EP1234355B1 - Method for calibrating an electronically phase-controlled group antenna in radio-communications systems - Google Patents
Method for calibrating an electronically phase-controlled group antenna in radio-communications systems Download PDFInfo
- Publication number
- EP1234355B1 EP1234355B1 EP00983055A EP00983055A EP1234355B1 EP 1234355 B1 EP1234355 B1 EP 1234355B1 EP 00983055 A EP00983055 A EP 00983055A EP 00983055 A EP00983055 A EP 00983055A EP 1234355 B1 EP1234355 B1 EP 1234355B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- antenna
- calibration
- signal
- signals
- time
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q3/00—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
- H01Q3/26—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
- H01Q3/267—Phased-array testing or checking devices
Definitions
- the invention relates to a method for calibrating a electronically phased array using a common reference point for all reference signals in radio communication systems and an arrangement therefor.
- Intelligent antennas form by means of corresponding phase-correct Control of the individual antenna elements of the antenna array a directional characteristic.
- the beam shaping can therefore used to receive a message from a base station to a subscriber station targeted in their direction too transfer.
- the sensitivity to Interference in the current radio cell of the base station On the other hand, co-channel interference can be reduced be reduced in adjacent radio cells.
- due to the spatial separation physical channels within a reused by a base station powered radio cell and the so-called antenna lobes of the directional diagram be moved adaptively during movement of subscriber stations.
- the original transmission signal via several antenna elements usually with different but defined phase angles, sent.
- EP 0 881 704 A2 describes a CDMA communication system with a calibration.
- so-called “processing sections” for baseband signal generation and “transmit radio circuits” for their processing are arranged in a transmitter.
- processing sections for baseband signal generation and “transmit radio circuits” for their processing are arranged in a transmitter.
- codes distinguishable signals from the "transmit radio circuits” carrier frequency on the one hand via “transmit terminals” for emission to antennas and on the other hand wired via cable to an addition device.
- a summed signal formed there passes via another cable and via another "transmit terminal” to a so-called “transmit radio circuit characteristic measuring section", which divides the sum signal into individual signals and evaluates them.
- the Direction is determined by the evaluation of different phase angles the Emptangssignals to each antenna element of the antenna array detected. That is why an antenna calibration in the base station not just for the downlink to the subscriber station (downlink), but also for the uplink from the subscriber station to the base station (Uplink) necessary.
- a so-called reference antenna In a TD-SCDMA system (Time Division-Synchronous Code Division Multiple Access System) using intelligent Antennas will be an extra for antenna calibration Antenna used, a so-called reference antenna.
- a reference antenna About the reference antenna is in the case of an uplink calibration a reference signal to all antenna elements of the Antenna arrays sent. At the individual antenna elements becomes electromagnetic due to the finite propagation velocity Waves depending on the distance to the reference antenna a certain delay time and a certain phase position expected. The difference between the expected setpoint and the actually measured actual value is determined and as Correction factor saved. The correction factor will then involved in the normal signal processing process, whereby the antenna is calibrated.
- the reference antenna at a certain time receives a reference signal from an antenna element of the antenna array and the correction factor is determined. To counteract the distortion of the measurement result due to other antenna elements of the antenna array, they must not transmit any signal at this time. Subsequently, the reference antenna receives a reference signal from a second antenna element of the antenna array at a second time, and the correction factor for this second antenna element is determined, etc.
- n time slots must be supported in support of a TDMA (Time Division Multiple) method Access) are expended.
- TDMA Time Division Multiple
- the present invention has the task Basically, a calibration of smart antennas like that perform that time required for both the calibration of the uplink as well as for the calibration the downlink is significantly shortened. It should be a Correction of an analog error without the need of Calculation of a correction factor for each individual Antenna element and without oversampling from it accompanying high data rates.
- the Transmission capacity of the physical channels is intended by the antenna calibration to be made only to a small extent be charged.
- all antenna elements of a smart Antenna in the downlink calibrated in one step the individual antenna elements of the antenna array simultaneously distinguishable reference signals sent and after reception on one for all antenna signals common reference point separated again.
- CDMA Code Division Multiple Access
- the separation of the reference signals conventional spreading code techniques, such as correlation, used where the common reference point is on the respective reference code channel of the antenna elements synchronized and the reference signals back to their original bandwidth be reduced.
- the reference signals after another Embodiment coded orthogonally so the interference remain minimal despite simultaneous transmission.
- the calibration factor may be from the result of the correlation be obtained in a digital signal processor.
- Another advantageous embodiment of the invention is It is to use an optimized reference signal set, the an unbiased estimate of the calibration factor allowed.
- the correction of delay time, Phase error and / or amplitude of the transmission signals immediately within a digital UP conversion / down conversion be made, whereby no correction factor must be included and no oversampling of the Receive and transmit signal is necessary to delay error to eliminate.
- the downlink calibration can in a further embodiment too Start of delay time and uplink calibration on End of the delay time take place.
- a Reference antenna used as a common reference point for the reference signals from and to the antenna elements.
- Fig. 1 shows a base station BS, which in the area of their supplied Radio cell Z with, by way of example, three mobile stations MS simultaneously connected.
- TDD Time Division Duplex
- TD-SCDMA Time Division-Synchron Code Division Multiple Access
- TD-CDMA Time Division Code Division Multiple Access
- TD-CDMA is a combination the multiple access component TDMA (Time Division Multiple Access) and CDMA (Code Division Multiple Access) and is determined by the degrees of freedom frequency, time slot and code characterized.
- TD-SCDMA differs from TD-CDMA by using a high-precision synchronization the received signals in the uplink. This will be the orthogonality the reception signals largely maintained, and thereby again, the detection properties are improved.
- Radio communication system with intelligent antennas are antennas, with which a directional selectivity of a Base station BS emitted transmission signals leaves.
- Smart antennas can be used electronically generate pivotable, strongly focusing propagation diagrams. This intelligent antennas reduce the angle of incidence for environmental detours of the transmission signals the mobile stations, reducing the interference. From the same base station BS thus different antenna lobes, which pivoted in different directions are at the same time the same frequency channel within one Use cell Z In addition, it increases with the same transmission power the range of a base station BS.
- the smart antenna detects the base station BS the directions from which the mobile stations transmit MS and forms in their direction corresponding antenna lobes.
- FIG. 2 is a schematic of the signal flow in an uplink calibration represented by a smart group antenna, consisting of several antenna elements AE1 to AEN and one Reference antenna AR for calibration.
- the arrows illustrate the different duration of a reference signal from a reference antenna AR to the antenna elements AE1 to AEN.
- the recorded by each antenna element AE1 to AEN and optionally amplified reference signals digitized parallel to each other in analog-to-digital converters A / D.
- the digitized values then become treated in parallel in a digital down-converter DDC.
- Out the measurement signals obtained in this way can, for example in a digital signal processor DSP correction factors determined and the correction values as control information to the digital down converter DDC of the individual antenna elements AE1 to AEN.
- the reference signals from the signal processor DSP via a digital up-converter DUC and a digital-to-analog converter D / A sent to the reference antenna AR, this for calibration to the antenna elements AE1 to AEN sends etc
- Fig. 3 is a schematic of the signal flow in a downlink calibration presented a smart group antenna.
- the antenna elements AE1 to AEN simultaneously transmit one each Reference signal to the reference antenna AR, these with different Reference signal transit time is received.
- the reference antenna AR possibly amplifies the reference signals and put them back in an analog-to-digital converter A / D digital signals around.
