequency in the radar sensor 1.
  • trigger pulse-controlled fast switches 3 and 4 in particular diode switches, the continuous signal of the carrier oscillator 2
  • the vibration packet formed via the switch 3 is emitted via an antenna 5. After reflection on a possible obstacle, parts of this signal are collected by the receiving antenna 6 and fed to a mixer 7.
  • This mixer 7 mixes the vibration packet formed via the switch 4 with the received signal.
  • the mixer 7 provides an output signal 8 when the received and the scanning signal coincide (via switch 4). With the help of a controllable pulse delay 9, the sampling pulse is compared to the
  • the pulse delay 9 is controlled by a control voltage 14. The size of the
  • Delay is determined by the known relationship between the two sizes.
  • the output signal 8 of the mixer 7 is passed to a control unit 13 via a bandpass amplifier 12.
  • the control unit 13 evaluates this echo signal.
  • the delay time at which the mixer 7 delivers an output signal is then equal to the transit time of the waves between the radar sensor 1 and the obstacle. From the known propagation speed of the electromagnetic waves and the measured time, the distance of the obstacle is determined.
  • the control unit 13 which can be a microprocessor, supplies trigger pulses 18 which, after appropriate preparation, are passed to the switches 3 and 4 as their trigger signals 10 and 11.
  • the trigger pulses 18 are passed on the one hand via a pulse port 15 and a pulse shaper 16 to the switch 3 and on the other hand via the pulse delay 9 and pulse shaper 17 to the switch 4.
  • a time frame 20 is specified in accordance with FIG. 2, which is shown in FIG.
  • Time slots 21, 22, 23, 24 is divided. After the first time frame 20 has elapsed, another time frame begins again with the time slot 21.
  • the time frame 20 specifies the cycle time of the measurements.
  • Evaluating echoes corresponds to one of these time slots, e.g. B. Time slot 21.
  • the monitoring phase ie the time of the remaining time slots 22, 23, 24 within the time frame 20, is used to observe interference which is caused in particular by other radar sensors and allows one or more other radar sensors to carry out their measurements without being disturbed.
  • a measurement phase (time slot) and three monitoring phases (remaining time slots) for each radar sensor were assumed as an example. This means that four different radar sensors 401, 402 as well as 411 and 412 can be operated without interference. As shown in FIG. 2, their measurement phases are accommodated in different time slots 21, ..., 24. Any integer ratios of monitoring and measuring phases are of course possible.
  • Absolute speed of a vehicle can be and the higher the relative speed change, the shorter a time frame 20 must be).
  • the specification of the time frame 20 and the time slots 21,..., 24 is determined by the control unit 13 through the repetition frequency of the trigger pulses 18 or through the pulse gate 15.
  • the pulse gate 15 realized for example by an AND circuit which receives 18 gate signals 19 from the control unit in addition to the trigger pulses, the trigger pulses can be forwarded or suppressed and thus the measurement phase can be switched on or off - suppression or transmission of the radar pulses.
  • the impulse gate 15 can also be an integral part of the control unit 13, or by internal ones
  • Signal linkage can be implemented within the microprocessor.
  • Each radar sensor is designed so that interference can be detected.
  • the scanning function of the radar sensor is constantly in operation (triggering of switch 4 in every time slot).
  • control unit 13 can be supplied with an interface signal 30 in order to ensure that the radar sensors of this system all have their measurement phase in different time slots and do not interfere with one another.
  • the interference from other radar sensors is expressed by impulses, the temporal distribution of which is random.
  • the mixed output signal 8 is monitored for amplitudes that exceed a certain threshold. If this happens with a certain frequency, it is assumed that another radar sensor is transmitting in this phase. The observing radar sensor will avoid this area as a measurement phase.
  • echo and shock pulses occur simultaneously. If the number of pulses is approximately constant, it can be assumed that there are no interference signals. If the number of impulses fluctuates and is high, then there is a high likelihood of fault impulses. The measurement must then be discarded and restarted after an agreed time.
  • the interference signal is observed in a measurement cycle and the interference areas are determined, then it can be predicted which time slots may not be used by the radar sensors involved.
  • the observing radar sensor can synchronize to a free time slot in the next measuring cycle, e.g. B. time slot 21 and keep this in the further measurements.
  • a threshold value decider is necessary to detect whether there are faults in the other time slots of the time frame. If several radar sensors are disturbed, the measurement in both radar sensors is rejected.
  • the radar sensors again detect free time slots. To avoid the next free Time slot is used again by several radar sensors, the sensors begin to transmit in a free time slot at random.
  • the measurement and monitoring function of the radar sensors can be controlled in a central control device or in the radar sensor itself.
  • a processor (control device 13) in the radar sensor is necessary for this.
  • neighboring sensors can be triggered (pre-controlled) by a common control device so that they use different time slots.
  • This common control device can
  • antennas of different polarization with different radar sensors that are susceptible to interference, in particular antennas with 45 ° polarization for mutual purposes Decoupling.
  • This method assumes that there is no effective polarization rotation due to the installation of the sensors behind the bumpers or other panels. The rotation of the polarization would reduce the suppression again.
  • the simultaneous use of the time slot method and the 45 ° polarization results in a very high level of interference resistance for the system.
  • FIG. 3 shows schematically the interference with two vehicles 40 and 41, each with two sensors 401 and 402 or 411 and 412.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

The invention relates to a pulse radar method, especially for motor vehicles, according to which different time slots (21, ..., 24) of a time frame (20) are predetermined. During one time slot, a radar sensor (1) transmits at least one radar pulse and receives the echo signal(s). During the remaining time slots (22, 23, 24), the radar sensor (1) monitors whether interference signals occur. Based on the number of interference signals occurring per time slot (21, ..., 24), it is decided whether the radar sensor (1) should continue to maintain its transmit mode and receive mode during the predetermined time slot (21) or whether it should change to one of the remaining time slots (22, 23, 24) of the time frame (20). The method is suited for simultaneously operating a number of radar sensors without causing interferences.

