Nothing Special   »   [go: up one dir, main page]

EP1266135B1 - Electrovalve for controlling an injection valve in an internal combustion engine - Google Patents

Electrovalve for controlling an injection valve in an internal combustion engine Download PDF

Info

Publication number
EP1266135B1
EP1266135B1 EP01995615A EP01995615A EP1266135B1 EP 1266135 B1 EP1266135 B1 EP 1266135B1 EP 01995615 A EP01995615 A EP 01995615A EP 01995615 A EP01995615 A EP 01995615A EP 1266135 B1 EP1266135 B1 EP 1266135B1
Authority
EP
European Patent Office
Prior art keywords
armature
armature plate
solenoid valve
plate
actuating element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01995615A
Other languages
German (de)
French (fr)
Other versions
EP1266135A1 (en
Inventor
Uwe Grytz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1266135A1 publication Critical patent/EP1266135A1/en
Application granted granted Critical
Publication of EP1266135B1 publication Critical patent/EP1266135B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M47/00Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure
    • F02M47/02Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure of accumulator-injector type, i.e. having fuel pressure of accumulator tending to open, and fuel pressure in other chamber tending to close, injection valves and having means for periodically releasing that closing pressure
    • F02M47/027Electrically actuated valves draining the chamber to release the closing pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/0014Valves characterised by the valve actuating means
    • F02M63/0015Valves characterised by the valve actuating means electrical, e.g. using solenoid
    • F02M63/0017Valves characterised by the valve actuating means electrical, e.g. using solenoid using electromagnetic operating means
    • F02M63/0019Valves characterised by the valve actuating means electrical, e.g. using solenoid using electromagnetic operating means characterised by the arrangement of electromagnets or fixed armatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/0014Valves characterised by the valve actuating means
    • F02M63/0015Valves characterised by the valve actuating means electrical, e.g. using solenoid
    • F02M63/0017Valves characterised by the valve actuating means electrical, e.g. using solenoid using electromagnetic operating means
    • F02M63/0021Valves characterised by the valve actuating means electrical, e.g. using solenoid using electromagnetic operating means characterised by the arrangement of mobile armatures
    • F02M63/0022Valves characterised by the valve actuating means electrical, e.g. using solenoid using electromagnetic operating means characterised by the arrangement of mobile armatures the armature and the valve being allowed to move relatively to each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/30Fuel-injection apparatus having mechanical parts, the movement of which is damped
    • F02M2200/306Fuel-injection apparatus having mechanical parts, the movement of which is damped using mechanical means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/80Fuel injection apparatus manufacture, repair or assembly
    • F02M2200/8092Fuel injection apparatus manufacture, repair or assembly adjusting or calibration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2547/00Special features for fuel-injection valves actuated by fluid pressure
    • F02M2547/003Valve inserts containing control chamber and valve piston