- the signal processor DSP are off the measurement results, for example, correction factors determined and as control information to the digital UP converter DUC of the antenna elements AE1 to AEN given.
- the following is a calculation example for a TD-SCDMA system using a smart antenna with 8 antenna elements, a reference antenna and a length of the CDMA code elements (Chip) selected from 0.75 ⁇ s.
- the antenna calibration that is the correction of the influence of the analog error on the entire signal chain the directional characteristic of the intelligent array antenna, is carried out directly by digital means. It is not Oversampling the receive and transmit signal necessary to eliminate delay errors.
- Digital up-converter DUC and digital down-converter DDC enable also tuning the amplitude of the transmission signals, because a faulty amplitude is the radiation shaping also affected.
- a delay time a certain length to meet maturity differences the signals and data to be transmitted provided is.
- the calibration measurements are found in this delay time, because at this time no other signals can influence the measurements.
- the Downlink calibration is preferably at the beginning of the delay time and the uplink calibration performed at the end of this. In the same way, for example, a for Communication links provided time slot TS for the described calibration procedure are reserved.
- the frequency of the antenna calibration is freely selectable and can be dynamically adapted to the transmission requirements. For example, a calibration in the downlink and uplink in each delay time between downlink and uplink TDMA frames or a calibration is done with a Of this multiple time interval made. Also, the Frequency of a downlink calibration from the frequency of one Uplink calibration deviate, for example, if the part the base station is determined that a mobile station only insignificantly or not at all during a communication connection, for example for voice transmission, moved for data transport or for a multimedia transmission.
Landscapes
- Mobile Radio Communication Systems (AREA)
- Radio Transmission System (AREA)
- Variable-Direction Aerials And Aerial Arrays (AREA)
Description
Verfahren zum Kalibrieren einer elektronisch phasengesteuerten Gruppenantenne in Funk-Kommunikationssystemen.Method for calibrating an electronically phased array Group antenna in radio communication systems.
Die Erfindung betrifft ein Verfahren zum Kalibrieren einer elektronisch phasengesteuerten Gruppenantenne unter Verwendung eines für alle Referenzsignale gemeinsamen Referenzpunktes in Funk-Kommunikationssystemen und eine Anordnung hierfür.The invention relates to a method for calibrating a electronically phased array using a common reference point for all reference signals in radio communication systems and an arrangement therefor.
Durch den Einsatz elektronisch phasengesteuerter Gruppenantennen, sogenannter intelligente Antennen, in Funk-Kommunikationssystemen, wie beispielsweise digitalen Mobilfunksystemen, kann eine trotz Mehrwegausbreitung vorhandene Richtungsselektivität eines Mobilfunkkanals für die Funk-Kommunikation vorteilhaft ausgenutzt werden.By using electronically phased array antennas, so-called intelligent antennas, in radio communication systems, such as digital mobile radio systems, can be a directional selectivity despite multipath propagation a mobile radio channel for radio communication be exploited advantageous.
Intelligente Antennen bilden durch entsprechende phasenrichtige Ansteuerung der einzelnen Antennenelemente des Antennenarrays eine Richtcharakteristik aus. Die Strahlenformung kann deshalb benutzt werden, um eine Nachricht von einer Basisstation zu einer Teilnehmerstation gezielt in deren Richtung zu übertragen. Hierdurch kann einerseits die Empfindlichkeit gegenüber Interferenzen in der aktuellen Funkzelle der Basisstation reduziert werden und andererseits können Gleichkanalinterferenzen in benachbarten Funkzellen reduziert werden. Zudem wächst die Reichweite einer Basisstation, die eine bestimmte Mobilstation mit Funkressourcen versorgt, bei gleicher Sendeleistung wesentlich. Darüber hinaus können infolge der räumlichen Trennung physikalische Kanäle innerhalb einer von einer Basisstation versorgten Funkzelle wiederverwendet werden und die sogenannten Antennenkeulen des Richtdiagramms bei Bewegung von Teilnehmerstationen adaptiv nachgeführt werden.Intelligent antennas form by means of corresponding phase-correct Control of the individual antenna elements of the antenna array a directional characteristic. The beam shaping can therefore used to receive a message from a base station to a subscriber station targeted in their direction too transfer. As a result, on the one hand the sensitivity to Interference in the current radio cell of the base station On the other hand, co-channel interference can be reduced be reduced in adjacent radio cells. In addition, the range of a base station that grows a certain Mobile station supplied with radio resources, at the same Transmission power essential. In addition, due to the spatial separation physical channels within a reused by a base station powered radio cell and the so-called antenna lobes of the directional diagram be moved adaptively during movement of subscriber stations.
Um eine gewünschte Strahlenformung zu erreichen, wird das originale Übertragungssignal über mehrere Antennenelemente, meist mit verschiedenen, aber definierten Phasenwinkeln, gesendet. Der entsprechende Phasenwinkel wird für jedes Antennenelement durch eine digitale Signalverarbeitung (DSP = Digital Signal Processing) ermittelt.In order to achieve a desired beam shaping, the original transmission signal via several antenna elements, usually with different but defined phase angles, sent. The corresponding phase angle becomes for each antenna element by a digital signal processing (DSP = Digital Signal Processing).
Im allgemeinen treten bei der Einstellung des Phasenwinkels im analogen Bereich zwischen Digital-Analog-Konvertern und Antennenelementen unvorhersehbare Phasenfehler und Zeitverzögerungen auf. Hierdurch, werden die Übertragungssignale nicht mit den gewünschten Phasenwinkeln gesendet und die Strahlenformung wird verfälscht oder gar unmöglich. Um dieser ungünstigen Eigenschaft des analogen Bereiches der Strahlenformung entgegenzuwirken, ist eine sogenannte Antennen-Kalibrierung notwendig. Die Antennen-Kalibrierung beseitigt den Einfluß der gesamten analogen Signalkette auf die oben beschriebenen Fehler.Generally occur in the adjustment of the phase angle in the analog domain between digital-to-analog converters and Antenna elements unpredictable phase errors and time delays on. As a result, the transmission signals are not sent with the desired phase angles and the beam shaping is corrupted or even impossible. To this unfavorable Property of the analog range of beamforming counteract is a so-called antenna calibration necessary. The antenna calibration eliminates the influence the entire analog signal chain to those described above Error.
In EP 0 881 704 A2 wird ein CDMA-Kommunikationssystem mit
einer Kalibrierung beschrieben. Dabei sind in einem
Transmitter sogenannte "processing sections" zur Basisband-Signalerzeugung
und "transmit radio circuits" für deren
Verarbeitung angeordnet. Mit Hilfe von Codes voneinander
unterscheidbare Signale gelangen von den "transmit radio
circuits" trägerfrequent einerseits über "transmit terminals"
zur Abstrahlung an Antennen und andererseits leitungsgebunden
über Kabel zu einer Additionseinrichtung. Ein dort gebildetes
Summensignal gelangt über ein weiteres Kabel und über ein
weiteres "transmit terminal" an eine sogenannte
"transmit radio circuit characteristic measuring section",
die das Summensignal in einzelne Signale aufteilt und diese
auswertet. Aufgrund dieser Auswertung kann dann eine
Kalibrierung der aus jeweils einem "transmit radio circuit"
und aus einer "processing section" bestehenden Signalzweige
durchgeführt werden. Da die von den "transmit radio circuits"
gebildeten Ausgangssignale jedoch bereits vor der
Antennenabstrahlung an die Additionseinrichtung gelangen,
werden die Antennen und ihre Zuleitungskabel bei der
Kalibrierung nicht berücksichtigt.