Description

Impuls-Radarverfahren sowie Impuls-Radarsensor und SystemPulse radar method as well as pulse radar sensor and system
Stand der TechnikState of the art
Die Erfindung geht aus von einem Impuls-Radarverfahren, insbesondere für Kraftfahrzeuge, bei dem auftretende Storsignale beobachtet werden.The invention is based on a pulse radar method, in particular for motor vehicles, in which interference signals are observed.
Aus der DE 196 31 590 AI ist ein Radarsystem bekannt, das nach einem solchen Verfahren arbeitet. Bei dem dort verwendeten FMCW-Radarverfahren werden einzelneFrom DE 196 31 590 AI a radar system is known which works according to such a method. The FMCW radar method used there uses individual
Zeitabschnitte definiert, in denen der Oszillator modulierte Hochfrequenzsignale abgibt. Wahrend mindestens eines Zeitabschnittes werden keine zur Vermessung von Radarzielen genutzte Signale abgegeben. Die dort auftretenden Storsignale werden aufgenommen und zusammen mit aufgenommenen Radarsignalen ausgewertet, um sie als mögliche falsche Ziele einstufen zu können.Periods defined in which the oscillator emits modulated high-frequency signals. No signals used to measure radar targets are emitted during at least one time period. The interference signals occurring there are recorded and evaluated together with recorded radar signals in order to be able to classify them as possible false targets.
Vorteile der ErfindungAdvantages of the invention
Mit den Maßnahmen der Ansprüche lassen sich gegenseitige Störungen von Impuls-Radarsystemen (Short Range Radar SRR) vermeiden oder zumindest vermindern, insbesondere wenn deren Detektionsbereiche sich überlappen und/oder aufeinander gerichtet sind. Dies ist hauptsachlich in der Umfeldsensorik von Kraftfahrzeugen entscheidend, wo gleichartige Sensoren sich gegenseitig anstrahlen. Dieser Fall tritt besonders bei Systemen der Einparkhilfe (EPH) und Tote-Winkel-Detektion (TWD) auf, weil hier die Detektionsbereiche der Radarsensoren aufeinander gerichtet sein können, wennWith the measures of the claims, mutual interference of pulse radar systems (Short Range Radar SRR) can be avoided or at least reduced, especially if their detection areas overlap and / or are directed towards one another. This is mainly in the environment sensors crucial for motor vehicles, where sensors of the same type illuminate each other. This case occurs particularly with parking aid (EPH) and blind spot detection (TWD) systems, because here the detection areas of the radar sensors can be directed towards each other, if
Fahrzeuge aufeinander zu- oder aneinander vorbeifahren. Ursache dieser Störung ist die hohe Bandbreite der Radarimpulse des SRR. Die Breitbandigkeit ist prinzipiell notwendig, um eine Ortsauflosung der Radarsensoren zu gewahrleisten. Wesentlich für die Erfindung ist dieDrive vehicles towards or past each other. The cause of this interference is the high bandwidth of the radar pulses from the SRR. Broadband is necessary in principle in order to ensure a spatial resolution of the radar sensors. The essential for the invention
Verhinderung von gegenseitigen Störungen beim Impuls-Radar durch Betrieb der einzelnen Radarsensoren in zeitlich gestaffelten Zeitschlitzen eines Zeitrahmens. Es werden dazu zwei Meßfunktionen eines Radarsensors definiert. Wahrend eines vorgegebenen Zeitschlitzes sendet ein Radarsensor mindestens einen Radarimpuls aus und empfangt das/die Echosignal/e. Diese Meßfunktion dient der eigentlichen Hindernisdetektion. Die zweite Meßfunktion dient zur Stordetektion d. h. wahrend der übrigen Zeitschlitze des Zeitrahmens beobachtet der Radarsensor das elektromagnetische Umfeld. Anhand der auftretenden Storsignale pro Zeitschlitz wird beobachtet, ob ein jeweiliger Zeitschlitz störungsfrei ist oder nicht. Danach wird entschieden, ob der Radarsensor seinen Sende- und Empfangsbetrieb weiter in diesem Zeitschlitz aufrechterhalten soll oder in einen der übrigen Zeitschlitze des Zeitrahmens wechseln soll.Prevention of mutual interference in the pulse radar by operating the individual radar sensors in time-staggered time slots of a time frame. Two measurement functions of a radar sensor are defined for this. During a predetermined time slot, a radar sensor transmits at least one radar pulse and receives the echo signal (s). This measurement function is used for the actual obstacle detection. The second measuring function is used for location detection d. H. the radar sensor observes the electromagnetic environment during the remaining time slots of the time frame. On the basis of the interference signals occurring per time slot, it is observed whether a respective time slot is free of interference or not. A decision is then made as to whether the radar sensor should continue to transmit and receive in this time slot or switch to one of the other time slots in the time frame.
Durch diese Maßnahmen wird das Impuls-Radarverfahren (SRR) für den Einsatz in der Nahbereichsensorik, insbesondere für EPH und TWD erst effektiv nutzbar. Ohne Anwendung der erfindungsgemaßen Maßnahmen, wurde es beim Erreichen eines bestimmten Ausrustungsgrades der Kraftfahrzeuge standig zu gegenseitigen Störungen kommen. Der Zusatzaufwand der Erfindung gegenüber herkömmlichen Systemen liegt nur in einer abweichenden Steuerung von bereits vorhandenen Komponenten anhand ausgewerteter Signale. Daher lassen sich die erfindungsgemäßen Maßnahmen in bereits bestehenden Systemen leicht nachrusten, z. B. durch Änderung der Software.These measures make the pulse radar method (SRR) for use in short-range sensors, especially for EPH and TWD, only effective. Without application of the measures according to the invention, mutual disturbances would constantly occur when a certain degree of equipment of the motor vehicles was reached. The additional expense of the invention compared to conventional systems lies only in a different control of already existing components on the basis of evaluated signals. Therefore, the measures according to the invention can easily be retrofitted in already existing systems, e.g. B. by changing the software.
Durch die zeitliche Begrenzung der Ausstrahlung des Radarsensors wird die mittlere Störaussendung reduziert. Damit verringert sich die elektromagnetische Umweltbelastung .By limiting the radiation of the radar sensor over time, the average interference emission is reduced. This reduces the electromagnetic pollution.
Eine Mittelung von Meßwerten, wie etwa bei einer pseudostochastischen Codierung von Triggerimpulsen notwendig und entsprechend zusatzlichen Aufwand erfordernd, ist entbehrlich .It is not necessary to average measured values, as is necessary, for example, in the case of pseudostochastic coding of trigger pulses and requires additional effort.
Gemäss Anspruch 2 ist es vorteilhaft, zur Entscheidung, ob in einem vorgegebenen Zeitschlitz Störungen auftreten, die Anzahl der in diesem Zeitschlitz aktuell auftretenden Impulse und deren Schwankungen heranzuziehen.According to claim 2, it is advantageous to use the number of pulses currently occurring in this time slot and their fluctuations to decide whether faults occur in a given time slot.
Für die Entscheidung, ob in mindestens einem der übrigen Zeitschlitze Störungen auftreten, ist es gemass Anspruch 3 vorteilhaft, die aktuellen Amplitudenwerte im jeweiligen Zeitschlitz heranzuziehen und festzustellen, ob sie eine vorgegebene Schwelle überschreiten.In order to decide whether interference occurs in at least one of the other time slots, it is advantageous according to claim 3 to use the current amplitude values in the respective time slot and to determine whether they exceed a predetermined threshold.
