Nothing Special   »   [go: up one dir, main page]

EP1282885B1 - System for counting living beings - Google Patents

System for counting living beings Download PDF

Info

Publication number
EP1282885B1
EP1282885B1 EP01921484A EP01921484A EP1282885B1 EP 1282885 B1 EP1282885 B1 EP 1282885B1 EP 01921484 A EP01921484 A EP 01921484A EP 01921484 A EP01921484 A EP 01921484A EP 1282885 B1 EP1282885 B1 EP 1282885B1
Authority
EP
European Patent Office
Prior art keywords
task
cells
living beings
cell
counting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01921484A
Other languages
German (de)
French (fr)
Other versions
EP1282885A1 (en
Inventor
Bruno Gilbert Meunier
Jean-Pierre Paul Fernand Deparis
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institut National de Recherche sur les Transports et leur Securite INRETS
Original Assignee
Institut National de Recherche sur les Transports et leur Securite INRETS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institut National de Recherche sur les Transports et leur Securite INRETS filed Critical Institut National de Recherche sur les Transports et leur Securite INRETS
Publication of EP1282885A1 publication Critical patent/EP1282885A1/en
Application granted granted Critical
Publication of EP1282885B1 publication Critical patent/EP1282885B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06MCOUNTING MECHANISMS; COUNTING OF OBJECTS NOT OTHERWISE PROVIDED FOR
    • G06M1/00Design features of general application
    • G06M1/08Design features of general application for actuating the drive
    • G06M1/10Design features of general application for actuating the drive by electric or magnetic means
    • G06M1/101Design features of general application for actuating the drive by electric or magnetic means by electro-optical means
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C9/00Individual registration on entry or exit
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B13/00Burglar, theft or intruder alarms
    • G08B13/16Actuation by interference with mechanical vibrations in air or other fluid
    • G08B13/1609Actuation by interference with mechanical vibrations in air or other fluid using active vibration detection systems
    • G08B13/1645Actuation by interference with mechanical vibrations in air or other fluid using active vibration detection systems using ultrasonic detection means and other detection means, e.g. microwave or infrared radiation
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B13/00Burglar, theft or intruder alarms
    • G08B13/18Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength
    • G08B13/189Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems
    • G08B13/19Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems using infrared-radiation detection systems
    • G08B13/191Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems using infrared-radiation detection systems using pyroelectric sensor means

