EP1266423A1 - Cavity resonator having an adjustable resonance frequency - Google Patents
Cavity resonator having an adjustable resonance frequencyInfo
- Publication number
- EP1266423A1 EP1266423A1 EP01915592A EP01915592A EP1266423A1 EP 1266423 A1 EP1266423 A1 EP 1266423A1 EP 01915592 A EP01915592 A EP 01915592A EP 01915592 A EP01915592 A EP 01915592A EP 1266423 A1 EP1266423 A1 EP 1266423A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- cavity
- cavity resonator
- cross
- wave type
- resonator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000005684 electric field Effects 0.000 claims description 8
- 230000008878 coupling Effects 0.000 description 8
- 238000010168 coupling process Methods 0.000 description 8
- 238000005859 coupling reaction Methods 0.000 description 8
- 238000000926 separation method Methods 0.000 description 6
- 230000001939 inductive effect Effects 0.000 description 3
- 238000003780 insertion Methods 0.000 description 3
- 230000037431 insertion Effects 0.000 description 3
- 230000009977 dual effect Effects 0.000 description 2
- 238000010276 construction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P7/00—Resonators of the waveguide type
- H01P7/06—Cavity resonators
Definitions
- the present invention relates to a cavity resonator with a tunable resonance frequency, which has a round cross section and in which the Hlln wave type (n is an integer positive number) exists as a resonance wave type, the distance between the two end faces of the cylindrical cavity being variable.
- Microwave filters with low losses are usually realized from a plurality of cavity resonators coupled to one another.
- means are required with which the resonance frequency of the individual cavity resonators can be tuned.
- the resonance frequency of a cavity resonator is adjusted by changing its length. This is done in accordance with the publication mentioned in that a complete end face of the cylindrical cavity resonator is slidably mounted.
- the invention is therefore based on the object of specifying a cavity resonator of the type mentioned at the outset, which has a large frequency tuning range and at the same time has the highest possible quality in order to be able to implement filters with very low insertion loss, which can be tuned over a large frequency range.
- the cavity resonator which has a round cross-section and in which the Hlln wave type exists as a resonance wave type, is divided in two with respect to a cross-sectional plane and that both cavity parts can be displaced relative to one another in the direction of their common longitudinal axis are.
- the two cavity parts which can be displaced in the axial direction only insignificantly impair the goodness of the cavity resonator.
- a cavity resonator that can be tuned in frequency can be realized, which has a very high quality and thus enables the implementation of a filter with a very low insertion loss.
- Appropriate developments of the invention emerge from the subclaims. Accordingly, if a cross-sectional plane is selected as the separating plane between the two cavity parts, which lies approximately in the range of a maximum of the electric field strength of the Hlln wave type, the goodness of the cavity resonator is hardly impaired.
- An advantageous mechanical and electrical connection between the two cavity parts results from the fact that one cavity part is provided with an external thread and the other cavity part is provided with an internal thread, so that both cavity parts can be screwed into one another with a variable distance between their end faces. It is expedient for the cavity part provided with the internal thread to have a shoulder with an enlarged internal diameter in the region of the parting plane, on the inside of which the internal thread is located. This measure ensures that the internal cross sections of the two cavity parts are the same size.
- a longitudinal section through a cylindrical cavity resonator is shown.
- the cavity resonator is dimensioned with respect to its cross-sectional dimensions so that the Hll2 wave type exists as a resonance wave type.
- it is split into two cavity parts 1 and 2.
- the first end face 3 of the cylindrical cavity resonator is located in the cavity part 1 and the cavity part 2 has the opposite end face 4 of the cavity resonator.
- Frequency tuning of the cavity resonator is possible because the distance is changeable between the two end faces 3 and 4 in the direction of the longitudinal axis of the cavity resonator z.
- the distribution of the electric field strength of the H112 wave type in the cavity resonator with respect to its longitudinal axis z is shown.
- the parting plane 5 between the two cavity parts 1 and 2 has been placed in such a cross-sectional plane of the cavity resonator in which there is a maximum of the electric field strength E.
