EP1206793B1 - Light source with an indirectly heated filament - Google Patents
Light source with an indirectly heated filament Download PDFInfo
- Publication number
- EP1206793B1 EP1206793B1 EP00929240A EP00929240A EP1206793B1 EP 1206793 B1 EP1206793 B1 EP 1206793B1 EP 00929240 A EP00929240 A EP 00929240A EP 00929240 A EP00929240 A EP 00929240A EP 1206793 B1 EP1206793 B1 EP 1206793B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- filament
- light source
- bulb
- source according
- carbide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000010438 heat treatment Methods 0.000 claims abstract description 48
- 230000005855 radiation Effects 0.000 claims abstract description 29
- 229910052751 metal Inorganic materials 0.000 claims abstract 3
- 239000000463 material Substances 0.000 claims description 17
- 239000011248 coating agent Substances 0.000 claims description 13
- 238000000576 coating method Methods 0.000 claims description 13
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 10
- 229910052721 tungsten Inorganic materials 0.000 claims description 9
- 239000010937 tungsten Substances 0.000 claims description 9
- 229910052702 rhenium Inorganic materials 0.000 claims description 6
- WUAPFZMCVAUBPE-UHFFFAOYSA-N rhenium atom Chemical compound [Re] WUAPFZMCVAUBPE-UHFFFAOYSA-N 0.000 claims description 6
- 230000008018 melting Effects 0.000 claims description 5
- 238000002844 melting Methods 0.000 claims description 5
- 229910026551 ZrC Inorganic materials 0.000 claims description 4
- OTCHGXYCWNXDOA-UHFFFAOYSA-N [C].[Zr] Chemical compound [C].[Zr] OTCHGXYCWNXDOA-UHFFFAOYSA-N 0.000 claims description 4
- 229910052736 halogen Inorganic materials 0.000 claims description 4
- 150000002367 halogens Chemical class 0.000 claims description 4
- UNASZPQZIFZUSI-UHFFFAOYSA-N methylidyneniobium Chemical compound [Nb]#C UNASZPQZIFZUSI-UHFFFAOYSA-N 0.000 claims description 4
- NFFIWVVINABMKP-UHFFFAOYSA-N methylidynetantalum Chemical compound [Ta]#C NFFIWVVINABMKP-UHFFFAOYSA-N 0.000 claims description 4
- 229910003468 tantalcarbide Inorganic materials 0.000 claims description 4
- 229910052756 noble gas Inorganic materials 0.000 claims description 3
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 claims description 2
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 claims description 2
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims description 2
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 claims description 2
- 229910052794 bromium Inorganic materials 0.000 claims description 2
- 229910052740 iodine Inorganic materials 0.000 claims description 2
- 239000011630 iodine Substances 0.000 claims description 2
- 229910052758 niobium Inorganic materials 0.000 claims description 2
- 239000010955 niobium Substances 0.000 claims description 2
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 claims description 2
- 229910052715 tantalum Inorganic materials 0.000 claims description 2
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 claims description 2
- 229910052726 zirconium Inorganic materials 0.000 claims description 2
- 239000002365 multiple layer Substances 0.000 claims 1
- 238000006243 chemical reaction Methods 0.000 abstract description 5
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 abstract 4
- 229910002092 carbon dioxide Inorganic materials 0.000 abstract 2
- 239000001569 carbon dioxide Substances 0.000 abstract 2
- 239000002184 metal Substances 0.000 abstract 2
- 239000011261 inert gas Substances 0.000 abstract 1
- 238000000034 method Methods 0.000 abstract 1
- 239000000843 powder Substances 0.000 abstract 1
- 238000010521 absorption reaction Methods 0.000 description 7
- 230000008020 evaporation Effects 0.000 description 6
- 238000001704 evaporation Methods 0.000 description 6
- 230000004907 flux Effects 0.000 description 6
- 230000002349 favourable effect Effects 0.000 description 3
- 238000001816 cooling Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 238000002310 reflectometry Methods 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 229910001507 metal halide Inorganic materials 0.000 description 1
- 150000005309 metal halides Chemical class 0.000 description 1
- 229910052755 nonmetal Inorganic materials 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01K—ELECTRIC INCANDESCENT LAMPS
- H01K1/00—Details
- H01K1/02—Incandescent bodies
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01K—ELECTRIC INCANDESCENT LAMPS
- H01K1/00—Details
- H01K1/02—Incandescent bodies
- H01K1/14—Incandescent bodies characterised by the shape
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01K—ELECTRIC INCANDESCENT LAMPS
- H01K3/00—Apparatus or processes adapted to the manufacture, installing, removal, or maintenance of incandescent lamps or parts thereof
- H01K3/02—Manufacture of incandescent bodies
Definitions
- the invention relates to a light source, in particular an incandescent lamp, comprising a bulb, a filament arranged in the bulb and a heating device for the filament, wherein the filament emits both visible light and heat radiation and wherein the heating device has a heating element for indirect heating of the filament.
- Light sources have long been known from practice and exist in a variety of embodiments and sizes.
- incandescent lamps are known as electric light sources, in which a tungsten wire is generally brought to the highest possible temperature by the electric current heat. At the same time, temperature radiation is generated. The luminous efficacy of glowing wires increases strongly with increasing temperature.
- non-thermal radiation sources such as discharge lamps are known as noble gas, mercury, sodium or metal halide discharge lamps in high or low pressure versions.
- One way to increase the efficiency of known light sources is to reflect the heat radiated from the filament or filament from the inside of the bulb back onto the filament or filament. This results in a kind of back heating of the filament or the filament. As a result, less electrical power is needed to achieve the same filament temperature than when heated without reflection.
- the visible, transmitted by the bulb light output remains the same. Ideally, only that electrical power is required which corresponds to the visible emitted light power and the absorbed by the piston thermal power loss. The conversion efficiency is thus improved by the reflected heat radiation component.
- the conversion efficiency could theoretically be increased up to 75% or 140 lumens / watt be based on the usual thermal power dissipation of tungsten lamps of about 25% and neglected the radiation absorption of a mirroring of the inside of the piston, for example, dielectric Veradorungen have an absorption of typically 0.1%.
- the photon flux is allowed to experience only 1000 reflections on the inside of the bulb until it is completely absorbed in the bulb.
- the probability that the photon flux on the reflection path strikes the filament or the filament and is absorbed there, is proportional to the ratio of the filament volume or the filament surface to the reflective piston volume or to the reflective piston surface.
- a light source of the aforementioned type with all features of the preamble of claim 1 is known. Indirect heating is carried out inductively.
- the present invention is therefore based on the object of specifying a light source of the type mentioned, in which the most efficient heating of the filament is achieved.
- the filament could be band-shaped or generally formed as a surface filament.
- the filament could also be formed generally as a bulk filament, i. as a filament occupying a spatial volume or comprising a volume.
- the filament could be cup-shaped or cylinder jacket-shaped.
- an embodiment as a complete cylinder jacket or as part of a cylinder jacket, in particular as Zylindermantelhdroit conceivable.
- such a cylinder jacket could also be formed open or longitudinally slotted on the side. This is favorable in view of the thermal expansion behavior of the filament.
- the diameter of the cylinder jacket or the cylinder jacket part or the cylinder jacket half be only slightly smaller than the diameter of the piston.
- the piston could be tubular.
- the filament could be arranged concentrically in the piston and / or coaxial with a longitudinal axis of the piston in the piston.
- the filament could divide the interior of the piston into one or more half or partial spaces.
- the piston could have such a large outer surface that surface heat generated by, for example, heat radiation absorption can be dissipated by convection cooling or other forced cooling.