Nach Auffinden eines wenig gestörten oder ungestörten Zeitschlitzes ist es gemass Anspruch 4 vorteilhaft, wenn der Radarsensor seinen Sende- und Empfangsbetrieb im nächsten Zeitrahmen in jenem Zeitschlitz aufnimmt, der die gleiche zeitliche Lage innerhalb des Zeitrahmens aufweist. Gemass Anspruch 5 ist es vorteilhaft, dass sich Radarsensoren, bei denen die Gefahr gegenseitiger Störung besteht, auf einen einheitlichen Zeitrahmen mit entsprechender Zeitschlitzunterteilung einigen.After finding a slightly disturbed or undisturbed time slot, it is advantageous according to claim 4 if the radar sensor starts transmitting and receiving in the next time frame in that time slot that has the same temporal position within the time frame. According to claim 5, it is advantageous that radar sensors, in which there is a risk of mutual interference, agree on a uniform time frame with a corresponding time slot division.
Die Maßnahmen der Ansprüche 4 und 5 tragen dazu bei, dass mehrere Radarsensoren ungestört nebeneinander arbeiten können.The measures of claims 4 and 5 contribute to the fact that several radar sensors can work side by side undisturbed.
Es ist vorteilhaft, wenn gemass Anspruch 6 ein Radarsensor sowie gegebenenfalls weitere Radarsensoren seine/ihre Messungen verwirft/verwerfen, wenn Störungen in dem/den jeweils für Sende- und Empfangsbetrieb benutzten Zeitschlitz/en auftreten. Dies fuhrt zu zuverlässigen Messungen.It is advantageous if, according to claim 6, a radar sensor and possibly further radar sensors discard his / her measurements if interference occurs in the time slot (s) used for the transmission and reception mode. This leads to reliable measurements.
Gemass Anspruch 7 suchen Radarsensoren nach dem Zufallsprinzip wenig gestörte oder ungestörte Zeitschlitze und behalten solche Zeitschlitze solange bei, bis dort Störungen auftreten.According to claim 7, radar sensors randomly search for little disturbed or undisturbed time slots and maintain such time slots until interference occurs there.
Radarsensoren, die zu einem gemeinsamen System oder Fahrzeug gehören, werden, insbesondere wenn sie benachbart angeordnet sind, nach Anspruch 8 vorteilhaft so vorgesteuert, dass sie verschiedene Zeitschlitze innerhalb des Zeitrahmens belegen. Eine aufwendige Suche nach ungestörten Zeitschlitzen ist dann entbehrlich.Radar sensors belonging to a common system or vehicle, particularly if they are arranged adjacent, are advantageously precontrolled according to claim 8 in such a way that they occupy different time slots within the time frame. A complex search for undisturbed time slots is then unnecessary.
Treten bei solchen Radarsensoren starke externe Störungen auf, weichen sie gemass Anspruch 9 nur vorübergehend auf wenig gestorte/ungestorte Zeitschlitze aus und nehmen nach Verringerung der externen Störungen wieder ihren vorgesteuerten Betrieb ein. Es ist gemass Anspruch 10 vorteilhaft, dass zur Storverminderung gleichzeitig arbeitender Radarsensoren eine unterschiedliche Polarisation verwendet wird.If strong external disturbances occur with such radar sensors, according to claim 9 they only temporarily switch to little disturbed / undisturbed time slots and resume their pre-controlled operation after reduction of the external disturbances. It is advantageous according to claim 10 that a different polarization is used to reduce the interference of radar sensors operating simultaneously.
Anspruch 11 zeigt eine vorteilhafte Ausgestaltung einesClaim 11 shows an advantageous embodiment of a
Impuls-Radarsensors auf, insbesondere zur Durchfuhrung des erfindungsge aßen Verfahrens, mit dem ein einfacher Wechsel eines Zeitschlitzes für die Aussendung und den Empfang der Radarimpulse möglich ist. Es ist hierzu lediglich eine Umsteuerung in Abhängigkeit eines ausgewerteten Signals notwendig .Pulse radar sensor, in particular for carrying out the method according to the invention, with which a simple change of a time slot for the transmission and reception of the radar pulses is possible. All that is required is a reversal depending on an evaluated signal.
Anspruch 12 zeigt auf, wie auf einfache Weise eine Auswertung von Radarimpulsen bezuglich Störungen erfolgen kann.Claim 12 shows how an evaluation of radar pulses with respect to interference can be carried out in a simple manner.
Gemass Anspruch 13 können Störungen in den übrigen Zeitschlitzen mit einfachen Mitteln detektiert werden.According to claim 13, disturbances in the remaining time slots can be detected with simple means.
Die Ansprüche 14 bis 16 zeigen Maßnahmen auf, die gegenseitige Störungen von Radarsensoren wirksam vermindern. Insbesondere die gleichzeitige Anwendung unterschiedlicher Zeitschlitze für unterschiedliche Radarsensoren und der Verwendung unterschiedlicher Polarisationen ergibt eine große Storsicherheit innerhalb eines Systems.Claims 14 to 16 show measures which effectively reduce mutual interference from radar sensors. In particular, the simultaneous use of different time slots for different radar sensors and the use of different polarizations results in a high level of immunity to interference within a system.
Zeichnungendrawings
Anhand der Zeichnungen werden Ausfuhrungsbeispiele der Erfindung naher erläutert. Es zeigenExemplary embodiments of the invention are explained in more detail with the aid of the drawings. Show it
Figur 1 einen prinzipiellen Aufbau eines Radarsensors für die Durchfuhrung des erfindungsgemaßen Verfahrens, Figur 2 die gestaffelte Nutzung von Zeitschlitzen durch unterschiedliche Radarsensoren und Figur 3 die gegenseitige Storbeeinflussung von Radarsensoren zweier Fahrzeuge.1 shows a basic structure of a radar sensor for performing the method according to the invention, FIG. 2 shows the staggered use of time slots by different radar sensors and Figure 3 shows the mutual interference of radar sensors of two vehicles.
Beschreibung von AusfuhrungsbeispielenDescription of exemplary embodiments
Wie Figur 1 zeigt, erzeugt im Radarsensor 1 ein Mikrowellentrageroszillator 2 eine Tragerfrequenz. Mit Hilfe triggerimpulsgesteuerten schnellen Schaltern 3 und 4, insbesondere Diodenschaltern, werden aus dem kontinuierlichen Signal des Trageroszillators 2As FIG. 1 shows, a microwave carrier oscillator 2 generates a carrier frequency in the radar sensor 1. With the aid of trigger pulse-controlled fast switches 3 and 4, in particular diode switches, the continuous signal of the carrier oscillator 2
Schwingungspakete geformt. Über eine Antenne 5 wird das über den Schalter 3 geformte Schwingungspaket abgestrahlt. Nach der Reflexion an einem möglichen Hindernis werden Teile dieses Signals von der Empfangsantenne 6 aufgefangen und einem Mischer 7 zugeführt. Dieser Mischer 7 mischt das über den Schalter 4 geformte Schwingungspaket mit dem Empfangssignal. Ein Ausgangssignal 8 liefert der Mischer 7, wenn das empfangene und das abtastende Signal (über Schalter 4) zeitlich zusammenfallen. Mit Hilfe einer steuerbaren Impulsverzogerung 9 wird der Abtastimpuls gegenüber demVibration packets shaped. The vibration packet formed via the switch 3 is emitted via an antenna 5. After reflection on a possible obstacle, parts of this signal are collected by the receiving antenna 6 and fed to a mixer 7. This mixer 7 mixes the vibration packet formed via the switch 4 with the received signal. The mixer 7 provides an output signal 8 when the received and the scanning signal coincide (via switch 4). With the help of a controllable pulse delay 9, the sampling pulse is compared to the
Sendeimpuls verzögert, dadurch, dass der Triggerimpuls 11 für den Schalter 4 über die Impulsverzogerung 9 geleitet wird, wohingegen der Triggerimpuls 10 den Schalter 3 unverzogert erreicht. Die Steuerung der Impulsverzogerung 9 erfolgt durch eine Steuerspannung 14. Die Große derTransmitted pulse delayed by the fact that the trigger pulse 11 for the switch 4 is passed through the pulse delay 9, whereas the trigger pulse 10 reaches the switch 3 without delay. The pulse delay 9 is controlled by a control voltage 14. The size of the