Definitions

  • the invention relates to a solenoid valve for controlling a Injection valve of an internal combustion engine according to the generic term of claim 1.
  • Solenoid valve is used to control the fuel pressure in the Control pressure chamber of an injection valve, for example in Injector of a common rail injection system, related. about the fuel pressure in the control pressure chamber becomes the movement of a Valve piston controlled with an injection opening of the injection valve is opened or closed.
  • the known Solenoid valve has one arranged in a housing part Electromagnets, a movable armature and a moved with the anchor, by a closing spring in the closing direction acted upon control valve member with a Valve seat of the solenoid valve interacts and thus the fuel outflow controls from the control pressure chamber.
  • a friend The disadvantage of solenoid valves is the so-called anchor bounce.
  • the armature When the magnet is switched off, the armature becomes and with it the control valve member from the closing spring of the solenoid valve accelerated toward the valve seat to a fuel drain channel from the control pressure chamber.
  • the impact the control valve member on the valve seat can be a disadvantage Swinging and / or bouncing of the control valve member on the valve seat result in the control of the injection process is affected.
  • the armature In the case of DE 197 08 104 A1 known solenoid valve, the armature is therefore in two parts with an anchor bolt and one on the anchor bolt slidably mounted anchor plate executed so that the anchor plate upon impact of the control valve member on the valve seat against the resilience of a return spring advanced. The return spring then conveys the anchor plate in their starting position on a stop part back of the anchor bolt. Thanks to the two-part design of the anchor becomes the effectively braked mass and thus the kinetic energy of the bouncing on the armature hitting the valve seat is reduced, however the anchor plate after closing the solenoid valve on the Swing the
  • the overstroke can be through the front of one of the anchor bolts leading, stationary in the housing of the solenoid valve clamped slider or by a the slider upstream part, for example an annular disc become.
  • a the slider upstream part for example an annular disc become.
  • the solenoid valve according to the invention with the characteristic Features of claim 1 avoids that in the prior art disadvantages.
  • By arranging one on one section of the armature plate facing away from the electromagnet arranged actuator which is relative to that of the electromagnet facing end of the anchor plate in the sliding direction the anchor plate is adjustable is advantageous achieved that the maximum sliding path of the anchor plate on the Anchor bolt can be adjusted in a very simple manner, without parts being replaced or sanded several times have to. A multi-step setting process eliminated.
  • the proposed solution is in particular one automated line production can be used cost-effectively.
  • the damping device can advantageously be a hydraulic one Damping space between one end of the Actuator and one of the front of the actuator facing Face of the stationary in the housing of the solenoid valve fixed part of the damping device is formed become.
  • the actuator can at its the fixed part facing end face an axial through opening Have implementation of the anchor bolt.
  • the actuator on the anchor plate is particularly advantageous to have the actuator on the anchor plate to be arranged adjustable via a thread. Go berserk the actuator with the anchor plate fixed or by turning the anchor plate with the actuator fixed, the maximum Sliding path of the anchor plate on the anchor bolt in easier Way to be set precisely.
  • the actuator is preferably one with an internal thread provided screw member is formed on a penetrated by the anchor bolt and with an external thread provided section of the anchor plate is screwed.
  • the accuracy of the setting results from the Thread.
  • the very flat thread pitch advantageously results in a Self-locking of the thread, so that the actuator in its End position is fixed.
  • the return spring with a End in the housing of the solenoid valve and with its other end supported on the actuator.
  • Fig. 1 shows the upper part of a from the prior art known fuel injection valve 1, which for use is determined in a fuel injection system with a High-pressure fuel storage is equipped by a High pressure feed pump continuously with high pressure fuel is supplied.
  • the fuel injector 1 shown has a valve housing 4 with a longitudinal bore 5 in which a valve piston 6 is arranged with one end on an arranged in a nozzle body, not shown Valve needle acts.
  • the valve needle is in a pressure chamber arranged, via a pressure bore 8 with high pressure standing fuel is supplied.
  • Through one then connected to the pressure chamber Injection opening is used to inject the fuel the combustion chamber of the internal combustion engine.
  • valve piston 6 is on its end facing away from the valve needle in a cylinder bore 11 out, which is introduced into a valve piece 12 which is inserted into the valve housing 4.
  • a control pressure chamber 14 which has a Inlet channel connected to a high-pressure fuel connection is.
  • the inlet channel is essentially made up of three parts. A radially through the wall of the valve piece 12 leading Bore, the inner walls of which are part of their length form an inlet throttle 15, with one the valve piece annular space 16 surrounding the circumference is permanently connected, which annulus in turn via one in the inlet channel inserted fuel filter in constant connection with the high-pressure fuel connection in the valve housing 4 screw-in connector 9 stands.
  • the annular space 16 is sealed to the longitudinal bore 5 via a sealing ring 39.
  • the control pressure chamber 14 Via the inlet throttle 15, the control pressure chamber 14 is in the High fuel pressure prevailing high fuel pressure exposed.
  • a bore extending in the valve piece 12 Coaxial to the valve piston 6 branches out of the Control pressure chamber 14 a bore extending in the valve piece 12 from that provided with a discharge throttle 18
  • Fuel drain channel 17 forms the in a relief chamber 19 opens out with a low-pressure fuel connection 10 is connected, which in turn in no further shown way with a fuel return of the injection valve 1 is connected.
  • the outlet of the fuel drain channel 17 from the valve piece 12 takes place in the area of a conically countersunk part 21 of the outer Face of the valve piece 12.