Zusätzlich müssen die an die Additionseinrichtung
angeschalteten Kabel sehr genau aufeinander bezüglich ihrer
Phasenfehler abgestimmt werden, was einen erhöhten Aufwand
bei der Abstimmung verursacht.EP 0 881 704 A2 describes a CDMA communication system with a calibration. In this case, so-called "processing sections" for baseband signal generation and "transmit radio circuits" for their processing are arranged in a transmitter. With the help of codes distinguishable signals from the "transmit radio circuits" carrier frequency on the one hand via "transmit terminals" for emission to antennas and on the other hand wired via cable to an addition device. A summed signal formed there passes via another cable and via another "transmit terminal" to a so-called "transmit radio circuit characteristic measuring section", which divides the sum signal into individual signals and evaluates them. On the basis of this evaluation, it is then possible to carry out a calibration of the signal branches which each comprise a "transmit radio circuit" and a "processing section". However, since the output signals formed by the "transmit radio circuits" reach the adder even before the antenna is emitted, the antennas and their supply cables are not taken into account in the calibration.
In addition, the cables connected to the adder must be tuned very accurately to each other with respect to their phase errors, which causes an increased effort in tuning.
Um Strahlenformung einzusetzen, muß zunächst die Richtung von der Basisstation zur Mobilstation festgestellt werden. Die Richtung wird durch die Auswertung der verschiedenen Phasenwinkel des Emptangssignals an jedem Antennenelement des Antennenarrays festgestellt. Deshalb ist eine Antennen-Kalibrierung in der Basisstation nicht nur für die Abwärtsstrecke zur Teilnehmerstation (Downlink), sondern auch für die Aufwärtsstrecke von der Teilnehmerstation zur Basisstation (Uplink) notwendig. To use beam shaping, first the direction of the base station to the mobile station. The Direction is determined by the evaluation of different phase angles the Emptangssignals to each antenna element of the antenna array detected. That is why an antenna calibration in the base station not just for the downlink to the subscriber station (downlink), but also for the uplink from the subscriber station to the base station (Uplink) necessary.
In einem TD-SCDMA System (Time Division-Synchronous Code Division Multiple Access System) unter Verwendung von intelligenten Antennen wird für die Antennen-Kalibrierung eine zusätzliche Antenne benutzt, eine sogenannte Referenzantenne. Über die Referenzantenne wird für den Fall einer Uplink-Kalibrierung ein Referenzsignal zu allen Antennenelementen des Antennenarrays gesendet. An den einzelnen Antennenelementen wird aufgrund der endlichen Ausbreitungsgeschwindigkeit elektromagnetischer Wellen je nach Abstand zur Referenzantenne eine bestimmte Verzögerungszeit und eine bestimmte Phasenlage erwartet. Die Differenz zwischen dem erwarteten Sollwert und dem tatsächlich gemessenen Istwert wird ermittelt und als Korrekturfaktor gespeichert. Der Korrekturfaktor wird sodann in den normalen Signalverarbeitungsprozeß einbezogen, wodurch die Antenne kalibriert wird.In a TD-SCDMA system (Time Division-Synchronous Code Division Multiple Access System) using intelligent Antennas will be an extra for antenna calibration Antenna used, a so-called reference antenna. About the reference antenna is in the case of an uplink calibration a reference signal to all antenna elements of the Antenna arrays sent. At the individual antenna elements becomes electromagnetic due to the finite propagation velocity Waves depending on the distance to the reference antenna a certain delay time and a certain phase position expected. The difference between the expected setpoint and the actually measured actual value is determined and as Correction factor saved. The correction factor will then involved in the normal signal processing process, whereby the antenna is calibrated.
Für die Downlink-Kalibrierung empfängt die Referenzantenne zu einem bestimmten Zeitpunkt ein Referenzsignal von einem Antennenelement des Antennenarrays und der Korrekturfaktor wird bestimmt. Um der Verzerrung des Meßergebnisses aufgrund anderer Antennenelemente des Antennenarrays entgegenzuwirken, dürfen diese zu diesem Zeitpunkt kein Signal übertragen. Anschließend empfängt die Referenzantenne zu einem zweiten Zeitpunkt ein Referenzsignal von einem zweiten Antennenelement des Antennenarrays und der Korrekturfaktor für dieses zweite Antennenelement wird bestimmt usw. Für die Kalibrierung von n Antennenelementen des Antennenarrays müssen demzufolge n Zeitschlitze bei einer Unterstützung eines TDMA-Teilnehmerseparierungsverfahrens (Time Division Multiple Access) aufgewendet werden.For the downlink calibration, the reference antenna at a certain time receives a reference signal from an antenna element of the antenna array and the correction factor is determined. To counteract the distortion of the measurement result due to other antenna elements of the antenna array, they must not transmit any signal at this time. Subsequently, the reference antenna receives a reference signal from a second antenna element of the antenna array at a second time, and the correction factor for this second antenna element is determined, etc. Thus, for the calibration of n antenna elements of the antenna array, n time slots must be supported in support of a TDMA (Time Division Multiple) method Access) are expended.
Der Fehler in der Verzögerungszeit beträgt häufig nur einen Bruchteil eines Chips (Chip = CDMA-Code-Element). Um solch eine geringe Verzögerungszeit bei der Signalverarbeitung zu berücksichtigen, ist eine Überabtastung (Oversampling) des Empfangs- und Übertragungssignals notwendig. Durch eine Überabtastung wird die zu übertragende Datenrate allerdings deutlich größer.The error in the delay time is often only one Fraction of a chip (chip = CDMA code element). To such a small delay time in the signal processing too is oversampling of the Reception and transmission signal necessary. By oversampling However, the data rate to be transmitted is clear greater.
Der vorliegenden Erfindung hingegen liegt die Aufgabe zu Grunde, eine Kalibrierung von intelligenten Antennen derart durchzuführen, dass die dazu erforderliche Zeit sowohl für die Kalibrierung des Uplinks als auch für die Kalibrierung des Downlinks deutlich verkürzt wird. Dabei soll eine Korrektur eines analogen Fehlers ohne die Notwendigkeit der Berechnung eines Korrekturfaktors für jedes einzelne Antennenelement und ohne Überabtastung von damit einhergehenden hohen Datenraten vorgenommen werden. Die Übertragungskapazität der physikalischen Kanäle soll durch die vorzunehmende Antennenkalibrierung nur in geringem Maßen belastet werden.The present invention, however, has the task Basically, a calibration of smart antennas like that perform that time required for both the calibration of the uplink as well as for the calibration the downlink is significantly shortened. It should be a Correction of an analog error without the need of Calculation of a correction factor for each individual Antenna element and without oversampling from it accompanying high data rates. The Transmission capacity of the physical channels is intended by the antenna calibration to be made only to a small extent be charged.
Erfindungsgemäß werden alle Antennenelemente einer intelligenten Antenne im Downlink in nur einem Schritt kalibriert. Hierzu werden von den einzelnen Antennenelementen des Antennenarrays zeitgleich voneinander unterscheidbare Referenzsignale gesendet und nach dem Empfang an einem für alle Antennensignale gemeinsamen Referenzpunkt wieder separiert.According to the invention, all antenna elements of a smart Antenna in the downlink calibrated in one step. For this purpose, the individual antenna elements of the antenna array simultaneously distinguishable reference signals sent and after reception on one for all antenna signals common reference point separated again.