- the size and shape of the filament and the piston could be matched accordingly.
- the filament could comprise tungsten and / or rhenium and / or tantalum and / or zirconium and / or niobium.
- the filament could have the latter materials in sintered form.
- the filament could be at least partially constructed on a non-metal. This could improve the mechanical stability of the filament.
- the filament could at least partially be composed of tantalum carbide and / or rhenium carbide and / or niobium carbide and / or zirconium carbide.
- surface temperatures could be achieved which are higher than is usual for known tungsten filament lamps.
- the heating element is a heating element heated by electric current.
- the filament is heated by the heat radiation of the glow element.
- the heating element can be adapted independently of the filament to the required lamp power.
- the heating element could be a heating coil in a particularly simple manner.
- the heating element is arranged within a space formed by the filament, preferably within a cylinder jacket or a cylinder jacket half.
- the glow element could additionally contribute to light generation.
- the glow element radiates in the direction predetermined by the configuration of the filament.
- the light source could already emit light before the filament is heated to the temperature required for the light emission. A time delay between activation of the light source and light emission is thereby largely avoided.
- the heating element could be formed from tungsten.
- the use of conventional Wolframsammlungratln is conceivable.
- the filament could be attached to a power supply for the heating element or glow element. As a result, additional holding devices for the filament in the piston are avoided.
- the piston could have on its inside a VerLiteung.
- This could, in a particularly favorable manner, be a dielectric multilayer coating.
- there is a spectrally selective reflection which essentially reflects the heat radiation component and transmits the proportion of visible radiation.
- heat radiation is also emitted directly from the heating element to the inside of the piston.
- the light source according to the invention could be referred to as a radiation furnace lamp, wherein the piston forms an internally heated radiation furnace for the infrared radiation.
- the color temperature of the light source can be set independently of the surface temperature of the filament or the heating element. This can be done by the spectrally selective mirroring, which can specify the transmitted spectral distribution of the radiation power emitted from the bulb and thus the color temperature.
- the surface temperature of both the heating element and the filament can be reduced compared to previous thermal light sources of the same light output, because on the one hand, the total radiant power of the heating element must correspond only to the sum of the visible radiant power and the thermal power loss of the light source. However, this is lower by the reflected and reabsorbed heat radiation fraction or infrared radiation power fraction than the total radiation power of comparable previous thermal radiators.
- the entire thermal radiation is specific to the temperature according to the Stefan-Bolzmann law, so that the heating element of the light source according to the invention compared to the directly heated filament of comparable previous thermal light sources can be operated at a lower temperature.
- the surface temperature of the filament can also be set comparatively lower because the comparable visible luminous flux can be generated by a larger and colder surface of the filament.
- the filament surface forms a new additional structural degree of freedom.
- the filament can be operated at a relatively low temperature and thus also a relatively low evaporation of the filament material is achieved, a disturbing evaporation due to the very large surface, which is as close as possible to the piston inside, occur.
- the reflectivity of the inside of the piston or the mirror coating on the inside of the piston is reduced and increases the absorption of the piston or the mirroring or the thermal power loss. Therefore, it is desirable to minimize the evaporation of the filament material as much as possible.
- a noble gas and / or a halogen gas could be present in the piston, wherein the halogen gas could have bromine and / or iodine.
- the halogen gas could have bromine and / or iodine.
- An alternative solution to the problem of evaporation could be by coating the filament and / or the annealing element with a coating material having a higher melting point than the filament and / or filament material. This is due to the dependence of the temperature-dependent vapor pressure of a solid on its melting point. Furthermore, the precipitate of the coating material could exhibit a lower absorptivity than the precipitate of the usual filament or calcination material.
- the coating material with a very high melting point for example, tantalum carbide and / or rhenium carbide and / or niobium carbide and / or zirconium carbide could be used.
- Fig. 1 shows in a perspective side view of the embodiment of a light source according to the invention.
- the light source is designed as a light bulb, which has a piston 1, in which a filament 2 is arranged.
- a heating device 3 is provided, which provides an electric current.
- the heated filament 2 emits both visible light and heat radiation.
- the temperature of the heated filament 2 may be about 3000 degrees Celsius.
- the heating device 3 has a heating element 4 for indirect heating of the filament 2.
- the heating element 4 is a heating element in helical form and may for example consist of tungsten.
- the filament 2 is formed substantially cylindrical shell-shaped and therefore has a large absorption surface for heat radiation, which is reflected from the inside of the piston 1. As a result, the filament 2 is effectively reheated by the reflected heat radiation. This makes it possible to choose a lower temperature of the heating element 4 than would be required in a conventional light source with the same light output. Consequently, the light source according to the invention can be operated with lower energy and thus more economically than conventional light sources.
- the cylinder jacket-shaped filament 2 is attached in a simple manner to a power supply 5 for the heating element 4.
- the heating element 4 or heating element in the form of a helix is positioned concentrically and coaxially with the filament 2.
- the filament 2 is in turn arranged concentrically and coaxially with the quasi-tubular piston 1 in the piston 1.
- the cylinder jacket-shaped or tubular filament 2 is formed of tungsten.
- the diameter of the filament 2 is only slightly smaller than the diameter of the piston 1.
- a reflective coating 7 is provided on the inside of the piston 1.
- the mirror coating 7 serves for effective reflection of the heat radiation emitted by the heating element 4 and / or by the filament 2.
- the heating element 4 and / or the filament 2 could have a coating of a material with a very high melting point. As a result, evaporation of filament and / or heating element material could be reduced.
- the filament 2 is arranged substantially concentrically in the piston 1 and that the heating element 4 is positioned substantially centrally in the filament 2.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Resistance Heating (AREA)
- Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
- Polymerisation Methods In General (AREA)
- Eye Examination Apparatus (AREA)
- Devices For Indicating Variable Information By Combining Individual Elements (AREA)
- Non-Portable Lighting Devices Or Systems Thereof (AREA)
Abstract
Description
Die Erfindung betrifft eine Lichtquelle, insbesondere eine Glühlampe, mit einem Kolben, einem in dem Kolben angeordneten Filament und einer Heizeinrichtung für das Filament, wobei das Filament sowohl sichtbares Licht als auch Wärmestrahlung emittiert und wobei die Heizeinrichtung ein Heizelement zur indirekten Aufheizung des Filaments aufweist.The invention relates to a light source, in particular an incandescent lamp, comprising a bulb, a filament arranged in the bulb and a heating device for the filament, wherein the filament emits both visible light and heat radiation and wherein the heating device has a heating element for indirect heating of the filament.
Lichtquellen sind seit langem aus der Praxis bekannt und existieren in den unterschiedlichsten Ausführungsformen und Größen. Dabei sind beispielsweise Glühlampen als elektrische Lichtquellen bekannt, bei denen im allgemeinen ein Wolframdraht durch die elektrische Stromwärme auf möglichst hohe Temperatur gebracht wird. Dabei wird Temperaturstrahlung erzeugt. Die Lichtausbeute glühender Drähte steigt mit wachsender Temperatur stark an. Daneben sind auch noch sogenannte nichtthermische Strahlungsquellen wie Entladungslampen als Edelgas-, Quecksilber-, Natrium- oder Metallhalogen-Entladungslampen in Hoch- oder Niederdruckausführungen bekannt.Light sources have long been known from practice and exist in a variety of embodiments and sizes. In this case, for example, incandescent lamps are known as electric light sources, in which a tungsten wire is generally brought to the highest possible temperature by the electric current heat. At the same time, temperature radiation is generated. The luminous efficacy of glowing wires increases strongly with increasing temperature. In addition, so-called non-thermal radiation sources such as discharge lamps are known as noble gas, mercury, sodium or metal halide discharge lamps in high or low pressure versions.