- the lower cavity part 1 forms approximately 3/4 and the upper cavity part 2 forms approximately 1/4 of the entire cavity.
- a mutual axial displacement of the two cavity parts 1 and 2 for the purpose of frequency tuning is achieved in that one of the two cavity parts, here the cavity part 1 on the inside of its open end with an internal thread 6 and the other cavity part 2 at its open end on the outside is provided with an external thread 7. It is thus possible to screw the two cavity parts 1 and 2 into one another and to set the distance between the two end faces 3 and 4 influencing the resonance frequency of the cavity resonator via the screw-in depth.
- the cavity part 1 has at its open end a shoulder 8 with an enlarged inside diameter compared to the normal cavity cross-section, and on the inside of this shoulder 8 there is the internal thread 6. Then the waveguide part 2 can be screwed into this paragraph 8, with which Cavity part 2 can keep the same dimensions of its internal cross section as the cavity part 1.
- the gap required in the parting plane 5 between the two cavity parts 1 and 2 is laid and dimensioned such that it is symmetrical to the maximum of the electric field strength E when the screw-in depth of the cavity part 2 corresponds to a tuning of the cavity resonator to its mean frequency position.
- tuning to the upper or lower frequency range there are certain
- the separation gap With a high tuning frequency, the separation gap would be almost closed, while it is greatest when tuning to the lowest frequency position.
- the resonance wave type Hlln With the chosen position of the separation gap between the cavity parts 1 and 2, the resonance wave type Hlln can be tuned over a frequency range of approx. 10%.
- the separation gap can be up to about 0.1 times the corresponding waveguide wavelength of the resonance wave type without an effect on the good being discernible, since with this separation gap size almost no wall currents flow over the separation point and therefore no energy is coupled into the gap becomes.
- the cavity part 2 has an undercut 9 at the lower end projecting into the cavity part 1, which is used to compensate for tolerances between the two parts.
- This undercut 9 has no electrical significance.
- a coupling opening 10 with an inductive coupling aperture 11 is inserted in the lower cavity part 1 in the region of the lower field strength maximum, via which a further cavity resonator can be coupled.
- Other coupling devices are also possible, e.g. B. protruding into the cavity resonator, which couple the electrical field components.
- Also arranged on the end faces inductive coupling screens and on Existing inductive coupling diaphragms, which couple the transverse magnetic field components (Hr and / or H ⁇ ) and are therefore arranged at positions with almost maximum field strength of the corresponding field component, are possible in the scope of the cavity resonator.
- the resonance wave type Hlln used here is degenerate at 90 °
- two resonance circuits can be realized by the degenerate wave types of a geometric cavity and can be tuned simultaneously with the device described above. This significantly reduces the overall size of a filter as well as the effort for an active overall tuning device.
- the coupling of the dual wave types in the cavity can be carried out in a known manner with discontinuities - usually screws which are at 45 ° in relation to the orientation of the electrical field components of the dual wave types on the circumference of the cylindrical cavity.
- a basic correction of the frequency positions of the two wave types relative to one another can also be carried out in a known manner by means of additional tuning screws on the circumference of the cavity, which is generally necessary in the case of a filter implementation due to different coupling loads.
Landscapes
- Control Of Motors That Do Not Use Commutators (AREA)
Abstract
Description
Hohlraumresonator mit abstimmbarer ResonanzfrequenzCavity resonator with tunable resonance frequency
Stand der TechnikState of the art
Die vorliegende Erfindung betrifft einen Hohlraumresonator mit abstimmbarer Resonanzfrequenz, der einen runden Querschnitt aufweist und in dem der Hlln-Wellentyp (n ist eine ganzzahlige positive Zahl) als Resonanzwellentyp existent ist, wobei der Abstand der beiden Stirnseiten des zylinderformigen Hohlraums veränderbar ist.The present invention relates to a cavity resonator with a tunable resonance frequency, which has a round cross section and in which the Hlln wave type (n is an integer positive number) exists as a resonance wave type, the distance between the two end faces of the cylindrical cavity being variable.