Eine vorteilhafte Ausgestaltung sieht eine Trennung der Referenzsignale unter Anwendung eines CDMA-Verfahrens (CDMA = Code Division Multiple Access) vor, das auf einer-Separierung von Signalen durch individuelle Spreizcodes beruht. In einer weiterer Ausgestaltung werden zur Trennung der Referenzsignale konventionelle Spreizcodetechniken, wie Korrelation, verwendet, bei denen der gemeinsame Referenzpunkt auf den jeweiligen Referenzcodekanal der Antennenelemente synchronisiert und die Referenzsignale wieder auf ihre Originalbandbreite reduziert werden.An advantageous embodiment provides a separation of the reference signals using a CDMA method (CDMA = Code Division Multiple Access), which is on a separation of signals is based on individual spreading codes. In a further embodiment, the separation of the reference signals conventional spreading code techniques, such as correlation, used where the common reference point is on the respective reference code channel of the antenna elements synchronized and the reference signals back to their original bandwidth be reduced.
In diesem Fall werden die Referenzsignale nach einer weiteren Ausgestaltung orthogonal kodiert, damit die Interferenzen trotz zeitgleicher Übertragung minimal bleiben.In this case, the reference signals after another Embodiment coded orthogonally, so the interference remain minimal despite simultaneous transmission.
Der Kalibrierungsfaktor kann aus dem Ergebnis der Korrelation in einem digitalen Signalprozessor gewonnen werden.The calibration factor may be from the result of the correlation be obtained in a digital signal processor.
Eine andere vorteilhafte Ausprägung der Erfindung besteht darin, eine optimierte Referenzsignalmenge zu benutzen, die eine unvoreingenommene Schätzung des Kalibrierungsfaktors erlaubt.Another advantageous embodiment of the invention is It is to use an optimized reference signal set, the an unbiased estimate of the calibration factor allowed.
Die Generierung solch einer optimierten Referenzsignalmenge und des Schätzwertes können in vorteilhafter Weise nach Methoden erfolgen, die in: Bernd Steiner, Paul Walter Baier: "Low Cost channel Estimation in the uplink receiver of CDMA mobile radio systems", Frequenz 47 (1993), S. 292-298, beschrieben sind.The generation of such an optimized reference signal quantity and the estimated value can be calculated by methods in: Bernd Steiner, Paul Walter Baier: Low cost channel estimation in the uplink receiver of CDMA mobile radio systems ", frequency 47 (1993), pp. 292-298 are.
Nach einer weiteren Ausprägung kann die Korrektur von Verzögerungszeit, Phasenfehler und/oder Amplitude der Übertragungssignale unmittelbar innerhalb einer digitalen UP-Conversion/Down-Conversion vorgenommen werden, wodurch kein Korrekturfaktor einbezogen werden muß und keine Überabtastung der Empfangs- und Übertragungssignals notwendig wird, um Verzögerungsfehler zu beseitigen. According to another embodiment, the correction of delay time, Phase error and / or amplitude of the transmission signals immediately within a digital UP conversion / down conversion be made, whereby no correction factor must be included and no oversampling of the Receive and transmit signal is necessary to delay error to eliminate.
Hierzu erfolgt ein Abstimmen (Tunen) des numerisch gesteuerter Oszillators (NCO) des digitalen UP-Konverters (DUC) und des digitalen Down-Konverters (DDC).This is done tuning (tuning) of the numerically controlled Oscillator (NCO) of the digital UP converter (DUC) and of the digital down converter (DDC).
In Weiterentwicklung der Erfindung wird in einem TDD-System die Kalibrierung in der übertragungslosen Verzögerungszeit zwischen den Uplink- und Downlink-Zeitschlitzen durchgeführt.In a further development of the invention is in a TDD system the calibration in the non-transmission delay time between the uplink and downlink time slots.
Die Downlink-Kalibrierung kann in weiterer Ausgestaltung zu Beginn der Verzögerungszeit und die Uplink Kalibrierung am Ende der Verzögerungszeit stattfinden.The downlink calibration can in a further embodiment too Start of delay time and uplink calibration on End of the delay time take place.
In weiterer Ausgestaltung wird als gemeinsamer Referenzpunkt für die Referenzsignale von und zu den Antennenelementen eine Referenzantenne benutzt.In another embodiment, as a common reference point for the reference signals from and to the antenna elements a Reference antenna used.
Die Erfindung soll anhand eines Ausführungsbeispiels näher
erläutert werden. In der zugehörigen Zeichnung zeigt:
Fig. 1 zeigt eine Basisstation BS, die im Bereich ihrer versorgten Funkzelle Z mit beispielhaft drei Mobilstationen MS gleichzeitig Verbindung aufgenommen hat. Für eine ungestörte Verbindung von und zu den Mobilstationen MS ist eine Kanaltrennung nach einem Zeitduplex-Verfahren TDD (Time Division Duplex) vorgesehen. Für die Trennung der Verbindungen zwischen den einzelnen Mobilstationen MS kann beispielhaft das hybride Vielfachzugriffsverfahren TD-SCDMA (Time Division-Synchron Code Division Multiple Access) eingesetzt werden, eine Ausprägung von TD-CDMA (Time Division-Code Division Multiple Access). Bei TD-CDMA handelt es sich um eine Kombination der Vielfachzugriffskomponenten TDMA (Time Division Multiple Access) und CDMA (Code Division Multiple Access) und wird durch die Freiheitsgrade Frequenz, Zeitschlitz und Code charakterisiert. TD-SCDMA unterscheidet sich gegenüber TD-CDMA durch das Verwenden einer hochgenauen Synchronisation der Empfangssignale im Uplink. Dadurch wird die Orthogonalität der Empfangssignale weitestgehend beibehalten, und hierdurch wiederum werden die Detektionseigenschaften verbessert.Fig. 1 shows a base station BS, which in the area of their supplied Radio cell Z with, by way of example, three mobile stations MS simultaneously connected. For an undisturbed Connection from and to the mobile stations MS is a channel separation according to a time division duplex method TDD (Time Division Duplex). For the separation of the compounds between the individual mobile stations MS can be exemplary the hybrid multiple access method TD-SCDMA (Time Division-Synchron Code Division Multiple Access), an expression of TD-CDMA (Time Division Code Division Multiple access). TD-CDMA is a combination the multiple access component TDMA (Time Division Multiple Access) and CDMA (Code Division Multiple Access) and is determined by the degrees of freedom frequency, time slot and code characterized. TD-SCDMA differs from TD-CDMA by using a high-precision synchronization the received signals in the uplink. This will be the orthogonality the reception signals largely maintained, and thereby again, the detection properties are improved.
Voraussetzung für ein TD-SCDMA-System oder ein vergleichbares Funk-Kommunikationssystem mit intelligenten Antennen sind Antennen, mit denen eine Richtungsselektivität der von einer Basisstation BS ausgestrahlten Übertragungssignale erreichen läßt. Mit intelligenten Antennen lassen sich elektronisch schwenkbare, stark fokussierende Ausbreitungsdiagramme erzeugen. Damit reduzieren intelligente Antennen die Einfallswinkel für umgebungsbedingte Umwege der Übertragungssignale an den Mobilstationen, wodurch die Interferenz verringert wird. Von derselben Basisstation BS können somit verschiedene Antennenkeulen, die in unterschiedliche Richtungen geschwenkt sind, gleichzeitig denselben Frequenzkanal innerhalb einer Zelle Z nutzen. Außerdem steigt bei gleicher Sendeleistung die Reichweite einer Basisstation BS.Prerequisite for a TD-SCDMA system or equivalent Radio communication system with intelligent antennas are antennas, with which a directional selectivity of a Base station BS emitted transmission signals leaves. Smart antennas can be used electronically generate pivotable, strongly focusing propagation diagrams. This intelligent antennas reduce the angle of incidence for environmental detours of the transmission signals the mobile stations, reducing the interference. From the same base station BS thus different antenna lobes, which pivoted in different directions are at the same time the same frequency channel within one Use cell Z In addition, it increases with the same transmission power the range of a base station BS.