  • the valve piece 12 is fixed in a flange area 22 via a screw member 23 clamped with the valve housing 4.
  • a valve seat 24 is formed in the conical part 21, with which a control valve member 25 of the injection valve controlling solenoid valve 30 cooperates.
  • the control valve member 25 is in shape with a two-part anchor an anchor bolt 27 and an anchor plate 28 coupled, which armature with an electromagnet 29 of the solenoid valve 30 works together.
  • the solenoid valve 30 includes the electromagnet surrounding housing part 60 that with the valve housing 4 firmly connected via screwable connecting means 7 is.
  • the armature plate 28 under the influence of their inertial mass against the preload a return spring 35 dynamically displaceable on the anchor bolt 27 stored and is at rest by this return spring against one on the anchor bolt in an annular groove 49 fixed stop part 26 pressed.
  • the opening and closing of the injection valve is as follows described controlled by the solenoid valve 30.
  • the Anchor bolt 27 is constantly in through the closing spring 31 Closing direction applied, so that the control valve member 25 when the electromagnet is not energized in the closed position on Valve seat 24 abuts and the control pressure chamber 14 to the relief side 19 is closed so that there over the inlet channel very quickly builds up the high pressure that is also present in the high-pressure fuel reservoir.
  • Over the area the end face 13 generates the pressure in the control pressure chamber 14 a closing force on the valve piston 6 and thus in Connected valve needle that is larger than the other in the opening direction as a result of the pending High pressure forces.
  • control pressure chamber 14 by opening the solenoid valve to the relief side 19 opened, the pressure builds up in the small volume of the Control pressure chamber 14 very quickly, since this via the inlet throttle 15 is decoupled from the high pressure side. Consequently predominates on the valve needle in the opening direction force acting on the valve needle High fuel pressure so that the valve needle is up moves and the at least one injection opening Injection is opened.
  • the solenoid valve closes 30 the fuel drain channel 17, the pressure in the control pressure chamber 14 through the one flowing in via the inlet channel 15 Fuel can be rebuilt so that the original Closing force is applied and the valve needle of the fuel injector closes.
  • a arranged between the anchor plate 28 and the sliding sleeve 34 Over stroke stop related, for example in the form of a formed with a recessed disc part can be.
  • the overstroke can also by the Anchor plate 28 facing end face of the slider is formed become.
  • the spacer 38, the slider 34 and the Overstroke stops are fixed in place in the solenoid valve housing.
  • the overstroke limit limits the maximum possible Displacement of the anchor plate 28 on the anchor bolt 27.
  • Das Raising of the anchor plate 28 is between the overstroke and the anchor plate 28 formed hydraulic Damping space reduced and the anchor plate 28 arrives faster back to their starting position on the stop part 26 back.
  • the setting of the overtravel respectively the maximum sliding path of the anchor plate 28 on the anchor bolt
  • 27 is quite complex and is done by Replacing spacers or grinding the slider.
  • Solenoid valve has an armature plate 28 on its electromagnet 29 facing away from an axially adjustable actuator 50 is arranged.
  • the anchor plate 28 may be relative to the actuator 50 the end face 41 of the armature plate facing the electromagnet 28 can be adjusted in the sliding direction of the anchor plate 28.
  • the Actuator 50 can be a sliding bushing, for example. In is the preferred embodiment shown here the actuator 50, however, on the anchor plate 28 via a thread arranged adjustable and has the sliding sleeve on it 34 facing end face 51 an axial through opening 53 for carrying out the anchor bolt 27.
  • the actuator 50 is provided with an internal thread 46 Screw member formed on one of the anchor bolts 27 penetrated and provided with an external thread 45 Section 42 of the anchor plate 28 is screwed on, which Section 42 a nozzle protruding toward the sliding sleeve 34 the anchor plate 28 forms.
  • Section 42 a nozzle protruding toward the sliding sleeve 34 the anchor plate 28 forms.
  • Actuator shown in an initial position in which it is up is screwed to the stop on the connecting piece 42.
  • For setting the maximum sliding path of the anchor plate 28 is Actuator in the position shown in the right part of FIG. 2 screwed. This can be done so that the Actuator 50 initially so far from the nozzle 42 of the anchor plate 28 is unscrewed until its end face 51st abuts on the end face 52 of the slider 34.
  • the actuator 50 can also be fixed are and the anchor plate 28 are rotated until the correct overtravel is set.
  • Screw thread of the actuator has a small thread pitch on.
  • UV-curable locking agents can be used after setting the overtravel by means of be cured with a UV lamp. As in the right part of Fig. 2 can be seen, forms the end face 51 of the actuator 50 and that facing the end face 51 of the actuator Front 52 of the stationary sliding sleeve 34 between them hydraulic damping chamber through which a reverberation the anchor plate 28 is damped.
  • the return spring 35 is supported with one end on the Flange 32 of the slider 34 and with its other end the side 43 of the anchor plate facing away from the end face 41 28 and surrounds the actuator 50, which is therefore only is difficult to access.
  • a particularly advantageous embodiment in which the actuator 50 is more accessible is shown in Fig. 3.
  • Fig. 3 shows the actuator 50 in a lateral extension of its facing the slider 34 Front 51 on a circumferential collar 55 on which the return spring 35 facing away from the slider 34 End supports.
  • the left side in Fig. 3 shows the Start position, the right side the set end position.
  • the actuator 50 in FIG. 3 not surrounded by the return spring 35 and is therefore for the Adjustment process more accessible. So tools can be on the Sides of the actuator are better positioned.
  • Also in this Embodiment can optionally by rotating the anchor plate with the actuator held or by rotation of the actuator with the anchor plate held in place the maximum Sliding path of the anchor plate 28 on the anchor bolt 27 is precisely adjusted become.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fluid Mechanics (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