Mikrowellenfilter mit geringen Verlusten werden üblicherweise aus mehreren miteinander gekoppelten Hohlraumresonatoren realisiert. Om das Filter auf einen gewünschten Frequenzbereich abstimmen zu können, sind Mittel erforderlich, mit denen die einzelnen Hohlraumresonatoren in ihrer Resonanzfrequenz durchstimmbar sind. Wie z.B. aus „The Dual-Mode Filter - A Realization" , R.V. Snyder, The Microwave Journal, Dezember 1974, Seite 31-33 hervorgeht, wird die Resonanzfrequenz eines Hohlraumresonators dadurch abgestimmt, dass seine Länge verändert wird. Das geschieht gemäß der genannten Druckschrift dadurch, dass eine komplette Stirnseite des zylinderformigen Hohlraumresonators verschiebbar gelagert ist. Eine derartige Konstruktion von frequenz-abstimmbaren Hohlraumresonatoren geht auch aus „Microwave Filters, Impedance-Matching Networks, and Coupling Structures", Matthaei, Young, Jones, McGraw-Hill Verlag, 1964, Seite 921-923 hervor. Hier ist die verschiebbare Stirnseite des Hohlraumresonators über schleifende Kontakte mit der Hohlraumwand elektrisch verbunden. Ein Hohlraumresonator mit derartigen Abstimmvorrichtungen besitzt eine relativ hohe Einfugungsda pfung; das bedeutet, dass mit einem solchen Hohlraumresonator keine hohe Gute erreicht werden kann.Microwave filters with low losses are usually realized from a plurality of cavity resonators coupled to one another. In order to be able to tune the filter to a desired frequency range, means are required with which the resonance frequency of the individual cavity resonators can be tuned. As can be seen, for example, from "The Dual-Mode Filter - A Realization", RV Snyder, The Microwave Journal, December 1974, pages 31-33, the resonance frequency of a cavity resonator is adjusted by changing its length. This is done in accordance with the publication mentioned in that a complete end face of the cylindrical cavity resonator is slidably mounted. Such a construction of frequency-tunable cavity resonators also works "Microwave Filters, Impedance-Matching Networks, and Coupling Structures", Matthaei, Young, Jones, McGraw-Hill Verlag, 1964, pages 921-923. Here, the displaceable end face of the cavity resonator is electrically connected to the cavity wall via sliding contacts Cavity resonators with such tuning devices have a relatively high insertion loss, which means that such a cavity resonator cannot achieve a high level.
Der Erfindung liegt daher die Aufgabe zugrunde, einen Hohlraumresonator der eingangs genannten Art anzugeben, der einen großen Frequenzdurchstimmbereich hat und dabei eine möglichst hohe Gute aufweist, um damit Filter mit sehr geringer Einfugungsdampfung realisieren zu können, welche über einen großen Frequenzbereich abstimmbar sind.The invention is therefore based on the object of specifying a cavity resonator of the type mentioned at the outset, which has a large frequency tuning range and at the same time has the highest possible quality in order to be able to implement filters with very low insertion loss, which can be tuned over a large frequency range.
