EP1282885B1 - System for counting living beings - Google Patents
System for counting living beings Download PDFInfo
- Publication number
- EP1282885B1 EP1282885B1 EP01921484A EP01921484A EP1282885B1 EP 1282885 B1 EP1282885 B1 EP 1282885B1 EP 01921484 A EP01921484 A EP 01921484A EP 01921484 A EP01921484 A EP 01921484A EP 1282885 B1 EP1282885 B1 EP 1282885B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- task
- cells
- living beings
- cell
- counting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000005855 radiation Effects 0.000 claims abstract description 17
- 238000001514 detection method Methods 0.000 claims abstract description 11
- 241000282414 Homo sapiens Species 0.000 claims description 52
- 230000035945 sensitivity Effects 0.000 claims description 12
- 238000004458 analytical method Methods 0.000 claims description 6
- 238000005070 sampling Methods 0.000 claims description 4
- 238000000034 method Methods 0.000 claims 1
- 210000004027 cell Anatomy 0.000 description 120
- 239000011800 void material Substances 0.000 description 7
- 241000282412 Homo Species 0.000 description 4
- 230000006978 adaptation Effects 0.000 description 4
- 230000003321 amplification Effects 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 238000007493 shaping process Methods 0.000 description 2
- 230000002123 temporal effect Effects 0.000 description 2
- 210000004460 N cell Anatomy 0.000 description 1
- 230000001143 conditioned effect Effects 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 230000005670 electromagnetic radiation Effects 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06M—COUNTING MECHANISMS; COUNTING OF OBJECTS NOT OTHERWISE PROVIDED FOR
- G06M1/00—Design features of general application
- G06M1/08—Design features of general application for actuating the drive
- G06M1/10—Design features of general application for actuating the drive by electric or magnetic means
- G06M1/101—Design features of general application for actuating the drive by electric or magnetic means by electro-optical means
-
- G—PHYSICS
- G07—CHECKING-DEVICES
- G07C—TIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
- G07C9/00—Individual registration on entry or exit
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B13/00—Burglar, theft or intruder alarms
- G08B13/16—Actuation by interference with mechanical vibrations in air or other fluid
- G08B13/1609—Actuation by interference with mechanical vibrations in air or other fluid using active vibration detection systems
- G08B13/1645—Actuation by interference with mechanical vibrations in air or other fluid using active vibration detection systems using ultrasonic detection means and other detection means, e.g. microwave or infrared radiation
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B13/00—Burglar, theft or intruder alarms
- G08B13/18—Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength
- G08B13/189—Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems
- G08B13/19—Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems using infrared-radiation detection systems
- G08B13/191—Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems using infrared-radiation detection systems using pyroelectric sensor means
Definitions
- the object of the invention is a counting system of living beings, moving on a first surface and passing through a second cylindrical surface of a generator substantially vertical.
- a system consists of a set of N cells of detection of thermal radiation and an electronic device for acquiring and treatment of the signals delivered by these cells.
- the international application WO 9210812 describes such a counting system, using a single cell that has a sensor and a lens positioned in front of it.
- This sensor is composed of two rows of pyroelectric detectors.
- the lens focuses the thermal radiation on each of the detectors.
- This type of radiation detector temperature can only detect relatively rapid changes in temperature in the field of vision.
- the cell creates two parallel surveillance plans formed by the axes of the beams associated with the detectors.
- a treatment unit evaluates the number of living crossing both planes and their directions of movement.
- This device is adapted to counting in low and low width passages, bus door example. This device is practically unusable in wide passages important given the divergence of the field of view of the sensor.
- the use of pyroelectric detectors as part of this application International makes it difficult to detect living things in slow motion.
- US Patent 4,799,243 describes another system of counting living beings in movement.
- This system consists of cells, each cell comprising two thermal radiation detectors and a lens. These two detectors create for each cell two disjoint fields of vision, substantially symmetrical with respect to the vertical.
- the arrangement of the cells as provided for in this patent is chosen for cover the entire width of the passage to be monitored with a covering of the fields vision in a direction perpendicular to the direction of crossing and a separation of fields of vision according to the direction of crossing. Such an arrangement does not allow the counting living beings too close to each other according to the direction of crossing.
- US Pat. No. 5,068,537 describes another system for counting living creatures in movement using a large number of cells arranged on a single line.
- the system is designed so that a medium-sized living being is detected by at least two cells. Since each cell has only one detector, the system does not allow the determination of the direction of crossing counted living beings.
- thermopiles that are characterized by their ability to detect even very slow variations of temperature in their field of vision.
- the counting system for living beings that is the subject of the invention comprises a set of N thermal radiation detection cells and an electronic device acquisition and processing of the signals delivered by these cells.
- Each cell comprises in particular a thermopile comprising at least one sensitive element, a medium focusing the thermal radiation on the sensitive elements of this thermopile, this focusing means creating an elongated field of view according to a direction, a mask limiting this field of view and an amplifier of the signal delivered by the thermopile.
- the N detection cells are equidistributed according to two curves when N is even and are divided along two curves with a difference of one unit when N is odd, the distribution of the cells on each curve being uniform according to an identical pitch P for each of the two curves, one of these curves identifying with the director of the surface cylindrical crossed by living beings, and the other curve being distant from the preceding of a length D equal to at least 5 cm, the direction of elongation of the field each cell being substantially tangent to one of the two curves.
- a filter generally placed in the thermopile in front of the sensitive element limits the sensitivity to thermal radiation of bodies near temperature ambient, which corresponds to far-infrared radiation in the wavelengths of about 7 to 14 ⁇ m.
- the means of focusing of each cell is adapted to the number, arrangement and geometry of the sensitive element (s) of the thermopile so as to create an elongated field of view in one direction and as narrow as possible in the direction perpendicular to the previous one.
- the means of focusing is preferably carried out using one or more lenses. he can possibly be made by pinhole or mirror.
- thermopile comprises a single sensitive element of elongated surface or when the thermopile has an alignment of sensitive elements whose surfaces have dimensions substantially similar in two directions orthogonal.
- several lenses are used, preferably when the thermopile has only one sensitive element whose surface has dimensions substantially adjacent in two orthogonal directions.
- the system which is the subject of the invention is used to count beings living through a plane; in this case, the curves on which the cells are distributed are parallel lines.
- the opening of the field of view can be chosen for each cell belonging to the same line, so as to ensure the juxtaposition of the zones seen by two successive cells on the same line, to a height close to the minimum size of a living being statistically representative of beings belonging to the population to count.
- the counting system for living beings which is the subject of the invention comprises a device electronic signal processing system delivered by the cells that operates a algorithm.
- a first task of this algorithm initializes the parameters specifying the system configuration.
- a second task of this algorithm ensures successively for each cell the reading and the processing of the numerical values delivered by the electronic device of acquisition.
- a third task of this algorithm ensures the adaptation of the sensitivity threshold of the cells.
- a fifth task of this algorithm analyzes the results of the fourth task and deduces the counting of living beings, their sense of crossing and their movement speed.
- a sixth task of this algorithm exploits counting as well obtained according to the intended application.
- a seventh task of this algorithm manages the rate of execution of the preceding tasks according to the sampling frequency of the signals delivered by the cells.
- the fifth task of the algorithm can be conceived in such a way that allow the grouping, as entities, of successive cell pairs for which the information from the fourth task of the algorithm corresponds crossing a living being or a group of living creatures, information from couples of each entity specifying this number of living beings, the meaning of their crossing and the speed of their movement.
- the counting system of living beings which is the subject of the invention offers various advantages by compared to known systems and in particular its easy integration for any width of passage to watch; its excellent counting performance even for a low passage height; its adaptability of implantation in environments individuals; its ability to count dense crowds and moving living things slow.
- the counting system of living beings which is the subject of the invention can be described as a non with the following example illustrated in FIGS. 1 to 14. This example corresponds to counting human beings crossing a plane, using eight cells equidistributed on two straight lines.
- FIG. 1 schematically represents a system that is the subject of the invention comprising eight cells arranged in two alignments.
- Figures 2a and 2b show two views of a radiation detection cell thermal system used in the system shown schematically in Figure 1.
- Figure 3 shows a network of Fresnel lenses used in the cell shown at Figures 2a and 2b.
- Figures 4a and 4b show the cell shown in Figures 2a and 2b with its field of vision.
- FIGS. 5a and 5b show two views, in two orthogonal directions, of a group of two successive cells, each belonging to an alignment different, as well as the fields of view of these cells.
- FIG. 6a represents, in plan view, five successive cells belonging to the system shown in Figure 1.
- FIGS. 6b and 6c represent, in plan view, the zones seen by the five cells schematically in Figure 6a, respectively at 1 m and at ground level.
- FIGS. 7a to 7e show, in plan view, five successive phases of the crossing of a human being perpendicular to the cell alignments and for a representation of the zones seen according to FIG. 6b.
- FIG. 7z schematizes the temporal evolution of the signals delivered by the thermopile of each cell, for the crossing defined by FIGS. 7a to 7e.
- FIGS. 8a to 8e show, in plan view, five successive phases of the crossing a human being obliquely to the cell alignments and for a representation of the zones seen according to FIG. 6b.
- FIG. 8z schematizes the temporal evolution of the signals delivered by the thermopile of each cell, for the crossing defined by Figures 8a to 8e.
- Figure 9 shows the chronological sequence, in the form of a flowchart, of different tasks of processing electrical signals, delivered by the cells.
- FIGS 10, 11, 12 and 13 show four particular tasks in the flowchart shown in Figure 9.
- Figure 14 shows the table used by the particular task shown in Figure 13.
- Figure 1 shows the ground 0, a set of eight radiation detection cells distributed in two alignments, a first alignment 1 comprising four cells 11; 12; 13; 14, a second alignment 2 comprising four cells 21; 22; 23; 24, two human beings 4 and 5, an electronic device 6 for acquiring and digitization of the signals delivered by the cells, these signals possibly being at the cell level, an electronic device 7 for processing digital values delivered by the acquisition device 6, an operating device 8 information from the processing device 7, a medium 3 connecting all the cells to the acquisition device 6.
- the eight cones 111 to 114 and 121 to 124 schematize the fields of view of each of the cells. The intersections of these cones with a plane parallel to the ground 0 and located at a height of 1 m define the areas seen at this height and are schematized by the eight ellipses 211 to 214 and 221 to 224.
- Figure 2a is a schematic section of a cell in a plane perpendicular to two cell alignments.
- Figure 2b is a schematic section of the same cell, orthogonal to the section shown in Figure 2a.