Bei diesen elektrisch betriebenen Typen von Lichtquellen ist nachteilig, daß sie sehr ineffizient bezüglich der Konversion von elektrischer Leistung in sichtbare Lichtleistung sind. Die Konversion übersteigt kaum 30%. Der größte Anteil der verbrauchten elektrischen Leistung ist unwirtschaftliche Verlustleistung in Form von vorwiegend Wärme.These electrically powered types of light sources are disadvantageous in that they are very inefficient in converting electrical power to visible light power. The conversion barely exceeds 30%. The largest part of the consumed electrical power is uneconomical power loss in the form of predominantly heat.
Eine Möglichkeit, die Effizienz bekannter Lichtquellen zu erhöhen besteht darin, daß die vom Filament oder Glühdraht abgestrahlte Wärme von der Innenseite des Kolbens zurück auf das Filament oder den Glühdraht reflektiert wird. Hierdurch erfolgt eine Art Rückheizen des Filaments oder des Glühdrahts. Dies hat zur Folge, daß zum Erreichen derselben Flamenttemperatur weniger elektrische Leistung benötigt wird als bei einem Aufheizen ohne Reflexion. Die sichtbare, durch den Kolben transmittierte Lichtleistung bleibt dabei gleich. Im ldealfall wird nur noch diejenige elektrische Leistung benötigt, die der sichtbaren emittierten Lichtleistung und der vom Kolben absorbierten thermischen Verlustleistung entspricht. Die Konversionseffizienz wird somit um den reflektierten Wärmestrahlungsanteil verbessert. Die Konversionseffizienz könnte somit theoretisch auf bis zu 75% bzw. 140 Lumen/Watt gesteigert werden, wenn man die übliche thermische Verlustleistung von Wolframlampen von ca. 25% zugrunde legt und die Strahlungsabsorption einer Verspiegelung der Innenseite des Kolbens vernachlässigt, wobei beispielsweise dielektrische Verspiegelungen eine Absorption von typischerweise 0,1% aufweisen.One way to increase the efficiency of known light sources is to reflect the heat radiated from the filament or filament from the inside of the bulb back onto the filament or filament. This results in a kind of back heating of the filament or the filament. As a result, less electrical power is needed to achieve the same filament temperature than when heated without reflection. The visible, transmitted by the bulb light output remains the same. Ideally, only that electrical power is required which corresponds to the visible emitted light power and the absorbed by the piston thermal power loss. The conversion efficiency is thus improved by the reflected heat radiation component. The conversion efficiency could theoretically be increased up to 75% or 140 lumens / watt be based on the usual thermal power dissipation of tungsten lamps of about 25% and neglected the radiation absorption of a mirroring of the inside of the piston, for example, dielectric Verspiegelungen have an absorption of typically 0.1%.
Bei einer Verspiegelung der Innenseite des Kolbens mit einem Reflexionsvermögen von zum Beispiel 99,9% wird statistisch jedes tausendste Photon im Material der Verspiegelung absorbiert. Bei der Reflexion der Strahlung in den Kolben darf der Photonenfluß deshalb lediglich 1000 Reflexionen an der Innenseite des Kolbens erfahren bis er vollständig im Kolben absorbiert wird. Die Wahrscheinlichkeit dafür, daß der Photonenfluß auf dem Reflexionsweg das Filament bzw. den Glühdraht trifft und dort absorbiert wird, ist proportional zum Verhältnis des Filamentvolumens bzw. der Filamentoberfläche zum reflektierenden Kolbenvolumen bzw. zur reflektierenden Kolbenoberfläche.By mirroring the inside of the bulb with a reflectivity of, for example, 99.9%, statistically every thousandth photon is absorbed in the material of the mirror coating. Therefore, when reflecting the radiation into the bulb, the photon flux is allowed to experience only 1000 reflections on the inside of the bulb until it is completely absorbed in the bulb. The probability that the photon flux on the reflection path strikes the filament or the filament and is absorbed there, is proportional to the ratio of the filament volume or the filament surface to the reflective piston volume or to the reflective piston surface.
Zum Erreichen einer möglichst hohen Rückheizung des Filaments ist es daher vorteilhaft, wenn eine große Filamentfläche vorliegt, so daß der Photonenfluß nach möglichst wenigen Reflexionen an der Innenseite des Kolbens auf das Filament trifft und dort absorbiert wird.To achieve the highest possible heating of the filament, it is therefore advantageous if a large filament surface is present, so that the photon flux meets as few reflections on the inside of the piston on the filament and is absorbed there.
Hierbei ist jedoch nachteilig, daß bei vergrößerter Filamentfläche der elektrische Widerstand des Filaments geringer wird, so daß zum Erreichen der für die Uchtemission erforderlichen Filamenttemperatur ein erheblich höherer Strom im Filament erforderlich ist als bei üblicher Filamentfläche bzw. üblichem Filamentquerschnitt. Dies kann zu Sicherheitsproblemen für den Benutzer der Lichtquelle führen. Zusammenfassend liegt hierbei eine Zwickmühle hinsichtlich einer möglichst großen Filamentfläche und der hierfür erforderlichen und nachteiligen hohen Ströme vor.In this case, however, it is disadvantageous that with an increased filament surface the electrical resistance of the filament becomes lower, so that a considerably higher current in the filament is required to achieve the filament temperature required for the actual emission than with the usual filament surface or customary filament cross section. This can lead to security problems for the user of the light source. In summary, here is a Zwickmühle in terms of the largest possible filament surface and the necessary and disadvantageous high currents.
Aus der DD 141 222 A ist eine Lichtquelle der eingangs genannten Art mit allen Merkmalen des Oberbegriffs des Patentanspruchs 1 bekannt. Die indirekte Aufheizung erfolgt induktiv.From DD 141 222 A, a light source of the aforementioned type with all features of the preamble of
Der vorliegenden Erfindung liegt daher die Aufgabe zugrunde, eine Lichtquelle der eingangs genannten Art anzugeben, bei der eine möglichst effiziente Aufheizung des Filaments erreicht ist.The present invention is therefore based on the object of specifying a light source of the type mentioned, in which the most efficient heating of the filament is achieved.
Die zuvor aufgezeigte Aufgabe ist durch eine Lichtquelle mit den Merkmalen des Patentanspruchs 1 gelöst.The above-indicated object is achieved by a light source having the features of
Im Hinblick auf ein möglichst günstiges Absorptionsverhalten für Wärmestrahlung könnte das Filament bandförmig oder ganz allgemein als Flächenfilament ausgebildet sein. Alternativ hierzu könnte das Filament auch ganz allgemein als Volumenfilament ausgebildet sein, d.h. als ein Filament, das ein räumliches Volumen einnimmt oder ein Volumen umfaßt. Insbesondere könnte das Filament schalenförmig oder zylindermantelförmig ausgebildet sein. Dabei ist eine Ausgestaltung als vollständiger Zylindermantel oder auch als Teil eines Zylindermantels, insbesondere als Zylindermantelhälfte, denkbar. Im Falle eines im wesentlichen vollständigen Zylindermantels könnte ein derartiger Zylindermantel auch an der Seite offen oder längs geschlitzt ausgebildet sein. Dies ist im Hinblick auf das thermische Ausdehnungsverhalten des Filaments günstig.With regard to the best possible absorption behavior for heat radiation, the filament could be band-shaped or generally formed as a surface filament. Alternatively, the filament could also be formed generally as a bulk filament, i. as a filament occupying a spatial volume or comprising a volume. In particular, the filament could be cup-shaped or cylinder jacket-shaped. In this case, an embodiment as a complete cylinder jacket or as part of a cylinder jacket, in particular as Zylindermantelhälfte conceivable. In the case of a substantially complete cylinder jacket, such a cylinder jacket could also be formed open or longitudinally slotted on the side. This is favorable in view of the thermal expansion behavior of the filament.