Vorteile der ErfindungAdvantages of the invention
Die genannte Aufgabe wird mit den Merkmalen des Anspruchs 1 dadurch gelost, dass der Hohlraumresonator, welcher einen runden Querschnitt aufweist und in dem der Hlln-Wellentyp als Resonanzwellentyp existent ist, bezuglich einer Querschnittsebene zweigeteilt ist und dass beide Hohlraumteile gegeneinander in Richtung ihrer gemeinsamen Langsachse verschiebbar sind. Die beiden in axialer Richtung gegeneinander verschiebbaren Hohlraumteile beeinträchtigen die Gute des Hohlraumresonators nur unwesentlich. So lasst sich ein in seiner Frequenz abstimmbarer Hohlraumresonator verwirklichen, der eine sehr hohe Gute aufweist und damit die Realisierung eines Filters mit einer sehr geringen Einfugungsdampfung ermöglicht. Zweckmäßige Weiterbildungen der Erfindung gehen aus den Unteranspruchen hervor . Wird demnach als Trennebene zwischen den beiden Hohlraumteilen eine Querschnittsebene gewählt, welche in etwa im Bereich eines Maximums der elektrischen Feldstarke des Hlln-Wellentyps liegt, kommt es kaum zu einer Beeinträchtigung der Gute des Hohlraumresonators .The stated object is achieved with the features of claim 1 in that the cavity resonator, which has a round cross-section and in which the Hlln wave type exists as a resonance wave type, is divided in two with respect to a cross-sectional plane and that both cavity parts can be displaced relative to one another in the direction of their common longitudinal axis are. The two cavity parts which can be displaced in the axial direction only insignificantly impair the goodness of the cavity resonator. In this way, a cavity resonator that can be tuned in frequency can be realized, which has a very high quality and thus enables the implementation of a filter with a very low insertion loss. Appropriate developments of the invention emerge from the subclaims. Accordingly, if a cross-sectional plane is selected as the separating plane between the two cavity parts, which lies approximately in the range of a maximum of the electric field strength of the Hlln wave type, the goodness of the cavity resonator is hardly impaired.
Eine vorteilhafte mechanische und elektrische Verbindung zwischen den beiden Hohlraumteilen entsteht dadurch, dass ein Hohlraumteil mit einem Außengewinde und der andere Hohlraumteil mit einem Innengewinde versehen ist, sodass beide Hohlraumteile mit einem veränderbaren Abstand ihrer Stirnseiten ineinander verschraubbar sind. Dabei ist es zweckmäßig, dass der mit dem Innengewinde versehene Hohlraumteil im Bereich der Trennebene einen Absatz mit vergrößertem Innendurchmesser aufweist, an dessen Innenseite sich das Innengewinde befindet . Mit dieser Maßnahme wird erreicht, dass die Innenquerschnitte beider Hohlraumteile gleich groß sind .An advantageous mechanical and electrical connection between the two cavity parts results from the fact that one cavity part is provided with an external thread and the other cavity part is provided with an internal thread, so that both cavity parts can be screwed into one another with a variable distance between their end faces. It is expedient for the cavity part provided with the internal thread to have a shoulder with an enlarged internal diameter in the region of the parting plane, on the inside of which the internal thread is located. This measure ensures that the internal cross sections of the two cavity parts are the same size.
Beschreibung eines AusfuhrungsbeispielsDescription of an exemplary embodiment
In der einzigen Figur der Zeichnung ist ein Längsschnitt durch einen zylinderformigen Hohlraumresonator dargestellt . Dabei ist der Hohlraumresonator bezuglich seiner Querschnittabmessungen so dimensioniert, dass in ihm der Hll2-Wellentyp als Resonanzwellentyp existent ist . Um eine Abstimmung der Resonanzfrequenz des Hohlraumresonators durchführen zu können, ist er in zwei Hohlraumteile 1 und 2 aufgetrennt . Im Hohlraumteil 1 befindet sich die erste Stirnseite 3 des zylinderformigen Hohlraumresonators und der Hohlraumteil 2 hat die gegenüberliegende Stirnseite 4 des Hohlraumresonators . Eine Frequenzabstimmung des Hohlraumresonators wird dadurch möglich, dass der Abstand zwischen den beiden Stirnseiten 3 und 4 in Richtung der Hohlraumresonator-Langsachse z veränderbar ist.In the single figure of the drawing, a longitudinal section through a cylindrical cavity resonator is shown. The cavity resonator is dimensioned with respect to its cross-sectional dimensions so that the Hll2 wave type exists as a resonance wave type. In order to be able to tune the resonance frequency of the cavity resonator, it is split into two cavity parts 1 and 2. The first end face 3 of the cylindrical cavity resonator is located in the cavity part 1 and the cavity part 2 has the opposite end face 4 of the cavity resonator. Frequency tuning of the cavity resonator is possible because the distance is changeable between the two end faces 3 and 4 in the direction of the longitudinal axis of the cavity resonator z.