- This cell comprises a thermopile 30 whose sensitive element 31 provides a signal small amplitude proportional to the thermal radiation received through of the infrared filter 32, a signal amplification and shaping stage 33 delivered by the thermopile 30, a device 38 connecting the amplification stage and shaping 33 to medium 3, a network of Fresnel lenses 34 away focal length 40, placed at a distance equal to this focal length 40 in front of the sensitive element 31 of the thermopile 30, a mask 35 placed in front of the Fresnel lens array 34 and a waterproof housing 36, opaque to electromagnetic radiation and whose surface Inner absorbs thermal radiation.
- the Fresnel Lens Network 34 has eight elements 34a to 34h.
- FIG 3 shows the Fresnel lens array 34.
- This network is composed of eight elemental Fresnel lenses 34a to 34h. These lenses are juxtaposed and their centers optics are aligned along the line 39.
- FIGS. 4a and 4b show the cell shown in FIGS. 2a and 2b according to the same projections. These figures show the elementary fields of vision 37c, 37d, 37e and 37f associated with unmasked elemental Fresnel lenses 34c, 34d, 34e and 34f.
- FIGS. 5a and 5b show successive cells 11 and 21 as well as their fields 111 and 121 respectively. These two cells belong to a different alignment.
- Figure 5a shows the fields of view perpendicular to the direction of travel normal human beings.
- Figure 5b shows the fields of view in the sense of normal movement of human beings.
- the view represented in FIG. 5a highlights the weak opening of the fields of vision 111 and 121 as well as the short distance D 42 between the two alignments 1 and 2.
- the view represented in FIG. 5b highlights the important opening of the fields of 111 and 121 as well as the half P / 2 step 41 between these cells.
- Figure 6a shows a top view of the five cells 11; 21; 12; 22; 13 disposed along the two alignments 1 and 2 distant from the distance D 42. This view also shows the half-pitch P / 2 41 between two successive cells.
- Figure 6b shows in plan view the arrangement of the zones 211; 221; 212; 222; 213 viewed at a height of 1 m above ground level 0 and corresponding respectively cells 11; 21; 12; 22; 13. This figure 6b highlights the juxtaposition of zones seen by two successive cells arranged on the same alignment.
- FIG. 6c shows in plan view the arrangement of the zones seen at ground level 0, 311; 321; 312; 322; 313 respectively corresponding to the cells 11; 21; 12; 22; 13. This figure 6c highlights the partial superposition of the zones seen by two successive cells arranged on the same alignment.
- FIGS. 7a to 7e respectively represent, in plan view, five phases successive a, b, c, d, e crossing a human being 4 perpendicular to the alignments 1 and 2, as well as the areas seen at a height of 1 m above the level of the ground, shown in Figure 6b.
- Figure 7z shows the waveforms of the signals electric 411; 421; 412; 422; 413 delivered respectively by the cells 11; 21; 12; 22; 13.
- the level of each electrical signal 411; 421; 412; 422; 413 is related to the fraction of the view area occupied by the human being that crosses the fields of view of cells 11; 21; 12; 22; 13.
- phase a the human being 4 is not present in any of the zones 211; 221; 212; 222; 213. Electrical signals 411; 421; 412; 422; 413 shown in the figure 7z have a zero level.
- phase b the human being 4 completely occupies the view area 212.
- the signal level 412 is maximal.
- the human being 4 occupies very partially the zone seen 213.
- the level signal 413 has a peak of very low amplitude.
- the zones viewed 211; 221; 222 does not are not occupied by the human being 4.
- the levels of the corresponding signals 411; 421; 422 remain void.
- phase c the human being 4 continues to occupy the entire area 212.
- signal level 412 remains maximum.
- Human being 4 partially occupies the views 221 and 222.
- the level of the signals 421 and 422 is average.
- the zones seen 211 and 213 do not are not occupied by the human being 4.
- the corresponding signal levels 411 and 413 remain void.
- phase d the human being 4 leaves the view area 212.
- the signal level 412 becomes zero again.
- the human being 4 continues to occupy partially the zones seen 221 and 222.
- the level of the signals 421 and 422 remains average.
- the zones seen 211 and 213 are not not occupied by humans 4.
- Corresponding signal levels 411 and 413 remain void.
- phase e the human being 4 leaves the zones seen 221 and 222.
- the level of the signals 421 and 422 become void again.
- the zones viewed 211; 212; 213 are not occupied by being human 4.
- Levels of corresponding signals 411; 412; 413 remain void.
- FIGS. 8a to 8e respectively represent, in plan view, five phases successive a, b, c, d, e of the crossing of a human being obliquely to the alignments 1 and 2, as well as the areas seen at a height of 1 m above ground level, shown in Figure 6b.
- FIG. 8z schematizes the oscillograms of the electrical signals 511; 521; 512; 522; 513 issued respectively by the cells 11; 21; 12; 22; 13.
- the level of each electrical signal 511; 521; 512; 522; 513 is related to the fraction of the view area occupied by the human being which passes through the fields of view of the cells 11; 21; 12; 22; 13.
- phase a the human being is not present in any of the zones seen 211; 221; 212; 222; 213. Electrical signals 511; 521; 512; 522; 513 shown in the figure 8z have a zero level.
- phase b the human being 5 partially occupies the zones 212 and 213.
- signal level 512 and 513 is average.
- the zones viewed 211; 221; 222 are not occupied by the human being 5.
- Levels of the corresponding signals 511; 521; 522 are zero.
- phase c the human being occupies almost entirely the area viewed 212.
- the level signal 512 reaches a maximum.
- the human being 5 partially occupies the views 221 and 222.
- the level of the signals 521 and 522 is average.
- the zones seen 211 and 213 do not are not occupied by the human being 5.
- the levels of the corresponding signals 511 and 513 remain void.
- phase d the human being 5 leaves the zones seen 212 and 222.
- the level of the signals 512 and 522 becomes zero again.
- the human being occupies the entire zone 221.
- signal 521 reaches a maximum.
- the views 211 and 213 are not occupied by 5.
- the levels of the corresponding signals 511 and 513 remain zero.
- phase e the human being leaves the view zone 221.
- the level of the signal 521 becomes again no.
- the zones viewed 211; 212; 213; 222 are not occupied by humans. corresponding signal levels 511; 512; 513; 522 remain void.
- Figure 9 shows the chronological sequence, in the form of a flowchart, of different tasks of real-time processing of numerical values from the device electronic 6 acquisition and digitization of electrical signals 411; 421; 412; 422; 413, delivered by the five cells 11; 21; 12; 22; 13.
- This chart is put implemented by the electronic device 7.
- the flow chart of Figure 9 has a point 601 and an exit point 699. It has seven tasks 603; 700; 800; 900; 1000; 605; 607.
- Task 603 allows the initialization of parameters specifying the configuration of the system Count: number of cells, height of cells relative to the ground, not P and distance D as well as processing parameters: sampling frequency of electrical signals delivered by the cells and initial sensitivity threshold of the cells.
- the task 603 sets the cells to the INVALID stored state as well as the pairs of successive cells, that is to say the pairs such as the pair 11; 21 followed by a couple 21; 12, himself followed by the pair 12; 22 and so on, in the stored state INVALID.
- Task 700 provides successively for each cell the reading and processing of digital values delivered by the electronic device 6.
- the task 800 ensures for the system object of the invention the adaptation of the threshold of cell sensitivity used by task 700.
- the task 900 analyzes for all the successive pairs of cells, the information from task 700.
- the task 1000 analyzes the results of the task 900 and deduces the count of the beings humans.
- the task 605 allows the operation by the electronic device 8, of the metering carried out by the task 1000, depending on the intended application.
- Task 607 manages the execution rate of tasks 700 to 605 according to the frequency sampling; this task 607 is executed at each instant (t). To this end, the task 607 delays connection 607/1 to task 700. Task 607 also allows to definitively leave the execution of the tasks 700 to 605 by the connection 607/0 towards the exit point 699.
- an index k is associated with each cell.
- the value 1 of the index k is associated with an extreme cell, 11 for example; the value 2 of the index k is associated with the successive cell, here the cell 21, and so on.
- an index m is associated with each pair of successive cells.
- the value 1 of the index m is associated with an extreme pair, 11; 21 for example; the value 2 of the index m is associated with the successive pair, here the pair 21; 12, and so on.
- Figures 10, 11, 12 and 13 show respectively in the form of flowcharts the chronological sequence of the elementary tasks constituting the tasks 700; 800; 900 and 1000.
- entry point 701 and exit point 799 of task 700 are shown. This task repeats for each digital value delivered by the electronic device 6 elementary tasks 705 to 719.
- the task 703 initializes to 1 the index k associated with the cell which is read and whose numerical value.
- Task 705 controls the acquisition and digitization by the electronic device 6 the electrical signal delivered at the instant (t) by the cell in question.
- Task 707 handles the processing of the numerical value delivered by task 705 in order to homogenization of all the digital values of the delivered signals.
- the task 709 stores the value processed by the task 707 if it corresponds to a local maximum, determined from values previously processed by task 707 for this cell.
- the value stored by task 709 is used for adaptation in the task 800 of the sensitivity threshold of the cells.
- the test 711 verifies the superiority of the value processed by the task 707 on the threshold of sensitivity of the cells.
- Connection 711/1 is effective if test 711 is TRUE; in this case a human being is in the field of view of the cell in question.
- the task 712 stores the value processed by the task 707 and the instant (t); she positions the cell considered in the instantaneous ACTIVE state.
- the 711/0 connection is effective if the test 711 is FALSE.
- the test 713 verifies the superiority of the value processed by the task 707 on the threshold of cell sensitivity, at the previous instant (t-1).
- Branch 713/1 is effective if test 713 is TRUE; in this case a human being just left the field of view of the cell in question; task 715 analyzes the successive values stored by the task 712 to extract information Characteristics of the crossing of a human being: moment of beginning of the crossing, instant end of the crossing, instant corresponding to the median of the stored values and average of these values; it positions the cell in the stored state VALID. All this information is stored for analysis by task 900.
- test 713 is FALSE; in this case, no being human being is in the field of view of the cell considered.
- the task 714 positions the cell in the instantaneous PASSIVE state.
- Task 717 increments the index k associated with a cell.
- the test 719 verifies that the new index k is less than or equal to the total number of cells.
- Branch 719/1 is effective if test 719 is TRUE; in this case all the cells have not been processed and go back to task 705.
- the 719/0 connection is effective if the test 719 is FALSE; in this case all the cells have been treated.
- entry point 801 and exit point 899 of task 800 are shown.
- This task has two elementary tasks 803 and 805 ensuring the adaptation of the threshold of sensitivity of the cells according to the last V values memorized by the task 709 of Figure 10; V being chosen arbitrarily according to the application, by example depending on the frequency of crossing of living beings or according to a fixed number of crossings; this number can be chosen in the range from 20 to 100.