The invention relates to an electrovalve which is used to control an injection valve in a combustion engine. The inventive electrovalve comprises an electromagnet (29), a moveable armature consisting of a plate (28) and a pin (27), in addition to a control valve member (25) which is moved with the armature and cooperates with a valve seat (24) in order to open and close the fuel discharge line (17) of a control pressure chamber (14) of the injection valve (1). The armature plate (28) is mounted in such a way that it can be slidingly displaced on the armature pin (27) as a result of the inert mass thereof in the direction in which the control valve member (25) closes, counter to the tension force of a restoring spring acting upon the armature plate (28). The maximum slide path of the armature plate (28) can be easily adjusted using a final controlling element which is provided on the armature plate. Said controlling element is disposed on a section (42) of said plate (28) opposite the electromagnet (42) and can be moved in relation to the front surface (41) of the armature plate facing the electromagnet in the direction in which the armature plate can slide.

Description

Stand der TechnikState of the art

Die Erfindung betrifft ein Magnetventil zur Steuerung eines Einspritzventils einer Brennkraftmaschine nach dem Oberbegriff des Anspruchs 1.The invention relates to a solenoid valve for controlling a Injection valve of an internal combustion engine according to the generic term of claim 1.

Ein solches, beispielsweise aus der DE 197 08 104 A1 bekanntes Magnetventil wird zur Steuerung des Kraftstoffdrucks im Steuerdruckraum eines Einspritzventils, beispielsweise im Injektor einer Common-Rail-Einspritzanlage, verwandt. Über den Kraftstoffdruck im Steuerdruckraum wird die Bewegung eines Ventilkolbens gesteuert, mit dem eine Einspritzöffnung des Einspritzventils geöffnet oder geschlossen wird. Das bekannte Magnetventil weist einen in einem Gehäuseteil angeordneten Elektromagneten, einen beweglichen Anker und ein mit dem Anker bewegtes, von einer Schließfeder in Schließrichtung beaufschlagtes Steuerventilglied auf, das mit einem Ventilsitz des Magnetventils zusammenwirkt und so den Kraftstoffabfluß aus dem Steuerdruckraum steuert. Ein bekannter Nachteil der Magnetventile besteht im sogenannten Ankerprellen. Beim Abschalten des Magneten wird der Anker und mit ihm das Steuerventilglied von der Schließfeder des Magnetventils zum Ventilsitz hin beschleunigt, um einen Kraftstoffablaufkanal aus dem Steuerdruckraum zu verschließen. Der Aufprall des Steuerventilgliedes am Ventilsitz kann ein nachteiliges Schwingen und/oder Prellen des Steuerventilgliedes am Ventilsitz zur Folge haben, wodurch die Steuerung des Einspritzvorgangs beeinträchtigt wird. Bei dem aus der DE 197 08 104 A1 bekannten Magnetventil ist deshalb der Anker zweiteilig mit einem Ankerbolzen und einer auf dem Ankerbolzen gleitverschiebbar gelagerten Ankerplatte ausgeführt, so daß sich die Ankerplatte beim Aufprall des Steuerventilgliedes auf den Ventilsitz gegen die Spannkraft einer Rückholfeder weiterbewegt. Die Rückholfeder befördert die Ankerplatte anschließend in ihre Ausgangsposition an einem Anschlagteil des Ankerbolzens zurück. Durch die zweiteilige Ausführung des Ankers wird zwar die effektiv abgebremste Masse und damit die das Prellen verursachende kinetische Energie des auf den Ventilsitz auftreffenden Ankers verringert, jedoch kann die Ankerplatte nach dem Schließen des Magnetventils auf dem Ankerbolzen in nachteiliger Weise nachschwingen.Such a known, for example from DE 197 08 104 A1 Solenoid valve is used to control the fuel pressure in the Control pressure chamber of an injection valve, for example in Injector of a common rail injection system, related. about the fuel pressure in the control pressure chamber becomes the movement of a Valve piston controlled with an injection opening of the injection valve is opened or closed. The known Solenoid valve has one arranged in a housing part Electromagnets, a movable armature and a moved with the anchor, by a closing spring in the closing direction acted upon control valve member with a Valve seat of the solenoid valve interacts and thus the fuel outflow controls from the control pressure chamber. A friend The disadvantage of solenoid valves is the so-called anchor bounce. When the magnet is switched off, the armature becomes and with it the control valve member from the closing spring of the solenoid valve accelerated toward the valve seat to a fuel drain channel from the control pressure chamber. The impact the control valve member on the valve seat can be a disadvantage Swinging and / or bouncing of the control valve member on the valve seat result in the control of the injection process is affected. In the case of DE 197 08 104 A1 known solenoid valve, the armature is therefore in two parts with an anchor bolt and one on the anchor bolt slidably mounted anchor plate executed so that the anchor plate upon impact of the control valve member on the valve seat against the resilience of a return spring advanced. The return spring then conveys the anchor plate in their starting position on a stop part back of the anchor bolt. Thanks to the two-part design of the anchor becomes the effectively braked mass and thus the kinetic energy of the bouncing on the armature hitting the valve seat is reduced, however the anchor plate after closing the solenoid valve on the Swing the anchor bolt disadvantageously.