Neben dem Längsschnitt durch den Hohlraumresonator ist die Verteilung der elektrischen Feldstarke des H112-Wellentyps im Hohlraumresonator bezuglich seiner Langsachse z dargestellt. Die Trennebene 5 zwischen den beiden Hohlraumteilen 1 und 2 ist in eine solche Querschnittsebene des Hohlraumresonators gelegt worden, in der sich ein Maximum der elektrischen Feldstarke E befindet. Bei dieser Zweiteilung des Hohlraumresonators bildet der untere Hohlraumteil 1 etwa 3/4 und der obere Hohlraumteil 2 etwa 1/4 des gesamten Hohlraumes.In addition to the longitudinal section through the cavity resonator, the distribution of the electric field strength of the H112 wave type in the cavity resonator with respect to its longitudinal axis z is shown. The parting plane 5 between the two cavity parts 1 and 2 has been placed in such a cross-sectional plane of the cavity resonator in which there is a maximum of the electric field strength E. In this division of the cavity resonator, the lower cavity part 1 forms approximately 3/4 and the upper cavity part 2 forms approximately 1/4 of the entire cavity.
Eine gegenseitige axiale Verschiebung der beiden Hohlraumteile 1 und 2 zum Zwecke der Frequenzabstimmung wird dadurch erreicht, dass eine der beiden Hohlraumteile, hier der Hohlraumteil 1 an der Innenseite seines offenen Endes mit einem Innengewinde 6 und der andere Hohlraumteil 2 an seinem offenen Ende an der Außenseite mit einem Außengewinde 7 versehen ist. So ist es möglich, beide Hohlraumteile 1 und 2 ineinander zu verschrauben und über die Einschraubtiefe den die Resonanzfrequenz des Hohlraumresonators beeinflussenden Abstand zwischen den beiden Stirnseiten 3 und 4 einzustellen. Vorzugsweise besitzt der Hohlraumteil 1 an seinem offenen Ende einen Absatz 8 mit einem gegenüber dem normalen Hohlraumquerschnitt vergrößerten Innendurchmesser, und an der Innenseite dieses Absatzes 8 befindet sich das Innengewinde 6. Dann kann n mlich der Hohlleiterteil 2 in diesen Absatz 8 hineingeschraubt werden, womit der Hohlraumteil 2 die gleichen Abmessungen seines Innenquerschnitts wie der Hohlraumteil 1 behalten kann.A mutual axial displacement of the two cavity parts 1 and 2 for the purpose of frequency tuning is achieved in that one of the two cavity parts, here the cavity part 1 on the inside of its open end with an internal thread 6 and the other cavity part 2 at its open end on the outside is provided with an external thread 7. It is thus possible to screw the two cavity parts 1 and 2 into one another and to set the distance between the two end faces 3 and 4 influencing the resonance frequency of the cavity resonator via the screw-in depth. Preferably, the cavity part 1 has at its open end a shoulder 8 with an enlarged inside diameter compared to the normal cavity cross-section, and on the inside of this shoulder 8 there is the internal thread 6. Then the waveguide part 2 can be screwed into this paragraph 8, with which Cavity part 2 can keep the same dimensions of its internal cross section as the cavity part 1.