- the 803 test checks that all the cells are in the PASSIVE instant state and that minus V values have been stored by task 709 of task 700.
- the 803/1 connection is effective if the 803 test is TRUE; in this case, the threshold of Cell sensitivity can be adapted.
- Task 805 calculates the rolling average over all last V values memorized by the task 709 of FIG. 10 and deduces therefrom the new sensitivity threshold cells.
- the 803/0 connection is effective if the 803 test is FALSE; in this case the threshold of Cell sensitivity can not be adapted.
- entry point 901 and exit point 999 of task 900 are shown. This task repeats elementary tasks 905 to 911 for each pair of cells. analyzes the extracted characteristic information for each cell by task 700 and deduces the characteristic information of each couple.
- the task 903 initializes to 1 the index m associated with the pair of cells to be analyzed.
- the test 905 verifies that the two cells forming the couple considered are in the state memorized VALID and that there is a period of common occupation during which the human being is simultaneously in the field of vision of the two cells, which amounts to to consider that the human being is in the field of vision of the couple.
- the 905/1 connection is effective if the 905 test is TRUE.
- Task 907 analyzes the extracted characteristic information for each cell of the couple of successive cells considered and deduces the characteristic information of the crossing of a human being for this couple: moment of beginning of common occupation, moment of end of common occupation, average of the couple, that is to say average of the averages calculated for the couple's cells, signature of the occupation chronology couple cells; the state of the pair of successive cells is considered as VALID.
- the signature of the chronology of occupation of the cells of the couple is chosen arbitrarily POSITIVE if the human crosses the alignment 1 then the alignment 2 and NEGATIVE if the human crosses the alignment 2 then the alignment 1.
- the 905/0 connection is effective if the 905 test is FALSE.
- Task 909 increments the index m associated with a pair.
- the 911 test verifies that the new index m is less than or equal to the total number of couples.
- the 911/1 connection is effective if the 911 test is TRUE; in this case all couples have not been analyzed and we return to the 905 test.
- the 911/0 connection is effective if the 911 test is FALSE; in this case all couples have been analyzed.
- the task 1003 initializes to 1 the index m associated with the pair of cells to be analyzed and initialises to zero the contents of the entity, which means that the entity contains no couple.
- the test 1005 verifies that the couple considered is in the VALID state.
- the 1005/0 connection is effective if the 1005 test is FALSE.
- Task 1006 resets the contents of the entity to zero, which means that the entity does not contains no couple.
- the 1005/1 connection is effective if the 1005 test is TRUE.
- Task 1007 includes the couple considered in the entity.
- Test 1009 verifies that there is a period of time during which one or more beings humans are in the field of view of the couple considered and the next couple.
- the 1009/0 connection is effective if the 1009 test is FALSE; in this case, the entity is complete, it can be analyzed to count human beings.
- Task 1011 uses the table shown in Figure 14 to analyze the entity and to determine in real time the number of human beings and their direction of passage.
- Task 1013 updates the characteristic information of couples and cells contained in the entity and then re-initializes the content of the entity to 0. The state of these couples and the stored state of these cells are repositioned in the INVALID state.
- the 1009/1 connection is effective if the 1009 test is TRUE; in this case, the couple next is likely to be included in the entity.
- Task 1015 increments the index m associated with a pair.
- Test 1017 verifies that the new index m is less than or equal to the total number of couples.
- Connection 1017/1 is effective if test 1017 is TRUE; in this case all couples have not been analyzed and we return to the 1005 test.
- the 1017/0 connection is effective if the test 1017 is FALSE; in this case all couples were analyzed.
- Figure 14 shows the characteristic number analysis chart of the created entity during task 1000.
- This array has as many columns and rows as there are cells in the system.
- This table defines the number of human beings associated with the entity as well as their direction of crossing according to the characteristic numbers of the entity.
- the column numbers correspond to the possible values taken by the number X and the line numbers correspond to the possible values taken by the number Y.
- the empty boxes in the table correspond to impossible situations; the other boxes of the array include either a letter or at least one signed integer whose module represents the number of human beings counted and whose sign corresponds to the crossing initial alignment 1 if it is positive and at the initial crossing of alignment 2 if it is negative
- the letters A, B and C of the table correspond to the special cases for which the counting of human beings is conditioned by additional information.
- the letter A is to be replaced by (+1) when the average of the couple having the signature POSITIVE is greater than the average of the couple with the NEGATIVE signature.
- the letter A is to be replaced by (-1) when the average of the couple having the signature POSITIVE is less than the average of the couple with the NEGATIVE signature.
- the letter B is to be replaced by the set (+1) & (-1) when the couple having the POSITIVE signature was included in the entity before or after the other pairs and by (-2) in other cases.
- the letter C is to be replaced by the set (+1) & (-1) when the couple having the NEGATIVE signature was included in the entity before or after the other couples and by (+2) in other cases.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Toxicology (AREA)
- Theoretical Computer Science (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Investigating Or Analysing Biological Materials (AREA)
- Measuring And Recording Apparatus For Diagnosis (AREA)
- Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
- Radar Systems Or Details Thereof (AREA)
- Geophysics And Detection Of Objects (AREA)
- Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
- Photometry And Measurement Of Optical Pulse Characteristics (AREA)
Abstract
Description
L'objet de l'invention est un système de comptage d'êtres vivants, se déplaçant sur une première surface et traversant une seconde surface cylindrique de génératrice sensiblement verticale. Un tel système est constitué d'un ensemble de N cellules de détection de rayonnement thermique et d'un dispositif électronique d'acquisition et de traitement des signaux délivrés par ces cellules.The object of the invention is a counting system of living beings, moving on a first surface and passing through a second cylindrical surface of a generator substantially vertical. Such a system consists of a set of N cells of detection of thermal radiation and an electronic device for acquiring and treatment of the signals delivered by these cells.
On connaít de nombreux systèmes de comptage d'êtres vivants en mouvement basés sur la détection de rayonnement thermique.Numerous systems for counting living beings in motion based on the detection of thermal radiation.
La demande internationale WO 9210812 décrit un tel système de comptage, utilisant une cellule unique qui comporte un capteur et une lentille positionnée devant lui. Ce capteur est composé de deux rangées de détecteurs pyroélectiques. La lentille focalise le rayonnement thermique sur chacun des détecteurs. Ce type de détecteur de rayonnement thermique ne permet de déceler que des variations relativement rapides de température dans le champ de vision. La cellule crée deux plans de surveillance parallèles formés par les axes des faisceaux associés aux détecteurs. Après acquisition des signaux électriques délivrés par les détecteurs, une unité de traitement évalue le nombre d'êtres vivants franchissant les deux plans et leurs sens de déplacement. Ce dispositif est adapté au comptage dans des passages de faible hauteur et de faible largeur, porte d'autobus par exemple. Ce dispositif est pratiquement inutilisable dans des passages de largeur importante compte tenu de la divergence du champ de vision du capteur. En outre, l'utilisation de détecteurs pyroélectriques prévue dans le cadre de cette demande internationale rend difficile la détection d'êtres vivants en mouvement lent.The international application WO 9210812 describes such a counting system, using a single cell that has a sensor and a lens positioned in front of it. This sensor is composed of two rows of pyroelectric detectors. The lens focuses the thermal radiation on each of the detectors. This type of radiation detector temperature can only detect relatively rapid changes in temperature in the field of vision. The cell creates two parallel surveillance plans formed by the axes of the beams associated with the detectors. After acquiring electrical signals delivered by the detectors, a treatment unit evaluates the number of living crossing both planes and their directions of movement. This device is adapted to counting in low and low width passages, bus door example. This device is practically unusable in wide passages important given the divergence of the field of view of the sensor. In addition, the use of pyroelectric detectors as part of this application International makes it difficult to detect living things in slow motion.
Le brevet US 4,799,243 décrit un autre système de comptage d'êtres vivants en mouvement. Ce système est constitué de cellules, chaque cellule comportant deux détecteurs de rayonnement thermique et une lentille. Ces deux détecteurs créent pour chaque cellule deux champs de vision disjoints, sensiblement symétriques par rapport à la verticale. L'arrangement des cellules tel qu'il est prévu dans ce brevet est choisi pour couvrir la totalité de la largeur du passage à surveiller avec un recouvrement des champs de vision selon une direction perpendiculaire au sens de traversée et une séparation des champs de vision selon le sens de traversée. Un tel arrangement ne permet pas le comptage d'êtres vivants trop proches les uns des autres selon le sens de traversée.US Patent 4,799,243 describes another system of counting living beings in movement. This system consists of cells, each cell comprising two thermal radiation detectors and a lens. These two detectors create for each cell two disjoint fields of vision, substantially symmetrical with respect to the vertical. The arrangement of the cells as provided for in this patent is chosen for cover the entire width of the passage to be monitored with a covering of the fields vision in a direction perpendicular to the direction of crossing and a separation of fields of vision according to the direction of crossing. Such an arrangement does not allow the counting living beings too close to each other according to the direction of crossing.
Le brevet US 5,068,537 décrit un autre système de comptage d'êtres vivants en mouvement utilisant un grand nombre de cellules disposées sur une seule ligne. Le système est conçu de sorte qu'un être vivant de taille moyenne soit détecté par au moins deux cellules. Chaque cellule ne comportant qu'un détecteur, le système ne permet pas la détermination du sens de traversée des êtres vivants comptés.US Pat. No. 5,068,537 describes another system for counting living creatures in movement using a large number of cells arranged on a single line. The system is designed so that a medium-sized living being is detected by at least two cells. Since each cell has only one detector, the system does not allow the determination of the direction of crossing counted living beings.
Un autre sytème de comptage d'êtres vivants est décrit dans DE 4220508.Another living count system is described in DE 4220508.
Dans le système de comptage d'êtres vivants objet de l'invention, les détecteurs de rayonnement thermique utilisés sont des thermopiles qui se caractérisent par leur capacité à détecter des variations même très lentes de température dans leur champ de vision.In the counting system of living beings which is the subject of the invention, the detectors of thermal radiation used are thermopiles that are characterized by their ability to detect even very slow variations of temperature in their field of vision.