Da ein Ansteuern des Magnetventils erst wieder zu einer definierten Einspritzmenge führt, wenn die Ankerplatte nicht mehr nachschwingt, sind Maßnahmen erforderlich, um das Nachschwingen der Ankerplatte zu reduzieren. Dies ist insbesondere zur Darstellung kurzer zeitlicher Abstände zwischen beispielsweise einer Vor- und Haupteinspritzung erforderlich. Zur Lösung dieses Problems verwendet der Stand der Technik eine Dämpfungseinrichtung, welche einen ortsfesten Teil und einen mit der Ankerplatte bewegten Teil umfaßt. Der ortsfeste Teil wird durch einen Überhubanschlag gebildet, welcher die maximale Weglänge begrenzt, um die sich die Ankerplatte auf dem Ankerbolzen verschieben kann. Der bewegliche Teil wird durch einen dem ortsfesten Teil zugewandten Vorsprung der Ankerplatte gebildet.Since the solenoid valve is only activated again to a defined one Injection quantity results when the anchor plate is not more resonates, measures are required to reduce the ringing to reduce the anchor plate. This is particularly so to show short time intervals between for example, a pre and main injection is required. To solve this problem, the state of the art Technology a damping device, which a fixed Part and a part moved with the anchor plate. The stationary part is formed by an overstroke stop, which limits the maximum path length around which the anchor plate can move on the anchor bolt. The mobile Part is by a fixed part facing Projection of the anchor plate is formed.

Der Überhubanschlag kann durch die Stirnseite eines den Ankerbolzen führenden, in dem Gehäuse des Magnetventils ortsfest eingespannten Gleitstücks oder durch ein dem Gleitstück vorgelagertes Teil, beispielsweise eine Ringscheibe gebildet werden. Bei einer Annäherung der Ankerplatte an den Überhubanschlag entsteht zwischen den einander zugewandten Stirnseiten der Ankerplatte und des Überhubanschlags ein hydraulischer Dämpfungsraum. Der in dem Dämpfungsraum enthaltene Kraftstoff erzeugt eine Kraft, die der Bewegung der Ankerplatte entgegenwirkt, so daß das Nachschwingen der Ankerplatte stark gedämpft wird.The overstroke can be through the front of one of the anchor bolts leading, stationary in the housing of the solenoid valve clamped slider or by a the slider upstream part, for example an annular disc become. When the anchor plate approaches the overstroke arises between the facing end faces the anchor plate and the overstroke stop are hydraulic Damping space. The contained in the damping room Fuel generates a force equivalent to the movement of the anchor plate counteracts, so that the swinging of the anchor plate is strongly dampened.

Problematisch bei den bekannten Magnetventilen ist die genaue Einstellung des maximalen Gleitweges, welcher der Ankerplatte am Ankerbolzen zur Verfügung stehen soll. Der maximale Gleitweg, auch Überhub genannt, wird durch Austauschen der Überhubscheibe, zusätzliche Distanzscheiben oder Abschleifen des Überhubanschlages eingestellt. Diese Lösungen sind, da sie eine schrittweise durchzuführende Einstellung erfordern, aufwendig und nur schwer zu automatisieren und verlängern die Taktzeiten in der Fertigung.The problem with the known solenoid valves is the exact one Setting the maximum glide path, which is the anchor plate should be available on the anchor bolt. The maximum Glide path, also called overstroke, is replaced by replacement the over lift disc, additional spacers or Grinding of the overstroke stop set. These solutions because they are a gradual setting require, complex and difficult to automate and extend the cycle times in production.

Vorteile der ErfindungAdvantages of the invention

Das erfindungsgemäße Magnetventil mit den kennzeichnenden Merkmalen des Anspruchs 1 vermeidet die im Stand der Technik auftretenden Nachteile. Durch die Anordnung eines an einem von dem Elektromagneten abgewandten Abschnitt der Ankerplatte angeordnetes Stellglied, das relativ zu der dem Elektromagneten zugewandten Stirnseite der Ankerplatte in Gleitrichtung der Ankerplatte verstellbar ist, wird vorteilhaft erreicht, daß der maximale Gleitweg der Ankerplatte auf dem Ankerbolzen in sehr einfacher Weise eingestellt werden kann, ohne daß Teile mehrfach ausgetauscht oder abgeschliffen werden müssen. Ein mehrere Schritte umfassender Einstellvorgang entfällt. Die vorgeschlagene Lösung ist insbesondere in einer automatisierten Linienfertigung kostengünstig einsetzbar.The solenoid valve according to the invention with the characteristic Features of claim 1 avoids that in the prior art disadvantages. By arranging one on one section of the armature plate facing away from the electromagnet arranged actuator which is relative to that of the electromagnet facing end of the anchor plate in the sliding direction the anchor plate is adjustable is advantageous achieved that the maximum sliding path of the anchor plate on the Anchor bolt can be adjusted in a very simple manner, without parts being replaced or sanded several times have to. A multi-step setting process eliminated. The proposed solution is in particular one automated line production can be used cost-effectively.