Zur Gewährleistung einer besonders effektiven Absorption von von der Innenseite des Kolbens reflektierter Wärmestrahlung könnte der Durchmesser des Zylindermantels oder des Zylindermantelteils oder der Zylindermantelhälfte nur geringfügig kleiner als der Durchmesser des Kolbens sein. Der Kolben könnte dabei röhrenförmig sein. Insbesondere in diesem Fall könnte das Filament konzentrisch in dem Kolben und/oder koaxial zu einer Längsachse des Kolbens in dem Kolben angeordnet sein.To ensure a particularly effective absorption of reflected from the inside of the piston heat radiation, the diameter of the cylinder jacket or the cylinder jacket part or the cylinder jacket half be only slightly smaller than the diameter of the piston. The piston could be tubular. In particular, in this case, the filament could be arranged concentrically in the piston and / or coaxial with a longitudinal axis of the piston in the piston.
Je nach Ausgestaltung des Filaments könnte das Filament den Innenraum des Kolbens in einen oder mehrere Halb- oder Teilräume aufteilen.Depending on the design of the filament, the filament could divide the interior of the piston into one or more half or partial spaces.
Der Kolben könnte eine derart große Außenoberfläche aufweisen, daß Oberflächenwärme, die durch beispielsweise Wärmestrahlungsabsorption erzeugt wird, durch Konvektionskühlung oder eine andere Zwangskühlung abgeführt werden kann. Die Größe und Form des Filaments und des Kolbens könnten entsprechend aufeinander abgestimmt sein.The piston could have such a large outer surface that surface heat generated by, for example, heat radiation absorption can be dissipated by convection cooling or other forced cooling. The size and shape of the filament and the piston could be matched accordingly.
Grundsätzlich könnte das Filament Wolfram und/oder Rhenium und/oder Tantal und/oder Zirkonium und/oder Niob aufweisen. Hier ist auf die jeweiligen Erfordernisse der Lichtquelleneigenschaften abzustimmen. Dabei könnte das Filament die letztgenannten Materialien in gesinterter Form aufweisen.In principle, the filament could comprise tungsten and / or rhenium and / or tantalum and / or zirconium and / or niobium. Here is to vote on the particular requirements of the light source properties. The filament could have the latter materials in sintered form.
Des weiteren könnte das Filament zumindest teilweise auf einem Nichtmetall aufgebaut sein. Dies könnte die mechanische Stabilität des Filaments verbessern.Furthermore, the filament could be at least partially constructed on a non-metal. This could improve the mechanical stability of the filament.
Im Hinblick auf besonders hohe Oberflächentemperaturen und besonders hohe Lichtströme im sichtbaren Bereich könnte das Filament zumindest teilweise aus Tantalkarbid und/oder Rheniumkarbid und/oder Niobkarbid und/oder Zirkonkarbid aufgebaut sein. Hierdurch könnten Oberflächentemperaturen erreicht werden, die höher liegen als dies für bekannte Wolframfilamentlampen üblich ist.With regard to particularly high surface temperatures and particularly high luminous fluxes in the visible range, the filament could at least partially be composed of tantalum carbide and / or rhenium carbide and / or niobium carbide and / or zirconium carbide. As a result, surface temperatures could be achieved which are higher than is usual for known tungsten filament lamps.
Das Heizelement ist ein durch elektrischen Strom aufgeheiztes Glühelement. Das Filament wird dabei durch die Wärmestrahlung des Glühelements aufgeheizt. Das Glühelement kann unabhängig vom Filament an die erforderliche Lampenleistung angepaßt werden. Das Glühelement könnte in besonders einfacher Weise eine Heizwendel sein.The heating element is a heating element heated by electric current. The filament is heated by the heat radiation of the glow element. The heating element can be adapted independently of the filament to the required lamp power. The heating element could be a heating coil in a particularly simple manner.
Im Hinblick auf eine besonders günstige Aufheizung des Filaments durch das Glühelement ist das Glühelement innerhalb eines durch das Filament gebildeten Raums, vorzugsweise innerhalb eines Zylindermantels oder einer Zylindermantelhälfte, angeordnet. Dabei wird quasi der größte Teil der vom Glühelement abgestrahlten Wärme vom Filament absorbiert. Bei einer Ausgestaltung des Filaments als bereichsweise offener Körper ― beispielsweise als Zylindermantelhälfte ― könnte das Glühelement zusätzlich zur Lichterzeugung beitragen. Dabei strahlt das Glühelement in der durch die Ausgestaltung des Filaments vorgegebenen Richtung. Hierbei könnte die Lichtquelle schon Licht emittieren, bevor das Filament auf die für die Lichtemission erforderliche Temperatur aufgeheizt ist. Eine zeitliche Verzögerung zwischen Aktivierung der Lichtquelle und Lichtemission ist dadurch weitgehend vermieden.In view of a particularly favorable heating of the filament by the heating element, the heating element is arranged within a space formed by the filament, preferably within a cylinder jacket or a cylinder jacket half. In this case, virtually the largest part of the heat emitted by the heating element is absorbed by the filament. In one embodiment of the filament as a partially open body - for example, as a cylinder half shell - the glow element could additionally contribute to light generation. In this case, the glow element radiates in the direction predetermined by the configuration of the filament. In this case, the light source could already emit light before the filament is heated to the temperature required for the light emission. A time delay between activation of the light source and light emission is thereby largely avoided.
In besonders einfacher Weise könnte das Glühelement aus Wolfram gebildet sein. Hierbei ist die Verwendung herkömmlicher Wolframheizwendeln denkbar.In a particularly simple manner, the heating element could be formed from tungsten. Here, the use of conventional Wolframheizwendeln is conceivable.
In konstruktiv besonders einfacher Weise könnte das Filament an einer Stromzuführung für das Heizelement oder Glühelement befestigt sein. Hierdurch sind zusätzliche Halteeinrichtungen für das Filament im Kolben vermieden.In a structurally particularly simple manner, the filament could be attached to a power supply for the heating element or glow element. As a result, additional holding devices for the filament in the piston are avoided.
Zur Optimierung des Reflexionsverhaltens der Innenseite des für sichtbares Licht transparenten Kolbens könnte der Kolben an seiner Innenseite eine Verspiegelung aufweisen. Hierbei könnte es sich in besonders günstiger Weise um eine dielektrische Mehrschichtbeschichtung handeln. Dabei liegt eine spektral selektive Verspiegelung vor, die im wesentlichen den Wärmestrahlungsanteil reflektiert und den Anteil an sichtbarer Strahlung transmittiert.In order to optimize the reflection behavior of the inside of the transparent to visible light piston, the piston could have on its inside a Verspiegelung. This could, in a particularly favorable manner, be a dielectric multilayer coating. In this case, there is a spectrally selective reflection, which essentially reflects the heat radiation component and transmits the proportion of visible radiation.
Bei einem Filament, das ein Glühelement nicht vollständig umschließt, wird von dem Glühelement Wärmestrahlung auch direkt auf die Innenseite des Kolbens emittiert.In a filament that does not completely surround a heating element, heat radiation is also emitted directly from the heating element to the inside of the piston.