Le système de comptage d'êtres vivants objet de l'invention comporte un ensemble de N cellules de détection de rayonnement thermique ainsi qu'un dispositif électronique d'acquisition et de traitement des signaux délivrés par ces cellules. Chaque cellule comporte notamment une thermopile comprenant au moins un élément sensible, un moyen focalisant le rayonnement thermique sur les éléments sensibles de cette thermopile, ce moyen de focalisation créant un champ de vision allongé selon une direction, un masque limitant ce champ de vision et un amplificateur du signal délivré par la thermopile. Dans le système de comptage d'êtres vivants, objet de l'invention, les N cellules de détection sont équiréparties selon deux courbes lorsque N est pair et sont réparties selon deux courbes avec une différence d'une unité lorsque N est impair, la répartition des cellules sur chaque courbe étant uniforme selon un pas P identique pour chacune des deux courbes, l'une de ces courbes s'identifiant à la directrice de la surface cylindrique traversée par les êtres vivants, et l'autre courbe étant distante de la précédente d'une longueur D égale à 5 cm au moins, la direction d'allongement du champ de vision de chaque cellule étant sensiblement tangente à l'une des deux courbes.The counting system for living beings that is the subject of the invention comprises a set of N thermal radiation detection cells and an electronic device acquisition and processing of the signals delivered by these cells. Each cell comprises in particular a thermopile comprising at least one sensitive element, a medium focusing the thermal radiation on the sensitive elements of this thermopile, this focusing means creating an elongated field of view according to a direction, a mask limiting this field of view and an amplifier of the signal delivered by the thermopile. In the counting system of living beings, object of the invention, the N detection cells are equidistributed according to two curves when N is even and are divided along two curves with a difference of one unit when N is odd, the distribution of the cells on each curve being uniform according to an identical pitch P for each of the two curves, one of these curves identifying with the director of the surface cylindrical crossed by living beings, and the other curve being distant from the preceding of a length D equal to at least 5 cm, the direction of elongation of the field each cell being substantially tangent to one of the two curves.
Un filtre généralement placé dans la thermopile devant l'élément sensible limite la sensibilité au rayonnement thermique des corps de température proche de la température ambiante, ce qui correspond à des rayonnements de l'infrarouge lointain dans la bande de longueurs d'ondes de 7 à 14 µm environ. Le moyen de focalisation de chaque cellule est adapté au nombre, à la disposition et à la géométrie du ou des éléments sensibles de la thermopile de façon à créer un champ de vision allongé selon une direction et aussi étroit que possible selon la direction perpendiculaire à la précédente. Le moyen de focalisation est réalisé de manière préférentielle à l'aide d'une ou de plusieurs lentilles. Il peut éventuellement être réalisé par sténopé ou par miroir. Selon l'invention, on utilise une seule lentille, de préférence lorsque la thermopile comporte un seul élément sensible de surface allongée ou lorsque la thermopile comporte un alignement d'éléments sensibles dont les surfaces ont des dimensions sensiblement voisines selon deux directions orthogonales. Selon l'invention, on utilise plusieurs lentilles, de préférence lorsque la thermopile ne comporte qu'un seul élément sensible dont la surface a des dimensions sensiblement voisines selon deux directions orthogonales.A filter generally placed in the thermopile in front of the sensitive element limits the sensitivity to thermal radiation of bodies near temperature ambient, which corresponds to far-infrared radiation in the wavelengths of about 7 to 14 μm. The means of focusing of each cell is adapted to the number, arrangement and geometry of the sensitive element (s) of the thermopile so as to create an elongated field of view in one direction and as narrow as possible in the direction perpendicular to the previous one. The means of focusing is preferably carried out using one or more lenses. he can possibly be made by pinhole or mirror. According to the invention, a single lens, preferably when the thermopile comprises a single sensitive element of elongated surface or when the thermopile has an alignment of sensitive elements whose surfaces have dimensions substantially similar in two directions orthogonal. According to the invention, several lenses are used, preferably when the thermopile has only one sensitive element whose surface has dimensions substantially adjacent in two orthogonal directions.
Dans les systèmes objet de l'invention, il est judicieux de choisir un pas P de répartition des cellules de détection voisin de la largeur d'un être vivant statistiquement représentatif des êtres de taille minimale appartenant à la population à compter. Lorsqu'il s'agit de compter des êtres humains ce pas P est sensiblement égal à 45 cm.In the systems that are the subject of the invention, it is advisable to choose a distribution pitch P detection cells close to the width of a living being statistically representative beings of minimal size belonging to the population to count. When it comes to counting human beings this pitch P is substantially equal to 45 cm.
Plus particulièrement, le système objet de l'invention est utilisé pour compter des êtres vivants traversant un plan ; dans ce cas, les courbes sur lesquelles les cellules sont réparties sont des droites parallèles.More particularly, the system which is the subject of the invention is used to count beings living through a plane; in this case, the curves on which the cells are distributed are parallel lines.
L'ouverture du champ de vision, selon la direction d'allongement de ce champ, peut être choisie pour chaque cellule appartenant à une même droite, de manière à assurer la juxtaposition des zones vues par deux cellules successives sur la même droite, à une hauteur voisine de la taille minimale d'un être vivant statistiquement représentatif des êtres appartenant à la population à compter.The opening of the field of view, according to the direction of extension of this field, can be chosen for each cell belonging to the same line, so as to ensure the juxtaposition of the zones seen by two successive cells on the same line, to a height close to the minimum size of a living being statistically representative of beings belonging to the population to count.
Lorsqu'en outre il s'agit de compter des êtres humains traversant un plan, il est opportun de concevoir le système objet de l'invention de sorte que l'étendue de la zone vue par chaque cellule à une hauteur de 1 m et mesurée selon l'alignement est sensiblement égale à 45 cm.When in addition it is a question of counting human beings crossing a plane, it is opportune to design the system object of the invention so that the extent of the area seen by each cell at a height of 1 m and measured according to the alignment is substantially equal at 45 cm.
Le système de comptage d'êtres vivants objet de l'invention comporte un dispositif électronique de traitement des signaux délivrés par les cellules qui exploite un algorithme. Une première tâche de cet algorithme initialise les paramètres précisant la configuration du système. Une deuxième tâche de cet algorithme assure successivement pour chaque cellule la lecture et le traitement des valeurs numériques délivrées par le dispositif électronique d'acquisition. Une troisième tâche de cet algorithme assure l'adaptation du seuil de sensibilité des cellules. Une quatrième tâche de cet algorithme analyse pour tous les couples de cellules successives les informations issues de la deuxième tâche. Une cinquième tâche de cet algorithme analyse les résultats de la quatrième tâche et en déduit le comptage des êtres vivants, leur sens de traversée et leur vitesse de déplacement. Une sixième tâche de cet algorithme exploite le comptage ainsi obtenu en fonction de l'application envisagée. Une septième tâche de cet algorithme gère la cadence d'exécution des tâches précédentes selon la fréquence d'échantillonnage des signaux délivrés par les cellules. Dans les systèmes de comptage d'êtres vivants objet de l'invention, on peut concevoir la cinquième tâche de l'algorithme de manière à y permettre le regroupement, sous forme d'entités, des couples de cellules successives pour lesquels les informations issues de la quatrième tâche de l'algorithme correspondent à la traversée d'un être vivant ou d'un groupe d'êtres vivants, les informations des couples de chaque entité précisant ce nombre d'êtres vivants, le sens de leur traversée et la vitesse de leur déplacement.The counting system for living beings which is the subject of the invention comprises a device electronic signal processing system delivered by the cells that operates a algorithm. A first task of this algorithm initializes the parameters specifying the system configuration. A second task of this algorithm ensures successively for each cell the reading and the processing of the numerical values delivered by the electronic device of acquisition. A third task of this algorithm ensures the adaptation of the sensitivity threshold of the cells. A fourth task of this algorithm analysis for all couples of successive cells the information from the second task. A fifth task of this algorithm analyzes the results of the fourth task and deduces the counting of living beings, their sense of crossing and their movement speed. A sixth task of this algorithm exploits counting as well obtained according to the intended application. A seventh task of this algorithm manages the rate of execution of the preceding tasks according to the sampling frequency of the signals delivered by the cells. In counting systems of living beings subject to the invention, the fifth task of the algorithm can be conceived in such a way that allow the grouping, as entities, of successive cell pairs for which the information from the fourth task of the algorithm corresponds crossing a living being or a group of living creatures, information from couples of each entity specifying this number of living beings, the meaning of their crossing and the speed of their movement.
Le système de comptage d'êtres vivants objet de l'invention offre divers avantages par rapport aux systèmes connus et notamment son intégration aisée pour toute largeur de passage à surveiller ; sa performance de comptage excellente même pour une faible hauteur de passage; son adaptabilité d'implantation dans des environnements particuliers; sa capacité de comptage de foules denses et d'êtres vivants en mouvement lent.The counting system of living beings which is the subject of the invention offers various advantages by compared to known systems and in particular its easy integration for any width of passage to watch; its excellent counting performance even for a low passage height; its adaptability of implantation in environments individuals; its ability to count dense crowds and moving living things slow.
Le système de comptage d'êtres vivants objet de l'invention peut être décrit à titre non limitatif à l'aide de l'exemple suivant illustré par les figures 1 à 14. Cet exemple correspond au comptage d'êtres humains traversant un plan, au moyen de huit cellules équiréparties sur deux droites.The counting system of living beings which is the subject of the invention can be described as a non with the following example illustrated in FIGS. 1 to 14. This example corresponds to counting human beings crossing a plane, using eight cells equidistributed on two straight lines.
La figure 1 représente schématiquement un système objet de l'invention comportant huit cellules disposées selon deux alignements.FIG. 1 schematically represents a system that is the subject of the invention comprising eight cells arranged in two alignments.
Les figures 2a et 2b représentent deux vues d'une cellule de détection de rayonnement thermique utilisée dans le système schématisé à la figure 1. Figures 2a and 2b show two views of a radiation detection cell thermal system used in the system shown schematically in Figure 1.
La figure 3 montre un réseau de lentilles de Fresnel utilisé dans la cellule montrée aux figures 2a et 2b.Figure 3 shows a network of Fresnel lenses used in the cell shown at Figures 2a and 2b.
Les figures 4a et 4b représentent la cellule montrée aux figures 2a et 2b avec son champ de vision.Figures 4a and 4b show the cell shown in Figures 2a and 2b with its field of vision.
Les figures 5a et 5b représentent deux vues, selon deux directions orthogonales, d'un groupe de deux cellules successives, chacune d'elles appartenant à un alignement différent, ainsi que les champs de vision de ces cellules.FIGS. 5a and 5b show two views, in two orthogonal directions, of a group of two successive cells, each belonging to an alignment different, as well as the fields of view of these cells.
La figure 6a représente, en vue de dessus, cinq cellules successives appartenant au système montré à la figure 1.FIG. 6a represents, in plan view, five successive cells belonging to the system shown in Figure 1.
Les figures 6b et 6c représentent, en vue de dessus, les zones vues par les cinq cellules schématisées à la figure 6a, respectivement au niveau de 1 m et au niveau du sol.FIGS. 6b and 6c represent, in plan view, the zones seen by the five cells schematically in Figure 6a, respectively at 1 m and at ground level.