Vorteilhafte Ausgestaltungen und Weiterbildungen der Erfindung werden durch die in den Unteransprüchen enthaltenen Merkmale ermöglicht. Advantageous refinements and developments of the invention are covered by those in the subclaims Features.

So kann die Dämpfungseinrichtung vorteilhaft durch einen hydraulischen Dämpfungsraum zwischen einer Stirnseite des Stellgliedes und einer der Stirnseite des Stellgliedes zugewandten Stirnseite des ortsfest in dem Gehäuse des Magnetventils festgelegten Teils der Dämpfungseinrichtung gebildet werden. Das Stellglied kann an seiner dem ortsfesten Teil zugewandten Stirnseite eine axiale Durchgangsöffnung zur Durchführung des Ankerbolzens aufweisen.For example, the damping device can advantageously be a hydraulic one Damping space between one end of the Actuator and one of the front of the actuator facing Face of the stationary in the housing of the solenoid valve fixed part of the damping device is formed become. The actuator can at its the fixed part facing end face an axial through opening Have implementation of the anchor bolt.

Besonders vorteilhaft ist es, das Stellglied an der Ankerplatte über ein Gewinde verstellbar anzuordnen. Durch Drehen des Stellgliedes bei fixierter Ankerplatte oder durch Drehen der Ankerplatte bei fixiertem Stellglied kann der maximale Gleitweg der Ankerplatte auf dem Ankerbolzen in einfacher Weise genau eingestellt werden.It is particularly advantageous to have the actuator on the anchor plate to be arranged adjustable via a thread. Go berserk the actuator with the anchor plate fixed or by turning the anchor plate with the actuator fixed, the maximum Sliding path of the anchor plate on the anchor bolt in easier Way to be set precisely.

Vorzugsweise ist das Stellglied als ein mit einem Innengewinde versehenes Schraubglied ausgebildet ist, das auf einen von dem Ankerbolzen durchdrungenen und mit einem Außengewinde versehenen Abschnitt der Ankerplatte aufgeschraubt ist.The actuator is preferably one with an internal thread provided screw member is formed on a penetrated by the anchor bolt and with an external thread provided section of the anchor plate is screwed.

Die Genauigkeit der Einstellung ergibt sich hierbei aus der Gewindesteigung. Vorteilhaft ist der axiale Verstellweg des Stellgliedes in bezug auf die dem Elektromagneten zugewandte Stirnseite der Ankerplatte bei einer vollen Umdrehung des Stellgliedes kleiner als ein halber Millimeter ausgebildet. Die sehr flache Gewindesteigung bewirkt vorteilhaft eine Selbsthemmung des Gewindes, so daß das Stellglied in seiner Endstellung fixiert ist. Zusätzlich kann vorgesehen sein, daß das Stellglied in der eingestellten Position an der Ankerplatte arretierbar ist.The accuracy of the setting results from the Thread. The axial adjustment of the Actuator with respect to that facing the electromagnet Face of the anchor plate with one full turn of the Actuator designed smaller than half a millimeter. The very flat thread pitch advantageously results in a Self-locking of the thread, so that the actuator in its End position is fixed. In addition, it can be provided that the actuator in the set position on the anchor plate can be locked.

In einem besonders leicht zu montierenden Ausführungsbeispiel ist vorgesehen, daß sich die Rückholfeder mit einem Ende im Gehäuse des Magnetventils und mit ihrem anderen Ende an dem Stellglied abstützt.In a particularly easy to assemble embodiment it is provided that the return spring with a End in the housing of the solenoid valve and with its other end supported on the actuator.

Zeichnungendrawings

Ausführungsbeispiele der Erfindung sind in den Zeichnungen dargestellt und werden in der nachfolgenden Beschreibung erläutert. Es zeigt

  • Fig. 1 einen Querschnitt durch den oberen Teil eines aus dem Stand der Technik bekannten Kraftstoffeinspritzventils mit einem Magnetventil,
  • Fig. 2 einen Ausschnitt aus einem Querschnitt durch das erfindungsgemäße Magnetventil mit dem Stellglied,
  • Fig. 3 einen Ausschnitt aus einem Querschnitt durch das erfindungsgemäße Magnetventil nach einem zweiten Ausführungsbeispiel.
  • Exemplary embodiments of the invention are illustrated in the drawings and are explained in the description below. It shows
  • 1 shows a cross section through the upper part of a fuel injection valve with a solenoid valve known from the prior art,
  • 2 shows a section of a cross section through the solenoid valve according to the invention with the actuator,
  • Fig. 3 shows a detail from a cross section through the solenoid valve according to the invention according to a second embodiment.
  • Beschreibung der AusführungsbeispieleDescription of the embodiments