Definitions

  • the object of the invention is a counting system of living beings, moving on a first surface and passing through a second cylindrical surface of a generator substantially vertical.
  • a system consists of a set of N cells of detection of thermal radiation and an electronic device for acquiring and treatment of the signals delivered by these cells.
  • the international application WO 9210812 describes such a counting system, using a single cell that has a sensor and a lens positioned in front of it.
  • This sensor is composed of two rows of pyroelectric detectors.
  • the lens focuses the thermal radiation on each of the detectors.
  • This type of radiation detector temperature can only detect relatively rapid changes in temperature in the field of vision.
  • the cell creates two parallel surveillance plans formed by the axes of the beams associated with the detectors.
  • a treatment unit evaluates the number of living crossing both planes and their directions of movement.
  • This device is adapted to counting in low and low width passages, bus door example. This device is practically unusable in wide passages important given the divergence of the field of view of the sensor.
  • the use of pyroelectric detectors as part of this application International makes it difficult to detect living things in slow motion.
  • US Patent 4,799,243 describes another system of counting living beings in movement.
  • This system consists of cells, each cell comprising two thermal radiation detectors and a lens. These two detectors create for each cell two disjoint fields of vision, substantially symmetrical with respect to the vertical.
  • the arrangement of the cells as provided for in this patent is chosen for cover the entire width of the passage to be monitored with a covering of the fields vision in a direction perpendicular to the direction of crossing and a separation of fields of vision according to the direction of crossing. Such an arrangement does not allow the counting living beings too close to each other according to the direction of crossing.
  • US Pat. No. 5,068,537 describes another system for counting living creatures in movement using a large number of cells arranged on a single line.
  • the system is designed so that a medium-sized living being is detected by at least two cells. Since each cell has only one detector, the system does not allow the determination of the direction of crossing counted living beings.
  • thermopiles that are characterized by their ability to detect even very slow variations of temperature in their field of vision.
  • the counting system for living beings that is the subject of the invention comprises a set of N thermal radiation detection cells and an electronic device acquisition and processing of the signals delivered by these cells.
  • Each cell comprises in particular a thermopile comprising at least one sensitive element, a medium focusing the thermal radiation on the sensitive elements of this thermopile, this focusing means creating an elongated field of view according to a direction, a mask limiting this field of view and an amplifier of the signal delivered by the thermopile.
  • the N detection cells are equidistributed according to two curves when N is even and are divided along two curves with a difference of one unit when N is odd, the distribution of the cells on each curve being uniform according to an identical pitch P for each of the two curves, one of these curves identifying with the director of the surface cylindrical crossed by living beings, and the other curve being distant from the preceding of a length D equal to at least 5 cm, the direction of elongation of the field each cell being substantially tangent to one of the two curves.
  • a filter generally placed in the thermopile in front of the sensitive element limits the sensitivity to thermal radiation of bodies near temperature ambient, which corresponds to far-infrared radiation in the wavelengths of about 7 to 14 ⁇ m.
  • the means of focusing of each cell is adapted to the number, arrangement and geometry of the sensitive element (s) of the thermopile so as to create an elongated field of view in one direction and as narrow as possible in the direction perpendicular to the previous one.
  • the means of focusing is preferably carried out using one or more lenses. he can possibly be made by pinhole or mirror.
  • thermopile comprises a single sensitive element of elongated surface or when the thermopile has an alignment of sensitive elements whose surfaces have dimensions substantially similar in two directions orthogonal.
  • several lenses are used, preferably when the thermopile has only one sensitive element whose surface has dimensions substantially adjacent in two orthogonal directions.
  • the system which is the subject of the invention is used to count beings living through a plane; in this case, the curves on which the cells are distributed are parallel lines.
  • the opening of the field of view can be chosen for each cell belonging to the same line, so as to ensure the juxtaposition of the zones seen by two successive cells on the same line, to a height close to the minimum size of a living being statistically representative of beings belonging to the population to count.
  • the counting system for living beings which is the subject of the invention comprises a device electronic signal processing system delivered by the cells that operates a algorithm.
  • a first task of this algorithm initializes the parameters specifying the system configuration.
  • a second task of this algorithm ensures successively for each cell the reading and the processing of the numerical values delivered by the electronic device of acquisition.
  • a third task of this algorithm ensures the adaptation of the sensitivity threshold of the cells.
  • a fifth task of this algorithm analyzes the results of the fourth task and deduces the counting of living beings, their sense of crossing and their movement speed.
  • a sixth task of this algorithm exploits counting as well obtained according to the intended application.
  • a seventh task of this algorithm manages the rate of execution of the preceding tasks according to the sampling frequency of the signals delivered by the cells.
  • the fifth task of the algorithm can be conceived in such a way that allow the grouping, as entities, of successive cell pairs for which the information from the fourth task of the algorithm corresponds crossing a living being or a group of living creatures, information from couples of each entity specifying this number of living beings, the meaning of their crossing and the speed of their movement.
  • the counting system of living beings which is the subject of the invention offers various advantages by compared to known systems and in particular its easy integration for any width of passage to watch; its excellent counting performance even for a low passage height; its adaptability of implantation in environments individuals; its ability to count dense crowds and moving living things slow.
  • the counting system of living beings which is the subject of the invention can be described as a non with the following example illustrated in FIGS. 1 to 14. This example corresponds to counting human beings crossing a plane, using eight cells equidistributed on two straight lines.
  • FIG. 1 schematically represents a system that is the subject of the invention comprising eight cells arranged in two alignments.
  • Figures 2a and 2b show two views of a radiation detection cell thermal system used in the system shown schematically in Figure 1.
  • Figure 3 shows a network of Fresnel lenses used in the cell shown at Figures 2a and 2b.
  • Figures 4a and 4b show the cell shown in Figures 2a and 2b with its field of vision.
  • FIGS. 5a and 5b show two views, in two orthogonal directions, of a group of two successive cells, each belonging to an alignment different, as well as the fields of view of these cells.
  • FIG. 6a represents, in plan view, five successive cells belonging to the system shown in Figure 1.
  • FIGS. 6b and 6c represent, in plan view, the zones seen by the five cells schematically in Figure 6a, respectively at 1 m and at ground level.
  • FIGS. 7a to 7e show, in plan view, five successive phases of the crossing of a human being perpendicular to the cell alignments and for a representation of the zones seen according to FIG. 6b.
  • FIG. 7z schematizes the temporal evolution of the signals delivered by the thermopile of each cell, for the crossing defined by FIGS. 7a to 7e.
  • FIGS. 8a to 8e show, in plan view, five successive phases of the crossing a human being obliquely to the cell alignments and for a representation of the zones seen according to FIG. 6b.
  • FIG. 8z schematizes the temporal evolution of the signals delivered by the thermopile of each cell, for the crossing defined by Figures 8a to 8e.
  • Figure 9 shows the chronological sequence, in the form of a flowchart, of different tasks of processing electrical signals, delivered by the cells.
  • FIGS 10, 11, 12 and 13 show four particular tasks in the flowchart shown in Figure 9.
  • Figure 14 shows the table used by the particular task shown in Figure 13.
  • Figure 1 shows the ground 0, a set of eight radiation detection cells distributed in two alignments, a first alignment 1 comprising four cells 11; 12; 13; 14, a second alignment 2 comprising four cells 21; 22; 23; 24, two human beings 4 and 5, an electronic device 6 for acquiring and digitization of the signals delivered by the cells, these signals possibly being at the cell level, an electronic device 7 for processing digital values delivered by the acquisition device 6, an operating device 8 information from the processing device 7, a medium 3 connecting all the cells to the acquisition device 6.
  • the eight cones 111 to 114 and 121 to 124 schematize the fields of view of each of the cells. The intersections of these cones with a plane parallel to the ground 0 and located at a height of 1 m define the areas seen at this height and are schematized by the eight ellipses 211 to 214 and 221 to 224.
  • Figure 2a is a schematic section of a cell in a plane perpendicular to two cell alignments.
  • Figure 2b is a schematic section of the same cell, orthogonal to the section shown in Figure 2a.
  • This cell comprises a thermopile 30 whose sensitive element 31 provides a signal small amplitude proportional to the thermal radiation received through of the infrared filter 32, a signal amplification and shaping stage 33 delivered by the thermopile 30, a device 38 connecting the amplification stage and shaping 33 to medium 3, a network of Fresnel lenses 34 away focal length 40, placed at a distance equal to this focal length 40 in front of the sensitive element 31 of the thermopile 30, a mask 35 placed in front of the Fresnel lens array 34 and a waterproof housing 36, opaque to electromagnetic radiation and whose surface Inner absorbs thermal radiation.
  • the Fresnel Lens Network 34 has eight elements 34a to 34h.
  • FIG 3 shows the Fresnel lens array 34.
  • This network is composed of eight elemental Fresnel lenses 34a to 34h. These lenses are juxtaposed and their centers optics are aligned along the line 39.
  • FIGS. 4a and 4b show the cell shown in FIGS. 2a and 2b according to the same projections. These figures show the elementary fields of vision 37c, 37d, 37e and 37f associated with unmasked elemental Fresnel lenses 34c, 34d, 34e and 34f.
  • FIGS. 5a and 5b show successive cells 11 and 21 as well as their fields 111 and 121 respectively. These two cells belong to a different alignment.
  • Figure 5a shows the fields of view perpendicular to the direction of travel normal human beings.
  • Figure 5b shows the fields of view in the sense of normal movement of human beings.
  • the view represented in FIG. 5a highlights the weak opening of the fields of vision 111 and 121 as well as the short distance D 42 between the two alignments 1 and 2.
  • the view represented in FIG. 5b highlights the important opening of the fields of 111 and 121 as well as the half P / 2 step 41 between these cells.
  • Figure 6a shows a top view of the five cells 11; 21; 12; 22; 13 disposed along the two alignments 1 and 2 distant from the distance D 42. This view also shows the half-pitch P / 2 41 between two successive cells.
  • Figure 6b shows in plan view the arrangement of the zones 211; 221; 212; 222; 213 viewed at a height of 1 m above ground level 0 and corresponding respectively cells 11; 21; 12; 22; 13. This figure 6b highlights the juxtaposition of zones seen by two successive cells arranged on the same alignment.
  • FIG. 6c shows in plan view the arrangement of the zones seen at ground level 0, 311; 321; 312; 322; 313 respectively corresponding to the cells 11; 21; 12; 22; 13. This figure 6c highlights the partial superposition of the zones seen by two successive cells arranged on the same alignment.
  • FIGS. 7a to 7e respectively represent, in plan view, five phases successive a, b, c, d, e crossing a human being 4 perpendicular to the alignments 1 and 2, as well as the areas seen at a height of 1 m above the level of the ground, shown in Figure 6b.
  • Figure 7z shows the waveforms of the signals electric 411; 421; 412; 422; 413 delivered respectively by the cells 11; 21; 12; 22; 13.
  • the level of each electrical signal 411; 421; 412; 422; 413 is related to the fraction of the view area occupied by the human being that crosses the fields of view of cells 11; 21; 12; 22; 13.
  • phase a the human being 4 is not present in any of the zones 211; 221; 212; 222; 213. Electrical signals 411; 421; 412; 422; 413 shown in the figure 7z have a zero level.
  • phase b the human being 4 completely occupies the view area 212.
  • the signal level 412 is maximal.
  • the human being 4 occupies very partially the zone seen 213.
  • the level signal 413 has a peak of very low amplitude.
  • the zones viewed 211; 221; 222 does not are not occupied by the human being 4.
  • the levels of the corresponding signals 411; 421; 422 remain void.
  • phase c the human being 4 continues to occupy the entire area 212.
  • signal level 412 remains maximum.
  • Human being 4 partially occupies the views 221 and 222.
  • the level of the signals 421 and 422 is average.
  • the zones seen 211 and 213 do not are not occupied by the human being 4.
  • the corresponding signal levels 411 and 413 remain void.
  • phase d the human being 4 leaves the view area 212.
  • the signal level 412 becomes zero again.
  • the human being 4 continues to occupy partially the zones seen 221 and 222.
  • the level of the signals 421 and 422 remains average.
  • the zones seen 211 and 213 are not not occupied by humans 4.
  • Corresponding signal levels 411 and 413 remain void.
  • phase e the human being 4 leaves the zones seen 221 and 222.
  • the level of the signals 421 and 422 become void again.
  • the zones viewed 211; 212; 213 are not occupied by being human 4.
  • Levels of corresponding signals 411; 412; 413 remain void.
  • FIGS. 8a to 8e respectively represent, in plan view, five phases successive a, b, c, d, e of the crossing of a human being obliquely to the alignments 1 and 2, as well as the areas seen at a height of 1 m above ground level, shown in Figure 6b.
  • FIG. 8z schematizes the oscillograms of the electrical signals 511; 521; 512; 522; 513 issued respectively by the cells 11; 21; 12; 22; 13.
  • the level of each electrical signal 511; 521; 512; 522; 513 is related to the fraction of the view area occupied by the human being which passes through the fields of view of the cells 11; 21; 12; 22; 13.
  • phase a the human being is not present in any of the zones seen 211; 221; 212; 222; 213. Electrical signals 511; 521; 512; 522; 513 shown in the figure 8z have a zero level.
  • phase b the human being 5 partially occupies the zones 212 and 213.
  • signal level 512 and 513 is average.
  • the zones viewed 211; 221; 222 are not occupied by the human being 5.
  • Levels of the corresponding signals 511; 521; 522 are zero.
  • phase c the human being occupies almost entirely the area viewed 212.
  • the level signal 512 reaches a maximum.
  • the human being 5 partially occupies the views 221 and 222.
  • the level of the signals 521 and 522 is average.
  • the zones seen 211 and 213 do not are not occupied by the human being 5.
  • the levels of the corresponding signals 511 and 513 remain void.
  • phase d the human being 5 leaves the zones seen 212 and 222.
  • the level of the signals 512 and 522 becomes zero again.
  • the human being occupies the entire zone 221.
  • signal 521 reaches a maximum.
  • the views 211 and 213 are not occupied by 5.
  • the levels of the corresponding signals 511 and 513 remain zero.
  • phase e the human being leaves the view zone 221.
  • the level of the signal 521 becomes again no.
  • the zones viewed 211; 212; 213; 222 are not occupied by humans. corresponding signal levels 511; 512; 513; 522 remain void.
  • Figure 9 shows the chronological sequence, in the form of a flowchart, of different tasks of real-time processing of numerical values from the device electronic 6 acquisition and digitization of electrical signals 411; 421; 412; 422; 413, delivered by the five cells 11; 21; 12; 22; 13.
  • This chart is put implemented by the electronic device 7.
  • the flow chart of Figure 9 has a point 601 and an exit point 699. It has seven tasks 603; 700; 800; 900; 1000; 605; 607.
  • Task 603 allows the initialization of parameters specifying the configuration of the system Count: number of cells, height of cells relative to the ground, not P and distance D as well as processing parameters: sampling frequency of electrical signals delivered by the cells and initial sensitivity threshold of the cells.
  • the task 603 sets the cells to the INVALID stored state as well as the pairs of successive cells, that is to say the pairs such as the pair 11; 21 followed by a couple 21; 12, himself followed by the pair 12; 22 and so on, in the stored state INVALID.
  • Task 700 provides successively for each cell the reading and processing of digital values delivered by the electronic device 6.
  • the task 800 ensures for the system object of the invention the adaptation of the threshold of cell sensitivity used by task 700.
  • the task 900 analyzes for all the successive pairs of cells, the information from task 700.
  • the task 1000 analyzes the results of the task 900 and deduces the count of the beings humans.
  • the task 605 allows the operation by the electronic device 8, of the metering carried out by the task 1000, depending on the intended application.
  • Task 607 manages the execution rate of tasks 700 to 605 according to the frequency sampling; this task 607 is executed at each instant (t). To this end, the task 607 delays connection 607/1 to task 700. Task 607 also allows to definitively leave the execution of the tasks 700 to 605 by the connection 607/0 towards the exit point 699.
  • an index k is associated with each cell.
  • the value 1 of the index k is associated with an extreme cell, 11 for example; the value 2 of the index k is associated with the successive cell, here the cell 21, and so on.
  • an index m is associated with each pair of successive cells.
  • the value 1 of the index m is associated with an extreme pair, 11; 21 for example; the value 2 of the index m is associated with the successive pair, here the pair 21; 12, and so on.
  • Figures 10, 11, 12 and 13 show respectively in the form of flowcharts the chronological sequence of the elementary tasks constituting the tasks 700; 800; 900 and 1000.
  • entry point 701 and exit point 799 of task 700 are shown. This task repeats for each digital value delivered by the electronic device 6 elementary tasks 705 to 719.
  • the task 703 initializes to 1 the index k associated with the cell which is read and whose numerical value.
  • Task 705 controls the acquisition and digitization by the electronic device 6 the electrical signal delivered at the instant (t) by the cell in question.
  • Task 707 handles the processing of the numerical value delivered by task 705 in order to homogenization of all the digital values of the delivered signals.
  • the task 709 stores the value processed by the task 707 if it corresponds to a local maximum, determined from values previously processed by task 707 for this cell.
  • the value stored by task 709 is used for adaptation in the task 800 of the sensitivity threshold of the cells.
  • the test 711 verifies the superiority of the value processed by the task 707 on the threshold of sensitivity of the cells.
  • Connection 711/1 is effective if test 711 is TRUE; in this case a human being is in the field of view of the cell in question.
  • the task 712 stores the value processed by the task 707 and the instant (t); she positions the cell considered in the instantaneous ACTIVE state.
  • the 711/0 connection is effective if the test 711 is FALSE.
  • the test 713 verifies the superiority of the value processed by the task 707 on the threshold of cell sensitivity, at the previous instant (t-1).
  • Branch 713/1 is effective if test 713 is TRUE; in this case a human being just left the field of view of the cell in question; task 715 analyzes the successive values stored by the task 712 to extract information Characteristics of the crossing of a human being: moment of beginning of the crossing, instant end of the crossing, instant corresponding to the median of the stored values and average of these values; it positions the cell in the stored state VALID. All this information is stored for analysis by task 900.
  • test 713 is FALSE; in this case, no being human being is in the field of view of the cell considered.
  • the task 714 positions the cell in the instantaneous PASSIVE state.
  • Task 717 increments the index k associated with a cell.
  • the test 719 verifies that the new index k is less than or equal to the total number of cells.
  • Branch 719/1 is effective if test 719 is TRUE; in this case all the cells have not been processed and go back to task 705.
  • the 719/0 connection is effective if the test 719 is FALSE; in this case all the cells have been treated.
  • entry point 801 and exit point 899 of task 800 are shown.
  • This task has two elementary tasks 803 and 805 ensuring the adaptation of the threshold of sensitivity of the cells according to the last V values memorized by the task 709 of Figure 10; V being chosen arbitrarily according to the application, by example depending on the frequency of crossing of living beings or according to a fixed number of crossings; this number can be chosen in the range from 20 to 100.
  • the 803 test checks that all the cells are in the PASSIVE instant state and that minus V values have been stored by task 709 of task 700.
  • the 803/1 connection is effective if the 803 test is TRUE; in this case, the threshold of Cell sensitivity can be adapted.
  • Task 805 calculates the rolling average over all last V values memorized by the task 709 of FIG. 10 and deduces therefrom the new sensitivity threshold cells.
  • the 803/0 connection is effective if the 803 test is FALSE; in this case the threshold of Cell sensitivity can not be adapted.
  • entry point 901 and exit point 999 of task 900 are shown. This task repeats elementary tasks 905 to 911 for each pair of cells. analyzes the extracted characteristic information for each cell by task 700 and deduces the characteristic information of each couple.
  • the task 903 initializes to 1 the index m associated with the pair of cells to be analyzed.
  • the test 905 verifies that the two cells forming the couple considered are in the state memorized VALID and that there is a period of common occupation during which the human being is simultaneously in the field of vision of the two cells, which amounts to to consider that the human being is in the field of vision of the couple.
  • the 905/1 connection is effective if the 905 test is TRUE.
  • Task 907 analyzes the extracted characteristic information for each cell of the couple of successive cells considered and deduces the characteristic information of the crossing of a human being for this couple: moment of beginning of common occupation, moment of end of common occupation, average of the couple, that is to say average of the averages calculated for the couple's cells, signature of the occupation chronology couple cells; the state of the pair of successive cells is considered as VALID.
  • the signature of the chronology of occupation of the cells of the couple is chosen arbitrarily POSITIVE if the human crosses the alignment 1 then the alignment 2 and NEGATIVE if the human crosses the alignment 2 then the alignment 1.
  • the 905/0 connection is effective if the 905 test is FALSE.
  • Task 909 increments the index m associated with a pair.
  • the 911 test verifies that the new index m is less than or equal to the total number of couples.
  • the 911/1 connection is effective if the 911 test is TRUE; in this case all couples have not been analyzed and we return to the 905 test.
  • the 911/0 connection is effective if the 911 test is FALSE; in this case all couples have been analyzed.
  • the task 1003 initializes to 1 the index m associated with the pair of cells to be analyzed and initialises to zero the contents of the entity, which means that the entity contains no couple.
  • the test 1005 verifies that the couple considered is in the VALID state.
  • the 1005/0 connection is effective if the 1005 test is FALSE.
  • Task 1006 resets the contents of the entity to zero, which means that the entity does not contains no couple.
  • the 1005/1 connection is effective if the 1005 test is TRUE.
  • Task 1007 includes the couple considered in the entity.
  • Test 1009 verifies that there is a period of time during which one or more beings humans are in the field of view of the couple considered and the next couple.
  • the 1009/0 connection is effective if the 1009 test is FALSE; in this case, the entity is complete, it can be analyzed to count human beings.
  • Task 1011 uses the table shown in Figure 14 to analyze the entity and to determine in real time the number of human beings and their direction of passage.
  • Task 1013 updates the characteristic information of couples and cells contained in the entity and then re-initializes the content of the entity to 0. The state of these couples and the stored state of these cells are repositioned in the INVALID state.
  • the 1009/1 connection is effective if the 1009 test is TRUE; in this case, the couple next is likely to be included in the entity.
  • Task 1015 increments the index m associated with a pair.
  • Test 1017 verifies that the new index m is less than or equal to the total number of couples.
  • Connection 1017/1 is effective if test 1017 is TRUE; in this case all couples have not been analyzed and we return to the 1005 test.
  • the 1017/0 connection is effective if the test 1017 is FALSE; in this case all couples were analyzed.
  • Figure 14 shows the characteristic number analysis chart of the created entity during task 1000.
  • This array has as many columns and rows as there are cells in the system.
  • This table defines the number of human beings associated with the entity as well as their direction of crossing according to the characteristic numbers of the entity.
  • the column numbers correspond to the possible values taken by the number X and the line numbers correspond to the possible values taken by the number Y.
  • the empty boxes in the table correspond to impossible situations; the other boxes of the array include either a letter or at least one signed integer whose module represents the number of human beings counted and whose sign corresponds to the crossing initial alignment 1 if it is positive and at the initial crossing of alignment 2 if it is negative
  • the letters A, B and C of the table correspond to the special cases for which the counting of human beings is conditioned by additional information.
  • the letter A is to be replaced by (+1) when the average of the couple having the signature POSITIVE is greater than the average of the couple with the NEGATIVE signature.
  • the letter A is to be replaced by (-1) when the average of the couple having the signature POSITIVE is less than the average of the couple with the NEGATIVE signature.
  • the letter B is to be replaced by the set (+1) & (-1) when the couple having the POSITIVE signature was included in the entity before or after the other pairs and by (-2) in other cases.
  • the letter C is to be replaced by the set (+1) & (-1) when the couple having the NEGATIVE signature was included in the entity before or after the other couples and by (+2) in other cases.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Toxicology (AREA)
  • Theoretical Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