Les figures 7a à 7e représentent, en vue de dessus, cinq phases successives de la traversée d'un être humain perpendiculairement aux alignements des cellules et pour une représentation des zones vues selon la figure 6b.FIGS. 7a to 7e show, in plan view, five successive phases of the crossing of a human being perpendicular to the cell alignments and for a representation of the zones seen according to FIG. 6b.
La figure 7z schématise l'évolution temporelle des signaux délivrés par la thermopile de chaque cellule, pour la traversée définie par les figures 7a à 7e.FIG. 7z schematizes the temporal evolution of the signals delivered by the thermopile of each cell, for the crossing defined by FIGS. 7a to 7e.
Les figures 8a à 8e représentent, en vue de dessus, cinq phases successives de la traversée d'un être humain obliquement aux alignements des cellules et pour une représentation des zones vues selon la figure 6b.FIGS. 8a to 8e show, in plan view, five successive phases of the crossing a human being obliquely to the cell alignments and for a representation of the zones seen according to FIG. 6b.
La figure 8z schématise l'évolution temporelle des signaux délivrés par la thermopile de chaque cellule, pour la traversée définie par les figures 8a à 8e.FIG. 8z schematizes the temporal evolution of the signals delivered by the thermopile of each cell, for the crossing defined by Figures 8a to 8e.
La figure 9 montre l'enchaínement chronologique, sous forme d'un organigramme, des différentes tâches de traitement des signaux électriques, délivrés par les cellules.Figure 9 shows the chronological sequence, in the form of a flowchart, of different tasks of processing electrical signals, delivered by the cells.
Les figures 10, 11, 12 et 13 montrent quatre tâches particulières de l'organigramme montré à la figure 9.Figures 10, 11, 12 and 13 show four particular tasks in the flowchart shown in Figure 9.
La figure 14 montre le tableau utilisé par la tâche particulière montrée à la figure 13.Figure 14 shows the table used by the particular task shown in Figure 13.
La figure 1 montre le sol 0, un ensemble de huit cellules de détection de rayonnement
thermique réparties selon deux alignements, un premier alignement 1 comportant quatre
cellules 11 ; 12 ; 13 ; 14, un second alignement 2 comportant quatre cellules 21 ; 22 ;
23 ; 24, deux êtres humains 4 et 5, un dispositif électronique 6 d'acquisition et de
numérisation des signaux délivrés par les cellules, ces signaux étant éventuellement
échantillonnés au niveau des cellules, un dispositif électronique 7 de traitement des
valeurs numériques délivrées par le dispositif d'acquisition 6, un dispositif 8 d'exploitation
des informations issues du dispositif de traitement 7, un médium 3 connectant toutes les
cellules au dispositif d'acquisition 6. Les huit cônes 111 à 114 et 121 à 124 schématisent
les champs de vision de chacune des cellules. Les intersections de ces cônes avec un plan
parallèle au sol 0 et situé à une hauteur de 1 m définissent les zones vues à cette hauteur
et sont schématisées par les huit ellipses 211 à 214 et 221 à 224.Figure 1 shows the
La figure 2a est une coupe schématique d'une cellule par un plan perpendiculaire aux deux alignements des cellules.Figure 2a is a schematic section of a cell in a plane perpendicular to two cell alignments.
La figure 2b est une coupe schématique de la même cellule, orthogonale à la coupe montrée à la figure 2a.Figure 2b is a schematic section of the same cell, orthogonal to the section shown in Figure 2a.
Cette cellule comporte une thermopile 30 dont l'élément sensible 31 fournit un signal
électrique de faible amplitude proportionnelle au rayonnement thermique reçu au travers
du filtre infrarouge 32 , un étage d'amplification et de mise en forme 33 du signal
électrique délivré par la thermopile 30, un dispositif 38 connectant l'étage d'amplification
et de mise en forme 33 au médium 3, un réseau de lentilles de Fresnel 34 de distance
focale 40, placé à une distance égale à cette distance focale 40 devant l'élément sensible
31 de la thermopile 30, un masque 35 placé devant le réseau de lentilles de Fresnel 34 et
un boítier 36 étanche, opaque aux rayonnements électromagnétiques et dont la surface
intérieure absorbe les rayonnements thermiques. Le réseau de lentilles de Fresnel 34
comporte huit éléments 34a à 34h.This cell comprises a
La figure 3 représente le réseau de lentilles de Fresnel 34. Ce réseau est composé de huit
lentilles de Fresnel élémentaires 34a à 34h. Ces lentilles sont juxtaposées et leurs centres
optiques sont alignés selon la droite 39. Figure 3 shows the
Les figures 4a et 4b représentent la cellule montrée aux figures 2a et 2b selon les mêmes
projections. Ces figures montrent les champs de vision élémentaires 37c, 37d, 37e et 37f
associés aux lentilles de Fresnel élémentaires non masquées 34c, 34d, 34e et 34f.FIGS. 4a and 4b show the cell shown in FIGS. 2a and 2b according to the same
projections. These figures show the elementary fields of
Les figures 5a et 5b représentent des cellules successives 11 et 21 ainsi que leurs champs
de vision respectifs 111 et 121. Ces deux cellules appartiennent à un alignement différent.FIGS. 5a and 5b show
La figure 5a montre les champs de vision perpendiculairement au sens de déplacement normal des êtres humains. La figure 5b montre les champs de vision selon le sens de déplacement normal des êtres humains.Figure 5a shows the fields of view perpendicular to the direction of travel normal human beings. Figure 5b shows the fields of view in the sense of normal movement of human beings.
La vue représentée à la figure 5a met en évidence la faible ouverture des champs de
vision 111 et 121 ainsi que la faible distance D 42 entre les deux alignements 1 et 2.The view represented in FIG. 5a highlights the weak opening of the fields of
La vue représentée à la figure 5b met en évidence l'ouverture importante des champs de
vision 111 et 121 ainsi que le demi-pas P/2 41 entre ces cellules.The view represented in FIG. 5b highlights the important opening of the fields of
111 and 121 as well as the half P / 2
La figure 6a représente une vue de dessus des cinq cellules 11 ; 21 ; 12 ; 22 ; 13
disposées selon les deux alignements 1 et 2 distants de la distance D 42. Cette vue
montre également le demi-pas P/2 41 entre deux cellules successives.Figure 6a shows a top view of the five
La figure 6b montre en vue de dessus l'arrangement des zones 211 ; 221 ; 212 ; 222 ; 213
vues à une hauteur de 1 m au dessus du niveau du sol 0 et correspondant respectivement
aux cellules 11 ; 21 ; 12 ; 22 ; 13. Cette figure 6b met en évidence la juxtaposition des
zones vues par deux cellules successives disposées sur un même alignement.Figure 6b shows in plan view the arrangement of the
La figure 6c montre en vue de dessus l'arrangement des zones vues au niveau du sol 0,
311 ; 321 ; 312 ; 322 ; 313 correspondant respectivement aux cellules 11 ; 21 ; 12 ; 22 ;
13. Cette figure 6c met en évidence la superposition partielle des zones vues par deux
cellules successives disposées sur un même alignement.FIG. 6c shows in plan view the arrangement of the zones seen at
Les figures 7a à 7e représentent respectivement, en vue de dessus, cinq phases
successives a, b, c, d, e de la traversée d'un être humain 4 perpendiculairement aux
alignements 1 et 2, ainsi que les zones vues à une hauteur de 1 m au dessus du niveau du
sol, montrées à la figure 6b. La figure 7z schématise les oscillogrammes des signaux
électriques 411 ; 421 ; 412 ; 422 ; 413 délivrés respectivement par les cellules 11 ; 21 ;
12 ; 22 ; 13. Le niveau de chaque signal électrique 411 ; 421 ; 412 ; 422 ; 413 est lié à la
fraction de la zone vue occupée par l'être humain qui traverse les champs de vision des
cellules 11 ; 21 ; 12 ; 22 ; 13.FIGS. 7a to 7e respectively represent, in plan view, five phases
successive a, b, c, d, e crossing a human being 4 perpendicular to the
Dans la phase a, l'être humain 4 n'est présent dans aucune des zones vues 211 ; 221 ;
212 ; 222 ; 213. Les signaux électriques 411 ; 421 ; 412 ; 422 ; 413 montrés à la figure
7z ont un niveau nul.In phase a, the
Dans la phase b, l'être humain 4 occupe entièrement la zone vue 212. Le niveau du signal
412 est maximal. L'être humain 4 occupe très partiellement la zone vue 213. Le niveau
du signal 413 présente un pic de très faible amplitude. Les zones vues 211 ; 221 ; 222 ne
sont pas occupées par l'être humain 4. Les niveaux des signaux correspondants 411 ;
421 ; 422 restent nuls.In phase b, the
Dans la phase c, l'être humain 4 continue d'occuper entièrement la zone vue 212. Le
niveau du signal 412 reste maximal. L'être humain 4 occupe partiellement les zones vues
221 et 222. Le niveau des signaux 421 et 422 est moyen. Les zones vues 211 et 213 ne
sont pas occupées par l'être humain 4. Les niveaux des signaux correspondants 411 et
413 restent nuls.In phase c, the
Dans la phase d, l'être humain 4 quitte la zone vue 212. Le niveau du signal 412
redevient nul. L'être humain 4 continue d'occuper partiellement les zones vues 221 et
222. Le niveau des signaux 421 et 422 reste moyen. Les zones vues 211 et 213 ne sont
pas occupées par l'être humain 4. Les niveaux des signaux correspondants 411 et 413
restent nuls.In phase d, the
Dans la phase e, l'être humain 4 quitte les zones vues 221 et 222. Le niveau des signaux
421 et 422 redevient nul. Les zones vues 211 ; 212 ; 213 ne sont pas occupées par l'être
humain 4. Les niveaux des signaux correspondants 411 ; 412 ; 413 restent nuls.In phase e, the
Tous les niveaux des signaux étant nuls, l'être humain 4 va pouvoir être compté avec
discrimination du sens de traversée des alignements. Since all the signal levels are zero, the
Les figures 8a à 8e représentent respectivement, en vue de dessus, cinq phases
successives a, b, c, d, e de la traversée d'un être humain 5 obliquement aux alignements 1
et 2, ainsi que les zones vues à une hauteur de 1 m au dessus du niveau du sol, montrées
à la figure 6b. La figure 8z schématise les oscillogrammes des signaux électriques 511 ;
521 ; 512 ; 522 ; 513 délivrés respectivement par les cellules 11 ; 21 ; 12 ; 22 ; 13. Le
niveau de chaque signal électrique 511 ; 521 ; 512 ; 522 ; 513 est lié à la fraction de la
zone vue occupée par l'être humain qui traverse les champs de vision des cellules 11 ;
21 ; 12 ; 22 ; 13.FIGS. 8a to 8e respectively represent, in plan view, five phases
successive a, b, c, d, e of the crossing of a human being obliquely to the
Dans la phase a, l'être humain 5 n'est présent dans aucune des zones vues 211 ; 221 ;
212 ; 222 ; 213. Les signaux électriques 511 ; 521 ; 512 ; 522 ; 513 montrés à la figure
8z ont un niveau nul.In phase a, the human being is not present in any of the zones seen 211; 221;
212; 222; 213.