Der in der Trennebene 5 zwischen beiden Hohlraumteilen 1 und 2 erforderliche Spalt wird so gelegt und dimensioniert, dass er symmetrisch zum Maximum der elektrischen Feldstarke E liegt, wenn die Einschraubtiefe des Hohlraumteils 2 einer Abstimmung des Hohlraumresonators auf seine mittlere Frequenzlage entspricht. Bei einer Abstimmung auf die obere bzw. untere Frequenzlage gibt es gewisseThe gap required in the parting plane 5 between the two cavity parts 1 and 2 is laid and dimensioned such that it is symmetrical to the maximum of the electric field strength E when the screw-in depth of the cavity part 2 corresponds to a tuning of the cavity resonator to its mean frequency position. When tuning to the upper or lower frequency range, there are certain
Symmetrieabweichungen des Trennspalts gegenüber dem Maximum der elektrischen Feldstarke E, die aber sehr gering sind und keinen merkbaren Einfluss auf die Gute des Hohlraumresonators haben. Bei einer hohen Abstimmfrequenz wäre der Trennspalt nahezu geschlossen, wahrend er bei einer Abstimmung auf die tiefste Frequenzlage am größten ist. Bei der gewählten Lage des Trennspaltes zwischen den Hohlraumteilen 1 und 2 kann der Resonanzwellentyp Hlln über einen Frequenzbereich von ca. 10 % abgestimmt werden. Der Trennspalt kann dabei bis zu etwa dem 0,1-fachen der entsprechenden Hohlleiterwellenlange des Resonanzwellentyps groß werden, ohne dass eine Auswirkung auf die Gute erkennbar ist, da bei dieser Trennspaltgroße nahezu keine Wandstrome über die Trennstelle fließen und damit keine Energie in den Spalt eingekoppelt wird.Symmetry deviations of the separation gap compared to the maximum of the electric field strength E, which are, however, very small and have no noticeable influence on the quality of the cavity resonator. With a high tuning frequency, the separation gap would be almost closed, while it is greatest when tuning to the lowest frequency position. With the chosen position of the separation gap between the cavity parts 1 and 2, the resonance wave type Hlln can be tuned over a frequency range of approx. 10%. The separation gap can be up to about 0.1 times the corresponding waveguide wavelength of the resonance wave type without an effect on the good being discernible, since with this separation gap size almost no wall currents flow over the separation point and therefore no energy is coupled into the gap becomes.
Der Hohlraumteil 2 weist am unteren, in den Hohlraumteil 1 hineinragenden Ende einen Freistich 9 auf, der dazu dient, Toleranzen zwischen beiden Teilen auszugleichen. Eine elektrische Bedeutung hat dieser Freistich 9 nicht.The cavity part 2 has an undercut 9 at the lower end projecting into the cavity part 1, which is used to compensate for tolerances between the two parts. This undercut 9 has no electrical significance.
In dem gezeigten Ausfuhrungsbeispiel ist im unteren Hohlraumteil 1 im Bereich des unteren Feldstarkemaximums eine Koppeloffnung 10 mit einer induktiven Koppelblende 11 eingelassen, über die die Ankoppelung eines weiteren Hohlraumresonators erfolgen kann. Auch andere Ankopplungsvorrichtungen sind möglich, z. B. in den Hohlraumresonator hineinragende Sonden, welche die elektrischen Feldkomponenten ankoppeln. Auch an den Stirnseiten angeordnete induktive Koppelblenden und am Umfang des Hohlraumresonators vorhandene induktive Koppelblenden, welche die transversalen magnetischen Feldkomponenten (Hr und/oder Hφ) ankoppeln und dafür an Positionen mit nahezu maximaler Feldstärke der entsprechenden Feldkomponente angeordnet sind, sind möglich.In the exemplary embodiment shown, a coupling opening 10 with an inductive coupling aperture 11 is inserted in the lower cavity part 1 in the region of the lower field strength maximum, via which a further cavity resonator can be coupled. Other coupling devices are also possible, e.g. B. protruding into the cavity resonator, which couple the electrical field components. Also arranged on the end faces inductive coupling screens and on Existing inductive coupling diaphragms, which couple the transverse magnetic field components (Hr and / or Hφ) and are therefore arranged at positions with almost maximum field strength of the corresponding field component, are possible in the scope of the cavity resonator.