A system for counting living beings moving on a first surface (0) and passing through a second cylindrical surface with substantially vertical generatrix, consists of N thermal radiating detection cells (11) having in particular a thermopile (30) including at least a sensitive element (31), and elements focusing (34) the thermal radiation and generating a field of vision (111) extended along a direction, the N detection cells (11) being distributed between two curves, one of the curves coinciding with the base line of the cylindrical surface crossed by the living beings, and the other curve being distant from the former one by a length D (42) equal to 5 cm at least, the direction of the extension of the field of vision of each cell being substantially tangent to one of the two curves.

Description

L'objet de l'invention est un système de comptage d'êtres vivants, se déplaçant sur une première surface et traversant une seconde surface cylindrique de génératrice sensiblement verticale. Un tel système est constitué d'un ensemble de N cellules de détection de rayonnement thermique et d'un dispositif électronique d'acquisition et de traitement des signaux délivrés par ces cellules.The object of the invention is a counting system of living beings, moving on a first surface and passing through a second cylindrical surface of a generator substantially vertical. Such a system consists of a set of N cells of detection of thermal radiation and an electronic device for acquiring and treatment of the signals delivered by these cells.

On connaít de nombreux systèmes de comptage d'êtres vivants en mouvement basés sur la détection de rayonnement thermique.Numerous systems for counting living beings in motion based on the detection of thermal radiation.

La demande internationale WO 9210812 décrit un tel système de comptage, utilisant une cellule unique qui comporte un capteur et une lentille positionnée devant lui. Ce capteur est composé de deux rangées de détecteurs pyroélectiques. La lentille focalise le rayonnement thermique sur chacun des détecteurs. Ce type de détecteur de rayonnement thermique ne permet de déceler que des variations relativement rapides de température dans le champ de vision. La cellule crée deux plans de surveillance parallèles formés par les axes des faisceaux associés aux détecteurs. Après acquisition des signaux électriques délivrés par les détecteurs, une unité de traitement évalue le nombre d'êtres vivants franchissant les deux plans et leurs sens de déplacement. Ce dispositif est adapté au comptage dans des passages de faible hauteur et de faible largeur, porte d'autobus par exemple. Ce dispositif est pratiquement inutilisable dans des passages de largeur importante compte tenu de la divergence du champ de vision du capteur. En outre, l'utilisation de détecteurs pyroélectriques prévue dans le cadre de cette demande internationale rend difficile la détection d'êtres vivants en mouvement lent.The international application WO 9210812 describes such a counting system, using a single cell that has a sensor and a lens positioned in front of it. This sensor is composed of two rows of pyroelectric detectors. The lens focuses the thermal radiation on each of the detectors. This type of radiation detector temperature can only detect relatively rapid changes in temperature in the field of vision. The cell creates two parallel surveillance plans formed by the axes of the beams associated with the detectors. After acquiring electrical signals delivered by the detectors, a treatment unit evaluates the number of living crossing both planes and their directions of movement. This device is adapted to counting in low and low width passages, bus door example. This device is practically unusable in wide passages important given the divergence of the field of view of the sensor. In addition, the use of pyroelectric detectors as part of this application International makes it difficult to detect living things in slow motion.

Le brevet US 4,799,243 décrit un autre système de comptage d'êtres vivants en mouvement. Ce système est constitué de cellules, chaque cellule comportant deux détecteurs de rayonnement thermique et une lentille. Ces deux détecteurs créent pour chaque cellule deux champs de vision disjoints, sensiblement symétriques par rapport à la verticale. L'arrangement des cellules tel qu'il est prévu dans ce brevet est choisi pour couvrir la totalité de la largeur du passage à surveiller avec un recouvrement des champs de vision selon une direction perpendiculaire au sens de traversée et une séparation des champs de vision selon le sens de traversée. Un tel arrangement ne permet pas le comptage d'êtres vivants trop proches les uns des autres selon le sens de traversée.US Patent 4,799,243 describes another system of counting living beings in movement. This system consists of cells, each cell comprising two thermal radiation detectors and a lens. These two detectors create for each cell two disjoint fields of vision, substantially symmetrical with respect to the vertical. The arrangement of the cells as provided for in this patent is chosen for cover the entire width of the passage to be monitored with a covering of the fields vision in a direction perpendicular to the direction of crossing and a separation of fields of vision according to the direction of crossing. Such an arrangement does not allow the counting living beings too close to each other according to the direction of crossing.

Le brevet US 5,068,537 décrit un autre système de comptage d'êtres vivants en mouvement utilisant un grand nombre de cellules disposées sur une seule ligne. Le système est conçu de sorte qu'un être vivant de taille moyenne soit détecté par au moins deux cellules. Chaque cellule ne comportant qu'un détecteur, le système ne permet pas la détermination du sens de traversée des êtres vivants comptés.US Pat. No. 5,068,537 describes another system for counting living creatures in movement using a large number of cells arranged on a single line. The system is designed so that a medium-sized living being is detected by at least two cells. Since each cell has only one detector, the system does not allow the determination of the direction of crossing counted living beings.

Un autre sytème de comptage d'êtres vivants est décrit dans DE 4220508.Another living count system is described in DE 4220508.

Dans le système de comptage d'êtres vivants objet de l'invention, les détecteurs de rayonnement thermique utilisés sont des thermopiles qui se caractérisent par leur capacité à détecter des variations même très lentes de température dans leur champ de vision.In the counting system of living beings which is the subject of the invention, the detectors of thermal radiation used are thermopiles that are characterized by their ability to detect even very slow variations of temperature in their field of vision.

Le système de comptage d'êtres vivants objet de l'invention comporte un ensemble de N cellules de détection de rayonnement thermique ainsi qu'un dispositif électronique d'acquisition et de traitement des signaux délivrés par ces cellules. Chaque cellule comporte notamment une thermopile comprenant au moins un élément sensible, un moyen focalisant le rayonnement thermique sur les éléments sensibles de cette thermopile, ce moyen de focalisation créant un champ de vision allongé selon une direction, un masque limitant ce champ de vision et un amplificateur du signal délivré par la thermopile. Dans le système de comptage d'êtres vivants, objet de l'invention, les N cellules de détection sont équiréparties selon deux courbes lorsque N est pair et sont réparties selon deux courbes avec une différence d'une unité lorsque N est impair, la répartition des cellules sur chaque courbe étant uniforme selon un pas P identique pour chacune des deux courbes, l'une de ces courbes s'identifiant à la directrice de la surface cylindrique traversée par les êtres vivants, et l'autre courbe étant distante de la précédente d'une longueur D égale à 5 cm au moins, la direction d'allongement du champ de vision de chaque cellule étant sensiblement tangente à l'une des deux courbes.The counting system for living beings that is the subject of the invention comprises a set of N thermal radiation detection cells and an electronic device acquisition and processing of the signals delivered by these cells. Each cell comprises in particular a thermopile comprising at least one sensitive element, a medium focusing the thermal radiation on the sensitive elements of this thermopile, this focusing means creating an elongated field of view according to a direction, a mask limiting this field of view and an amplifier of the signal delivered by the thermopile. In the counting system of living beings, object of the invention, the N detection cells are equidistributed according to two curves when N is even and are divided along two curves with a difference of one unit when N is odd, the distribution of the cells on each curve being uniform according to an identical pitch P for each of the two curves, one of these curves identifying with the director of the surface cylindrical crossed by living beings, and the other curve being distant from the preceding of a length D equal to at least 5 cm, the direction of elongation of the field each cell being substantially tangent to one of the two curves.

Un filtre généralement placé dans la thermopile devant l'élément sensible limite la sensibilité au rayonnement thermique des corps de température proche de la température ambiante, ce qui correspond à des rayonnements de l'infrarouge lointain dans la bande de longueurs d'ondes de 7 à 14 µm environ. Le moyen de focalisation de chaque cellule est adapté au nombre, à la disposition et à la géométrie du ou des éléments sensibles de la thermopile de façon à créer un champ de vision allongé selon une direction et aussi étroit que possible selon la direction perpendiculaire à la précédente. Le moyen de focalisation est réalisé de manière préférentielle à l'aide d'une ou de plusieurs lentilles. Il peut éventuellement être réalisé par sténopé ou par miroir. Selon l'invention, on utilise une seule lentille, de préférence lorsque la thermopile comporte un seul élément sensible de surface allongée ou lorsque la thermopile comporte un alignement d'éléments sensibles dont les surfaces ont des dimensions sensiblement voisines selon deux directions orthogonales. Selon l'invention, on utilise plusieurs lentilles, de préférence lorsque la thermopile ne comporte qu'un seul élément sensible dont la surface a des dimensions sensiblement voisines selon deux directions orthogonales.A filter generally placed in the thermopile in front of the sensitive element limits the sensitivity to thermal radiation of bodies near temperature ambient, which corresponds to far-infrared radiation in the wavelengths of about 7 to 14 μm. The means of focusing of each cell is adapted to the number, arrangement and geometry of the sensitive element (s) of the thermopile so as to create an elongated field of view in one direction and as narrow as possible in the direction perpendicular to the previous one. The means of focusing is preferably carried out using one or more lenses. he can possibly be made by pinhole or mirror. According to the invention, a single lens, preferably when the thermopile comprises a single sensitive element of elongated surface or when the thermopile has an alignment of sensitive elements whose surfaces have dimensions substantially similar in two directions orthogonal. According to the invention, several lenses are used, preferably when the thermopile has only one sensitive element whose surface has dimensions substantially adjacent in two orthogonal directions.

Dans les systèmes objet de l'invention, il est judicieux de choisir un pas P de répartition des cellules de détection voisin de la largeur d'un être vivant statistiquement représentatif des êtres de taille minimale appartenant à la population à compter. Lorsqu'il s'agit de compter des êtres humains ce pas P est sensiblement égal à 45 cm.In the systems that are the subject of the invention, it is advisable to choose a distribution pitch P detection cells close to the width of a living being statistically representative beings of minimal size belonging to the population to count. When it comes to counting human beings this pitch P is substantially equal to 45 cm.