    Fig. 1 zeigt den oberen Teil eines aus dem Stand der Technik bekannten Kraftstoffeinspritzventils 1, welches zur Verwendung in einer Kraftstoffeinspritzanlage bestimmt ist, die mit einem Kraftstoffhochdruckspeicher ausgerüstet ist, der durch eine Hochdruckförderpumpe kontinuierlich mit Hochdruckkraftstoff versorgt wird. Das dargestellte Kraftstoffeinspritzventil 1 weist ein Ventilgehäuse 4 mit einer Längsbohrung 5 auf, in der ein Ventilkolben 6 angeordnet ist, der mit seinem einen Ende auf eine in einem nicht dargestellten Düsenkörper angeordnete Ventilnadel einwirkt. Die Ventilnadel ist in einem Druckraum angeordnet, der über eine Druckbohrung 8 mit unter Hochdruck stehendem Kraftstoff versorgt ist. Bei einer Öffnungshubbewegung des Ventilkolbens 6 wird die Ventilnadel durch den ständig an einer Druckschulter der Ventilnadel angreifenden Kraftstoffhochdruck im Druckraum entgegen der Schließkraft einer Feder angehoben. Durch eine dann mit dem Druckraum verbundene Einspritzöffnung erfolgt die Einspritzung des Kraftstoffs in den Brennraum der Brennkraftmaschine. Durch Absenken des Ventilkolbens 6 wird die Ventilnadel in Schließrichtung in den Ventilsitz des Einspritzventils gedrückt und der Einspritzvorgang beendet.Fig. 1 shows the upper part of a from the prior art known fuel injection valve 1, which for use is determined in a fuel injection system with a High-pressure fuel storage is equipped by a High pressure feed pump continuously with high pressure fuel is supplied. The fuel injector 1 shown has a valve housing 4 with a longitudinal bore 5 in which a valve piston 6 is arranged with one end on an arranged in a nozzle body, not shown Valve needle acts. The valve needle is in a pressure chamber arranged, via a pressure bore 8 with high pressure standing fuel is supplied. With an opening stroke movement of the valve piston 6, the valve needle through the constantly high pressure fuel acting on a pressure shoulder of the valve needle in the pressure chamber against the closing force of one Spring raised. Through one then connected to the pressure chamber Injection opening is used to inject the fuel the combustion chamber of the internal combustion engine. By lowering the valve piston 6 the valve needle in the closing direction in the Injector valve seat pressed and the injection process completed.

    Wie in Fig. 1 zu erkennen ist, wird der Ventilkolben 6 an seinem von der Ventilnadel abgewandten Ende in einer Zylinderbohrung 11 geführt, die in einem Ventilstück 12 eingebracht ist, welches in das Ventilgehäuse 4 eingesetzt ist. In der Zylinderbohrung 11 schließt die Stirnseite 13 des Ventilkolbens 6 einen Steuerdruckraum 14 ein, der über einen Zulaufkanal mit einem Kraftstoffhochdruckanschluß verbunden ist. Der Zulaufkanal ist im wesentlichen dreiteilig ausgebildet. Eine radial durch die Wand des Ventilstücks 12 führende Bohrung, deren Innenwände auf einem Teil ihrer Länge eine Zulaufdrossel 15 ausbilden, ist mit einem das Ventilstück umfangsseitig umgebenden Ringraum 16 ständig verbunden, welcher Ringraum wiederum über einen in den Zulaufkanal eingeschobenen Kraftstoffilter in ständiger Verbindung mit dem Kraftstoffhochdruckanschluß eines in das Ventilgehäuse 4 einschraubbaren Anschlußstutzens 9 steht. Der Ringraum 16 ist über einen Dichtring 39 zur Längsbohrung 5 abgedichtet. Über die Zulaufdrossel 15 ist der Steuerdruckraum 14 dem im Kraftstoffhochdruckspeicher herrschenden hohen Kraftstoffdruck ausgesetzt. Koaxial zum Ventilkolben 6 zweigt aus dem Steuerdruckraum 14 eine im Ventilstück 12 verlaufende Bohrung ab, die einen mit einer Ablaufdrossel 18 versehenen Kraftstoffablaufkanal 17 bildet, der in einen Entlastungsraum 19 einmündet, der mit einem Kraftstoffniederdruckanschluß 10 verbunden ist, welcher wiederum in nicht weiter dargestellter Weise mit einem Kraftstoffrücklauf des Einspritzventils 1 verbunden ist. Der Austritt des Kraftstoffablaufkanals 17 aus dem Ventilstück 12 erfolgt im Bereich eines kegelförmig angesenkten Teiles 21 der außenliegenden Stirnseite des Ventilstückes 12. Das Ventilstück 12 ist in einem Flanschbereich 22 fest über ein Schraubglied 23 mit dem Ventilgehäuse 4 verspannt.As can be seen in Fig. 1, the valve piston 6 is on its end facing away from the valve needle in a cylinder bore 11 out, which is introduced into a valve piece 12 which is inserted into the valve housing 4. In the cylinder bore 11, the end face 13 of the Valve piston 6 a control pressure chamber 14, which has a Inlet channel connected to a high-pressure fuel connection is. The inlet channel is essentially made up of three parts. A radially through the wall of the valve piece 12 leading Bore, the inner walls of which are part of their length form an inlet throttle 15, with one the valve piece annular space 16 surrounding the circumference is permanently connected, which annulus in turn via one in the inlet channel inserted fuel filter in constant connection with the high-pressure fuel connection in the valve housing 4 screw-in connector 9 stands. The annular space 16 is sealed to the longitudinal bore 5 via a sealing ring 39. Via the inlet throttle 15, the control pressure chamber 14 is in the High fuel pressure prevailing high fuel pressure exposed. Coaxial to the valve piston 6 branches out of the Control pressure chamber 14 a bore extending in the valve piece 12 from that provided with a discharge throttle 18 Fuel drain channel 17 forms the in a relief chamber 19 opens out with a low-pressure fuel connection 10 is connected, which in turn in no further shown way with a fuel return of the injection valve 1 is connected. The outlet of the fuel drain channel 17 from the valve piece 12 takes place in the area of a conically countersunk part 21 of the outer Face of the valve piece 12. The valve piece 12 is fixed in a flange area 22 via a screw member 23 clamped with the valve housing 4.