In Fig. 1 detektiert die intelligente Antenne der Basistation BS die Richtungen, aus denen die Mobilstationen MS senden und formt in deren Richtung entsprechende Antennenkeulen aus.In Fig. 1, the smart antenna detects the base station BS the directions from which the mobile stations transmit MS and forms in their direction corresponding antenna lobes.
In Fig. 2 ist schematisch der Signalfluß bei einer Uplink-Kalibrierung einer intelligenten Gruppenantenne dargestellt, bestehend aus mehreren Antennenelementen AE1 bis AEN und einer Referenzantenne AR für die Kalibrierung. Die Pfeile verdeutlichen die unterschiedliche Laufzeit eines Referenzsignals von einer Referenzantenne AR zu den Antennenelementen AE1 bis AEN. Die von jedem Antennenelement AE1 bis AEN aufgenommenen und gegebenenfalls verstärkten Referenzsignale werden parallel zueinander in Analog-Digital-Konvertern A/D digitalisiert. Die digitalisierten Werte werden anschließend parallel in einem digitalen Down-Konverter DDC behandelt. Aus den auf diese Weise gewonnenen Meßsignalen können beispielsweise in einem digitalen Signalprozessor DSP Korrekturfaktoren ermittelt und die Korrekturwerte als Kontrollinformationen an die digitalen Down-Konverter DDC der einzelnen Antennenelemente AE1 bis AEN zurückgeführt werden. Außerdem werden die Referenzsignale aus dem Signalprozessor DSP über einen digitalen Up-Konverter DUC und einen Digital-Analog-Konverter D/A an die Referenzantenne AR geschickt, die diese zwecks Kalibrierung an die Antennenelemente AE1 bis AEN sendet usw.In Fig. 2 is a schematic of the signal flow in an uplink calibration represented by a smart group antenna, consisting of several antenna elements AE1 to AEN and one Reference antenna AR for calibration. The arrows illustrate the different duration of a reference signal from a reference antenna AR to the antenna elements AE1 to AEN. The recorded by each antenna element AE1 to AEN and optionally amplified reference signals digitized parallel to each other in analog-to-digital converters A / D. The digitized values then become treated in parallel in a digital down-converter DDC. Out the measurement signals obtained in this way can, for example in a digital signal processor DSP correction factors determined and the correction values as control information to the digital down converter DDC of the individual antenna elements AE1 to AEN. In addition, will the reference signals from the signal processor DSP via a digital up-converter DUC and a digital-to-analog converter D / A sent to the reference antenna AR, this for calibration to the antenna elements AE1 to AEN sends etc.
In Fig. 3 ist schematisch der Signalfluß bei einer Downlink-Kalibrierung einer intelligenten Gruppenantenne dargestellt. Die Antennenelemente AE1 bis AEN senden gleichzeitig je ein Referenzsignal an die Referenzantenne AR, die diese mit unterschiedlicher Referenzsignal-Laufzeit empfängt. Die Referenzantenne AR verstärkt gegebenenfalls die Referenzsignale und setzt sie in einem Analog-Digital-Konverter A/D wieder in digitale Signale um. Anschließend werden die digitalisierten Signale in einem digitalen Down-Konverter DDC behandelt und die auf diese Weise gewonnenen Meßsignale dem digitalen Signalprozessor DSP zugeführt. Im Signalprozessor DSP werden aus den Meßergebnissen beispielsweise Korrekturfaktoren ermittelt und als Kontrollinformationen an die digitalen UP-Konverter DUC der Antennenelemente AE1 bis AEN gegeben. Außerdem werden den digitalen UP-Konvertern DUC Referenzsignale 1 bis N zwecks Ausstrahlung durch die Antennenelemente AE1 bis AEN zugeführt.In Fig. 3 is a schematic of the signal flow in a downlink calibration presented a smart group antenna. The antenna elements AE1 to AEN simultaneously transmit one each Reference signal to the reference antenna AR, these with different Reference signal transit time is received. The reference antenna AR possibly amplifies the reference signals and put them back in an analog-to-digital converter A / D digital signals around. Subsequently, the digitized Signals handled in a digital down converter DDC and the measurement signals obtained in this way the digital signal processor DSP supplied. In the signal processor DSP are off the measurement results, for example, correction factors determined and as control information to the digital UP converter DUC of the antenna elements AE1 to AEN given. In addition, will the digital UP converters DUC reference signals 1 to N for emission by the antenna elements AE1 to AEN fed.
Im folgenden wird ein Rechenbeispiel für ein TD-SCDMA System unter Verwendung einer intelligenten Antenne mit 8 Antennenelementen, einer Referenzantenne und einer Länge der CDMA-Code-Elemente (Chip) von 0,75µs ausgewählt.The following is a calculation example for a TD-SCDMA system using a smart antenna with 8 antenna elements, a reference antenna and a length of the CDMA code elements (Chip) selected from 0.75μs.
Die Bestimmung des Kalibrierungsfaktors erfolgt analog zu aus der Mobilfunktechnik bekannten Kanalschätzverfahren. Es werden die Zeitverzögerung und die Phasenlage der empfangenen Referenzsignale bestimmt. Da der Verzögerungsfehler im Vergleich zum Verzögerungs-Sollwert sehr gering ist, sind für jedes Antennenelement beispielsweise drei Messungen von Kanalimpuls-Antworten in der zur Verfügung stehenden Zeit ausreichend. Damit beträgt die Signallänge für die Kalibrierung aller Antennenelemente einer intelligenten Antenne im Downlink: (8+1) Antennenelemente * 3 Messungen * 0,75µs Chiplänge = 20,25µs.The determination of the calibration factor is analogous to off the mobile radio technique known channel estimation method. It will the time delay and the phase angle of the received Reference signals determined. Because of the delay error in comparison to the delay setpoint is very low, are for For example, each antenna element has three measurements of channel impulse responses sufficient in the time available. This is the signal length for the calibration all antenna elements of a smart antenna in the downlink: (8 + 1) antenna elements * 3 measurements * 0.75μs chip length = 20.25μs.
Die Antennenkalibrierung, das heißt die Korrektur des Einflusses des analogen Fehlers auf der gesamten Signalkette auf die Richtcharakteristik der intelligenten Gruppenantenne, wird direkt auf digitalem Wege durchgeführt. Es ist kein Überabtasten der Empfangs- und Übertragungssignals notwendig, um Verzögerungsfehler zu beseitigen.The antenna calibration, that is the correction of the influence of the analog error on the entire signal chain the directional characteristic of the intelligent array antenna, is carried out directly by digital means. It is not Oversampling the receive and transmit signal necessary to eliminate delay errors.