Plus particulièrement, le système objet de l'invention est utilisé pour compter des êtres vivants traversant un plan ; dans ce cas, les courbes sur lesquelles les cellules sont réparties sont des droites parallèles.More particularly, the system which is the subject of the invention is used to count beings living through a plane; in this case, the curves on which the cells are distributed are parallel lines.

L'ouverture du champ de vision, selon la direction d'allongement de ce champ, peut être choisie pour chaque cellule appartenant à une même droite, de manière à assurer la juxtaposition des zones vues par deux cellules successives sur la même droite, à une hauteur voisine de la taille minimale d'un être vivant statistiquement représentatif des êtres appartenant à la population à compter.The opening of the field of view, according to the direction of extension of this field, can be chosen for each cell belonging to the same line, so as to ensure the juxtaposition of the zones seen by two successive cells on the same line, to a height close to the minimum size of a living being statistically representative of beings belonging to the population to count.

Lorsqu'en outre il s'agit de compter des êtres humains traversant un plan, il est opportun de concevoir le système objet de l'invention de sorte que l'étendue de la zone vue par chaque cellule à une hauteur de 1 m et mesurée selon l'alignement est sensiblement égale à 45 cm.When in addition it is a question of counting human beings crossing a plane, it is opportune to design the system object of the invention so that the extent of the area seen by each cell at a height of 1 m and measured according to the alignment is substantially equal at 45 cm.

Le système de comptage d'êtres vivants objet de l'invention comporte un dispositif électronique de traitement des signaux délivrés par les cellules qui exploite un algorithme. Une première tâche de cet algorithme initialise les paramètres précisant la configuration du système. Une deuxième tâche de cet algorithme assure successivement pour chaque cellule la lecture et le traitement des valeurs numériques délivrées par le dispositif électronique d'acquisition. Une troisième tâche de cet algorithme assure l'adaptation du seuil de sensibilité des cellules. Une quatrième tâche de cet algorithme analyse pour tous les couples de cellules successives les informations issues de la deuxième tâche. Une cinquième tâche de cet algorithme analyse les résultats de la quatrième tâche et en déduit le comptage des êtres vivants, leur sens de traversée et leur vitesse de déplacement. Une sixième tâche de cet algorithme exploite le comptage ainsi obtenu en fonction de l'application envisagée. Une septième tâche de cet algorithme gère la cadence d'exécution des tâches précédentes selon la fréquence d'échantillonnage des signaux délivrés par les cellules. Dans les systèmes de comptage d'êtres vivants objet de l'invention, on peut concevoir la cinquième tâche de l'algorithme de manière à y permettre le regroupement, sous forme d'entités, des couples de cellules successives pour lesquels les informations issues de la quatrième tâche de l'algorithme correspondent à la traversée d'un être vivant ou d'un groupe d'êtres vivants, les informations des couples de chaque entité précisant ce nombre d'êtres vivants, le sens de leur traversée et la vitesse de leur déplacement.The counting system for living beings which is the subject of the invention comprises a device electronic signal processing system delivered by the cells that operates a algorithm. A first task of this algorithm initializes the parameters specifying the system configuration. A second task of this algorithm ensures successively for each cell the reading and the processing of the numerical values delivered by the electronic device of acquisition. A third task of this algorithm ensures the adaptation of the sensitivity threshold of the cells. A fourth task of this algorithm analysis for all couples of successive cells the information from the second task. A fifth task of this algorithm analyzes the results of the fourth task and deduces the counting of living beings, their sense of crossing and their movement speed. A sixth task of this algorithm exploits counting as well obtained according to the intended application. A seventh task of this algorithm manages the rate of execution of the preceding tasks according to the sampling frequency of the signals delivered by the cells. In counting systems of living beings subject to the invention, the fifth task of the algorithm can be conceived in such a way that allow the grouping, as entities, of successive cell pairs for which the information from the fourth task of the algorithm corresponds crossing a living being or a group of living creatures, information from couples of each entity specifying this number of living beings, the meaning of their crossing and the speed of their movement.

Le système de comptage d'êtres vivants objet de l'invention offre divers avantages par rapport aux systèmes connus et notamment son intégration aisée pour toute largeur de passage à surveiller ; sa performance de comptage excellente même pour une faible hauteur de passage; son adaptabilité d'implantation dans des environnements particuliers; sa capacité de comptage de foules denses et d'êtres vivants en mouvement lent.The counting system of living beings which is the subject of the invention offers various advantages by compared to known systems and in particular its easy integration for any width of passage to watch; its excellent counting performance even for a low passage height; its adaptability of implantation in environments individuals; its ability to count dense crowds and moving living things slow.

Le système de comptage d'êtres vivants objet de l'invention peut être décrit à titre non limitatif à l'aide de l'exemple suivant illustré par les figures 1 à 14. Cet exemple correspond au comptage d'êtres humains traversant un plan, au moyen de huit cellules équiréparties sur deux droites.The counting system of living beings which is the subject of the invention can be described as a non with the following example illustrated in FIGS. 1 to 14. This example corresponds to counting human beings crossing a plane, using eight cells equidistributed on two straight lines.

La figure 1 représente schématiquement un système objet de l'invention comportant huit cellules disposées selon deux alignements.FIG. 1 schematically represents a system that is the subject of the invention comprising eight cells arranged in two alignments.

Les figures 2a et 2b représentent deux vues d'une cellule de détection de rayonnement thermique utilisée dans le système schématisé à la figure 1. Figures 2a and 2b show two views of a radiation detection cell thermal system used in the system shown schematically in Figure 1.

La figure 3 montre un réseau de lentilles de Fresnel utilisé dans la cellule montrée aux figures 2a et 2b.Figure 3 shows a network of Fresnel lenses used in the cell shown at Figures 2a and 2b.

Les figures 4a et 4b représentent la cellule montrée aux figures 2a et 2b avec son champ de vision.Figures 4a and 4b show the cell shown in Figures 2a and 2b with its field of vision.

Les figures 5a et 5b représentent deux vues, selon deux directions orthogonales, d'un groupe de deux cellules successives, chacune d'elles appartenant à un alignement différent, ainsi que les champs de vision de ces cellules.FIGS. 5a and 5b show two views, in two orthogonal directions, of a group of two successive cells, each belonging to an alignment different, as well as the fields of view of these cells.

La figure 6a représente, en vue de dessus, cinq cellules successives appartenant au système montré à la figure 1.FIG. 6a represents, in plan view, five successive cells belonging to the system shown in Figure 1.

Les figures 6b et 6c représentent, en vue de dessus, les zones vues par les cinq cellules schématisées à la figure 6a, respectivement au niveau de 1 m et au niveau du sol.FIGS. 6b and 6c represent, in plan view, the zones seen by the five cells schematically in Figure 6a, respectively at 1 m and at ground level.

Les figures 7a à 7e représentent, en vue de dessus, cinq phases successives de la traversée d'un être humain perpendiculairement aux alignements des cellules et pour une représentation des zones vues selon la figure 6b.FIGS. 7a to 7e show, in plan view, five successive phases of the crossing of a human being perpendicular to the cell alignments and for a representation of the zones seen according to FIG. 6b.

La figure 7z schématise l'évolution temporelle des signaux délivrés par la thermopile de chaque cellule, pour la traversée définie par les figures 7a à 7e.FIG. 7z schematizes the temporal evolution of the signals delivered by the thermopile of each cell, for the crossing defined by FIGS. 7a to 7e.

Les figures 8a à 8e représentent, en vue de dessus, cinq phases successives de la traversée d'un être humain obliquement aux alignements des cellules et pour une représentation des zones vues selon la figure 6b.FIGS. 8a to 8e show, in plan view, five successive phases of the crossing a human being obliquely to the cell alignments and for a representation of the zones seen according to FIG. 6b.

La figure 8z schématise l'évolution temporelle des signaux délivrés par la thermopile de chaque cellule, pour la traversée définie par les figures 8a à 8e.FIG. 8z schematizes the temporal evolution of the signals delivered by the thermopile of each cell, for the crossing defined by Figures 8a to 8e.

La figure 9 montre l'enchaínement chronologique, sous forme d'un organigramme, des différentes tâches de traitement des signaux électriques, délivrés par les cellules.Figure 9 shows the chronological sequence, in the form of a flowchart, of different tasks of processing electrical signals, delivered by the cells.

Les figures 10, 11, 12 et 13 montrent quatre tâches particulières de l'organigramme montré à la figure 9.Figures 10, 11, 12 and 13 show four particular tasks in the flowchart shown in Figure 9.

La figure 14 montre le tableau utilisé par la tâche particulière montrée à la figure 13.Figure 14 shows the table used by the particular task shown in Figure 13.

La figure 1 montre le sol 0, un ensemble de huit cellules de détection de rayonnement thermique réparties selon deux alignements, un premier alignement 1 comportant quatre cellules 11 ; 12 ; 13 ; 14, un second alignement 2 comportant quatre cellules 21 ; 22 ; 23 ; 24, deux êtres humains 4 et 5, un dispositif électronique 6 d'acquisition et de numérisation des signaux délivrés par les cellules, ces signaux étant éventuellement échantillonnés au niveau des cellules, un dispositif électronique 7 de traitement des valeurs numériques délivrées par le dispositif d'acquisition 6, un dispositif 8 d'exploitation des informations issues du dispositif de traitement 7, un médium 3 connectant toutes les cellules au dispositif d'acquisition 6. Les huit cônes 111 à 114 et 121 à 124 schématisent les champs de vision de chacune des cellules. Les intersections de ces cônes avec un plan parallèle au sol 0 et situé à une hauteur de 1 m définissent les zones vues à cette hauteur et sont schématisées par les huit ellipses 211 à 214 et 221 à 224.Figure 1 shows the ground 0, a set of eight radiation detection cells distributed in two alignments, a first alignment 1 comprising four cells 11; 12; 13; 14, a second alignment 2 comprising four cells 21; 22; 23; 24, two human beings 4 and 5, an electronic device 6 for acquiring and digitization of the signals delivered by the cells, these signals possibly being at the cell level, an electronic device 7 for processing digital values delivered by the acquisition device 6, an operating device 8 information from the processing device 7, a medium 3 connecting all the cells to the acquisition device 6. The eight cones 111 to 114 and 121 to 124 schematize the fields of view of each of the cells. The intersections of these cones with a plane parallel to the ground 0 and located at a height of 1 m define the areas seen at this height and are schematized by the eight ellipses 211 to 214 and 221 to 224.

La figure 2a est une coupe schématique d'une cellule par un plan perpendiculaire aux deux alignements des cellules.Figure 2a is a schematic section of a cell in a plane perpendicular to two cell alignments.

La figure 2b est une coupe schématique de la même cellule, orthogonale à la coupe montrée à la figure 2a.Figure 2b is a schematic section of the same cell, orthogonal to the section shown in Figure 2a.

Cette cellule comporte une thermopile 30 dont l'élément sensible 31 fournit un signal électrique de faible amplitude proportionnelle au rayonnement thermique reçu au travers du filtre infrarouge 32 , un étage d'amplification et de mise en forme 33 du signal électrique délivré par la thermopile 30, un dispositif 38 connectant l'étage d'amplification et de mise en forme 33 au médium 3, un réseau de lentilles de Fresnel 34 de distance focale 40, placé à une distance égale à cette distance focale 40 devant l'élément sensible 31 de la thermopile 30, un masque 35 placé devant le réseau de lentilles de Fresnel 34 et un boítier 36 étanche, opaque aux rayonnements électromagnétiques et dont la surface intérieure absorbe les rayonnements thermiques. Le réseau de lentilles de Fresnel 34 comporte huit éléments 34a à 34h.This cell comprises a thermopile 30 whose sensitive element 31 provides a signal small amplitude proportional to the thermal radiation received through of the infrared filter 32, a signal amplification and shaping stage 33 delivered by the thermopile 30, a device 38 connecting the amplification stage and shaping 33 to medium 3, a network of Fresnel lenses 34 away focal length 40, placed at a distance equal to this focal length 40 in front of the sensitive element 31 of the thermopile 30, a mask 35 placed in front of the Fresnel lens array 34 and a waterproof housing 36, opaque to electromagnetic radiation and whose surface Inner absorbs thermal radiation. The Fresnel Lens Network 34 has eight elements 34a to 34h.