Dans la phase b, l'être humain 5 occupe partiellement les zones vues 212 et 213. Le
niveau des signaux 512 et 513 est moyen. Les zones vues 211 ; 221 ; 222 ne sont pas
occupées par l'être humain 5. Les niveaux des signaux correspondants 511 ; 521 ; 522
sont nuls.In phase b, the
Dans la phase c, l'être humain 5 occupe presque entièrement la zone vue 212. Le niveau
du signal 512 atteint un maximum. L'être humain 5 occupe partiellement les zones vues
221 et 222. Le niveau des signaux 521 et 522 est moyen. Les zones vues 211 et 213 ne
sont pas occupées par l'être humain 5. Les niveaux des signaux correspondants 511 et
513 restent nuls.In phase c, the human being occupies almost entirely the area viewed 212. The
Dans la phase d, l'être humain 5 quitte les zones vues 212 et 222. Le niveau des signaux
512 et 522 redevient nul. L'être humain 5 occupe entièrement la zone vue 221. Le niveau
du signal 521 atteint un maximum. Les zones vues 211 et 213 ne sont pas occupées par
l'être humain 5. Les niveaux des signaux correspondants 511 et 513 restent nuls.In phase d, the
Dans la phase e, l'être humain 5 quitte la zone vue 221. Le niveau du signal 521 redevient
nul. Les zones vues 211 ; 212 ; 213 ; 222 ne sont pas occupées par l'être humain 5. Les
niveaux des signaux correspondants 511 ; 512 ; 513 ; 522 restent nuls.In phase e, the human being leaves the
Tous les niveaux des signaux étant nuls, l'être humain 5 va pouvoir être compté avec
discrimination du sens de traversée des alignements. Since all the levels of the signals are zero, the
La figure 9 montre l'enchaínement chronologique, sous forme d'un organigramme, des
différentes tâches de traitement en temps réel des valeurs numériques issues du dispositif
électronique 6 d'acquisition et de numérisation des signaux électriques 411 ; 421 ; 412 ;
422 ; 413 , délivrés par les cinq cellules 11 ; 21 ; 12 ; 22 ; 13. Cet organigramme est mis
en oeuvre par le dispositif électronique 7. L'organigramme de la figure 9 a un point
d'entrée 601 et un point de sortie 699. Il comporte sept tâches 603 ; 700 ; 800 ; 900 ;
1000 ; 605 ; 607.Figure 9 shows the chronological sequence, in the form of a flowchart, of
different tasks of real-time processing of numerical values from the device
electronic 6 acquisition and digitization of
La tâche 603 permet l'initialisation des paramètres précisant la configuration du système
de comptage : nombre de cellules, hauteur des cellules par rapport au sol, pas P et
distance D ainsi que des paramètres de traitement : fréquence d'échantillonnage des
signaux électriques délivrés par les cellules et seuil initial de sensibilité des cellules. La
tâche 603 positionne les cellules à l'état mémorisé INVALIDE ainsi que les couples de
cellules successives, c'est-à-dire les couples tels que le couple 11 ; 21 suivi de couple
21 ; 12, lui-même suivi du couple 12 ; 22 et ainsi de suite, à l'état mémorisé INVALIDE.
La tâche 700 assure successivement pour chaque cellule la lecture et le traitement des
valeurs numériques délivrées par le dispositif électronique 6.
La tâche 800 assure pour le système objet de l'invention l'adaptation du seuil de
sensibilité des cellules, utilisé par la tâche 700.The
La tâche 900 analyse pour tous les couples de cellules successives, les informations
issues de la tâche 700.The
La tâche 1000 analyse les résultats de la tâche 900 et en déduit le comptage des êtres
humains.The
La tâche 605 permet l'exploitation par le dispositif électronique 8, du comptage réalisé
par la tâche 1000, en fonction de l'application envisagée.The task 605 allows the operation by the electronic device 8, of the metering carried out
by the
La tâche 607 gère la cadence d'exécution des tâches 700 à 605 selon la fréquence
d'échantillonnage ; cette tâche 607 est exécutée à chaque instant (t). A cette fin, la tâche
607 temporise le branchement 607/1 vers la tâche 700. La tâche 607 permet également
de quitter définitivement l'exécution des tâches 700 à 605 par le branchement 607/0 vers
le point de sortie 699.
Pour l'exécution des tâches 700, 800, 900 et 1000, on associe un indice k à chaque
cellule. La valeur 1 de l'indice k est associée à une cellule extrême, 11 par exemple ; la
valeur 2 de l'indice k est associée à la cellule successive, ici la cellule 21, et ainsi de suite.For the execution of
De même on associe un indice m à chaque couple de cellules successives. La valeur 1 de
l'indice m est associée à un couple extrême, 11 ; 21 par exemple ; la valeur 2 de l'indice
m est associée au couple successif, ici le couple 21 ; 12, et ainsi de suite.In the same way, an index m is associated with each pair of successive cells. The
Les figures 10, 11, 12 et 13 montrent respectivement sous forme d'organigrammes
l'enchaínement chronologique des tâches élémentaires constitutives des tâches 700 ;
800 ; 900 et 1000.Figures 10, 11, 12 and 13 show respectively in the form of flowcharts
the chronological sequence of the elementary tasks constituting the
Sur la figure 10, on voit le point d'entrée 701 et le point de sortie 799 de la tâche 700.
Cette tâche répète pour chaque valeur numérique délivrée par le dispositif électronique 6
les tâches élémentaires 705 à 719.In Fig. 10,
La tâche 703 initialise à 1 l'indice k associé à la cellule dont on lit et dont on traite la
valeur numérique.The
La tâche 705 commande l'acquisition et la numérisation par le dispositif électronique 6
du signal électrique délivré à l'instant (t) par la cellule considérée.
La tâche 707 assure le traitement de la valeur numérique délivrée par la tâche 705 en vue
de l'homogénéisation de l'ensemble des valeurs numériques des signaux délivrés.
La tâche 709 mémorise la valeur traitée par la tâche 707 si elle correspond à un
maximum local, déterminé à partir de valeurs traitées antérieurement par la tâche 707
pour cette cellule. La valeur mémorisée par la tâche 709 est utilisée pour l'adaptation
dans la tâche 800 du seuil de sensibilité des cellules.The
Le test 711 vérifie la supériorité de la valeur traitée par la tâche 707 sur le seuil de
sensibilité des cellules.The
Le branchement 711/1 est effectif si le test 711 est VRAI ; dans ce cas un être humain est
dans le champ de vision de la cellule considérée.
La tâche 712 mémorise la valeur traitée par la tâche 707 et l'instant (t) ; elle positionne
la cellule considérée dans l'état instantané ACTIF.The
Le branchement 711/0 est effectif si le test 711 est FAUX. The 711/0 connection is effective if the
Le test 713 vérifie la supériorité de la valeur traitée par la tâche 707 sur le seuil de
sensibilité des cellules, à l'instant précédent (t-1).The
Le branchement 713/1 est effectif si le test 713 est VRAI; dans ce cas un être humain
vient de quitter le champ de vision de la cellule considérée ; la tâche 715 analyse les
valeurs successives mémorisées par la tâche 712 pour en extraire des informations
caractéristiques de la traversée d'un être humain : instant de début de la traversée, instant
de fin de la traversée, instant correspondant à la médiane des valeurs mémorisées et
moyenne de ces valeurs ; elle positionne la cellule considérée dans l'état mémorisé
VALIDE. Toutes ces informations sont mémorisées pour être analysées par la tâche 900.
Le branchement 713/0 est effectif si le test 713 est FAUX ; dans ce cas, aucun être
humain n'est dans le champ de vision de la cellule considérée.The 713/0 connection is effective if the
La tâche 714 positionne la cellule considérée dans l'état instantané PASSIF.The
La tâche 717 incrémente l'indice k associé à une cellule.
Le test 719 vérifie que le nouvel indice k est inférieur ou égal au nombre total de cellules.The
Le branchement 719/1 est effectif si le test 719 est VRAI; dans ce cas toutes les cellules
n'ont pas été traitées et on retourne à la tâche 705.
Le branchement 719/0 est effectif si le test 719 est FAUX ; dans ce cas toutes les cellules
ont été traitées.The 719/0 connection is effective if the
Sur la figure 11, on voit le point d'entrée 801 et le point de sortie 899 de la tâche 800.In Fig. 11,
Cette tâche comporte deux tâches élémentaires 803 et 805 assurant l'adaptation du seuil
de sensibilité des cellules en fonction des V dernières valeurs mémorisées par la tâche
709 de la figure 10 ; V étant choisi arbitrairement en fonction de l'application, par
exemple en fonction de la fréquence de traversée des êtres vivants ou en fonction d'un
nombre fixe de traversées ; ce nombre peut être choisi dans la fourchette allant de 20 à
100.This task has two
Le test 803 vérifie que toutes les cellules sont dans l'état instantané PASSIF et qu'au
moins V valeurs ont été mémorisées par la tâche 709 de la tâche 700.The 803 test checks that all the cells are in the PASSIVE instant state and that
minus V values have been stored by
Le branchement 803/1 est effectif si le test 803 est VRAI ; dans ce cas, le seuil de sensibilité des cellules peut être adapté. The 803/1 connection is effective if the 803 test is TRUE; in this case, the threshold of Cell sensitivity can be adapted.
La tâche 805 calcule la moyenne glissante sur l'ensemble des V dernières valeurs
mémorisées par la tâche 709 de la figure 10 et en déduit le nouveau seuil de sensibilité
des cellules.
Le branchement 803/0 est effectif si le test 803 est FAUX ; dans ce cas le seuil de sensibilité des cellules ne peut pas être adapté.The 803/0 connection is effective if the 803 test is FALSE; in this case the threshold of Cell sensitivity can not be adapted.
Sur la figure 12, on voit le point d'entrée 901 et le point de sortie 999 de la tâche 900.
Cette tâche répète pour chaque couple de cellules les tâches élémentaires 905 à 911. Elle
analyse les informations caractéristiques extraites pour chaque cellule par la tâche 700 et
en déduit les informations caractéristiques de chaque couple.In Fig. 12,
La tâche 903 initialise à 1 l'indice m associé au couple de cellules à analyser.The
Le test 905 vérifie que les deux cellules formant le couple considéré sont dans l'état
mémorisé VALIDE et qu'il existe une période d'occupation commune pendant laquelle
l'être humain est simultanément dans le champ de vision des deux cellules, ce qui revient
à considérer que l'être humain est dans le champ de vision du couple.The
Le branchement 905/1 est effectif si le test 905 est VRAI.The 905/1 connection is effective if the 905 test is TRUE.