Verzögerung wird durch den bekannten Zusammenhang beider Großen bestimmt. Das Ausgangssignal 8 des Mischers 7 wird über einen Bandpaßverstarker 12 zu einer Steuereinheit 13 geleitet. Die Steuereinheit 13 wertet dieses Echosignal aus.Delay is determined by the known relationship between the two sizes. The output signal 8 of the mixer 7 is passed to a control unit 13 via a bandpass amplifier 12. The control unit 13 evaluates this echo signal.
Die Verzogerungszeit, bei der der Mischer 7 ein Ausgangssignal (Echosignal) liefert, ist dann gleich der Laufzeit der Wellen zwischen Radarsensor 1 und Hindernis. Aus der bekannten Ausbreitungsgeschwindigkeit der elektromagnetischen Wellen und der gemessenen Zeit wird der Abstand des Hindernisses bestimmt.The delay time at which the mixer 7 delivers an output signal (echo signal) is then equal to the transit time of the waves between the radar sensor 1 and the obstacle. From the known propagation speed of the electromagnetic waves and the measured time, the distance of the obstacle is determined.
Die Steuereinheit 13, die ein Mikroprozessor sein kann, liefert Triggerimpulse 18, die nach entsprechender Aufbereitung zu den Schaltern 3 und 4 als deren Triggersignale 10 und 11 geleitet werden. Die Triggerimpulse 18 werden einerseits über ein Impulstor 15 und einen Impulsformer 16 zum Schalter 3 geleitet und andererseits über die Impulsverzogerung 9 und Impulsformer 17 zum Schalter 4.The control unit 13, which can be a microprocessor, supplies trigger pulses 18 which, after appropriate preparation, are passed to the switches 3 and 4 as their trigger signals 10 and 11. The trigger pulses 18 are passed on the one hand via a pulse port 15 and a pulse shaper 16 to the switch 3 and on the other hand via the pulse delay 9 and pulse shaper 17 to the switch 4.
Für die Aussendung der Schwingungspakete, d. h. der Radarimpulse, wird gemass Figur 2 ein Zeitrahmen 20 vorgegeben, der im gezeigten Ausfuhrungsbeispiel in dieFor the transmission of the vibration packets, d. H. of the radar pulses, a time frame 20 is specified in accordance with FIG. 2, which is shown in FIG
Zeitschlitze 21, 22, 23, 24 unterteilt ist. Nach Ablauf des ersten Zeitrahmens 20 beginnt ein weiterer Zeitrahmen wieder mit dem Zeitschlitz 21. Der Zeitrahmen 20 gibt die Zykluszeit der Messungen vor. Die Meßphase, d. h. die Zeit wahrend der ein Radarsensor Radarimpulse sendet und derenTime slots 21, 22, 23, 24 is divided. After the first time frame 20 has elapsed, another time frame begins again with the time slot 21. The time frame 20 specifies the cycle time of the measurements. The measurement phase, d. H. the time during which a radar sensor sends radar pulses and their
Echos auswertet, entspricht einem dieser Zeitschlitze, z. B. Zeitschlitz 21. Die Uberwachungsphase, d. h. die Zeit der übrigen Zeitschlitze 22, 23, 24 innerhalb des Zeitrahmens 20, dient der Beobachtung von Störungen, die insbesondere durch andere Radarsensoren hervorgerufen werden und erlaubt einem oder mehreren anderen Radarsensoren, ungestört ihre Messungen durchzufuhren. In Figur 2 wurde als Beispiel eine Meßphase (Zeitschlitz) und drei Uberwachungsphasen (übrige Zeitschlitze) für jeden Radarsensor angenommen. Damit lassen sich vier verschiedene Radarsensoren 401, 402 sowie 411 und 412 störungsfrei betreiben. Ihre Meßphasen sind, wie Figur 2 zeigt, in unterschiedlichen Zeitschlitzen 21, ..., 24 untergebracht. Es sind naturlich beliebige ganzzahlige Verhaltnisse von Uberwachungs- und Meßphasen möglich. Begrenzt wird diese Unterteilung einmal durch eine untere Begrenzung für die Meßrate, d. h. die Verkürzung der Meßrate muss technisch noch tolerierbar sein, um zuverlässige Ergebnisse zu liefern und zum zweiten durch die Lange eines Zeitrahmens, d. h. die Wiederholung von Messungen muss den Erfordernissen angepaßt sein (je höher dieEvaluating echoes corresponds to one of these time slots, e.g. B. Time slot 21. The monitoring phase, ie the time of the remaining time slots 22, 23, 24 within the time frame 20, is used to observe interference which is caused in particular by other radar sensors and allows one or more other radar sensors to carry out their measurements without being disturbed. In Figure 2, a measurement phase (time slot) and three monitoring phases (remaining time slots) for each radar sensor were assumed as an example. This means that four different radar sensors 401, 402 as well as 411 and 412 can be operated without interference. As shown in FIG. 2, their measurement phases are accommodated in different time slots 21, ..., 24. Any integer ratios of monitoring and measuring phases are of course possible. This subdivision is limited by a lower one Limitation for the measuring rate, ie the shortening of the measuring rate must still be technically tolerable in order to deliver reliable results and secondly by the length of a time frame, ie the repetition of measurements must be adapted to the requirements (the higher the
Absolutgeschwindigkeit eines Fahrzeuges sein kann und je hoher die relative Geschwindigkeitsänderung ist, um so kurzer muss ein Zeitrahmen 20 sein) .Absolute speed of a vehicle can be and the higher the relative speed change, the shorter a time frame 20 must be).
Die Vorgabe des Zeitrahmens 20 und der Zeitschlitze 21, ..., 24 wird von der Steuereinheit 13 durch die Wiederholfrequenz der Triggerimpulse 18 beziehungsweise durch das Impulstor 15 festgelegt. Mit dem Impulstor 15, beispielsweise realisiert durch eine Und-Schaltung, die neben den Triggerimpulsen 18 Torsignale 19 von der Steuereinheit zugeleitet bekommt, können die Triggerimpulse weitergeleitet oder unterdruckt werden und damit die Meßphase ab- oder zugeschaltet werden - Unterdrückung oder Aussendungen der Radarimpulse. Das Impulstor 15 kann auch integraler Bestandteil der Steuereinheit 13 sein, beziehungsweise durch interneThe specification of the time frame 20 and the time slots 21,..., 24 is determined by the control unit 13 through the repetition frequency of the trigger pulses 18 or through the pulse gate 15. With the pulse gate 15, realized for example by an AND circuit which receives 18 gate signals 19 from the control unit in addition to the trigger pulses, the trigger pulses can be forwarded or suppressed and thus the measurement phase can be switched on or off - suppression or transmission of the radar pulses. The impulse gate 15 can also be an integral part of the control unit 13, or by internal ones
Signalverknupfung innerhalb des Mikroprozessors realisiert sein. Jeder Radarsensor ist so aufgebaut, dass Störungen erkannt werden können. Dazu ist die Abtastfunktion des Radarsensors standig in Betrieb (Triggerung des Schalters 4 in jedem Zeitschlitz) .Signal linkage can be implemented within the microprocessor. Each radar sensor is designed so that interference can be detected. For this purpose, the scanning function of the radar sensor is constantly in operation (triggering of switch 4 in every time slot).
Wenn mehrere Radarsensoren m einem System zusammenarbeiten, kann der Steuereinheit 13 ein Interface-Signal 30 zugeleitet werden, um sicherzustellen, dass die Radarsensoren dieses Systems alle in verschiedenen Zeitschlitzen ihre Meßphase haben und sich gegenseitig nicht stören.If several radar sensors work together in a system, the control unit 13 can be supplied with an interface signal 30 in order to ensure that the radar sensors of this system all have their measurement phase in different time slots and do not interfere with one another.