La figure 3 représente le réseau de lentilles de Fresnel 34. Ce réseau est composé de huit lentilles de Fresnel élémentaires 34a à 34h. Ces lentilles sont juxtaposées et leurs centres optiques sont alignés selon la droite 39. Figure 3 shows the Fresnel lens array 34. This network is composed of eight elemental Fresnel lenses 34a to 34h. These lenses are juxtaposed and their centers optics are aligned along the line 39.

Les figures 4a et 4b représentent la cellule montrée aux figures 2a et 2b selon les mêmes projections. Ces figures montrent les champs de vision élémentaires 37c, 37d, 37e et 37f associés aux lentilles de Fresnel élémentaires non masquées 34c, 34d, 34e et 34f.FIGS. 4a and 4b show the cell shown in FIGS. 2a and 2b according to the same projections. These figures show the elementary fields of vision 37c, 37d, 37e and 37f associated with unmasked elemental Fresnel lenses 34c, 34d, 34e and 34f.

Les figures 5a et 5b représentent des cellules successives 11 et 21 ainsi que leurs champs de vision respectifs 111 et 121. Ces deux cellules appartiennent à un alignement différent.FIGS. 5a and 5b show successive cells 11 and 21 as well as their fields 111 and 121 respectively. These two cells belong to a different alignment.

La figure 5a montre les champs de vision perpendiculairement au sens de déplacement normal des êtres humains. La figure 5b montre les champs de vision selon le sens de déplacement normal des êtres humains.Figure 5a shows the fields of view perpendicular to the direction of travel normal human beings. Figure 5b shows the fields of view in the sense of normal movement of human beings.

La vue représentée à la figure 5a met en évidence la faible ouverture des champs de vision 111 et 121 ainsi que la faible distance D 42 entre les deux alignements 1 et 2.The view represented in FIG. 5a highlights the weak opening of the fields of vision 111 and 121 as well as the short distance D 42 between the two alignments 1 and 2.

La vue représentée à la figure 5b met en évidence l'ouverture importante des champs de vision 111 et 121 ainsi que le demi-pas P/2 41 entre ces cellules.The view represented in FIG. 5b highlights the important opening of the fields of 111 and 121 as well as the half P / 2 step 41 between these cells.

La figure 6a représente une vue de dessus des cinq cellules 11 ; 21 ; 12 ; 22 ; 13 disposées selon les deux alignements 1 et 2 distants de la distance D 42. Cette vue montre également le demi-pas P/2 41 entre deux cellules successives.Figure 6a shows a top view of the five cells 11; 21; 12; 22; 13 disposed along the two alignments 1 and 2 distant from the distance D 42. This view also shows the half-pitch P / 2 41 between two successive cells.

La figure 6b montre en vue de dessus l'arrangement des zones 211 ; 221 ; 212 ; 222 ; 213 vues à une hauteur de 1 m au dessus du niveau du sol 0 et correspondant respectivement aux cellules 11 ; 21 ; 12 ; 22 ; 13. Cette figure 6b met en évidence la juxtaposition des zones vues par deux cellules successives disposées sur un même alignement.Figure 6b shows in plan view the arrangement of the zones 211; 221; 212; 222; 213 viewed at a height of 1 m above ground level 0 and corresponding respectively cells 11; 21; 12; 22; 13. This figure 6b highlights the juxtaposition of zones seen by two successive cells arranged on the same alignment.

La figure 6c montre en vue de dessus l'arrangement des zones vues au niveau du sol 0, 311 ; 321 ; 312 ; 322 ; 313 correspondant respectivement aux cellules 11 ; 21 ; 12 ; 22 ; 13. Cette figure 6c met en évidence la superposition partielle des zones vues par deux cellules successives disposées sur un même alignement.FIG. 6c shows in plan view the arrangement of the zones seen at ground level 0, 311; 321; 312; 322; 313 respectively corresponding to the cells 11; 21; 12; 22; 13. This figure 6c highlights the partial superposition of the zones seen by two successive cells arranged on the same alignment.

Les figures 7a à 7e représentent respectivement, en vue de dessus, cinq phases successives a, b, c, d, e de la traversée d'un être humain 4 perpendiculairement aux alignements 1 et 2, ainsi que les zones vues à une hauteur de 1 m au dessus du niveau du sol, montrées à la figure 6b. La figure 7z schématise les oscillogrammes des signaux électriques 411 ; 421 ; 412 ; 422 ; 413 délivrés respectivement par les cellules 11 ; 21 ; 12 ; 22 ; 13. Le niveau de chaque signal électrique 411 ; 421 ; 412 ; 422 ; 413 est lié à la fraction de la zone vue occupée par l'être humain qui traverse les champs de vision des cellules 11 ; 21 ; 12 ; 22 ; 13.FIGS. 7a to 7e respectively represent, in plan view, five phases successive a, b, c, d, e crossing a human being 4 perpendicular to the alignments 1 and 2, as well as the areas seen at a height of 1 m above the level of the ground, shown in Figure 6b. Figure 7z shows the waveforms of the signals electric 411; 421; 412; 422; 413 delivered respectively by the cells 11; 21; 12; 22; 13. The level of each electrical signal 411; 421; 412; 422; 413 is related to the fraction of the view area occupied by the human being that crosses the fields of view of cells 11; 21; 12; 22; 13.

Dans la phase a, l'être humain 4 n'est présent dans aucune des zones vues 211 ; 221 ; 212 ; 222 ; 213. Les signaux électriques 411 ; 421 ; 412 ; 422 ; 413 montrés à la figure 7z ont un niveau nul.In phase a, the human being 4 is not present in any of the zones 211; 221; 212; 222; 213. Electrical signals 411; 421; 412; 422; 413 shown in the figure 7z have a zero level.

Dans la phase b, l'être humain 4 occupe entièrement la zone vue 212. Le niveau du signal 412 est maximal. L'être humain 4 occupe très partiellement la zone vue 213. Le niveau du signal 413 présente un pic de très faible amplitude. Les zones vues 211 ; 221 ; 222 ne sont pas occupées par l'être humain 4. Les niveaux des signaux correspondants 411 ; 421 ; 422 restent nuls.In phase b, the human being 4 completely occupies the view area 212. The signal level 412 is maximal. The human being 4 occupies very partially the zone seen 213. The level signal 413 has a peak of very low amplitude. The zones viewed 211; 221; 222 does not are not occupied by the human being 4. The levels of the corresponding signals 411; 421; 422 remain void.

Dans la phase c, l'être humain 4 continue d'occuper entièrement la zone vue 212. Le niveau du signal 412 reste maximal. L'être humain 4 occupe partiellement les zones vues 221 et 222. Le niveau des signaux 421 et 422 est moyen. Les zones vues 211 et 213 ne sont pas occupées par l'être humain 4. Les niveaux des signaux correspondants 411 et 413 restent nuls.In phase c, the human being 4 continues to occupy the entire area 212. signal level 412 remains maximum. Human being 4 partially occupies the views 221 and 222. The level of the signals 421 and 422 is average. The zones seen 211 and 213 do not are not occupied by the human being 4. The corresponding signal levels 411 and 413 remain void.

Dans la phase d, l'être humain 4 quitte la zone vue 212. Le niveau du signal 412 redevient nul. L'être humain 4 continue d'occuper partiellement les zones vues 221 et 222. Le niveau des signaux 421 et 422 reste moyen. Les zones vues 211 et 213 ne sont pas occupées par l'être humain 4. Les niveaux des signaux correspondants 411 et 413 restent nuls.In phase d, the human being 4 leaves the view area 212. The signal level 412 becomes zero again. The human being 4 continues to occupy partially the zones seen 221 and 222. The level of the signals 421 and 422 remains average. The zones seen 211 and 213 are not not occupied by humans 4. Corresponding signal levels 411 and 413 remain void.

Dans la phase e, l'être humain 4 quitte les zones vues 221 et 222. Le niveau des signaux 421 et 422 redevient nul. Les zones vues 211 ; 212 ; 213 ne sont pas occupées par l'être humain 4. Les niveaux des signaux correspondants 411 ; 412 ; 413 restent nuls.In phase e, the human being 4 leaves the zones seen 221 and 222. The level of the signals 421 and 422 become void again. The zones viewed 211; 212; 213 are not occupied by being human 4. Levels of corresponding signals 411; 412; 413 remain void.

Tous les niveaux des signaux étant nuls, l'être humain 4 va pouvoir être compté avec discrimination du sens de traversée des alignements. Since all the signal levels are zero, the human being 4 will be able to be counted with discrimination of the crossing direction of alignments.

Les figures 8a à 8e représentent respectivement, en vue de dessus, cinq phases successives a, b, c, d, e de la traversée d'un être humain 5 obliquement aux alignements 1 et 2, ainsi que les zones vues à une hauteur de 1 m au dessus du niveau du sol, montrées à la figure 6b. La figure 8z schématise les oscillogrammes des signaux électriques 511 ; 521 ; 512 ; 522 ; 513 délivrés respectivement par les cellules 11 ; 21 ; 12 ; 22 ; 13. Le niveau de chaque signal électrique 511 ; 521 ; 512 ; 522 ; 513 est lié à la fraction de la zone vue occupée par l'être humain qui traverse les champs de vision des cellules 11 ; 21 ; 12 ; 22 ; 13.FIGS. 8a to 8e respectively represent, in plan view, five phases successive a, b, c, d, e of the crossing of a human being obliquely to the alignments 1 and 2, as well as the areas seen at a height of 1 m above ground level, shown in Figure 6b. FIG. 8z schematizes the oscillograms of the electrical signals 511; 521; 512; 522; 513 issued respectively by the cells 11; 21; 12; 22; 13. The level of each electrical signal 511; 521; 512; 522; 513 is related to the fraction of the view area occupied by the human being which passes through the fields of view of the cells 11; 21; 12; 22; 13.

Dans la phase a, l'être humain 5 n'est présent dans aucune des zones vues 211 ; 221 ; 212 ; 222 ; 213. Les signaux électriques 511 ; 521 ; 512 ; 522 ; 513 montrés à la figure 8z ont un niveau nul.In phase a, the human being is not present in any of the zones seen 211; 221; 212; 222; 213. Electrical signals 511; 521; 512; 522; 513 shown in the figure 8z have a zero level.

Dans la phase b, l'être humain 5 occupe partiellement les zones vues 212 et 213. Le niveau des signaux 512 et 513 est moyen. Les zones vues 211 ; 221 ; 222 ne sont pas occupées par l'être humain 5. Les niveaux des signaux correspondants 511 ; 521 ; 522 sont nuls.In phase b, the human being 5 partially occupies the zones 212 and 213. signal level 512 and 513 is average. The zones viewed 211; 221; 222 are not occupied by the human being 5. Levels of the corresponding signals 511; 521; 522 are zero.

Dans la phase c, l'être humain 5 occupe presque entièrement la zone vue 212. Le niveau du signal 512 atteint un maximum. L'être humain 5 occupe partiellement les zones vues 221 et 222. Le niveau des signaux 521 et 522 est moyen. Les zones vues 211 et 213 ne sont pas occupées par l'être humain 5. Les niveaux des signaux correspondants 511 et 513 restent nuls.In phase c, the human being occupies almost entirely the area viewed 212. The level signal 512 reaches a maximum. The human being 5 partially occupies the views 221 and 222. The level of the signals 521 and 522 is average. The zones seen 211 and 213 do not are not occupied by the human being 5. The levels of the corresponding signals 511 and 513 remain void.

Dans la phase d, l'être humain 5 quitte les zones vues 212 et 222. Le niveau des signaux 512 et 522 redevient nul. L'être humain 5 occupe entièrement la zone vue 221. Le niveau du signal 521 atteint un maximum. Les zones vues 211 et 213 ne sont pas occupées par l'être humain 5. Les niveaux des signaux correspondants 511 et 513 restent nuls.In phase d, the human being 5 leaves the zones seen 212 and 222. The level of the signals 512 and 522 becomes zero again. The human being occupies the entire zone 221. signal 521 reaches a maximum. The views 211 and 213 are not occupied by 5. The levels of the corresponding signals 511 and 513 remain zero.