Von dieser Innenseite erfolgt wiederum eine Reflexion der Wärmestrahlung auf das Filament.From this inside again a reflection of the heat radiation on the filament.
Auch von dem Filament emittierte Wärmestrahlung wird von der Innenseite des Kolbens reflektiert und trägt dadurch zur Rückheizung des Filaments bei. Insgesamt könnte die erfindungsgemäße Lichtquelle als Strahlungsofenlampe bezeichnet werden, wobei der Kolben einen von innen beheizten Strahlungsofen für die Infrarotstrahlung bildet.Also, heat radiation emitted by the filament is reflected from the inside of the bulb, thereby contributing to the heating back of the filament. Overall, the light source according to the invention could be referred to as a radiation furnace lamp, wherein the piston forms an internally heated radiation furnace for the infrared radiation.
Durch die große mögliche Oberfläche des Filaments können Lichtquellen mit großen Lichtleistungen gebaut werden. Auch kann die Farbtemperatur der Lichtquelle unabhängig von der Oberflächentemperatur des Filaments oder des Glühelements eingestellt werden. Dies kann durch die spektral selektive Verspiegelung erfolgen, die die transmittierte Spektralverteilung der aus dem Kolben emittierten Strahlungsleistung und damit die Farbtemperatur vorgeben kann.Due to the large possible surface of the filament light sources can be built with high light output. Also, the color temperature of the light source can be set independently of the surface temperature of the filament or the heating element. This can be done by the spectrally selective mirroring, which can specify the transmitted spectral distribution of the radiation power emitted from the bulb and thus the color temperature.
Insbesondere kann die Oberflächentemperatur sowohl des Glühelements als auch des Filaments im Vergleich zu bisherigen thermischen Lichtquellen der gleichen Lichtleistung gesenkt werden, denn zum einen muß die gesamte Strahlungsleistung des Glühelements nur der Summe aus der sichtbaren Strahlungsleistung und der thermischen Verlustleistung der Lichtquelle entsprechen. Diese ist aber um den reflektierten und reabsorbierten Wärmestrahlungsanteil bzw. Infrarotstrahlungsleistungsanteil geringer als die Gesamtstrahlungsleistung vergleichbarer bisheriger Temperaturstrahler. Die gesamte thermische spezifische Ausstrahlung ist nach dem Stefan-Bolzmann-Gesetz eine Funktion der Temperatur, so daß das Glühelement der erfindungsgemäßen Lichtquelle gegenüber dem direkt beheizten Filament von vergleichbaren bisherigen thermischen Lichtquellen auf niedrigerer Temperatur betrieben werden kann. Die Oberflächentemperatur des Filaments kann zum anderen ebenfalls vergleichsweise geringer eingestellt werden, da der vergleichbare sichtbare Lichtstrom durch eine größere und kältere Oberfläche des Filaments erzeugt werden kann. Die Filamentoberfläche bildet dabei einen neuen zusätzlichen konstruktiven Freiheitsgrad.In particular, the surface temperature of both the heating element and the filament can be reduced compared to previous thermal light sources of the same light output, because on the one hand, the total radiant power of the heating element must correspond only to the sum of the visible radiant power and the thermal power loss of the light source. However, this is lower by the reflected and reabsorbed heat radiation fraction or infrared radiation power fraction than the total radiation power of comparable previous thermal radiators. The entire thermal radiation is specific to the temperature according to the Stefan-Bolzmann law, so that the heating element of the light source according to the invention compared to the directly heated filament of comparable previous thermal light sources can be operated at a lower temperature. On the other hand, the surface temperature of the filament can also be set comparatively lower because the comparable visible luminous flux can be generated by a larger and colder surface of the filament. The filament surface forms a new additional structural degree of freedom.
Obwohl das Filament auf relativ niedriger Temperatur betrieben werden kann und damit auch eine relativ geringe Verdampfung des Filamentmaterials erreicht ist, kann ein störende Verdampfung aufgrund der sehr großen Oberfläche, die möglichst nahe an der Kolbeninnenseite liegt, auftreten. Durch verdampftes und an der Kolbeninnenseite niedergeschlagenes Filamentmaterial wird die Reflektivität der Innenseite des Kolbens oder der Verspiegelung an der Innenseite des Kolbens herabgesetzt und die Absorption des Kolbens oder der Verspiegelung bzw. die thermische Verlustleistung erhöht. Daher ist es wünschenswert, die Verdampfung des Filamentmaterials weitestgehend zu minimieren.Although the filament can be operated at a relatively low temperature and thus also a relatively low evaporation of the filament material is achieved, a disturbing evaporation due to the very large surface, which is as close as possible to the piston inside, occur. By vaporized and deposited on the piston inner side filament material, the reflectivity of the inside of the piston or the mirror coating on the inside of the piston is reduced and increases the absorption of the piston or the mirroring or the thermal power loss. Therefore, it is desirable to minimize the evaporation of the filament material as much as possible.
Zur Minimierung der Verdampfung des Filamentmaterials könnte im Kolben ein Edelgas und/oder ein Halogengas vorliegen, wobei das Halogengas Brom und/oder lod aufweisen könnte. Hierdurch könnte bei einem Wolframfilament ein üblicher Wolframiodidkreislauf erzeugt werden.To minimize the evaporation of the filament material, a noble gas and / or a halogen gas could be present in the piston, wherein the halogen gas could have bromine and / or iodine. As a result, in a tungsten filament, a conventional Wolframiodidkreislauf could be generated.
Eine alternative Lösung der Verdampfungsproblematik könnte durch eine Beschichtung des Filaments und/oder des Glühelements mit einem Beschichtungsmaterial erfolgen, das einen höheren Schmelzpunkt als das Filament- und/oder das Glühelement-Material aufweist. Dies liegt an der Abhängigkeit des temperaturabhängigen Dampfdrucks eines Festkörpers von seinem Schmelzpunkt. Des weiteren könnte der Niederschlag des Beschichtungsmaterials eine geringere Absorptivität zeigen als der Niederschlag des üblichen Filament- oder Glühelement-Materials. Als Beschichtungsmaterial mit sehr hohem Schmelzpunkt könnte beispielsweise Tantalkarbid und/oder Rheniumkarbid und/oder Niobkarbid und/oder Zirkonkarbid verwendet werden.An alternative solution to the problem of evaporation could be by coating the filament and / or the annealing element with a coating material having a higher melting point than the filament and / or filament material. This is due to the dependence of the temperature-dependent vapor pressure of a solid on its melting point. Furthermore, the precipitate of the coating material could exhibit a lower absorptivity than the precipitate of the usual filament or calcination material. As the coating material with a very high melting point, for example, tantalum carbide and / or rhenium carbide and / or niobium carbide and / or zirconium carbide could be used.
Durch die konstruktiv bedingte große Filamentfläche können sehr große Lichtströme erzeugt und von der Lichtquelle emittiert werden, so daß die Beleuchtung von großen Gebäudeinnenräumen oder von Außenarealen mit nur einer erfindungsgemäßen Lichtquelle möglich ist.Due to the design-related large filament surface very large light fluxes can be generated and emitted by the light source, so that the illumination of large building interiors or outdoor areas with only one light source according to the invention is possible.