Die Störungen durch andere Radarsensoren äußern sich durch Impulse, deren zeitliche Verteilung zufallig ist. In der Uberwachungsphase wird das Mischausgangssignal 8 auf Amplituden hin überwacht, die eine bestimmte Schwelle überschreiten. Geschieht dies mit einer bestimmten Häufigkeit, dann wird angenommen, dass ein anderer Radarsensor in dieser Phase sendet. Der beobachtende Radarsensor wird diesen Bereich als Meßphase meiden.The interference from other radar sensors is expressed by impulses, the temporal distribution of which is random. In the monitoring phase, the mixed output signal 8 is monitored for amplitudes that exceed a certain threshold. If this happens with a certain frequency, it is assumed that another radar sensor is transmitting in this phase. The observing radar sensor will avoid this area as a measurement phase.
In der Meßphase treten Echo- und Stoπmpulse gleichzeitig auf. Ist die Anzahl der Impulse etwa konstant, dann kann davon ausgegangen werden, dass keine Storsignale vorhanden sind. Schwankt die Zahl der Impulse und ist sie hoch, dann sind mit hoher Wahrscheinlichkeit Storimpulse vorhanden. Die Messung muss dann verworfen und nach einer vereinbarten Zeit neu gestartet werden.In the measuring phase, echo and shock pulses occur simultaneously. If the number of pulses is approximately constant, it can be assumed that there are no interference signals. If the number of impulses fluctuates and is high, then there is a high likelihood of fault impulses. The measurement must then be discarded and restarted after an agreed time.
Vorteilhaft ist es, wenn sich alle Impulsradarsysteme an ein einen einheitlichen Meßzyklus halten. Wird das Storsignal in einem Meßzyklus beobachtet und werden die Storbereiche ermittelt, dann kann vorausgesagt werden, welche Zeitschlitze von den beteiligten Radarsensoren nicht benutzt werden dürfen. Der beobachtende Radarsensor kann sich im nächsten Meßzyklus auf einen freien Zeitschlitz synchronisieren, z. B. Zeitschlitz 21 und diesen bei den weiteren Messungen beibehalten.It is advantageous if all pulse radar systems adhere to a uniform measurement cycle. If the interference signal is observed in a measurement cycle and the interference areas are determined, then it can be predicted which time slots may not be used by the radar sensors involved. The observing radar sensor can synchronize to a free time slot in the next measuring cycle, e.g. B. time slot 21 and keep this in the further measurements.
Senden zwei oder mehrere Radarsensoren gleichzeitig und die Störungen sind so, dass mindestens ein Radarsensor gestört wird, dann wird die Messung verworfen. Hierzu ist ein Schwellwertentscheider notwendig zu Detektion, ob in den übrigen Zeitschlitzen des Zeitrahmens Störungen vorliegen. Werden mehrere Radarsensoren gestört, dann wird in beiden Radarsensoren die Messung verworfen.If two or more radar sensors transmit simultaneously and the interference is such that at least one radar sensor is disturbed, then the measurement is rejected. For this purpose, a threshold value decider is necessary to detect whether there are faults in the other time slots of the time frame. If several radar sensors are disturbed, the measurement in both radar sensors is rejected.
Durch Beobachtung stellen die Radarsensoren wieder freie Zeitschlitze fest. Um zu vermeiden, dass der nächste freie Zeitschlitz wieder von mehreren Radarsensoren genutzt wird, fangen die Sensoren nach dem Zufallsprinzip in einem freien Zeitschlitz an zu senden.Through observation, the radar sensors again detect free time slots. To avoid the next free Time slot is used again by several radar sensors, the sensors begin to transmit in a free time slot at random.
Da durch das Zufallsprinzip nicht völlig ausgeschlossen werden kann, dass trotzdem mehrere Radarsensoren senden, wird bei erneuten Störungen die laufende Messung verworfen und nach dem geschilderten Prinzip wieder ein freier Zeitschlitz gesucht.Since it cannot be completely ruled out by the random principle that several radar sensors still transmit, the current measurement is discarded in the event of renewed interference and a free time slot is sought again according to the principle described.
Die Steuerung der Meß- und Uberwachungsfunktion der Radarsensoren kann in einem zentralen Steuergerat oder im Radarsensor selbst erfolgen. Im zweiten Fall ist dazu ein Prozessor (Steuereinrichtung 13) im Radarsensor notwendig.The measurement and monitoring function of the radar sensors can be controlled in a central control device or in the radar sensor itself. In the second case, a processor (control device 13) in the radar sensor is necessary for this.
Um die Störungen der Radarsensoren in einem Fahrzeug von vornherein zu minimieren, können benachbarte Sensoren so von einer gemeinsamen Steuereinrichtung getriggert (vorgesteuert) werden, dass sie verschiedene Zeitschlitze benutzen. Diese gemeinsame Steuereinrichtung kann dieIn order to minimize the interference of the radar sensors in a vehicle from the outset, neighboring sensors can be triggered (pre-controlled) by a common control device so that they use different time slots. This common control device can
Steuereinrichtung 13 der Radarsensoren über das Interface- Signal 30 entsprechend steuern. Nur im Fall von starken externen Störungen werden sie automatisch auf weniger gestörte Zeitschlitze ausweichen. Nach Verschwinden der Störungen nehmen die Radarsensoren wieder ihre ursprunglichen Zeitschlitze ein. Die Änderung ist möglich, weil die gegenseitigen Störungen von benachbarten Radarsensoren in einem Stoßfanger z. B. geringer sind, als die Störungen, die von Radarsensoren in einem anderen Fahrzeug ausgehen, deren Radarsensoren direkt aufeinander gerichtet sind, vgl. Figur 3.Control the control device 13 of the radar sensors accordingly via the interface signal 30. Only in the case of strong external disturbances will they automatically switch to less disturbed time slots. After the interference has disappeared, the radar sensors resume their original time slots. The change is possible because the mutual interference from adjacent radar sensors in a bumper z. B. are less than the interference emanating from radar sensors in another vehicle, the radar sensors of which are directed directly towards one another, cf. Figure 3.
Vorteilhaft ist es, Antennen unterschiedlicher Polarisation bei verschiedenen storgefahrdeten Radarsensoren einzusetzen, insbesondere Antennen mit 45°-Polaπsation zur gegenseitigen Entkopplung. Bei dieser Methode wird vorausgesetzt, dass keine effektive Polansationsdrehung durch den Einbau der Sensoren hinter den Stoßfängern oder anderen Verkleidungen auftritt. Die Drehung der Polarisation wurde die Unterdrückung wieder reduzieren. Die gleichzeitige Anwendung des Zeitschlitzverfahrens und der 45°-Polaπsatιon ergibt eine sehr hohe Storsicherheit des Systems.It is advantageous to use antennas of different polarization with different radar sensors that are susceptible to interference, in particular antennas with 45 ° polarization for mutual purposes Decoupling. This method assumes that there is no effective polarization rotation due to the installation of the sensors behind the bumpers or other panels. The rotation of the polarization would reduce the suppression again. The simultaneous use of the time slot method and the 45 ° polarization results in a very high level of interference resistance for the system.
Figur 3 zeigt schematisch die Storbeeinflussung bei zwei Fahrzeugen 40 und 41 mit jeweils zwei Sensoren 401 und 402 beziehungsweise 411 und 412.FIG. 3 shows schematically the interference with two vehicles 40 and 41, each with two sensors 401 and 402 or 411 and 412.
Damit gleichartige Produkte anderer Hersteller mit dem erfindungsgemaßen Verfahren kompatibel sind, ist es vorteilhaft, wenn alle Radarsensoren für die eine hohe Wahrscheinlichkeit gegenseitiger Störungen besteht, den gleichen Zeitrahmen 20 mit gleicher Zeitschlitzunterteilung benutzen. So that similar products from other manufacturers are compatible with the method according to the invention, it is advantageous if all radar sensors for which there is a high probability of mutual interference use the same time frame 20 with the same time slot division.