In modernen Basisstationen wird digitale UP-Conversion und Down-Conversion genutzt, um Probleme durch IQ-Phasenfehler und IQ-Amplituden-Offsets zu kompensieren. Die Korrektur von Verzögerungszeit und Phase der Übertragungssignale kann direkt durch Tunen des numerisch gesteuerten Oszillators NCO (Numarical Controled Oscillators) des digitalen UP-Konverters (DUC) und des digitalen Down-Konverters (DDC) erreicht werden, ohne daß ein Korrekturfaktor bei der digitalen Signalverarbeitung im DSP einbezogen werden muß.In modern base stations will be digital UP conversion and Down-conversion used to address problems due to IQ phase errors and IQ amplitude offsets. The correction of Delay time and phase of the transmission signals can be direct by tuning the numerically controlled oscillator NCO (Numarical Controled Oscillators) of the digital UP converter (DUC) and the digital down converter (DDC), without a correction factor in digital signal processing must be included in the DSP.
Digitale Up-Konverter DUC und digitale Down-Konverter DDC ermöglichen auch das Tunen der Amplitude der Übertragungssignale, da eine fehlerhafte Amplitude die Strahlungsformung ebenfalls beeinflußt.Digital up-converter DUC and digital down-converter DDC enable also tuning the amplitude of the transmission signals, because a faulty amplitude is the radiation shaping also affected.
Aufgrund der hohen Datenraten zwischen der Kalibrierungsinstanz und DUC/DDC ist der Nachteil einer zusätzlichen Kontrollinformations-Signalisierung zu DUC und DDC vernachlässigbar klein.Due to the high data rates between the calibration instance and DUC / DDC is the disadvantage of additional control information signaling negligible to DUC and DDC small.
Aus Fig. 4 ist ersichtlich, daß in einem TDD-System, wie beispielsweise TD-SCDMA, zwischen Uplink und Downlink eine Verzögerungszeit einer bestimmten Länge zur Begegnung von Laufzeitunterschieden der zu übertragenden Signale und Daten vorgesehen ist. Vorzugsweise finden die Kalibrierungsmessungen in dieser Verzögerungszeit statt, da zu diesem Zeitpunkt keine weiteren Signale die Messungen beeinflussen können. Die Downlink-Kalibrierung wird vorzugsweise zu Beginn der Verzögerungszeit und die Uplink Kalibrierung am Ende dieser durchgeführt. In gleicher Weise kann beispielsweise auch ein für Kommunikationsverbindungen vorgesehener Zeitschlitz TS für die beschriebene Kalibrierungsprozedur reserviert werden.From Fig. 4 it can be seen that in a TDD system, such as TD-SCDMA, between uplink and downlink a delay time a certain length to meet maturity differences the signals and data to be transmitted provided is. Preferably, the calibration measurements are found in this delay time, because at this time no other signals can influence the measurements. The Downlink calibration is preferably at the beginning of the delay time and the uplink calibration performed at the end of this. In the same way, for example, a for Communication links provided time slot TS for the described calibration procedure are reserved.
Die Häufigkeit der Antennen-Kalibrierung ist frei wählbar und läßt sich dynamisch den Übertragungserfordernissen anpassen. Beispielsweise kann eine Kalibrierung im Downlink und Uplink in jeder Verzögerungszeit zwischen Downlink- und Uplink-TDMA-Rahmen erfolgen oder aber eine Kalibrierung wird mit einem hiervon vielfachen Zeitabstand vorgenommen. Auch kann die Häufigkeit einer Downlink-Kalibrierung von der Häufigkeit einer Uplink-Kalibrierung abweichen, beispielsweise wenn seitens der Basisstation festgestellt wird, daß sich eine Mobilstation nur unwesentlich oder gar nicht während einer Kommunikationsverbindung, beispielsweise zur Sprachübertragung, zum Datentransport oder für eine Multimedia-Übertragung bewegt.The frequency of the antenna calibration is freely selectable and can be dynamically adapted to the transmission requirements. For example, a calibration in the downlink and uplink in each delay time between downlink and uplink TDMA frames or a calibration is done with a Of this multiple time interval made. Also, the Frequency of a downlink calibration from the frequency of one Uplink calibration deviate, for example, if the part the base station is determined that a mobile station only insignificantly or not at all during a communication connection, for example for voice transmission, moved for data transport or for a multimedia transmission.
Claims (12)
- Method for calibrating an electronically phase-controlled group antenna having n antenna elements (AE1 to AEN) in a radio communications system, measuring signals related to a reference point being formed for error correction from at least one reference signal to be transmitted,
characterizedin that, in the case of an antenna calibration in the upward direction (UL), a reference signal transmitted by a shared reference antenna (AR) is received by every nth antenna element (AE1 to AEN) and passes in each case as the nth measuring signal (meas. sign.) to a device for error correction (DSP), which ascertains from every nth measuring signal (meas. sign.), having a signal transit time, error correction values which are assigned to the nth antenna element and are related to the reference point,in that, in the case of an antenna calibration in the downward direction (DL), every nth antenna element is used to transmit a reference signal which can be assigned to it and these n reference signals, which have been formed at the same time as one another, are received in superposed form at the reference antenna (AR) and pass as a shared measuring signal to the device for error correction, which ascertains from the shared measuring signal, which has signal components which have a respective signal transit time and can be assigned to the n antenna elements, in each case error correction values which are assigned to the nth antenna element and are related to the reference point. - Method according to Claim 1, characterized in that a coding and decoding of the reference signals is performed on the basis of a CDMA method.
- Method according to Claim 2, characterized in that a correlation method is used for the synchronization of the reference point (AR) to the reference code channel of the antenna elements (AE1 to AEN).
- Method according to one of the preceding claims, characterized in that the reference signals are orthogonally coded.
- Method according to one of the preceding claims, characterized in that a correction of an analogue error in time delay, phase and/or amplitude is performed digitally.
- Method according to Claim 5, characterized in that the correction is performed within a digital up-conversion or digital down-conversion.
- Method according to Claim 5 or 6, characterized in that a calibration factor is obtained from the result of a correlation in a digital signal processor (DSP).
- Method according to one of Claims 5 to 7, characterized in that an optimized amount of signals for an estimate of the calibration factor is used.
- Method according to one of the preceding claims, characterized in that, in the case of time division duplex operation (TDD), the calibration is carried out within a delay time between the upward direction (UL) and the downward direction (DL).
- Method according to Claim 9, characterized in that the reference signals for the calibration in the downward direction (DL) are sent at the beginning of the delay time.
- Method according to Claim 9, characterized in that the reference signals for the calibration in the upward direction (UL) are sent at the end of the delay time.
- Method according to one of Claims 1 to 8, characterized in that the reference signals for calibration in the upward direction (UL) and/or in the downward direction (DL) are sent in a respective time slot (TS).