Dans la phase e, l'être humain 5 quitte la zone vue 221. Le niveau du signal 521 redevient nul. Les zones vues 211 ; 212 ; 213 ; 222 ne sont pas occupées par l'être humain 5. Les niveaux des signaux correspondants 511 ; 512 ; 513 ; 522 restent nuls.In phase e, the human being leaves the view zone 221. The level of the signal 521 becomes again no. The zones viewed 211; 212; 213; 222 are not occupied by humans. corresponding signal levels 511; 512; 513; 522 remain void.

Tous les niveaux des signaux étant nuls, l'être humain 5 va pouvoir être compté avec discrimination du sens de traversée des alignements. Since all the levels of the signals are zero, the human being 5 will be able to be counted with discrimination of the crossing direction of alignments.

La figure 9 montre l'enchaínement chronologique, sous forme d'un organigramme, des différentes tâches de traitement en temps réel des valeurs numériques issues du dispositif électronique 6 d'acquisition et de numérisation des signaux électriques 411 ; 421 ; 412 ; 422 ; 413 , délivrés par les cinq cellules 11 ; 21 ; 12 ; 22 ; 13. Cet organigramme est mis en oeuvre par le dispositif électronique 7. L'organigramme de la figure 9 a un point d'entrée 601 et un point de sortie 699. Il comporte sept tâches 603 ; 700 ; 800 ; 900 ; 1000 ; 605 ; 607.Figure 9 shows the chronological sequence, in the form of a flowchart, of different tasks of real-time processing of numerical values from the device electronic 6 acquisition and digitization of electrical signals 411; 421; 412; 422; 413, delivered by the five cells 11; 21; 12; 22; 13. This chart is put implemented by the electronic device 7. The flow chart of Figure 9 has a point 601 and an exit point 699. It has seven tasks 603; 700; 800; 900; 1000; 605; 607.

La tâche 603 permet l'initialisation des paramètres précisant la configuration du système de comptage : nombre de cellules, hauteur des cellules par rapport au sol, pas P et distance D ainsi que des paramètres de traitement : fréquence d'échantillonnage des signaux électriques délivrés par les cellules et seuil initial de sensibilité des cellules. La tâche 603 positionne les cellules à l'état mémorisé INVALIDE ainsi que les couples de cellules successives, c'est-à-dire les couples tels que le couple 11 ; 21 suivi de couple 21 ; 12, lui-même suivi du couple 12 ; 22 et ainsi de suite, à l'état mémorisé INVALIDE.Task 603 allows the initialization of parameters specifying the configuration of the system Count: number of cells, height of cells relative to the ground, not P and distance D as well as processing parameters: sampling frequency of electrical signals delivered by the cells and initial sensitivity threshold of the cells. The task 603 sets the cells to the INVALID stored state as well as the pairs of successive cells, that is to say the pairs such as the pair 11; 21 followed by a couple 21; 12, himself followed by the pair 12; 22 and so on, in the stored state INVALID.

La tâche 700 assure successivement pour chaque cellule la lecture et le traitement des valeurs numériques délivrées par le dispositif électronique 6.Task 700 provides successively for each cell the reading and processing of digital values delivered by the electronic device 6.

La tâche 800 assure pour le système objet de l'invention l'adaptation du seuil de sensibilité des cellules, utilisé par la tâche 700.The task 800 ensures for the system object of the invention the adaptation of the threshold of cell sensitivity used by task 700.

La tâche 900 analyse pour tous les couples de cellules successives, les informations issues de la tâche 700.The task 900 analyzes for all the successive pairs of cells, the information from task 700.

La tâche 1000 analyse les résultats de la tâche 900 et en déduit le comptage des êtres humains.The task 1000 analyzes the results of the task 900 and deduces the count of the beings humans.

La tâche 605 permet l'exploitation par le dispositif électronique 8, du comptage réalisé par la tâche 1000, en fonction de l'application envisagée.The task 605 allows the operation by the electronic device 8, of the metering carried out by the task 1000, depending on the intended application.

La tâche 607 gère la cadence d'exécution des tâches 700 à 605 selon la fréquence d'échantillonnage ; cette tâche 607 est exécutée à chaque instant (t). A cette fin, la tâche 607 temporise le branchement 607/1 vers la tâche 700. La tâche 607 permet également de quitter définitivement l'exécution des tâches 700 à 605 par le branchement 607/0 vers le point de sortie 699. Task 607 manages the execution rate of tasks 700 to 605 according to the frequency sampling; this task 607 is executed at each instant (t). To this end, the task 607 delays connection 607/1 to task 700. Task 607 also allows to definitively leave the execution of the tasks 700 to 605 by the connection 607/0 towards the exit point 699.

Pour l'exécution des tâches 700, 800, 900 et 1000, on associe un indice k à chaque cellule. La valeur 1 de l'indice k est associée à une cellule extrême, 11 par exemple ; la valeur 2 de l'indice k est associée à la cellule successive, ici la cellule 21, et ainsi de suite.For the execution of tasks 700, 800, 900 and 1000, an index k is associated with each cell. The value 1 of the index k is associated with an extreme cell, 11 for example; the value 2 of the index k is associated with the successive cell, here the cell 21, and so on.

De même on associe un indice m à chaque couple de cellules successives. La valeur 1 de l'indice m est associée à un couple extrême, 11 ; 21 par exemple ; la valeur 2 de l'indice m est associée au couple successif, ici le couple 21 ; 12, et ainsi de suite.In the same way, an index m is associated with each pair of successive cells. The value 1 of the index m is associated with an extreme pair, 11; 21 for example; the value 2 of the index m is associated with the successive pair, here the pair 21; 12, and so on.

Les figures 10, 11, 12 et 13 montrent respectivement sous forme d'organigrammes l'enchaínement chronologique des tâches élémentaires constitutives des tâches 700 ; 800 ; 900 et 1000.Figures 10, 11, 12 and 13 show respectively in the form of flowcharts the chronological sequence of the elementary tasks constituting the tasks 700; 800; 900 and 1000.

Sur la figure 10, on voit le point d'entrée 701 et le point de sortie 799 de la tâche 700. Cette tâche répète pour chaque valeur numérique délivrée par le dispositif électronique 6 les tâches élémentaires 705 à 719.In Fig. 10, entry point 701 and exit point 799 of task 700 are shown. This task repeats for each digital value delivered by the electronic device 6 elementary tasks 705 to 719.

La tâche 703 initialise à 1 l'indice k associé à la cellule dont on lit et dont on traite la valeur numérique.The task 703 initializes to 1 the index k associated with the cell which is read and whose numerical value.

La tâche 705 commande l'acquisition et la numérisation par le dispositif électronique 6 du signal électrique délivré à l'instant (t) par la cellule considérée.Task 705 controls the acquisition and digitization by the electronic device 6 the electrical signal delivered at the instant (t) by the cell in question.

La tâche 707 assure le traitement de la valeur numérique délivrée par la tâche 705 en vue de l'homogénéisation de l'ensemble des valeurs numériques des signaux délivrés.Task 707 handles the processing of the numerical value delivered by task 705 in order to homogenization of all the digital values of the delivered signals.

La tâche 709 mémorise la valeur traitée par la tâche 707 si elle correspond à un maximum local, déterminé à partir de valeurs traitées antérieurement par la tâche 707 pour cette cellule. La valeur mémorisée par la tâche 709 est utilisée pour l'adaptation dans la tâche 800 du seuil de sensibilité des cellules.The task 709 stores the value processed by the task 707 if it corresponds to a local maximum, determined from values previously processed by task 707 for this cell. The value stored by task 709 is used for adaptation in the task 800 of the sensitivity threshold of the cells.

Le test 711 vérifie la supériorité de la valeur traitée par la tâche 707 sur le seuil de sensibilité des cellules.The test 711 verifies the superiority of the value processed by the task 707 on the threshold of sensitivity of the cells.

Le branchement 711/1 est effectif si le test 711 est VRAI ; dans ce cas un être humain est dans le champ de vision de la cellule considérée.Connection 711/1 is effective if test 711 is TRUE; in this case a human being is in the field of view of the cell in question.

La tâche 712 mémorise la valeur traitée par la tâche 707 et l'instant (t) ; elle positionne la cellule considérée dans l'état instantané ACTIF.The task 712 stores the value processed by the task 707 and the instant (t); she positions the cell considered in the instantaneous ACTIVE state.

Le branchement 711/0 est effectif si le test 711 est FAUX. The 711/0 connection is effective if the test 711 is FALSE.

Le test 713 vérifie la supériorité de la valeur traitée par la tâche 707 sur le seuil de sensibilité des cellules, à l'instant précédent (t-1).The test 713 verifies the superiority of the value processed by the task 707 on the threshold of cell sensitivity, at the previous instant (t-1).

Le branchement 713/1 est effectif si le test 713 est VRAI; dans ce cas un être humain vient de quitter le champ de vision de la cellule considérée ; la tâche 715 analyse les valeurs successives mémorisées par la tâche 712 pour en extraire des informations caractéristiques de la traversée d'un être humain : instant de début de la traversée, instant de fin de la traversée, instant correspondant à la médiane des valeurs mémorisées et moyenne de ces valeurs ; elle positionne la cellule considérée dans l'état mémorisé VALIDE. Toutes ces informations sont mémorisées pour être analysées par la tâche 900.Branch 713/1 is effective if test 713 is TRUE; in this case a human being just left the field of view of the cell in question; task 715 analyzes the successive values stored by the task 712 to extract information Characteristics of the crossing of a human being: moment of beginning of the crossing, instant end of the crossing, instant corresponding to the median of the stored values and average of these values; it positions the cell in the stored state VALID. All this information is stored for analysis by task 900.

Le branchement 713/0 est effectif si le test 713 est FAUX ; dans ce cas, aucun être humain n'est dans le champ de vision de la cellule considérée.The 713/0 connection is effective if the test 713 is FALSE; in this case, no being human being is in the field of view of the cell considered.

La tâche 714 positionne la cellule considérée dans l'état instantané PASSIF.The task 714 positions the cell in the instantaneous PASSIVE state.

La tâche 717 incrémente l'indice k associé à une cellule.Task 717 increments the index k associated with a cell.

Le test 719 vérifie que le nouvel indice k est inférieur ou égal au nombre total de cellules.The test 719 verifies that the new index k is less than or equal to the total number of cells.

Le branchement 719/1 est effectif si le test 719 est VRAI; dans ce cas toutes les cellules n'ont pas été traitées et on retourne à la tâche 705.Branch 719/1 is effective if test 719 is TRUE; in this case all the cells have not been processed and go back to task 705.

Le branchement 719/0 est effectif si le test 719 est FAUX ; dans ce cas toutes les cellules ont été traitées.The 719/0 connection is effective if the test 719 is FALSE; in this case all the cells have been treated.

Sur la figure 11, on voit le point d'entrée 801 et le point de sortie 899 de la tâche 800.In Fig. 11, entry point 801 and exit point 899 of task 800 are shown.

Cette tâche comporte deux tâches élémentaires 803 et 805 assurant l'adaptation du seuil de sensibilité des cellules en fonction des V dernières valeurs mémorisées par la tâche 709 de la figure 10 ; V étant choisi arbitrairement en fonction de l'application, par exemple en fonction de la fréquence de traversée des êtres vivants ou en fonction d'un nombre fixe de traversées ; ce nombre peut être choisi dans la fourchette allant de 20 à 100.This task has two elementary tasks 803 and 805 ensuring the adaptation of the threshold of sensitivity of the cells according to the last V values memorized by the task 709 of Figure 10; V being chosen arbitrarily according to the application, by example depending on the frequency of crossing of living beings or according to a fixed number of crossings; this number can be chosen in the range from 20 to 100.

Le test 803 vérifie que toutes les cellules sont dans l'état instantané PASSIF et qu'au moins V valeurs ont été mémorisées par la tâche 709 de la tâche 700.The 803 test checks that all the cells are in the PASSIVE instant state and that minus V values have been stored by task 709 of task 700.

Le branchement 803/1 est effectif si le test 803 est VRAI ; dans ce cas, le seuil de sensibilité des cellules peut être adapté. The 803/1 connection is effective if the 803 test is TRUE; in this case, the threshold of Cell sensitivity can be adapted.