Claims

Ansprüche Expectations
1. Impuls-Radarverfahren, insbesondere für Kraftfahrzeuge mit folgenden Schritten:1. Impulse radar method, in particular for motor vehicles, with the following steps:
- wahrend eines vorgegebenen Zeitschlitzes (21) eines Zeitrahmens (20) sendet ein Radarsensor (1) mindestens einen Radarimpuls aus und empfangt das/die Echosignal/e,- During a predetermined time slot (21) of a time frame (20), a radar sensor (1) sends out at least one radar pulse and receives the echo signal (s),
- wahrend der übrigen Zeitschlitze (22, 23, 24) des Zeitrahmens (20) beobachtet der Radarsensor (1), ob Storsignale auftreten, - anhand der auftretenden Storsignale pro Zeitschlitz (21, ..., 24) wird entschieden, ob der Radarsensor (1) seinen Sende- und Empfangsbetrieb weiter im vorgegebenen Zeitschlitz (21) aufrechterhalten soll oder in einen der übrigen Zeitschlitze (22, 23, 24) des Zeitrahmens (20) wechseln soll.- During the remaining time slots (22, 23, 24) of the time frame (20), the radar sensor (1) observes whether interference signals occur - based on the interference signals occurring per time slot (21, ..., 24), a decision is made as to whether the radar sensor (1) to continue its transmission and reception operation in the specified time slot (21) or to switch to one of the other time slots (22, 23, 24) of the time frame (20).
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass zur Entscheidung, ob in einem vorgegebenen Zeitschlitz (21, ..., 24) Störungen auftreten, die Anzahl der in diesem Zeitschlitz (21, ..., 24) aktuell auftretenden Impulse und deren Schwankungen herangezogen werden.2. The method according to claim 1, characterized in that for deciding whether faults occur in a given time slot (21, ..., 24), the number of pulses and currently occurring in this time slot (21, ..., 24) whose fluctuations are used.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass zur Entscheidung, ob in mindestens einem der übrigen Zeitschlitze (22, 23, 24) des Zeitrahmens (20) Störungen auftreten, die aktuellen Amplitudenwerte im jeweiligen Zeitschlitz herangezogen werden, die eine vorgegebene Schwelle überschreiten.3. The method according to claim 1 or 2, characterized in that for deciding whether in at least one of the remaining time slots (22, 23, 24) of the time frame (20) interference occur, the current amplitude values are used in the respective time slot that exceed a predetermined threshold.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass nach Auffinden eines wenig gestörten oder ungestörten Zeitschlitzes (21, ..., 24) der Radarsensor (1) seinen Sende- und Empfangsbetrieb im nächsten Zeitrahmen (20) in jenem Zeitschlitz (21) aufnimmt, der die gleiche zeitliche Lage innerhalb des Zeitrahmens (20) aufweist.4. The method according to any one of claims 1 to 3, characterized in that after finding a little disturbed or undisturbed time slot (21, ..., 24) of the radar sensor (1) its transmit and receive operation in the next time frame (20) in that Time slot (21) takes up, which has the same temporal position within the time frame (20).
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass sich Radarsensoren (401, 402, 411, 412), bei denen die Gefahr gegenseitiger Störung besteht, auf einen einheitlichen Zeitrahmen (20) mit entsprechender Zeitschlitzunterteilung einigen.5. The method according to any one of claims 1 to 4, characterized in that radar sensors (401, 402, 411, 412), in which there is a risk of mutual interference, agree on a uniform time frame (20) with a corresponding time slot division.
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass der Radarsensor (1, 401) sowie gegebenenfalls weitere Radarsensoren (402, 411, 412) seine/ihre Messungen verwirft/verwerfen, wenn Störungen in dem/den jeweils für Sende- und Empfangsbetrieb benutzten Zeitschlitz/en (21, ..., 24) auftreten.6. The method according to any one of claims 1 to 5, characterized in that the radar sensor (1, 401) and optionally other radar sensors (402, 411, 412) discards his / her measurements if there are any faults in the / for transmission and time slots (21, ..., 24) used in reception and reception mode.
7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass der Radarsensor (1, 401) beziehungsweise die weiteren Radarsensoren (402, 411, 412) nach dem Zufallsprinzip wenig gestörte oder ungestörte Zeitschlitze suchen und gefundene wenig gestörte oder ungestörte Zeitschlitze so lange beibehalten, bis dort Störungen auftreten.7. The method according to claim 6, characterized in that the radar sensor (1, 401) or the other radar sensors (402, 411, 412) randomly search for little disturbed or undisturbed time slots and keep found little disturbed or undisturbed time slots until interference occurs there.
8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass Radarsensoren (1, 401, 402, 411, 412), die zu einem gemeinsamen System oder einem Fahrzeug gehören und insbesondere benachbart angeordnet sind, hinsichtlich ihrer Zeitschlitze für Sende- und Empfangsbetrieb bereits so vorgesteuert werden, dass sie verschiedene Zeitschlitze (21, ..., 24) innerhalb eines Zeitrahmens (20) belegen.8. The method according to any one of claims 1 to 7, characterized in that radar sensors (1, 401, 402, 411, 412), which belong to a common system or a vehicle and are arranged in particular adjacent, with respect their time slots for transmitting and receiving operations are already controlled in such a way that they occupy different time slots (21, ..., 24) within a time frame (20).
9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass bereits vorgesteuerte Radarsensoren nur vorübergehend, insbesondere bei starken externen Störungen, auf wenig gestörte oder ungestörte Zeitschlitze (21, ..., 24) ausweichen und nach Verringerung der externen Störungen wieder ihren vorgesteuerten Betrieb einnehmen.9. The method according to claim 8, characterized in that already controlled radar sensors only temporarily, especially in the case of strong external interference, switch to little disturbed or undisturbed time slots (21, ..., 24) and resume their controlled operation after reducing the external interference ,
10. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass für Radarsensoren, bei denen die Gefahr gegenseitiger Störung besteht, eine unterschiedliche Polarisation, z. B. eine um 45° unterschiedliche Polarisation, verwendet wird.10. The method according to any one of claims 1 to 9, characterized in that for radar sensors in which there is a risk of mutual interference, a different polarization, for. B. 45 ° different polarization is used.
11. Impuls-Radarsensor, insbesondere für Kraftfahrzeuge, mit folgenden Merkmalen: - Mittel (12) zum Erzeugen eines Tragerfrequenzsignals,11. pulse radar sensor, in particular for motor vehicles, with the following features: means (12) for generating a carrier frequency signal,
- Mittel (3, 4) zur Ableitung von Radarimpulsen aus diesem Tragerfrequenzsignal,Means (3, 4) for deriving radar pulses from this carrier frequency signal,
- Mittel zur Aussendung (5) und zum Empfang (6) von Radarimpulsen, - Mittel (13, 15) zur Vorgabe von Zeitschlitzen (21, ...,- means for transmitting (5) and receiving (6) radar pulses, - means (13, 15) for specifying time slots (21, ...,
24) innerhalb eines Zeitrahmens (20) für die Aussendung und den Empfang der Radarimpulse,24) within a time frame (20) for the transmission and reception of the radar pulses,
- Mittel zur Auswertung (12, 13) gesendeter Radarimpulse hinsichtlich auftretender Störungen, - Mittel (12, 13, 15) zum Wechsel eines Zeitschlitzes (21,- Means for evaluating (12, 13) transmitted radar impulses with regard to occurring disturbances, - Means (12, 13, 15) for changing a time slot (21,
..., 24) für die Aussendung und den Empfang der Radarimpulse in Abhängigkeit mindestens eines Signals (19), das von den Mitteln zur Auswertung (12, 13, 15) gesendeter Radarimpulse abgebbar ist. ..., 24) for the transmission and reception of the radar pulses depending on at least one signal (19) which can be emitted by the means for evaluating (12, 13, 15) transmitted radar pulses.
12. Impuls-Radarsensor nach Anspruch 11, dadurch gekennzeichnet, dass die Mittel (12, 13,15) zur Auswertung gesendeter Radarimpulse derart ausgestaltet sind, dass eine Zählung der aktuell in einem Zeitschlitz auftretender Radarimpulse möglich ist sowie eine Erfassung von deren Schwankungen .12. The pulse radar sensor according to claim 11, characterized in that the means (12, 13, 15) for evaluating transmitted radar pulses are designed such that counting of the radar pulses currently occurring in a time slot is possible and detection of their fluctuations.
13. Impuls-Radarsensor nach Anspruch 11 oder 12, dadurch gekennzeichnet, dass ein Schwellwertentscheider vorgesehen ist zur Detektion, ob in übrigen Zeitschlitzen (22, 23, 24) des Zeitrahmens (20) Störungen vorliegen.13. Pulse radar sensor according to claim 11 or 12, characterized in that a threshold value decoder is provided for detecting whether there are disturbances in other time slots (22, 23, 24) of the time frame (20).
14. System bestehend aus mindestens zwei Impuls- Radarsensoren nach einem der Ansprüche 11 bis 13, dadurch gekennzeichnet, dass die Radarsensoren (401, 402 beziehungsweise 411, 412) einen einheitlichen Zeitrahmen (20) aufweisen und dass eine gemeinsame Steuereinrichtung, insbesondere für benachbart angeordnete Radarsensoren vorgesehen ist zur Vorsteuerung dieser Radarsensoren derart, dass jeder Radarsensor einen unterschiedlichen Zeitschlitz innerhalb des Zeitrahmens (20) belegen kann.14. System consisting of at least two pulse radar sensors according to one of claims 11 to 13, characterized in that the radar sensors (401, 402 or 411, 412) have a uniform time frame (20) and that a common control device, in particular for adjacent ones Radar sensors are provided for pilot control of these radar sensors in such a way that each radar sensor can occupy a different time slot within the time frame (20).
15. System nach Anspruch 14, dadurch gekennzeichnet, dass Mittel (13, 15) vorgesehen sind zur Abweichung von dieser Vorsteurung, insbesondere bei vorübergehenden starken externen Störungen.15. System according to claim 14, characterized in that means (13, 15) are provided for deviating from this precontrol, in particular in the case of temporary strong external disturbances.
16. System nach Anspruch 14 oder 15, dadurch gekennzeichnet, dass die Radarsensoren voneinander unterschiedliche Polarisationen aufweisen. 16. System according to claim 14 or 15, characterized in that the radar sensors have mutually different polarizations.
EP01998845A 2000-12-01 2001-10-13 Pulse radar method, pulse radar sensor and corresponding system Ceased EP1342101A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10059673A DE10059673A1 (en) 2000-12-01 2000-12-01 Pulse radar method as well as pulse radar sensor and system
DE10059673 2000-12-01
PCT/DE2001/003932 WO2002044750A1 (en) 2000-12-01 2001-10-13 Pulse radar method, pulse radar sensor and corresponding system