Es gibt nun verschiedene Möglichkeiten, die Lehre der vorliegenden Erfindung in vorteilhafter Weise auszugestalten und weiterzubilden. Dazu ist einerseits auf die dem Patentanspruch 1 nachgeordneten Ansprüche, andererseits auf die nachfolgende Erläuterung eines bevorzugten Ausführungsbeispiels der Erfindung anhand der Zeichnung zu verweisen. In Verbindung mit der Erläuterung des bevorzugten Ausführungsbeispiels der Erfindung anhand der Zeichnung werden auch im allgemeinen bevorzugte Ausgestaltungen und Weiterbildung der Lehre erläutert. In der Zeichnung zeigen
- Fig. 1
- in einer perspektivischen Seitenansicht das Ausführungsbeispiel einer erfindungsgemäßen Lichtquelle und
- Fig. 2
- in einer Draufsicht das Ausführungsbeispiel aus Fig. 1.
- Fig. 1
- in a perspective side view of the embodiment of a light source according to the invention and
- Fig. 2
- in a plan view, the embodiment of FIG. 1st
Fig. 1 zeigt in einer perspektivischen Seitenansicht das Ausführungsbeispiel einer erfindungsgemäßen Lichtquelle. Die Lichtquelle ist als Glühlampe ausgebildet, die einen Kolben 1 aufweist, in dem ein Filament 2 angeordnet ist. Zum Aufheizen des Filaments 2 ist eine Heizeinrichtung 3 vorgesehen, die einen elektrischen Strom bereitstellt. Das aufgeheizte Filament 2 emittiert sowohl sichtbares Licht als auch Wärmestrahlung. Die Temperatur des aufgeheizten Filaments 2 kann bei etwa 3000 Grad Celsius liegen.Fig. 1 shows in a perspective side view of the embodiment of a light source according to the invention. The light source is designed as a light bulb, which has a
Im Hinblick auf eine hohe Konversionseffizienz und einen sicheren Betrieb der Lichtquelle weist die Heizeinrichtung 3 ein Heizelement 4 zur indirekten Aufheizung des Filaments 2 auf. Das Heizelement 4 ist ein Glühelement in Wendelform und kann beispielsweise aus Wolfram bestehen. Das Filament 2 ist im wesentlichen zylindermantelförmig ausgebildet und weist daher eine große Absorptionsfläche für Wärmestrahlung auf, die von der Innenseite des Kolbens 1 reflektiert wird. Hierdurch wird das Filament 2 effektiv durch die reflektierte Wärmestrahlung rückgeheizt. Dadurch ist es möglich, eine geringere Temperatur des Heizelements 4 zu wählen als dies bei einer herkömmlichen Lichtquelle mit gleicher Lichtleistung erforderlich wäre. Folglich kann die erfindungsgemäße Lichtquelle mit geringerer Energie und damit wirtschaftlicher als herkömmliche Lichtquellen betrieben werden.In view of a high conversion efficiency and safe operation of the light source, the heating device 3 has a
Das zylindermantelförmige Filament 2 ist in einfacher Weise an einer Stromzufühung 5 für das Heizelement 4 befestigt. Das Heizelement 4 oder Glühelement in Form einer Wendel ist konzentrisch und koaxial zum Filament 2 positioniert. Das Filament 2 ist wiederum konzentrisch und koaxial zu dem quasi röhrenförmigen Kolben 1 im Kolben 1 angeordnet. Das zylindermantelförmige oder röhrenförmige Filament 2 ist aus Wolfram ausgebildet.The cylinder jacket-shaped
Im unteren Ende des Kolbens 1 sind elektrische Kontakte 6 zur Stromzuführung vorgesehen. Die elektrischen Kontakte 6 sind mit dem unteren Ende des Kolbens 1 verschmolzen.In the lower end of the
Der Durchmesser des Filaments 2 ist nur geringfügiger kleiner als der Durchmesser des Kolbens 1.The diameter of the
An der Innenseite des Kolbens 1 ist eine Verspiegelung 7 vorgesehen. Die Verspiegelung 7 dient zur wirkungsvollen Reflexion der vom Heizelement 4 und/oder vom Filament 2 emittierten Wärmestrahlung.On the inside of the
Das Heizelement 4 und/oder das Filament 2 könnten eine Beschichtung aus einem Material mit sehr hohem Schmelzpunkt aufweisen. Hierdurch könnte ein Verdampfen von Filament- und/oder Heizelement-Material reduziert werden.The
Fig. 2 zeigt in einer Draufsicht das Ausführungsbeispiel aus Fig. 1. Dabei ist besonders gut erkennbar, daß das Filament 2 im wesentlichen konzentrisch in dem Kolben 1 angeordnet ist und daß das Heizelement 4 im wesentlichen mittig in dem Filament 2 positioniert ist.It is particularly well seen that the
Hinsichtlich weiterer vorteilhafter Ausgestaltungen und Weiterbildungen der erfindungsgemäßen Lehre wird einerseits auf den allgemeinen Teil der Beschreibung und andererseits auf die beigefügten Patentansprüche verwiesen.With regard to further advantageous embodiments and developments of the teaching of the invention reference is made on the one hand to the general part of the description and on the other hand to the appended claims.
Abschließend sei ganz besonders hervorgehoben, daß das zuvor rein willkürlich gewählte Ausführungsbeispiel lediglich zur Erörterung der erfindungsgemäßen Lehre dient, diese jedoch nicht auf dieses Ausführungsbeispiel einschränkt.Finally, it should be particularly emphasized that the previously purely arbitrarily chosen embodiment is only for the purpose of discussing the teaching of the invention, but this does not limit to this embodiment.
Claims (10)
- Light source, in particular a filament lamp, having a bulb (1), a filament (2) which is arranged in the bulb (1) and a heating device (3) for the filament (2), the filament (2) emitting both visible light and thermal radiation and the heating device (3) having a heating element (4) for indirectly heating the filament (2),
characterised in that the heating element (4) is an incandescent element which is heated by electric current, and in that the incandescent element is arranged inside a space which is formed by the filament (2), preferably inside a cylindrical casing or a semi-cylindrical casing. - Light source according to claim 1, characterised in that the filament is constructed so as to be strip-like or as a surface filament, or in that the filament (2) is constructed so as to be shell-like, cylindrical casing-like or as a volume filament, or in that the filament is in the form of a semi-cylindrical casing, or in that the filament (2) is in the form of an open, longitudinally slotted cylindrical casing, the diameter of the cylindrical casing or the semi-cylindrical casing preferably being only slightly smaller than the diameter of the bulb (1).
- Light source according to claim 1 or 2, characterised in that the filament (2) is arranged concentrically in the bulb (1) and/or in that the filament (2) is arranged coaxially relative to a longitudinal axis of the bulb (1).
- Light source according to any one of claims 1 to 3,
characterised in that the filament (2) has tungsten and/or rhenium and/or tantalum and/or zirconium and/or niobium, preferably in sintered form, and/or in that the filament is constructed at least partially from a non-metallic element and/or in that the filament is constructed at least partially from tantalum carbide and/or rhenium carbide and/or niobium carbide and/or zirconium carbide. - Light source according to any one of claims 1 to 4, characterised in that the incandescent element is a heater coil.
- Light source according to any one of claims 1 to 5, characterised in that the incandescent element is constructed from tungsten.
- Light source according to any one of claims 1 to 6, characterised in that the filament (2) is secured to an electrical power supply (5) for the heating element (4).
- Light source according to any one of claims 1 to 7, characterised in that the bulb (1) has a reflective surface (7) at the inner side thereof, the reflective surface (7) preferably being formed by a dielectric multiple-layer coating.
- Light source according to any one of claims 1 to 8, characterised in that a noble gas and/or a halogen gas is provided in the bulb (1), the halogen gas preferably including bromine and/or iodine.