Da der hier verwendete Resonanzwellentyp Hlln unter 90° entartet ist, können zwei Resonanzkreise durch die entarteten Wellentypen eines geometrischen Hohlraums realisiert und mit der oben beschriebenen Vorrichtung simultan abgestimmt werden. Dadurch wird die Gesamtgröße eines Filters als auch der Aufwand für eine aktive Gesamtabstimmvorrichtung wesentlich reduziert. Die Kopplung der dualen Wellentypen im Hohlraum kann in bekannter Weise mit Diskontinuitäten - üblicherweise Schrauben, die unter 45° bezogen auf die Orientierung der elektrischen Feldkomponenten der dualen Wellentypen auf dem Umfang des zylindischen Hohlraums - durchgeführt werden. Zudem kann auch in bekannter Weise durch zusätzliche Abstimmschrauben auf dem Umfang des Hohlraums eine Grundkorrektur der Frequenzlagen der zwei Wellentypen zueinander durchgeführt werden, die bei einer Filterrealisierung aufgrund unterschiedlicher Koppelbelastungen in der Regel notwendig ist . Since the resonance wave type Hlln used here is degenerate at 90 °, two resonance circuits can be realized by the degenerate wave types of a geometric cavity and can be tuned simultaneously with the device described above. This significantly reduces the overall size of a filter as well as the effort for an active overall tuning device. The coupling of the dual wave types in the cavity can be carried out in a known manner with discontinuities - usually screws which are at 45 ° in relation to the orientation of the electrical field components of the dual wave types on the circumference of the cylindrical cavity. In addition, a basic correction of the frequency positions of the two wave types relative to one another can also be carried out in a known manner by means of additional tuning screws on the circumference of the cavity, which is generally necessary in the case of a filter implementation due to different coupling loads.
Claims
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10010967 | 2000-03-07 | ||
DE10010967A DE10010967A1 (en) | 2000-03-07 | 2000-03-07 | Cavity resonator with tunable resonance frequency |
PCT/IB2001/000431 WO2001067543A1 (en) | 2000-03-07 | 2001-02-23 | Cavity resonator having an adjustable resonance frequency |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1266423A1 true EP1266423A1 (en) | 2002-12-18 |
EP1266423B1 EP1266423B1 (en) | 2008-07-23 |
Family
ID=7633763
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP01915592A Expired - Lifetime EP1266423B1 (en) | 2000-03-07 | 2001-02-23 | Cavity resonator having an adjustable resonance frequency |
Country Status (6)
Country | Link |
---|---|
US (1) | US7012488B2 (en) |
EP (1) | EP1266423B1 (en) |
CN (1) | CN1416605A (en) |
AU (1) | AU2001242674A1 (en) |
DE (2) | DE10010967A1 (en) |
WO (1) | WO2001067543A1 (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SE516862C2 (en) * | 2000-07-14 | 2002-03-12 | Allgon Ab | Reconciliation screw device and method and resonator |
EP2188864A1 (en) * | 2007-08-31 | 2010-05-26 | BAE Systems PLC | Low vibration dielectric resonant oscillators |
RU2390870C1 (en) * | 2009-02-10 | 2010-05-27 | Федеральное государственное унитарное предприятие "Научно-производственное предприятие "Исток" (ФГУП "НПП "Исток") | Microwave klystron-type device (versions) |
EP2410823B1 (en) * | 2010-07-22 | 2012-11-28 | Ion Beam Applications | Cyclotron for accelerating at least two kinds of particles |
RU2483386C2 (en) * | 2011-08-29 | 2013-05-27 | Открытое акционерное общество "Научно-производственное предприятие "Контакт" | Powerful wideband klystron |
US9178256B2 (en) | 2012-04-19 | 2015-11-03 | Qualcomm Mems Technologies, Inc. | Isotropically-etched cavities for evanescent-mode electromagnetic-wave cavity resonators |
US8884725B2 (en) * | 2012-04-19 | 2014-11-11 | Qualcomm Mems Technologies, Inc. | In-plane resonator structures for evanescent-mode electromagnetic-wave cavity resonators |
CN111903000A (en) | 2018-05-04 | 2020-11-06 | 瑞典爱立信有限公司 | Tunable waveguide resonator |
EP3660977B1 (en) * | 2018-11-30 | 2023-12-13 | Nokia Solutions and Networks Oy | Resonator for radio frequency signals |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3771074A (en) * | 1972-03-20 | 1973-11-06 | Nasa | Tunable cavity resonator with ramp shaped supports |