Publications (1)

Publication Number Publication Date
EP1342101A1 true EP1342101A1 (en) 2003-09-10

Family

ID=7665377

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01998845A Ceased EP1342101A1 (en) 2000-12-01 2001-10-13 Pulse radar method, pulse radar sensor and corresponding system

Country Status (5)

Country Link
US (1) US6888491B2 (en)
EP (1) EP1342101A1 (en)
JP (1) JP4102666B2 (en)
DE (1) DE10059673A1 (en)
WO (1) WO2002044750A1 (en)

Families Citing this family (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10059673A1 (en) * 2000-12-01 2002-06-06 Bosch Gmbh Robert Pulse radar method as well as pulse radar sensor and system
WO2003107528A2 (en) * 2002-06-18 2003-12-24 Automotive Distance Control Systems Gmbh Circuit arrangement for generating an iq signal
DE10347364A1 (en) 2003-10-11 2005-05-12 Valeo Schalter & Sensoren Gmbh Method for detecting an obstacle in the detection area of a detection device
DE102004026182A1 (en) * 2004-05-28 2005-12-22 Robert Bosch Gmbh Method for reducing noise influences on a high-frequency measuring device, and high-frequency measuring device
JP2006135891A (en) * 2004-11-09 2006-05-25 Oki Electric Ind Co Ltd Wireless communication method
US7327308B2 (en) * 2005-04-28 2008-02-05 Chung Shan Institute Of Science And Technology, Armaments Bureau, M.N.D. Programmable method and test device for generating target for FMCW radar
JPWO2006123499A1 (en) * 2005-05-16 2008-12-25 株式会社村田製作所 Radar
JP4923439B2 (en) * 2005-05-20 2012-04-25 株式会社デンソー Radar interference suppression method
DE102005052369A1 (en) 2005-10-31 2007-05-03 Robert Bosch Gmbh Measuring apparatus where the frequency range is checked for independent interfering signals before transmission
DE102005056800A1 (en) * 2005-11-29 2007-05-31 Valeo Schalter Und Sensoren Gmbh Motor vehicle radar system operating method, involves receiving transmission signal by sensor module in monitoring mode to obtain information about operating condition of another module, where signal is transmitted from latter module
JP2007232498A (en) * 2006-02-28 2007-09-13 Hitachi Ltd Obstacle detecting system
JP4519797B2 (en) * 2006-03-30 2010-08-04 富士通テン株式会社 In-vehicle radar device and in-vehicle radar control system
US7714770B2 (en) * 2007-07-16 2010-05-11 Honeywell International Inc. Filtering NAGC response to noise spikes
US7518547B2 (en) * 2007-07-16 2009-04-14 Honeywell International Inc. Method and system of interference detection for radar altimeters
DE102007046645A1 (en) * 2007-09-28 2009-04-02 Robert Bosch Gmbh measuring device
DE102008040024A1 (en) * 2008-06-30 2009-12-31 Robert Bosch Gmbh Control network for motor vehicles
JP5703441B2 (en) * 2010-11-16 2015-04-22 パナソニックIpマネジメント株式会社 Radar equipment
WO2013140303A1 (en) 2012-03-20 2013-09-26 Koninklijke Philips N.V. Interference detection in a network of active sensors
JP6190140B2 (en) * 2012-06-21 2017-08-30 古野電気株式会社 Target detection apparatus and target detection method
WO2014090270A1 (en) * 2012-12-10 2014-06-19 Fujitsu Technology Solutions Intellectual Property Gmbh Sensor device, operating method for a sensor device and use of a sensor device
US9952311B2 (en) * 2013-02-12 2018-04-24 Furuno Electric Co., Ltd. Radar apparatus and method of reducing interference
DE102014203723A1 (en) * 2014-02-28 2015-09-03 Robert Bosch Gmbh Method for operating mobile platforms
FR3020491B1 (en) * 2014-04-24 2016-05-27 Hugues Body VEHICLE PARKING MANAGEMENT DEVICE AND MANAGEMENT METHOD USING THE SAME
DE102014014307A1 (en) * 2014-09-25 2016-03-31 Audi Ag Method for operating a plurality of radar sensors in a motor vehicle and motor vehicle
US10101436B2 (en) * 2014-10-31 2018-10-16 The United States Of America As Represented By The Secretary Of The Army Method and apparatus for bandwidth selection for radar transmission
CN105652245B (en) * 2015-12-29 2019-03-15 北京华航无线电测量研究所 A kind of solid state pulse compression radar width is from covering method
US10261179B2 (en) 2016-04-07 2019-04-16 Uhnder, Inc. Software defined automotive radar
US9846228B2 (en) 2016-04-07 2017-12-19 Uhnder, Inc. Software defined automotive radar systems
US9689967B1 (en) 2016-04-07 2017-06-27 Uhnder, Inc. Adaptive transmission and interference cancellation for MIMO radar
US9791564B1 (en) 2016-04-25 2017-10-17 Uhnder, Inc. Adaptive filtering for FMCW interference mitigation in PMCW radar systems
WO2017187304A2 (en) 2016-04-25 2017-11-02 Uhnder, Inc. Digital frequency modulated continuous wave radar using handcrafted constant envelope modulation
US9806914B1 (en) 2016-04-25 2017-10-31 Uhnder, Inc. Successive signal interference mitigation
WO2017187242A1 (en) 2016-04-25 2017-11-02 Uhnder, Inc. On-demand multi-scan micro doppler for vehicle
US10573959B2 (en) 2016-04-25 2020-02-25 Uhnder, Inc. Vehicle radar system using shaped antenna patterns
US9791551B1 (en) 2016-04-25 2017-10-17 Uhnder, Inc. Vehicular radar system with self-interference cancellation
EP3449272B1 (en) 2016-04-25 2022-11-02 Uhnder, Inc. Vehicle radar system with a shared radar and communication system, and method for managing such a system in a vehicle
US9772397B1 (en) * 2016-04-25 2017-09-26 Uhnder, Inc. PMCW-PMCW interference mitigation
US9575160B1 (en) 2016-04-25 2017-02-21 Uhnder, Inc. Vehicular radar sensing system utilizing high rate true random number generator
US9753121B1 (en) 2016-06-20 2017-09-05 Uhnder, Inc. Power control for improved near-far performance of radar systems
US9869762B1 (en) 2016-09-16 2018-01-16 Uhnder, Inc. Virtual radar configuration for 2D array
US10317511B2 (en) 2016-11-15 2019-06-11 Veoneer Us, Inc. Systems and methods for synchronizing processor operations over a communications network
US11454697B2 (en) 2017-02-10 2022-09-27 Uhnder, Inc. Increasing performance of a receive pipeline of a radar with memory optimization
US10670695B2 (en) 2017-02-10 2020-06-02 Uhnder, Inc. Programmable code generation for radar sensing systems
US10908272B2 (en) 2017-02-10 2021-02-02 Uhnder, Inc. Reduced complexity FFT-based correlation for automotive radar
US10983206B2 (en) * 2017-11-07 2021-04-20 FLIR Belgium BVBA Low cost high precision GNSS systems and methods
WO2019036587A1 (en) 2017-08-17 2019-02-21 Tokyo Electron Limited Apparatus and method for real-time sensing of properties in industrial manufacturing equipment
EP3444628A1 (en) * 2017-08-18 2019-02-20 Nxp B.V. Radar unit, integrated circuit and methods for detecting and mitigating mutual interference
US11105890B2 (en) 2017-12-14 2021-08-31 Uhnder, Inc. Frequency modulated signal cancellation in variable power mode for radar applications
KR20210011388A (en) 2018-06-18 2021-02-01 도쿄엘렉트론가부시키가이샤 Real-time detection with mitigated interference to the characteristics of manufacturing equipment
US11656321B2 (en) * 2018-07-23 2023-05-23 Richwave Technology Corp. Method of microwave motion detection with adaptive frequency control and related devices
US11474225B2 (en) 2018-11-09 2022-10-18 Uhnder, Inc. Pulse digital mimo radar system
US11681017B2 (en) 2019-03-12 2023-06-20 Uhnder, Inc. Method and apparatus for mitigation of low frequency noise in radar systems
WO2021061106A1 (en) 2019-09-24 2021-04-01 Intel Corporation Methods and apparatus to manage automotive radar coordination
WO2021144710A2 (en) 2020-01-13 2021-07-22 Uhnder, Inc. Method and system for multi-chip operation of radar systems
EP4109135A4 (en) * 2020-03-17 2023-04-26 Huawei Technologies Co., Ltd. Signal processing method and apparatus, and storage medium
DE102020107372A1 (en) * 2020-03-18 2021-09-23 HELLA GmbH & Co. KGaA Method for operating a radar system
US11822003B2 (en) * 2021-03-01 2023-11-21 Qualcomm Incorporated Methods and systems for adjusting radar parameters based on congestion measurements
KR102628228B1 (en) * 2021-06-15 2024-01-23 현대모비스 주식회사 Radar signal processing system and processing method