La tâche 907 analyse les informations caractéristiques extraites pour chaque cellule du
couple de cellules successives considéré et en déduit les informations caractéristiques de
la traversée d'un être humain pour ce couple : instant de début d'occupation commune,
instant de fin d'occupation commune, moyenne du couple c'est-à-dire moyenne des
moyennes calculées pour les cellules du couple, signature de la chronologie d'occupation
des cellules du couple ; l'état du couple de cellules successives est considéré comme
VALIDE. La signature de la chronologie d'occupation des cellules du couple est choisie
arbitrairement POSITIVE si l'être humain franchit l'alignement 1 puis l'alignement 2 et
NEGATIVE si l'être humain franchit l'alignement 2 puis l'alignement 1.
Le branchement 905/0 est effectif si le test 905 est FAUX.The 905/0 connection is effective if the 905 test is FALSE.
La tâche 909 incrémente l'indice m associé à un couple.
Le test 911 vérifie que le nouvel indice m est inférieur ou égal au nombre total de couples. The 911 test verifies that the new index m is less than or equal to the total number of couples.
Le branchement 911/1 est effectif si le test 911 est VRAI ; dans ce cas tous les couples n'ont pas été analysés et on retourne au test 905.The 911/1 connection is effective if the 911 test is TRUE; in this case all couples have not been analyzed and we return to the 905 test.
Le branchement 911/0 est effectif si le test 911 est FAUX ; dans ce cas tous les couples ont été analysés.The 911/0 connection is effective if the 911 test is FALSE; in this case all couples have been analyzed.
Sur la figure 13, on voit le point d'entrée 1001 et le point de sortie 1099 de la tâche
1000. Cette tâche répète pour chaque couple de cellules les tâches élémentaires 1005 à
1017 afin d'analyser les informations caractéristiques extraites pour chaque couple durant
la tâche 900 ainsi que les informations caractéristiques extraites pour chaque cellule
durant la tâche 700. Cette analyse permet de construire des entités constituées soit d'un
couple isolé dont l'état est VALIDE, soit de couples successifs dont l'état est VALIDE
et pour lesquels il existe un laps de temps pendant lequel un ou plusieurs êtres humains
sont simultanément dans leur champ de vision. Plus précisément une entité est
caractérisée par un nombre X de couples dont la signature de la chronologie
d'occupation est POSITIVE ainsi que par un nombre Y de couples dont la signature de
la chronologie d'occupation est NEGATIVE. L'analyse de ces nombres caractéristiques
de l'entité permet de déterminer en temps réel le nombre d'êtres humains associés à cette
entité ainsi que leur sens de traversée, selon une règle précisée à la figure 14.In Figure 13, we see the
La tâche 1003 initialise à 1 l'indice m associé au couple de cellules à analyser et initialise
à zéro le contenu de l'entité, ce qui signifie que l'entité ne contient aucun couple.The
Le test 1005 vérifie que le couple considéré est dans l'état VALIDE.The
Le branchement 1005/0 est effectif si le test 1005 est FAUX.The 1005/0 connection is effective if the 1005 test is FALSE.
La tâche 1006 réinitialise à zéro le contenu de l'entité, ce qui signifie que l'entité ne
contient aucun couple.
Le branchement 1005/1 est effectif si le test 1005 est VRAI.The 1005/1 connection is effective if the 1005 test is TRUE.
La tâche 1007 inclut le couple considéré dans l'entité.
Le test 1009 vérifie qu'il existe un laps de temps pendant lequel un ou plusieurs êtres
humains sont dans le champ de vision du couple considéré et du couple suivant.
Le branchement 1009/0 est effectif si le test 1009 est FAUX ; dans ce cas, l'entité est complète, elle peut être analysée pour compter les êtres humains. The 1009/0 connection is effective if the 1009 test is FALSE; in this case, the entity is complete, it can be analyzed to count human beings.
La tâche 1011 utilise le tableau montré sur la figure 14 pour analyser l'entité et
déterminer en temps réel le nombre d'êtres humains et leur sens de traversée.
La tâche 1013 remet à jour les informations caractéristiques des couples et des cellules
contenus dans l'entité puis ré-initialise le contenu de l'entité à 0. L'état de ces couples et
l'état mémorisé de ces cellules sont repositionnés à l'état INVALIDE.
Le branchement 1009/1 est effectif si le test 1009 est VRAI ; dans ce cas, le couple suivant est susceptible d'être inclus dans l'entité.The 1009/1 connection is effective if the 1009 test is TRUE; in this case, the couple next is likely to be included in the entity.
La tâche 1015 incrémente l'indice m associé à un couple.
Le test 1017 vérifie que le nouvel indice m est inférieur ou égal au nombre total de
couples.
Le branchement 1017/1 est effectif si le test 1017 est VRAI ; dans ce cas tous les couples
n'ont pas été analysés et on retourne au test 1005.
Le branchement 1017/0 est effectif si le test 1017 est FAUX; dans ce cas tous les
couples ont été analysés.The 1017/0 connection is effective if the
La figure 14 montre le tableau d'analyse des nombres caractéristiques de l'entité créée
durant la tâche 1000. Ce tableau possède autant de colonnes et de lignes qu'il y a de
cellules dans le système. Ce tableau définit le nombre d'êtres humains associés à l'entité
ainsi que leur sens de traversée en fonction des nombres caractéristiques de l'entité. Les
numéros des colonnes correspondent aux valeurs possibles prises par le nombre X et les
numéros des lignes correspondent aux valeurs possibles prises par le nombre Y. Les
cases vides du tableau correspondent à des situations impossibles ; les autres cases du
tableau comportent soit une lettre, soit au moins un entier signé dont le module
représente le nombre d'êtres humains comptés et dont le signe correspond à la traversée
initiale de l'alignement 1 s'il est positif et à la traversée initiale de l'alignement 2 s'il est
négatifFigure 14 shows the characteristic number analysis chart of the created entity
during
Les lettres A, B et C du tableau correspondent aux cas particuliers pour lesquels le comptage des êtres humains est conditionné par des informations complémentaires.The letters A, B and C of the table correspond to the special cases for which the counting of human beings is conditioned by additional information.
La lettre A est à remplacer par (+1) lorsque la moyenne du couple possédant la signature POSITIVE est supérieure à la moyenne du couple possédant la signature NEGATIVE. The letter A is to be replaced by (+1) when the average of the couple having the signature POSITIVE is greater than the average of the couple with the NEGATIVE signature.
La lettre A est à remplacer par (-1) lorsque la moyenne du couple possédant la signature POSITIVE est inférieure à la moyenne du couple possédant la signature NEGATIVE.The letter A is to be replaced by (-1) when the average of the couple having the signature POSITIVE is less than the average of the couple with the NEGATIVE signature.
La lettre B est à remplacer par l'ensemble (+1) & (-1) lorsque le couple possédant la signature POSITIVE a été inclus dans l'entité avant ou après les autres couples et par (-2) dans les autres cas.The letter B is to be replaced by the set (+1) & (-1) when the couple having the POSITIVE signature was included in the entity before or after the other pairs and by (-2) in other cases.
La lettre C est à remplacer par l'ensemble (+1) & (-1) lorsque le couple possédant la signature NEGATIVE a été inclus dans l'entité avant ou après les autres couples et par (+2) dans les autres cas.The letter C is to be replaced by the set (+1) & (-1) when the couple having the NEGATIVE signature was included in the entity before or after the other couples and by (+2) in other cases.
Claims (10)
- A system for counting living beings moving on a first surface (0) and passing through a second cylindrical surface with a substantially vertical generatrix, consisting of a set of N thermal radiation detection cells (11) and an electronic device for acquiring and processing signals delivered by these cells, characterized in that each of these cells comprises a thermopile (30) comprising at least one sensitive element (31), a means (34) focusing the thermal radiation on the sensitive elements of this thermopile, this focusing means creating an elongate field of vision (111) in one direction, a mask (35) limiting this field of vision and an amplifier for amplifying the signal delivered by the thermopile (30) and characterized in that the N detection cells (11) are equally distributed between two curves when N is even and are distributed between two curves with a difference of one when N is odd, the distribution of cells over each curve being uniform along a pitch P which is identical for each of the two curves, one of these curves being identified with the directrix of the cylindrical surface through which the living beings pass, and the other curve being distant from the former one by a length D (42) equal to at least 5 cm, the elongation direction of the field of vision of each cell being substantially tangent to one of the two curves.
- The system for counting living beings as claimed in claim 1, characterized in that the means (34) of focusing each cell is produced with a single lens and in that the thermopile comprises a single sensitive element with an elongate surface or an alignment of sensitive elements, the surfaces of which have substantially similar dimensions in two orthogonal directions.
- The system for counting living beings as claimed in claim 1, characterized in that the means (34) of focusing each cell is produced using several lenses and in that the thermopile comprises only a single sensitive element, the surface of which has substantially similar dimensions in two orthogonal directions.
- The system for counting living beings as claimed in claim 1, characterized in that the pitch P is chosen close to the width of a living being statistically representative of beings of minimum size belonging to the population to be counted.
- The system for counting living beings as claimed in claim 4, characterized in that the pitch P is substantially equal to 45 cm and that the system is adapted for counting human beings.
- The system for counting living beings as claimed in claim 1, characterized in that the cylindrical surface through which the living beings pass is a plane, the curves along which the cells are distributed being parallel straight lines.
- The system for counting living beings as claimed in claim 6, characterized in that the aperture of the field of vision (111), in the elongation direction of this field, is chosen for each cell belonging to the same straight line, so as to juxtapose zones (211)(212) seen by two successive cells (11)(12) on the same straight line (1), at a height close to the minimum size of a living being statistically representative of beings belonging to the population to be counted.
- The system for counting living beings as claimed in claim 7, characterized in that the extent of the zone seen by each cell at a height of 1 m and measured along the alignment is substantially equal to 45 cm and that the system is adapted for counting human beings.
- The system for counting living beings as claimed in claim 1, characterized in that the electronic device (7) for processing signals delivered by the cells exploits an algorithm, a first task (603) of which initializes the parameters specifying the configuration of the system, a second task (700) of which reads and processes the digital values delivered by the electronic acquisition device successively for each cell, a third task (800) of which adapts the cell sensitivity threshold, a fourth task (900) of which compares the information from the second task (700) for all the pairs of successive cells, a fifth task (1000) of which analyzes the results of the fourth task (900) and deduces therefrom the count of living beings, their direction of crossing and their speed of movement, a sixth task (605) of which exploits the count thus obtained as a function of the envisioned application and a seventh task (607) of which manages the rate of execution of the previous tasks depending on the frequency of sampling of the signals delivered by the cells.