- Light source according to any one of claims 1 to 9, characterised in that the filament (2) and/or the incandescent element is/are coated with a coating material which has a higher melting point than the filament material and/or the incandescent element material, the coating material preferably including tantalum carbide and/or rhenium carbide and/or niobium carbide and/or zirconium carbide.
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19939903 | 1999-08-22 | ||
DE19939903 | 1999-08-22 | ||
DE19948420 | 1999-10-08 | ||
DE19948420 | 1999-10-08 | ||
PCT/DE2000/000911 WO2001015206A1 (en) | 1999-08-22 | 2000-03-24 | Light source |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1206793A1 EP1206793A1 (en) | 2002-05-22 |
EP1206793B1 true EP1206793B1 (en) | 2006-10-25 |
Family
ID=26054698
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP00929241A Withdrawn EP1206794A1 (en) | 1999-08-22 | 2000-03-24 | Light source and method for producing a light source |
EP00929240A Expired - Lifetime EP1206793B1 (en) | 1999-08-22 | 2000-03-24 | Light source with an indirectly heated filament |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP00929241A Withdrawn EP1206794A1 (en) | 1999-08-22 | 2000-03-24 | Light source and method for producing a light source |
Country Status (12)
Country | Link |
---|---|
US (2) | US6777859B1 (en) |
EP (2) | EP1206794A1 (en) |
JP (2) | JP2003507878A (en) |
KR (2) | KR100664601B1 (en) |
CN (2) | CN1211829C (en) |
AT (1) | ATE343850T1 (en) |
AU (2) | AU4742200A (en) |
BR (2) | BR0013480A (en) |
DE (1) | DE50013668D1 (en) |
MX (2) | MXPA02001856A (en) |
RU (1) | RU2260226C2 (en) |
WO (2) | WO2001015207A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8278823B2 (en) | 2007-03-30 | 2012-10-02 | General Electric Company | Thermo-optically functional compositions, systems and methods of making |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2003210146A1 (en) * | 2002-03-04 | 2003-09-16 | Ip2H Ag | Source of light and method for regenerating a source of light |
WO2005091335A1 (en) * | 2004-03-17 | 2005-09-29 | Matsushita Electric Industrial Co., Ltd. | Radiator and device comprising such radiator |
DE102004014211A1 (en) * | 2004-03-23 | 2005-10-13 | Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH | Incandescent lamp with carbide-containing filament |
DE102004034807A1 (en) * | 2004-07-19 | 2006-03-16 | Ip2H Ag | Light source and a method for mechanical stabilization of the filament or the electrode of a light source |
DE102004034787A1 (en) * | 2004-07-19 | 2006-03-16 | Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH | Incandescent lamp with carbide-containing filament |
DE102004034786A1 (en) * | 2004-07-19 | 2006-03-16 | Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH | Incandescent lamp with carbide-containing filament |
WO2006040872A1 (en) * | 2004-10-14 | 2006-04-20 | Matsushita Electric Industrial Co., Ltd. | Energy conversion apparatus |
DE102004052044A1 (en) | 2004-10-26 | 2006-04-27 | Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH | Incandescent lamp with a luminous body containing a high temperature resistant metal compound |
DE102006020581A1 (en) * | 2006-05-03 | 2007-11-08 | Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH | Two metal braiding |
DE102006035792A1 (en) * | 2006-07-28 | 2008-01-31 | Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH | Light bulb for lighting and photo-optical purposes, comprises illumination body that attains specific temperature during operation, where carrier material is coated with two different materials |
US20080237541A1 (en) * | 2007-03-30 | 2008-10-02 | General Electric Company | Thermo-optically functional compositions, systems and methods of making |
US20080237500A1 (en) * | 2007-03-30 | 2008-10-02 | General Electric Company | Thermo-optically functional compositions, systems and methods of making |
WO2010130272A1 (en) * | 2009-05-12 | 2010-11-18 | Siemens Aktiengesellschaft | Ceramic carbide fiber, method for making the ceramic carbide fiber and application of the ceramic carbide fiber |
JP6519103B2 (en) * | 2014-06-05 | 2019-05-29 | 日本電気株式会社 | Light emitting structure and thermophotovoltaic power generation system using the same, visible light lighting device, gas detection device |
CN108533992A (en) * | 2018-04-19 | 2018-09-14 | 绍兴文理学院 | A kind of selective radiation light source |
Family Cites Families (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE141222C (en) | ||||
US1726365A (en) * | 1927-07-13 | 1929-08-27 | Gen Electric | Lamp filament |
US1863152A (en) | 1929-11-11 | 1932-06-14 | Gen Talking Pictures Corp | Exciter lamp |
US3237284A (en) * | 1962-02-05 | 1966-03-01 | Polaroid Corp | Method of forming carbide coated coiled filaments for lamps |
US3927989A (en) * | 1969-09-30 | 1975-12-23 | Duro Test Corp | Tungsten alloy filaments for lamps and method of making |
GB1342069A (en) * | 1970-12-15 | 1973-12-25 | Thorn Electrical Ind Ltd | Electrically conductive components |
NL7607038A (en) * | 1976-06-28 | 1977-12-30 | Philips Nv | ELECTRIC LIGHT BULB. |
DE2650298A1 (en) * | 1976-11-02 | 1978-05-03 | Patra Patent Treuhand | HALOGEN LIGHT BULB |
US4196368A (en) * | 1977-09-07 | 1980-04-01 | Eikonix Corporation | Improving incandescent bulb efficiency |
US4123833A (en) | 1977-10-13 | 1978-11-07 | Westinghouse Electric Corp. | Method of producing doped tungsten filaments by ion-implantation |
US4176293A (en) | 1978-02-17 | 1979-11-27 | Varian Associates, Inc. | Thermionic cathode heater having reduced magnetic field |
DD141222A1 (en) * | 1978-12-27 | 1980-04-16 | Ralf Riebel | LIGHT BULB FOR MICROSCOPY |
JPS5611832A (en) | 1979-07-11 | 1981-02-05 | Toshiba Corp | Directly heated cathode of electron tube and its manufacture |
FR2476386A1 (en) | 1980-02-15 | 1981-08-21 | Thomson Csf | INDIRECT HEATING CATHODE HEATING ELEMENT, METHOD OF MANUFACTURING THE SAME, AND INDIRECT HEATING CATHODE COMPRISING SUCH A MEMBER |
SU922915A1 (en) | 1980-09-12 | 1982-04-23 | Vni | Incandenscent lamp |
US4585971A (en) | 1984-12-18 | 1986-04-29 | Clegg John E | Flat circular foil-filament lamp |
CA1305512C (en) | 1986-12-22 | 1992-07-21 | Thomas J. Patrician | Method of fabricating a composite lamp member |
US5330854A (en) * | 1987-09-24 | 1994-07-19 | General Electric Company | Filament-containing composite |
GB2233150A (en) | 1989-06-16 | 1991-01-02 | Electricity Council | Infra-red radiation source |
SU1834586A1 (en) * | 1989-10-16 | 1995-08-20 | Нижегородское станкостроительное производственное объединение | Process of manufacture of filament lamp |
JPH05258730A (en) | 1992-03-13 | 1993-10-08 | Matsushita Electric Works Ltd | Incandescent body for light source |
JPH0613053A (en) | 1992-06-25 | 1994-01-21 | Matsushita Electric Works Ltd | Light source |
RU2091826C1 (en) * | 1993-04-23 | 1997-09-27 | Научно-исследовательский центр по технологическим лазерам РАН | Cold-light mirror |
US5666017A (en) * | 1994-03-22 | 1997-09-09 | Tailored Lighting Inc. | Daylight lamp |
US5493167A (en) * | 1994-05-03 | 1996-02-20 | General Electric Company | Lamp assembly with shroud employing insulator support stops |