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2871346A (en) * 1954-05-13 1959-01-27 Sanders Associates Inc Noise comparison signal detecting system
US3497815A (en) * 1967-11-28 1970-02-24 Us Navy Automatic noise rejection apparatus
JPS4856083A (en) * 1971-11-12 1973-08-07
US3801979A (en) * 1972-04-26 1974-04-02 J Chisholm Integrated collision avoidance, dme, telemetry, and synchronization system
US4370652A (en) * 1980-07-02 1983-01-25 Sperry Corporation Control systems for radar receivers
GB2088667B (en) * 1980-09-27 1985-02-20 Marconi Co Ltd A radar system emloying pulses of different types
JPS59187279A (en) * 1983-04-07 1984-10-24 Nec Corp System of removing interference
JPS61133885A (en) * 1984-12-04 1986-06-21 Nec Corp Inter-pulse interference removing system for composite pulse radar
US4709236A (en) * 1985-05-08 1987-11-24 Westinghouse Electric Corp. Selectable doppler filter for radar systems
US5017921A (en) * 1989-12-13 1991-05-21 Grumman Aerospace Corporation Radar system and a method for operating a radar system
DE4412770A1 (en) * 1994-04-13 1995-10-19 Siemens Ag Microwave lens aerial for car distance warning radar
DE19631590C2 (en) * 1996-08-05 1999-09-23 Bosch Gmbh Robert Method for the treatment of interference signals in a motor vehicle radar system and motor vehicle radar system therefor
US5828333A (en) * 1997-01-21 1998-10-27 Northrop Grumman Corporation Multiple access diplex doppler radar
DE10059673A1 (en) * 2000-12-01 2002-06-06 Bosch Gmbh Robert Pulse radar method as well as pulse radar sensor and system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0244750A1 *

Also Published As

Publication number Publication date
US20040066323A1 (en) 2004-04-08
WO2002044750A1 (en) 2002-06-06
JP2004529317A (en) 2004-09-24
DE10059673A1 (en) 2002-06-06
US6888491B2 (en) 2005-05-03
JP4102666B2 (en) 2008-06-18

Similar Documents

Publication Publication Date Title
EP1342101A1 (en) Pulse radar method, pulse radar sensor and corresponding system
EP1058126B1 (en) Distance detection device
EP1601991B1 (en) Method and device for the adaptive regulation of power
EP2693230B1 (en) Radar sensor for a motor vehicle, motor vehicle and communication method
EP1395846B1 (en) Method and device for self-calibration of a radar sensor arrangement
DE19744185B4 (en) Device for distance measurement by means of ultrasound
EP2626722B1 (en) Optoelectronic sensor and method for recording and determining the distance of an object
DE19963006A1 (en) Method to detect and evaluate objects near vehicle, involves determining speed and distance of target object within virtual barrier or range gate, whose length and distance from vehicle can be varied
DE102010061382A1 (en) Opto-electronic sensor and method for detection and distance determination of objects
DE19829762A1 (en) Radar system operating method, e.g. for motor vehicle separation distance or speed detection
WO2012113366A1 (en) Method and radar sensor arrangement for detecting the location and speed of objects relative to a measurement location, particularly a vehicle
WO2000068707A1 (en) Device for detecting objects in the area surrounding a vehicle
DE102010024328B4 (en) Radar device with situation-adaptive modulation switching and control method
WO2004053520A2 (en) Device for measuring the distance and speed of objects
EP2414862B1 (en) Multibeam radar sensor apparatus and method for determining a distance
WO2016050629A1 (en) Radar sensor
DE19963005A1 (en) Method to detect and evaluate objects surrounding vehicle, involves using radar sensor with one or more detector branches and using transmission signal for each branch to monitor different distances
DE2308812B2 (en) Pulse Doppler radar device to prevent vehicle collisions
EP3258296B1 (en) Reflection microwave barrier
DE3782856T2 (en) RADAR, PROTECTED AGAINST RAIN ECHOS AND METHOD FOR PROTECTING A RADAR AGAINST RAIN ECHO.
WO2014180609A1 (en) Method for monitoring an environment of a moving device, in particular
DE60125776T2 (en) DEVICE FOR MONITORING A AREA
WO2019101506A1 (en) Method for operating a lidar sensor and lidar sensor
EP1831720A1 (en) Radar system for monitoring targets in different distance ranges
EP2783234B1 (en) Method for determining at least one parameter for correlating two objects

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030701

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT SE

17Q First examination report despatched

Effective date: 20061123

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20090915