La tâche 805 calcule la moyenne glissante sur l'ensemble des V dernières valeurs mémorisées par la tâche 709 de la figure 10 et en déduit le nouveau seuil de sensibilité des cellules.Task 805 calculates the rolling average over all last V values memorized by the task 709 of FIG. 10 and deduces therefrom the new sensitivity threshold cells.

Le branchement 803/0 est effectif si le test 803 est FAUX ; dans ce cas le seuil de sensibilité des cellules ne peut pas être adapté.The 803/0 connection is effective if the 803 test is FALSE; in this case the threshold of Cell sensitivity can not be adapted.

Sur la figure 12, on voit le point d'entrée 901 et le point de sortie 999 de la tâche 900. Cette tâche répète pour chaque couple de cellules les tâches élémentaires 905 à 911. Elle analyse les informations caractéristiques extraites pour chaque cellule par la tâche 700 et en déduit les informations caractéristiques de chaque couple.In Fig. 12, entry point 901 and exit point 999 of task 900 are shown. This task repeats elementary tasks 905 to 911 for each pair of cells. analyzes the extracted characteristic information for each cell by task 700 and deduces the characteristic information of each couple.

La tâche 903 initialise à 1 l'indice m associé au couple de cellules à analyser.The task 903 initializes to 1 the index m associated with the pair of cells to be analyzed.

Le test 905 vérifie que les deux cellules formant le couple considéré sont dans l'état mémorisé VALIDE et qu'il existe une période d'occupation commune pendant laquelle l'être humain est simultanément dans le champ de vision des deux cellules, ce qui revient à considérer que l'être humain est dans le champ de vision du couple.The test 905 verifies that the two cells forming the couple considered are in the state memorized VALID and that there is a period of common occupation during which the human being is simultaneously in the field of vision of the two cells, which amounts to to consider that the human being is in the field of vision of the couple.

Le branchement 905/1 est effectif si le test 905 est VRAI.The 905/1 connection is effective if the 905 test is TRUE.

La tâche 907 analyse les informations caractéristiques extraites pour chaque cellule du couple de cellules successives considéré et en déduit les informations caractéristiques de la traversée d'un être humain pour ce couple : instant de début d'occupation commune, instant de fin d'occupation commune, moyenne du couple c'est-à-dire moyenne des moyennes calculées pour les cellules du couple, signature de la chronologie d'occupation des cellules du couple ; l'état du couple de cellules successives est considéré comme VALIDE. La signature de la chronologie d'occupation des cellules du couple est choisie arbitrairement POSITIVE si l'être humain franchit l'alignement 1 puis l'alignement 2 et NEGATIVE si l'être humain franchit l'alignement 2 puis l'alignement 1.Task 907 analyzes the extracted characteristic information for each cell of the couple of successive cells considered and deduces the characteristic information of the crossing of a human being for this couple: moment of beginning of common occupation, moment of end of common occupation, average of the couple, that is to say average of the averages calculated for the couple's cells, signature of the occupation chronology couple cells; the state of the pair of successive cells is considered as VALID. The signature of the chronology of occupation of the cells of the couple is chosen arbitrarily POSITIVE if the human crosses the alignment 1 then the alignment 2 and NEGATIVE if the human crosses the alignment 2 then the alignment 1.

Le branchement 905/0 est effectif si le test 905 est FAUX.The 905/0 connection is effective if the 905 test is FALSE.

La tâche 909 incrémente l'indice m associé à un couple.Task 909 increments the index m associated with a pair.

Le test 911 vérifie que le nouvel indice m est inférieur ou égal au nombre total de couples. The 911 test verifies that the new index m is less than or equal to the total number of couples.

Le branchement 911/1 est effectif si le test 911 est VRAI ; dans ce cas tous les couples n'ont pas été analysés et on retourne au test 905.The 911/1 connection is effective if the 911 test is TRUE; in this case all couples have not been analyzed and we return to the 905 test.

Le branchement 911/0 est effectif si le test 911 est FAUX ; dans ce cas tous les couples ont été analysés.The 911/0 connection is effective if the 911 test is FALSE; in this case all couples have been analyzed.

Sur la figure 13, on voit le point d'entrée 1001 et le point de sortie 1099 de la tâche 1000. Cette tâche répète pour chaque couple de cellules les tâches élémentaires 1005 à 1017 afin d'analyser les informations caractéristiques extraites pour chaque couple durant la tâche 900 ainsi que les informations caractéristiques extraites pour chaque cellule durant la tâche 700. Cette analyse permet de construire des entités constituées soit d'un couple isolé dont l'état est VALIDE, soit de couples successifs dont l'état est VALIDE et pour lesquels il existe un laps de temps pendant lequel un ou plusieurs êtres humains sont simultanément dans leur champ de vision. Plus précisément une entité est caractérisée par un nombre X de couples dont la signature de la chronologie d'occupation est POSITIVE ainsi que par un nombre Y de couples dont la signature de la chronologie d'occupation est NEGATIVE. L'analyse de ces nombres caractéristiques de l'entité permet de déterminer en temps réel le nombre d'êtres humains associés à cette entité ainsi que leur sens de traversée, selon une règle précisée à la figure 14.In Figure 13, we see the entry point 1001 and the exit point 1099 of the task This task repeats for each pair of cells the elementary tasks 1005 to 1017 to analyze the extracted characteristic information for each pair during the task 900 as well as the extracted characteristic information for each cell during task 700. This analysis makes it possible to construct entities consisting of either a isolated couple whose state is VALID, that is, successive pairs whose state is VALID and for which there is a lapse of time during which one or more human beings are simultaneously in their field of vision. More precisely, an entity is characterized by an X number of couples whose signature of the chronology of occupation is POSITIVE as well as by a number Y of couples whose signature the chronology of occupation is NEGATIVE. The analysis of these characteristic numbers of the entity makes it possible to determine in real time the number of human beings associated with this entity and their direction of passage, according to a rule specified in Figure 14.

La tâche 1003 initialise à 1 l'indice m associé au couple de cellules à analyser et initialise à zéro le contenu de l'entité, ce qui signifie que l'entité ne contient aucun couple.The task 1003 initializes to 1 the index m associated with the pair of cells to be analyzed and initialises to zero the contents of the entity, which means that the entity contains no couple.

Le test 1005 vérifie que le couple considéré est dans l'état VALIDE.The test 1005 verifies that the couple considered is in the VALID state.

Le branchement 1005/0 est effectif si le test 1005 est FAUX.The 1005/0 connection is effective if the 1005 test is FALSE.

La tâche 1006 réinitialise à zéro le contenu de l'entité, ce qui signifie que l'entité ne contient aucun couple.Task 1006 resets the contents of the entity to zero, which means that the entity does not contains no couple.

Le branchement 1005/1 est effectif si le test 1005 est VRAI.The 1005/1 connection is effective if the 1005 test is TRUE.

La tâche 1007 inclut le couple considéré dans l'entité.Task 1007 includes the couple considered in the entity.

Le test 1009 vérifie qu'il existe un laps de temps pendant lequel un ou plusieurs êtres humains sont dans le champ de vision du couple considéré et du couple suivant.Test 1009 verifies that there is a period of time during which one or more beings humans are in the field of view of the couple considered and the next couple.

Le branchement 1009/0 est effectif si le test 1009 est FAUX ; dans ce cas, l'entité est complète, elle peut être analysée pour compter les êtres humains. The 1009/0 connection is effective if the 1009 test is FALSE; in this case, the entity is complete, it can be analyzed to count human beings.

La tâche 1011 utilise le tableau montré sur la figure 14 pour analyser l'entité et déterminer en temps réel le nombre d'êtres humains et leur sens de traversée.Task 1011 uses the table shown in Figure 14 to analyze the entity and to determine in real time the number of human beings and their direction of passage.

La tâche 1013 remet à jour les informations caractéristiques des couples et des cellules contenus dans l'entité puis ré-initialise le contenu de l'entité à 0. L'état de ces couples et l'état mémorisé de ces cellules sont repositionnés à l'état INVALIDE.Task 1013 updates the characteristic information of couples and cells contained in the entity and then re-initializes the content of the entity to 0. The state of these couples and the stored state of these cells are repositioned in the INVALID state.

Le branchement 1009/1 est effectif si le test 1009 est VRAI ; dans ce cas, le couple suivant est susceptible d'être inclus dans l'entité.The 1009/1 connection is effective if the 1009 test is TRUE; in this case, the couple next is likely to be included in the entity.

La tâche 1015 incrémente l'indice m associé à un couple.Task 1015 increments the index m associated with a pair.

Le test 1017 vérifie que le nouvel indice m est inférieur ou égal au nombre total de couples.Test 1017 verifies that the new index m is less than or equal to the total number of couples.

Le branchement 1017/1 est effectif si le test 1017 est VRAI ; dans ce cas tous les couples n'ont pas été analysés et on retourne au test 1005.Connection 1017/1 is effective if test 1017 is TRUE; in this case all couples have not been analyzed and we return to the 1005 test.

Le branchement 1017/0 est effectif si le test 1017 est FAUX; dans ce cas tous les couples ont été analysés.The 1017/0 connection is effective if the test 1017 is FALSE; in this case all couples were analyzed.

La figure 14 montre le tableau d'analyse des nombres caractéristiques de l'entité créée durant la tâche 1000. Ce tableau possède autant de colonnes et de lignes qu'il y a de cellules dans le système. Ce tableau définit le nombre d'êtres humains associés à l'entité ainsi que leur sens de traversée en fonction des nombres caractéristiques de l'entité. Les numéros des colonnes correspondent aux valeurs possibles prises par le nombre X et les numéros des lignes correspondent aux valeurs possibles prises par le nombre Y. Les cases vides du tableau correspondent à des situations impossibles ; les autres cases du tableau comportent soit une lettre, soit au moins un entier signé dont le module représente le nombre d'êtres humains comptés et dont le signe correspond à la traversée initiale de l'alignement 1 s'il est positif et à la traversée initiale de l'alignement 2 s'il est négatifFigure 14 shows the characteristic number analysis chart of the created entity during task 1000. This array has as many columns and rows as there are cells in the system. This table defines the number of human beings associated with the entity as well as their direction of crossing according to the characteristic numbers of the entity. The column numbers correspond to the possible values taken by the number X and the line numbers correspond to the possible values taken by the number Y. The empty boxes in the table correspond to impossible situations; the other boxes of the array include either a letter or at least one signed integer whose module represents the number of human beings counted and whose sign corresponds to the crossing initial alignment 1 if it is positive and at the initial crossing of alignment 2 if it is negative

Les lettres A, B et C du tableau correspondent aux cas particuliers pour lesquels le comptage des êtres humains est conditionné par des informations complémentaires.The letters A, B and C of the table correspond to the special cases for which the counting of human beings is conditioned by additional information.

La lettre A est à remplacer par (+1) lorsque la moyenne du couple possédant la signature POSITIVE est supérieure à la moyenne du couple possédant la signature NEGATIVE. The letter A is to be replaced by (+1) when the average of the couple having the signature POSITIVE is greater than the average of the couple with the NEGATIVE signature.

La lettre A est à remplacer par (-1) lorsque la moyenne du couple possédant la signature POSITIVE est inférieure à la moyenne du couple possédant la signature NEGATIVE.The letter A is to be replaced by (-1) when the average of the couple having the signature POSITIVE is less than the average of the couple with the NEGATIVE signature.

La lettre B est à remplacer par l'ensemble (+1) & (-1) lorsque le couple possédant la signature POSITIVE a été inclus dans l'entité avant ou après les autres couples et par (-2) dans les autres cas.The letter B is to be replaced by the set (+1) & (-1) when the couple having the POSITIVE signature was included in the entity before or after the other pairs and by (-2) in other cases.

La lettre C est à remplacer par l'ensemble (+1) & (-1) lorsque le couple possédant la signature NEGATIVE a été inclus dans l'entité avant ou après les autres couples et par (+2) dans les autres cas.The letter C is to be replaced by the set (+1) & (-1) when the couple having the NEGATIVE signature was included in the entity before or after the other couples and by (+2) in other cases.