- The system for counting living beings as claimed in claim 9, characterized in that the analysis carried out by the fifth task (1000) of the algorithm brings together, in the form of entities, pairs of successive cells for which the information from the fourth task (900) corresponds to the crossing of a living being or of a group of living beings, the information of the pairs of each entity specifying this number of living beings, the direction of their crossing and the speed of their movement.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0006346 | 2000-05-18 | ||
FR0006346A FR2809212B1 (en) | 2000-05-18 | 2000-05-18 | LIVING COUNTING SYSTEM |
PCT/FR2001/001024 WO2001088858A1 (en) | 2000-05-18 | 2001-04-05 | System for counting living beings |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1282885A1 EP1282885A1 (en) | 2003-02-12 |
EP1282885B1 true EP1282885B1 (en) | 2005-03-16 |
Family
ID=8850361
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP01921484A Expired - Lifetime EP1282885B1 (en) | 2000-05-18 | 2001-04-05 | System for counting living beings |
Country Status (10)
Country | Link |
---|---|
US (1) | US20030183767A1 (en) |
EP (1) | EP1282885B1 (en) |
JP (1) | JP2004510128A (en) |
AT (1) | ATE291262T1 (en) |
AU (1) | AU2001248468A1 (en) |
DE (1) | DE60109442T2 (en) |
ES (1) | ES2237565T3 (en) |
FR (1) | FR2809212B1 (en) |
PT (1) | PT1282885E (en) |
WO (1) | WO2001088858A1 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20080005265A (en) * | 2005-04-12 | 2008-01-10 | 코닌클리즈케 필립스 일렉트로닉스 엔.브이. | Pattern based occupancy sensing system and method |
FR2899003B1 (en) * | 2006-03-27 | 2008-09-19 | Eco Compteur Sarl | DEVICE FOR COUNTING AND DETERMINING THE DIRECTION OF PASSAGE OF LIVING PARTIES |
EP3349190A1 (en) * | 2017-01-13 | 2018-07-18 | Siemens Schweiz AG | People counter |
CN112005242A (en) | 2018-05-18 | 2020-11-27 | 易希提卫生与保健公司 | Presence and absence detection |
FR3088460A1 (en) | 2018-11-09 | 2020-05-15 | Jean-Claude Dubois | MINIATURIZED FREQUENTATION CAPTURE DEVICE |
FR3099591B1 (en) | 2019-07-31 | 2022-01-28 | Dubois Jean Claude | Miniaturized stereoscopic thermal sensor for automatic counting device |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3623792C1 (en) * | 1986-07-15 | 1987-12-10 | Messerschmitt Boelkow Blohm | Device for determining the number of people and direction within a room to be monitored or a passage gate |
ATE83090T1 (en) | 1986-09-29 | 1992-12-15 | Siemens Ag | LASER TRANSMITTER WITH A SEMICONDUCTOR LASER AND AN EXTERNAL OPTICAL RESONATOR IN THE FORM OF A FREQUENCY-SELECTIVE FIBER DIRECTIONAL COUPLER. |
US4799243A (en) | 1987-09-01 | 1989-01-17 | Otis Elevator Company | Directional people counting arrangement |
JPH0786537B2 (en) * | 1987-09-26 | 1995-09-20 | 松下電工株式会社 | Human body detection device |
JP2538091B2 (en) | 1990-03-19 | 1996-09-25 | 松下電器産業株式会社 | Customer number sensor |
DE4040811A1 (en) | 1990-12-14 | 1992-07-09 | Iris Gmbh Infrared & Intellige | DIRECTIONAL SELECTIVE COUNTING AND SWITCHING DEVICE |
JP2963236B2 (en) * | 1991-05-02 | 1999-10-18 | エヌシーアール インターナショナル インコーポレイテッド | Passenger counting method |
DE4220508C2 (en) * | 1992-06-22 | 1998-08-20 | Iris Gmbh Infrared & Intellige | Device for detecting people |
JPH078735U (en) * | 1993-07-09 | 1995-02-07 | 株式会社村田製作所 | Infrared sensor device |
JPH0862044A (en) * | 1994-08-18 | 1996-03-08 | Matsushita Electric Ind Co Ltd | Thermal image detector |
JPH0962822A (en) * | 1995-08-28 | 1997-03-07 | Matsushita Electric Ind Co Ltd | Human body movement detection device and detection device for number of passing peoples |
JP3233584B2 (en) * | 1996-09-04 | 2001-11-26 | 松下電器産業株式会社 | Passenger detection device |
JPH10104085A (en) * | 1996-10-02 | 1998-04-24 | Shimadzu Corp | Pyroelectric type infrared detector |
JPH10132954A (en) * | 1996-10-28 | 1998-05-22 | Shimadzu Corp | Automatic door sensor |
JPH11183247A (en) * | 1997-12-22 | 1999-07-09 | Matsushita Electric Ind Co Ltd | Pyroelectric infrared sensor device |
-
2000
- 2000-05-18 FR FR0006346A patent/FR2809212B1/en not_active Expired - Fee Related
-
2001
- 2001-04-05 AT AT01921484T patent/ATE291262T1/en not_active IP Right Cessation
- 2001-04-05 AU AU2001248468A patent/AU2001248468A1/en not_active Abandoned
- 2001-04-05 US US10/276,558 patent/US20030183767A1/en not_active Abandoned
- 2001-04-05 JP JP2001584374A patent/JP2004510128A/en active Pending
- 2001-04-05 PT PT01921484T patent/PT1282885E/en unknown
- 2001-04-05 WO PCT/FR2001/001024 patent/WO2001088858A1/en active IP Right Grant
- 2001-04-05 DE DE60109442T patent/DE60109442T2/en not_active Expired - Lifetime
- 2001-04-05 ES ES01921484T patent/ES2237565T3/en not_active Expired - Lifetime
- 2001-04-05 EP EP01921484A patent/EP1282885B1/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
FR2809212B1 (en) | 2002-08-30 |
DE60109442D1 (en) | 2005-04-21 |
AU2001248468A1 (en) | 2001-11-26 |
FR2809212A1 (en) | 2001-11-23 |
ATE291262T1 (en) | 2005-04-15 |
PT1282885E (en) | 2005-07-29 |
US20030183767A1 (en) | 2003-10-02 |
DE60109442T2 (en) | 2006-04-13 |
EP1282885A1 (en) | 2003-02-12 |
JP2004510128A (en) | 2004-04-02 |
WO2001088858A1 (en) | 2001-11-22 |
ES2237565T3 (en) | 2005-08-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Hinsch | Particle image velocimetry | |
EP3111197B1 (en) | Optical spectrometer with matched etendue | |
EP1282885B1 (en) | System for counting living beings | |
FR2824903A1 (en) | Non-contact method for measuring the dimensions of an object using an optical confocal imaging system with a chromatic retarder, so that axial chromatism can be adjusted to suit the required measurement range | |
Roudier et al. | Determination of horizontal velocity fields at the sun's surface with high spatial and temporal resolution | |
EP0276513B1 (en) | Intrusion detection and land vehicle identification device | |
FR2536174A1 (en) | METHOD AND DEVICE FOR NON-CONTACT DETECTION OF THE MOVEMENT OF AN OBJECT | |
EP1340104A1 (en) | Method, system and device for detecting an object proximate to a water/air type interface | |
CN109154663A (en) | For directly detecting the multicomponent Fabry-Perot etalon interferometer of laser radar | |
Visser et al. | A SCUBA survey of compact dark Lynds clouds | |
EP1079349A2 (en) | Detection of position and motion of sub-pixel images | |
EP0138646B1 (en) | Spatial field analysis device for the angular location of emitting objects | |
Skinner et al. | Incoherent Doppler lidar for measurement of atmospheric winds | |
EP1581911A1 (en) | Access control system | |
EP0562924B1 (en) | Device for measuring the speed of a moving object | |
FR2720839A1 (en) | Portable Doppler laser velocimeter. | |
EP1808817A1 (en) | Wristband reader/collector for access control | |
CA2426293A1 (en) | Coin discrimination apparatus and method | |
FR2782384A1 (en) | Rain measuring device to determine spread and raindrop speed over given area and arrival time of rain drops, for real time analysis of meteorological conditions | |
FR2747199A1 (en) | DEVICE FOR LOCATING A MOBILE OBJECT | |
JPH0611433A (en) | Particulate measuring device and particulate sensing method | |
FR2882178A1 (en) | DEVICE FOR DETECTING THE PASSAGE OF INDIVIDUALS OR OBJECTS CROSSING A PLAN DELIMITED BY TWO VERTICAL UPRIGHTS | |
Soules et al. | Temporal characteristics of turbulence-induced image motion | |
FR3008209A1 (en) | DEVICE FOR COUNTING AND ANALYZING FREQUENTATION BY PEOPLE | |
EP1237010A1 (en) | Object detection with plane with intensity distribution |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20021112 |
|
AK | Designated contracting states |
Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK RO SI |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: DEPARIS, JEAN-PIERRE, PAUL, FERNAND Inventor name: MEUNIER, BRUNO, GILBERT |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050316 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050316 Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050316 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050405 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050405 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: FRENCH |
|
REF | Corresponds to: |
Ref document number: 60109442 Country of ref document: DE Date of ref document: 20050421 Kind code of ref document: P |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050430 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050430 Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050430 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20050518 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050616 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050616 |
|
REG | Reference to a national code |
Ref country code: PT Ref legal event code: SC4A Effective date: 20050525 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2237565 Country of ref document: ES Kind code of ref document: T3 |
|
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20051219 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050616 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IE Payment date: 20090327 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: PT Payment date: 20100511 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20100513 Year of fee payment: 10 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100405 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20110421 Year of fee payment: 11 Ref country code: ES Payment date: 20110418 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20110421 Year of fee payment: 11 Ref country code: BE Payment date: 20110414 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20110421 Year of fee payment: 11 |
|
REG | Reference to a national code |
Ref country code: PT Ref legal event code: MM4A Free format text: LAPSE DUE TO NON-PAYMENT OF FEES Effective date: 20111006 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 291262 Country of ref document: AT Kind code of ref document: T Effective date: 20110405 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20111006 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110405 |
|
BERE | Be: lapsed |
Owner name: INSTITUT NATIONAL DE RECHERCHE SUR LES TRANSPORTS Effective date: 20120430 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20120405 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120430 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120405 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 60109442 Country of ref document: DE Effective date: 20121101 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120405 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20130716 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120406 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20121101 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 16 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 17 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20190416 Year of fee payment: 19 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200430 |