DE4438870B4 (en) * | 1994-11-03 | 2004-11-11 | Heraeus Noblelight Gmbh | Infrared emitter with an elongated resistance body as the radiation source |
US6018216A (en) * | 1997-08-27 | 2000-01-25 | Mcintosh; Devon R. | Multielement selective emitter |
US6268685B1 (en) * | 1997-08-28 | 2001-07-31 | Daniel Lee Stark | High efficiency light source utilizing co-generating sources |
DE19843852A1 (en) * | 1998-09-24 | 2000-03-30 | Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh | Electrical incandescent lamp has light body(ies) in lamp vessel with flat, esp. strip-shaped, light body element(s) radiating in infrared and visible regions, infrared reflective filter(s) |
-
2000
- 2000-03-24 EP EP00929241A patent/EP1206794A1/en not_active Withdrawn
- 2000-03-24 KR KR1020027002273A patent/KR100664601B1/en not_active Expired - Fee Related
- 2000-03-24 BR BR0013480-5A patent/BR0013480A/en not_active IP Right Cessation
- 2000-03-24 AU AU47422/00A patent/AU4742200A/en not_active Abandoned
- 2000-03-24 BR BR0013489-9A patent/BR0013489A/en not_active IP Right Cessation
- 2000-03-24 AT AT00929240T patent/ATE343850T1/en not_active IP Right Cessation
- 2000-03-24 EP EP00929240A patent/EP1206793B1/en not_active Expired - Lifetime
- 2000-03-24 MX MXPA02001856A patent/MXPA02001856A/en unknown
- 2000-03-24 WO PCT/DE2000/000912 patent/WO2001015207A1/en not_active Application Discontinuation
- 2000-03-24 CN CNB008119074A patent/CN1211829C/en not_active Expired - Fee Related
- 2000-03-24 AU AU47423/00A patent/AU4742300A/en not_active Abandoned
- 2000-03-24 RU RU2002107206/09A patent/RU2260226C2/en not_active IP Right Cessation
- 2000-03-24 KR KR1020027002274A patent/KR20020038737A/en not_active Abandoned
- 2000-03-24 US US10/069,140 patent/US6777859B1/en not_active Expired - Fee Related
- 2000-03-24 US US10/069,260 patent/US6903508B1/en not_active Expired - Fee Related
- 2000-03-24 JP JP2001519473A patent/JP2003507878A/en active Pending
- 2000-03-24 MX MXPA02001858A patent/MXPA02001858A/en active IP Right Grant
- 2000-03-24 WO PCT/DE2000/000911 patent/WO2001015206A1/en active IP Right Grant
- 2000-03-24 DE DE50013668T patent/DE50013668D1/en not_active Expired - Fee Related
- 2000-03-24 JP JP2001519474A patent/JP2003508875A/en active Pending
- 2000-03-24 CN CNB008119082A patent/CN1215527C/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8278823B2 (en) | 2007-03-30 | 2012-10-02 | General Electric Company | Thermo-optically functional compositions, systems and methods of making |
Also Published As
Publication number | Publication date |
---|---|
KR20020038736A (en) | 2002-05-23 |
WO2001015207A1 (en) | 2001-03-01 |
BR0013480A (en) | 2002-04-30 |
MXPA02001858A (en) | 2004-03-10 |
EP1206794A1 (en) | 2002-05-22 |
MXPA02001856A (en) | 2004-03-10 |
EP1206793A1 (en) | 2002-05-22 |
RU2260226C2 (en) | 2005-09-10 |
CN1370328A (en) | 2002-09-18 |
CN1370327A (en) | 2002-09-18 |
AU4742200A (en) | 2001-03-19 |
CN1215527C (en) | 2005-08-17 |
ATE343850T1 (en) | 2006-11-15 |
AU4742300A (en) | 2001-03-19 |
KR20020038737A (en) | 2002-05-23 |
BR0013489A (en) | 2002-05-14 |
CN1211829C (en) | 2005-07-20 |
KR100664601B1 (en) | 2007-01-04 |
HK1048704A1 (en) | 2003-04-11 |
JP2003508875A (en) | 2003-03-04 |
US6777859B1 (en) | 2004-08-17 |
DE50013668D1 (en) | 2006-12-07 |
WO2001015206A1 (en) | 2001-03-01 |
JP2003507878A (en) | 2003-02-25 |
US6903508B1 (en) | 2005-06-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1206793B1 (en) | Light source with an indirectly heated filament | |
DE3415327A1 (en) | TUBULAR HEATING LAMP HIGH EFFECTIVENESS | |
DE3428125A1 (en) | IMPROVED BULB | |
DE3910878A1 (en) | HIGH-PRESSURE DISCHARGE LAMP, DOUBLE-SIDED | |
AT401989B (en) | HEATER | |
DE2726946A1 (en) | ELECTRIC LIGHT BULB | |
DE10039383A1 (en) | Flash lamp and flash lamp construction | |
DE3428181A1 (en) | BULB | |
DE60015055T2 (en) | ELECTRIC LAMP AND CONSTRUCTION UNIT ASSEMBLED FROM AN ELECTRIC LAMP AND REFLECTOR | |
DE19844164B4 (en) | Energy saving lamps with film reflecting in the infrared | |
DE69609546T2 (en) | Light bulb | |
DE873290C (en) | Electric incandescent lamp with light body made of refractory metals or metal compounds | |
DE68922816T2 (en) | Electric light bulb and process for its manufacture. | |
DE19843852A1 (en) | Electrical incandescent lamp has light body(ies) in lamp vessel with flat, esp. strip-shaped, light body element(s) radiating in infrared and visible regions, infrared reflective filter(s) | |
DE69400272T2 (en) | Electric light bulb | |
DE102007018614A1 (en) | High pressure discharge lamp and vehicle headlight with high pressure discharge lamp | |
WO2004096365A2 (en) | Infrared radiator and irradiation device | |
DE1489445B1 (en) | Electrode for a high pressure mercury vapor lamp with halide filling | |
DE69516826T2 (en) | Incandescent lamp and lighting device using this lamp | |
WO2004019371A1 (en) | Electric light bulb | |
DE3033182A1 (en) | Filament for an incandescent lamp | |
DE102007060839A1 (en) | Illuminant and lamp with a one-dimensional photonic crystal | |
WO1995008755A1 (en) | Radiation arrangement with reflector body and its use | |
DE102004040417A1 (en) | Electric light bulb for vehicle headlights | |
DE2243663A1 (en) | VAPOR DISCHARGE LAMP |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20020116 |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
RTI1 | Title (correction) |
Free format text: LIGHT SOURCE WITH AN INDIRECTLY HEATED FILAMENT |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20061025 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20061025 Ref country code: IE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20061025 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20061025 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REF | Corresponds to: |
Ref document number: 50013668 Country of ref document: DE Date of ref document: 20061207 Kind code of ref document: P |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070125 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070125 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070205 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070326 |
|
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
REG | Reference to a national code |
Ref country code: HK Ref legal event code: GR Ref document number: 1048704 Country of ref document: HK |
|
GBV | Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed] |
Effective date: 20061025 |
|
EN | Fr: translation not filed | ||
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20070726 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20061025 |
|
BERE | Be: lapsed |
Owner name: IP2H A.G. Effective date: 20070331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20071002 Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070331 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070126 Ref country code: FR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070608 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070324 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20061025 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20061025 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070324 |