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19951525 | 1999-10-26 | ||
DE19951525A DE19951525C2 (en) | 1999-10-26 | 1999-10-26 | Method for calibrating an electronically phased array antenna in radio communication systems |
PCT/DE2000/003756 WO2001031744A1 (en) | 1999-10-26 | 2000-10-24 | Method for calibrating an electronically phase-controlled group antenna in radio-communications systems |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1234355A1 EP1234355A1 (en) | 2002-08-28 |
EP1234355B1 true EP1234355B1 (en) | 2003-08-13 |
Family
ID=7926909
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP00983055A Expired - Lifetime EP1234355B1 (en) | 1999-10-26 | 2000-10-24 | Method for calibrating an electronically phase-controlled group antenna in radio-communications systems |
Country Status (7)
Country | Link |
---|---|
US (1) | US6693588B1 (en) |
EP (1) | EP1234355B1 (en) |
CN (1) | CN1384989A (en) |
AU (1) | AU1995001A (en) |
BR (1) | BR0015016A (en) |
DE (2) | DE19951525C2 (en) |
WO (1) | WO2001031744A1 (en) |
Families Citing this family (53)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8194770B2 (en) | 2002-08-27 | 2012-06-05 | Qualcomm Incorporated | Coded MIMO systems with selective channel inversion applied per eigenmode |
US8169944B2 (en) | 2002-10-25 | 2012-05-01 | Qualcomm Incorporated | Random access for wireless multiple-access communication systems |
US8170513B2 (en) | 2002-10-25 | 2012-05-01 | Qualcomm Incorporated | Data detection and demodulation for wireless communication systems |
US7324429B2 (en) | 2002-10-25 | 2008-01-29 | Qualcomm, Incorporated | Multi-mode terminal in a wireless MIMO system |
US8134976B2 (en) * | 2002-10-25 | 2012-03-13 | Qualcomm Incorporated | Channel calibration for a time division duplexed communication system |
US8208364B2 (en) | 2002-10-25 | 2012-06-26 | Qualcomm Incorporated | MIMO system with multiple spatial multiplexing modes |
US7986742B2 (en) | 2002-10-25 | 2011-07-26 | Qualcomm Incorporated | Pilots for MIMO communication system |
US8218609B2 (en) | 2002-10-25 | 2012-07-10 | Qualcomm Incorporated | Closed-loop rate control for a multi-channel communication system |
US7002900B2 (en) | 2002-10-25 | 2006-02-21 | Qualcomm Incorporated | Transmit diversity processing for a multi-antenna communication system |
US8320301B2 (en) | 2002-10-25 | 2012-11-27 | Qualcomm Incorporated | MIMO WLAN system |
US20040081131A1 (en) | 2002-10-25 | 2004-04-29 | Walton Jay Rod | OFDM communication system with multiple OFDM symbol sizes |
US8570988B2 (en) | 2002-10-25 | 2013-10-29 | Qualcomm Incorporated | Channel calibration for a time division duplexed communication system |
US6861975B1 (en) * | 2003-06-25 | 2005-03-01 | Harris Corporation | Chirp-based method and apparatus for performing distributed network phase calibration across phased array antenna |
US6891497B2 (en) * | 2003-06-25 | 2005-05-10 | Harris Corporation | Chirp-based method and apparatus for performing phase calibration across phased array antenna |
US9473269B2 (en) | 2003-12-01 | 2016-10-18 | Qualcomm Incorporated | Method and apparatus for providing an efficient control channel structure in a wireless communication system |
US7486740B2 (en) * | 2004-04-02 | 2009-02-03 | Qualcomm Incorporated | Calibration of transmit and receive chains in a MIMO communication system |
US7616929B2 (en) * | 2005-04-04 | 2009-11-10 | Broadcom Corporation | Cross-core calibration in a multi-radio system |
US7636552B2 (en) * | 2005-04-08 | 2009-12-22 | The Boeing Company | Point-to-multipoint communications system and method |
US8280309B2 (en) * | 2005-04-08 | 2012-10-02 | The Boeing Company | Soft handoff method and apparatus for mobile vehicles using directional antennas |
US9306657B2 (en) * | 2005-04-08 | 2016-04-05 | The Boeing Company | Soft handoff method and apparatus for mobile vehicles using directional antennas |
US7466749B2 (en) | 2005-05-12 | 2008-12-16 | Qualcomm Incorporated | Rate selection with margin sharing |
US8358714B2 (en) | 2005-06-16 | 2013-01-22 | Qualcomm Incorporated | Coding and modulation for multiple data streams in a communication system |
US7672668B2 (en) * | 2005-09-07 | 2010-03-02 | Samsung Electronics Co., Ltd. | Calibration system architecture for calibrating multiple types of base stations in a wireless network |
EP1770827B1 (en) * | 2005-09-28 | 2008-05-28 | Alcatel Lucent | Calibration method for smart antenna arrays |
US7576686B2 (en) * | 2006-08-07 | 2009-08-18 | Garmin International, Inc. | Method and system for calibrating an antenna array for an aircraft surveillance system |
US7671798B2 (en) * | 2007-02-28 | 2010-03-02 | Alcatel-Lucent Usa Inc. | Method and apparatus for optimal combining of noisy measurements |
WO2009019526A1 (en) * | 2007-08-09 | 2009-02-12 | Nokia Corporation | Calibration ofsmart antenna systems |
US8503941B2 (en) | 2008-02-21 | 2013-08-06 | The Boeing Company | System and method for optimized unmanned vehicle communication using telemetry |
GB2461082A (en) * | 2008-06-20 | 2009-12-23 | Ubidyne Inc | Antenna array calibration with reduced interference from a payload signal |
CN101483273B (en) * | 2009-02-24 | 2012-06-13 | 中国航天科技集团公司第五研究院第五○四研究所 | Calibration method for amplitude and phase variable array antenna |
DE102009019557A1 (en) * | 2009-04-30 | 2010-11-11 | Kathrein-Werke Kg | A method of operating a phased array antenna and a phase shifter assembly and associated phased array antenna |
US8731005B2 (en) * | 2009-10-12 | 2014-05-20 | Kathrein-Werke Kg | Absolute timing and Tx power calibration of the Tx path in a distributed system |
US8374826B2 (en) * | 2010-02-22 | 2013-02-12 | Ubidyne, Inc. | System, apparatus and method for calibrating a delay along a signal path |
US8311166B2 (en) | 2010-03-31 | 2012-11-13 | Ubidyne, Inc. | Active antenna array and method for calibration of the active antenna array |
US8340612B2 (en) * | 2010-03-31 | 2012-12-25 | Ubidyne, Inc. | Active antenna array and method for calibration of the active antenna array |
US8441966B2 (en) | 2010-03-31 | 2013-05-14 | Ubidyne Inc. | Active antenna array and method for calibration of receive paths in said array |
US8599861B2 (en) * | 2010-06-03 | 2013-12-03 | Kathrein-Werke Kg | Active antenna array and method for relaying radio signals |
US8774196B2 (en) | 2010-06-03 | 2014-07-08 | Kathrein-Werke Kg | Active antenna array and method for relaying radio signals with synchronous digital data interface |
US20110319034A1 (en) * | 2010-06-28 | 2011-12-29 | Boe Eric N | Method and system for propagation time measurement and calibration using mutual coupling in a radio frequency transmit/receive system |
CN101938305B (en) * | 2010-08-13 | 2012-12-26 | 四川九洲电器集团有限责任公司 | Amplitude and phase calibration method of phased array system receiving channel |
EP2710843B1 (en) * | 2011-05-17 | 2015-03-18 | Telefonaktiebolaget L M Ericsson (Publ) | Method and arrangement for supporting calibration of correlated antennas |
CN103684566A (en) * | 2012-09-11 | 2014-03-26 | 株式会社Ntt都科摩 | Transceiver and antenna calibrating method |
GB2517218B (en) | 2013-08-16 | 2017-10-04 | Analog Devices Global | Communication unit and method of antenna array calibration |
GB2517217B (en) * | 2013-08-16 | 2018-03-21 | Analog Devices Global | Communication unit, integrated circuit and method for generating a plurality of sectored beams |
US9590747B2 (en) * | 2013-10-30 | 2017-03-07 | Samsung Electronics Co., Ltd | RF loopback via antenna coupling for calibration of multiple transceiver systems |