Claims (10)

  1. A system for counting living beings moving on a first surface (0) and passing through a second cylindrical surface with a substantially vertical generatrix, consisting of a set of N thermal radiation detection cells (11) and an electronic device for acquiring and processing signals delivered by these cells, characterized in that each of these cells comprises a thermopile (30) comprising at least one sensitive element (31), a means (34) focusing the thermal radiation on the sensitive elements of this thermopile, this focusing means creating an elongate field of vision (111) in one direction, a mask (35) limiting this field of vision and an amplifier for amplifying the signal delivered by the thermopile (30) and characterized in that the N detection cells (11) are equally distributed between two curves when N is even and are distributed between two curves with a difference of one when N is odd, the distribution of cells over each curve being uniform along a pitch P which is identical for each of the two curves, one of these curves being identified with the directrix of the cylindrical surface through which the living beings pass, and the other curve being distant from the former one by a length D (42) equal to at least 5 cm, the elongation direction of the field of vision of each cell being substantially tangent to one of the two curves.
  2. The system for counting living beings as claimed in claim 1, characterized in that the means (34) of focusing each cell is produced with a single lens and in that the thermopile comprises a single sensitive element with an elongate surface or an alignment of sensitive elements, the surfaces of which have substantially similar dimensions in two orthogonal directions.
  3. The system for counting living beings as claimed in claim 1, characterized in that the means (34) of focusing each cell is produced using several lenses and in that the thermopile comprises only a single sensitive element, the surface of which has substantially similar dimensions in two orthogonal directions.
  4. The system for counting living beings as claimed in claim 1, characterized in that the pitch P is chosen close to the width of a living being statistically representative of beings of minimum size belonging to the population to be counted.
  5. The system for counting living beings as claimed in claim 4, characterized in that the pitch P is substantially equal to 45 cm and that the system is adapted for counting human beings.
  6. The system for counting living beings as claimed in claim 1, characterized in that the cylindrical surface through which the living beings pass is a plane, the curves along which the cells are distributed being parallel straight lines.
  7. The system for counting living beings as claimed in claim 6, characterized in that the aperture of the field of vision (111), in the elongation direction of this field, is chosen for each cell belonging to the same straight line, so as to juxtapose zones (211)(212) seen by two successive cells (11)(12) on the same straight line (1), at a height close to the minimum size of a living being statistically representative of beings belonging to the population to be counted.
  8. The system for counting living beings as claimed in claim 7, characterized in that the extent of the zone seen by each cell at a height of 1 m and measured along the alignment is substantially equal to 45 cm and that the system is adapted for counting human beings.
  9. The system for counting living beings as claimed in claim 1, characterized in that the electronic device (7) for processing signals delivered by the cells exploits an algorithm, a first task (603) of which initializes the parameters specifying the configuration of the system, a second task (700) of which reads and processes the digital values delivered by the electronic acquisition device successively for each cell, a third task (800) of which adapts the cell sensitivity threshold, a fourth task (900) of which compares the information from the second task (700) for all the pairs of successive cells, a fifth task (1000) of which analyzes the results of the fourth task (900) and deduces therefrom the count of living beings, their direction of crossing and their speed of movement, a sixth task (605) of which exploits the count thus obtained as a function of the envisioned application and a seventh task (607) of which manages the rate of execution of the previous tasks depending on the frequency of sampling of the signals delivered by the cells.
  10. The system for counting living beings as claimed in claim 9, characterized in that the analysis carried out by the fifth task (1000) of the algorithm brings together, in the form of entities, pairs of successive cells for which the information from the fourth task (900) corresponds to the crossing of a living being or of a group of living beings, the information of the pairs of each entity specifying this number of living beings, the direction of their crossing and the speed of their movement.
EP01921484A 2000-05-18 2001-04-05 System for counting living beings Expired - Lifetime EP1282885B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0006346 2000-05-18
FR0006346A FR2809212B1 (en) 2000-05-18 2000-05-18 LIVING COUNTING SYSTEM
PCT/FR2001/001024 WO2001088858A1 (en) 2000-05-18 2001-04-05 System for counting living beings

Publications (2)

Publication Number Publication Date
EP1282885A1 EP1282885A1 (en) 2003-02-12
EP1282885B1 true EP1282885B1 (en) 2005-03-16

Family

ID=8850361

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01921484A Expired - Lifetime EP1282885B1 (en) 2000-05-18 2001-04-05 System for counting living beings

Country Status (10)

Country Link
US (1) US20030183767A1 (en)
EP (1) EP1282885B1 (en)
JP (1) JP2004510128A (en)
AT (1) ATE291262T1 (en)
AU (1) AU2001248468A1 (en)
DE (1) DE60109442T2 (en)
ES (1) ES2237565T3 (en)
FR (1) FR2809212B1 (en)
PT (1) PT1282885E (en)
WO (1) WO2001088858A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080005265A (en) * 2005-04-12 2008-01-10 코닌클리즈케 필립스 일렉트로닉스 엔.브이. Pattern based occupancy sensing system and method
FR2899003B1 (en) * 2006-03-27 2008-09-19 Eco Compteur Sarl DEVICE FOR COUNTING AND DETERMINING THE DIRECTION OF PASSAGE OF LIVING PARTIES
EP3349190A1 (en) * 2017-01-13 2018-07-18 Siemens Schweiz AG People counter
CN112005242A (en) 2018-05-18 2020-11-27 易希提卫生与保健公司 Presence and absence detection
FR3088460A1 (en) 2018-11-09 2020-05-15 Jean-Claude Dubois MINIATURIZED FREQUENTATION CAPTURE DEVICE
FR3099591B1 (en) 2019-07-31 2022-01-28 Dubois Jean Claude Miniaturized stereoscopic thermal sensor for automatic counting device

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3623792C1 (en) * 1986-07-15 1987-12-10 Messerschmitt Boelkow Blohm Device for determining the number of people and direction within a room to be monitored or a passage gate
ATE83090T1 (en) 1986-09-29 1992-12-15 Siemens Ag LASER TRANSMITTER WITH A SEMICONDUCTOR LASER AND AN EXTERNAL OPTICAL RESONATOR IN THE FORM OF A FREQUENCY-SELECTIVE FIBER DIRECTIONAL COUPLER.
US4799243A (en) 1987-09-01 1989-01-17 Otis Elevator Company Directional people counting arrangement
JPH0786537B2 (en) * 1987-09-26 1995-09-20 松下電工株式会社 Human body detection device
JP2538091B2 (en) 1990-03-19 1996-09-25 松下電器産業株式会社 Customer number sensor
DE4040811A1 (en) 1990-12-14 1992-07-09 Iris Gmbh Infrared & Intellige DIRECTIONAL SELECTIVE COUNTING AND SWITCHING DEVICE
JP2963236B2 (en) * 1991-05-02 1999-10-18 エヌシーアール インターナショナル インコーポレイテッド Passenger counting method
DE4220508C2 (en) * 1992-06-22 1998-08-20 Iris Gmbh Infrared & Intellige Device for detecting people
JPH078735U (en) * 1993-07-09 1995-02-07 株式会社村田製作所 Infrared sensor device
JPH0862044A (en) * 1994-08-18 1996-03-08 Matsushita Electric Ind Co Ltd Thermal image detector
JPH0962822A (en) * 1995-08-28 1997-03-07 Matsushita Electric Ind Co Ltd Human body movement detection device and detection device for number of passing peoples
JP3233584B2 (en) * 1996-09-04 2001-11-26 松下電器産業株式会社 Passenger detection device
JPH10104085A (en) * 1996-10-02 1998-04-24 Shimadzu Corp Pyroelectric type infrared detector
JPH10132954A (en) * 1996-10-28 1998-05-22 Shimadzu Corp Automatic door sensor
JPH11183247A (en) * 1997-12-22 1999-07-09 Matsushita Electric Ind Co Ltd Pyroelectric infrared sensor device

Also Published As

Publication number Publication date
FR2809212B1 (en) 2002-08-30
DE60109442D1 (en) 2005-04-21
AU2001248468A1 (en) 2001-11-26
FR2809212A1 (en) 2001-11-23
ATE291262T1 (en) 2005-04-15
PT1282885E (en) 2005-07-29
US20030183767A1 (en) 2003-10-02
DE60109442T2 (en) 2006-04-13
EP1282885A1 (en) 2003-02-12
JP2004510128A (en) 2004-04-02
WO2001088858A1 (en) 2001-11-22
ES2237565T3 (en) 2005-08-01

Similar Documents

Publication Publication Date Title
Hinsch Particle image velocimetry
EP3111197B1 (en) Optical spectrometer with matched etendue
EP1282885B1 (en) System for counting living beings
FR2824903A1 (en) Non-contact method for measuring the dimensions of an object using an optical confocal imaging system with a chromatic retarder, so that axial chromatism can be adjusted to suit the required measurement range
Roudier et al. Determination of horizontal velocity fields at the sun's surface with high spatial and temporal resolution
EP0276513B1 (en) Intrusion detection and land vehicle identification device
FR2536174A1 (en) METHOD AND DEVICE FOR NON-CONTACT DETECTION OF THE MOVEMENT OF AN OBJECT
EP1340104A1 (en) Method, system and device for detecting an object proximate to a water/air type interface
CN109154663A (en) For directly detecting the multicomponent Fabry-Perot etalon interferometer of laser radar
Visser et al. A SCUBA survey of compact dark Lynds clouds
EP1079349A2 (en) Detection of position and motion of sub-pixel images
EP0138646B1 (en) Spatial field analysis device for the angular location of emitting objects
Skinner et al. Incoherent Doppler lidar for measurement of atmospheric winds
EP1581911A1 (en) Access control system
EP0562924B1 (en) Device for measuring the speed of a moving object
FR2720839A1 (en) Portable Doppler laser velocimeter.
EP1808817A1 (en) Wristband reader/collector for access control
CA2426293A1 (en) Coin discrimination apparatus and method
FR2782384A1 (en) Rain measuring device to determine spread and raindrop speed over given area and arrival time of rain drops, for real time analysis of meteorological conditions
FR2747199A1 (en) DEVICE FOR LOCATING A MOBILE OBJECT
JPH0611433A (en) Particulate measuring device and particulate sensing method
FR2882178A1 (en) DEVICE FOR DETECTING THE PASSAGE OF INDIVIDUALS OR OBJECTS CROSSING A PLAN DELIMITED BY TWO VERTICAL UPRIGHTS
Soules et al. Temporal characteristics of turbulence-induced image motion
FR3008209A1 (en) DEVICE FOR COUNTING AND ANALYZING FREQUENTATION BY PEOPLE
EP1237010A1 (en) Object detection with plane with intensity distribution

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20021112

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

RIN1 Information on inventor provided before grant (corrected)

Inventor name: DEPARIS, JEAN-PIERRE, PAUL, FERNAND

Inventor name: MEUNIER, BRUNO, GILBERT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050316

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050316

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050316

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050405

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050405

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: FRENCH

REF Corresponds to:

Ref document number: 60109442

Country of ref document: DE

Date of ref document: 20050421

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050430

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050430

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050430

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20050518

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050616

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050616

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Effective date: 20050525

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2237565

Country of ref document: ES

Kind code of ref document: T3

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20051219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050616

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 20090327

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20100511

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20100513

Year of fee payment: 10

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100405

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20110421

Year of fee payment: 11

Ref country code: ES

Payment date: 20110418

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20110421

Year of fee payment: 11

Ref country code: BE

Payment date: 20110414

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20110421

Year of fee payment: 11

REG Reference to a national code

Ref country code: PT

Ref legal event code: MM4A

Free format text: LAPSE DUE TO NON-PAYMENT OF FEES

Effective date: 20111006

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 291262

Country of ref document: AT

Kind code of ref document: T

Effective date: 20110405

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111006

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110405

BERE Be: lapsed

Owner name: INSTITUT NATIONAL DE RECHERCHE SUR LES TRANSPORTS

Effective date: 20120430

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20120405

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120430

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120405

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60109442

Country of ref document: DE

Effective date: 20121101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120405

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20130716

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120406

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121101

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20190416

Year of fee payment: 19

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200430