US5712605A (en) * | 1994-05-05 | 1998-01-27 | Hewlett-Packard Co. | Microwave resonator |
JPH10303478A (en) * | 1997-04-30 | 1998-11-13 | Nec Corp | Cavity for rubidium atomic oscillator |
US6118356A (en) * | 1998-09-16 | 2000-09-12 | Hughes Electronics Corporation | Microwave cavity having a removable end wall |
-
2000
- 2000-03-07 DE DE10010967A patent/DE10010967A1/en not_active Withdrawn
-
2001
- 2001-02-23 AU AU2001242674A patent/AU2001242674A1/en not_active Abandoned
- 2001-02-23 US US10/221,045 patent/US7012488B2/en not_active Expired - Lifetime
- 2001-02-23 DE DE50114148T patent/DE50114148D1/en not_active Expired - Lifetime
- 2001-02-23 EP EP01915592A patent/EP1266423B1/en not_active Expired - Lifetime
- 2001-02-23 CN CN01806246A patent/CN1416605A/en active Pending
- 2001-02-23 WO PCT/IB2001/000431 patent/WO2001067543A1/en active IP Right Grant
Non-Patent Citations (1)
Title |
---|
See references of WO0167543A1 * |
Also Published As
Publication number | Publication date |
---|---|
EP1266423B1 (en) | 2008-07-23 |
AU2001242674A1 (en) | 2001-09-17 |
DE50114148D1 (en) | 2008-09-04 |
US20030102943A1 (en) | 2003-06-05 |
DE10010967A1 (en) | 2001-09-13 |
US7012488B2 (en) | 2006-03-14 |
WO2001067543A1 (en) | 2001-09-13 |
CN1416605A (en) | 2003-05-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69114216T2 (en) | Tunable bandpass filter. | |
DE3688375T2 (en) | TRIPLE MODE WITH BAND PASS FILTERS LOADED WITH DIELECTRIC RESONATORS. | |
DE102006061141B4 (en) | High frequency filter with blocking circuit coupling | |
DE2538614A1 (en) | DIELECTRIC RESONATOR | |
DE69222585T2 (en) | Transverse electromagnetic vibration mode resonator | |
DE2726799A1 (en) | FREQUENCY CROSSOVER | |
DE3111106C2 (en) | ||
DE69712802T2 (en) | Dielectric filter | |
DE10325595B3 (en) | High-frequency filter, especially in the manner of a duplex filter | |
DE3706965A1 (en) | DOUBLE FASHION FILTER | |
EP1266423B1 (en) | Cavity resonator having an adjustable resonance frequency | |
EP0751579B1 (en) | Microwavefilter | |
DE68917373T2 (en) | Magnetically tunable bandpass filter. | |
EP0250857B1 (en) | Microwave filter | |
DE4291983C2 (en) | Tunable maximum frequency bandstop filter device | |
DE2828047C2 (en) | Frequency-dependent coupling system | |
DE3011301A1 (en) | MICROWAVE FILTER | |
DE19723286A1 (en) | Device for filtering high-frequency signals | |
DE3617203C2 (en) | ||
DE2327912C2 (en) | Capacitively coupled cavity filter | |
EP2991158B1 (en) | Generic channel filter | |
DE3204863C2 (en) | Tunable or retunable filter | |
DE2708271A1 (en) | Polarisation division filter for satellite communication - has double branches with transverse electric and transverse magnetic mixing sections | |
DE4014541C2 (en) | ||
DE2747654B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20021004 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
RBV | Designated contracting states (corrected) |
Designated state(s): DE ES FR GB IT SE |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: ERICSSON AB |
|
17Q | First examination report despatched |
Effective date: 20070601 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE ES FR GB IT SE |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REF | Corresponds to: |
Ref document number: 50114148 Country of ref document: DE Date of ref document: 20080904 Kind code of ref document: P |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20081103 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20090424 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080723 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20090223 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20081023 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090223 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20160226 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20160217 Year of fee payment: 16 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 50114148 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20171031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170228 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170901 |