CN104681987B (en) * | 2013-11-28 | 2018-01-12 | 中国航空工业集团公司雷华电子技术研究所 | A kind of radar antenna array element multifrequency point matches somebody with somebody phase method |
JP6396664B2 (en) * | 2014-03-26 | 2018-09-26 | 株式会社Soken | Position estimation device |
CN104618930B (en) * | 2014-12-29 | 2018-02-02 | 大唐移动通信设备有限公司 | A kind of multiple antennas test system calibration method and equipment |
CN104506253A (en) * | 2015-01-13 | 2015-04-08 | 重庆大学 | Amplitude phase error correction system and method for transmitting channel of phased-array antenna |
JP6494551B2 (en) * | 2016-03-28 | 2019-04-03 | アンリツ株式会社 | Field strength distribution measuring apparatus and field strength distribution measuring method |
EP3790111B1 (en) * | 2018-07-06 | 2022-03-02 | Huawei Technologies Co., Ltd. | Method for calibrating phased-array antenna, and related apparatus |
US11115136B1 (en) * | 2020-07-10 | 2021-09-07 | Lg Electronics Inc. | Method for calibrating an array antenna in a wireless communication system and apparatus thereof |
US20220015051A1 (en) * | 2020-07-13 | 2022-01-13 | Qualcomm Incorporated | Reference device hardware group delay calibration |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2171849A (en) * | 1985-02-25 | 1986-09-03 | Secr Defence | Improvements in or relating to the alignment of phased array antenna systems |
DE3934155C2 (en) * | 1988-10-13 | 1999-10-07 | Mitsubishi Electric Corp | Method for measuring an amplitude and a phase of each antenna element of a phase-controlled antenna arrangement and antenna arrangement for performing the method |
DE69113451T2 (en) * | 1990-03-16 | 1996-05-02 | Newbridge Networks Corp | DIGITAL DATA TRANSFER SYSTEM. |
US5955989A (en) * | 1990-11-15 | 1999-09-21 | Li; Ming-Chiang | Optimum edges for speakers and musical instruments |
CA2180051C (en) * | 1995-07-07 | 2005-04-26 | Seth David Silverstein | Method and apparatus for remotely calibrating a phased array system used for satellite communication |
US5572219A (en) * | 1995-07-07 | 1996-11-05 | General Electric Company | Method and apparatus for remotely calibrating a phased array system used for satellite communication |
WO1998042093A1 (en) * | 1997-03-18 | 1998-09-24 | Matsushita Electric Industrial Co., Ltd. | Calibration device for array antenna wireless receiver |
SE509434C2 (en) * | 1997-05-16 | 1999-01-25 | Ericsson Telefon Ab L M | Antenna calibration device and method |
JPH10336149A (en) * | 1997-05-28 | 1998-12-18 | Matsushita Electric Ind Co Ltd | Cdma radio communication device with arrayed antenna |
GB2342505B (en) * | 1998-10-06 | 2003-06-04 | Telecom Modus Ltd | Antenna array calibration |
US6236839B1 (en) * | 1999-09-10 | 2001-05-22 | Utstarcom, Inc. | Method and apparatus for calibrating a smart antenna array |
-
1999
- 1999-10-26 DE DE19951525A patent/DE19951525C2/en not_active Expired - Fee Related
-
2000
- 2000-10-24 CN CN00814932A patent/CN1384989A/en active Pending
- 2000-10-24 DE DE50003316T patent/DE50003316D1/en not_active Expired - Fee Related
- 2000-10-24 BR BR0015016-9A patent/BR0015016A/en not_active Application Discontinuation
- 2000-10-24 WO PCT/DE2000/003756 patent/WO2001031744A1/en active IP Right Grant
- 2000-10-24 US US10/111,503 patent/US6693588B1/en not_active Expired - Lifetime
- 2000-10-24 EP EP00983055A patent/EP1234355B1/en not_active Expired - Lifetime
- 2000-10-24 AU AU19950/01A patent/AU1995001A/en not_active Abandoned
Also Published As
Publication number | Publication date |
---|---|
WO2001031744A1 (en) | 2001-05-03 |
CN1384989A (en) | 2002-12-11 |
EP1234355A1 (en) | 2002-08-28 |
DE19951525C2 (en) | 2002-01-24 |
BR0015016A (en) | 2002-06-18 |
DE50003316D1 (en) | 2003-09-18 |
AU1995001A (en) | 2001-05-08 |
US6693588B1 (en) | 2004-02-17 |
DE19951525A1 (en) | 2001-06-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1234355B1 (en) | Method for calibrating an electronically phase-controlled group antenna in radio-communications systems | |
DE69716699T2 (en) | SELF-CALIBRATING DEVICE AND METHOD FOR A MESSAGE TRANSMISSION DEVICE | |
DE69712790T2 (en) | METHOD AND DEVICE FOR RADIO RADIO TRANSMISSION | |
DE60224213T2 (en) | CALIBRATION OF A RADIO COMMUNICATION SYSTEM | |
DE69938399T2 (en) | Method and device for transmission timing control of a wireless transceiver | |
EP0637181B1 (en) | Radio system with frequency optimization | |
DE19780990C2 (en) | Device and method for wireless messaging in a multi-sector service area | |
DE69625671T2 (en) | METHOD FOR TRANSMITTING PILOT CHANNELS AND CELLULAR RADIO SYSTEM | |
DE69900646T2 (en) | METHOD AND DEVICE FOR DETERMINING THE RECEIVING DIRECTION OF A SIGNAL | |
DE69731978T2 (en) | METHOD AND DEVICE FOR TRANSMITTED RADIO TRANSMISSION | |
DE3044101C2 (en) | Process for increasing the rain limit value of a TDMA satellite radio system and system for carrying out the process | |
DE69936682T2 (en) | Base station and radio transmission method with receiver diversity | |
EP1297639A2 (en) | Beam forming method | |
DE69736743T2 (en) | PROCESS AND DEVICE FOR DIRECT COMMUNICATION | |
DE3145992A1 (en) | DIGITAL MOBILE RADIO HIGH CAPACITY | |
DE19803188A1 (en) | Data transmission method in radio communications system | |
EP1027783B1 (en) | Methods and arrangement for transmitting data via a radio interface in a radiocommunications system | |
DE69832746T2 (en) | Access system for sectored radio networks | |
DE69601636T2 (en) | PROCEDURE FOR CALIBRATING THE SEND / RECEIVE CHAINS OF A BASE STATION OF A MOBILE RADIO COMMUNICATION SYSTEM | |
WO1999021315A1 (en) | Method and radio station for data transmission | |
DE19810285A1 (en) | Channel characteristics determination for radio communications system | |
DE69938185T2 (en) | A method and apparatus for operating a cellular telecommunications system | |
DE10025287B4 (en) | A method and communication system for estimating a downlink interference covariance matrix in cellular mobile radio networks using adaptive antennas | |
DE10359649A1 (en) | Regenerative-relay-type transmission device for a digital broadcasting system for sound, video or digital data demodulates a digitally modulated received wave so as to reproduce digital data | |
WO2001043307A2 (en) | Method for maintaining a synchronised upward signal transmission in a radio communication system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20020404 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: SCHLEE, JOHANNES |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Designated state(s): DE FR GB IT |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: SCHLEE, JOHANNES |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: GERMAN |
|
REF | Corresponds to: |
Ref document number: 50003316 Country of ref document: DE Date of ref document: 20030918 Kind code of ref document: P |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) | ||
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040501 |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20040514 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20071016 Year of fee payment: 8 Ref country code: GB Payment date: 20071023 Year of fee payment: 8 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: TP |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E Free format text: REGISTERED BETWEEN 20090205 AND 20090211 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20081024 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20090630 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20081031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20081024 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20171023 Year of fee payment: 18 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181024 |