    In dem kegelförmigen Teil 21 ist ein Ventilsitz 24 ausgebildet, mit dem ein Steuerventilglied 25 eines das Einspritzventil steuernden Magnetventils 30 zusammenwirkt. Das Steuerventilglied 25 ist mit einem zweiteiligen Anker in Form eines Ankerbolzens 27 und einer Ankerplatte 28 gekoppelt, welcher Anker mit einem Elektromagneten 29 des Magnetventils 30 zusammen wirkt. Das Magnetventil 30 umfaßt ein den Elektromagneten umgebendes Gehäuseteil 60, das mit dem Ventilgehäuse 4 über schraubbare Verbindungsmittel 7 fest verbunden ist. Bei dem bekannten Magnetventil ist die Ankerplatte 28 unter Einwirkung ihrer trägen Masse gegen die Vorspannkraft einer Rückholfeder 35 dynamisch verschiebbar auf dem Ankerbolzen 27 gelagert und wird durch diese Rückholfeder im Ruhezustand gegen ein an dem Ankerbolzen in einer Ringnut 49 festgelegtes Anschlagteil 26 gedrückt. Mit ihrem anderen Ende stützt sich die Rückholfeder 35 gehäusefest an einem Flansch 32 eines den Ankerbolzen 27 führenden Gleitstücks 34 ab, das mit diesem Flansch zwischen einer auf das Ventilstück 12 aufgelegten Distanzscheibe 38 und dem Schraubglied 23 im Ventilgehäuse fest eingespannt ist. Der Ankerbolzen 27 und mit ihm die Ankerscheibe 28 und das mit dem Ankerbolzen gekoppelte Steuerventilglied 25 sind ständig durch eine sich gehäusefest abstützende Schließfeder 31 in Schließrichtung beaufschlagt, so daß das Steuerventilglied 25 normalerweise in Schließstellung am Ventilsitz 24 anliegt. Bei Erregung des Elektromagneten wird die Ankerplatte 28 und über das Anschlagteil 26 auch der Ankerbolzen 27 zum Elektromagneten hin bewegt, wodurch der Ablaufkanal 17 zum Entlastungsraum 19 hin geöffnet wird. Zwischen dem Steuerventilglied 25 und der Ankerplatte 28 befindet sich eine Ringschulter 33 am Ankerbolzen 27, die bei erregtem Elektromagneten am Flansch 32 anschlägt und so den Öffnungshub des Steuerventilgliedes 25 begrenzt. Zur Einstellung des Öffnungshubes dient die zwischen dem Flansch 32 und dem Ventilstück 12 angeordnete Distanzscheibe 38.A valve seat 24 is formed in the conical part 21, with which a control valve member 25 of the injection valve controlling solenoid valve 30 cooperates. The control valve member 25 is in shape with a two-part anchor an anchor bolt 27 and an anchor plate 28 coupled, which armature with an electromagnet 29 of the solenoid valve 30 works together. The solenoid valve 30 includes the electromagnet surrounding housing part 60 that with the valve housing 4 firmly connected via screwable connecting means 7 is. In the known solenoid valve, the armature plate 28 under the influence of their inertial mass against the preload a return spring 35 dynamically displaceable on the anchor bolt 27 stored and is at rest by this return spring against one on the anchor bolt in an annular groove 49 fixed stop part 26 pressed. With its other end the return spring 35 is fixed to the housing Flange 32 of a slide 34 guiding the anchor bolt 27 from that with this flange between one on the valve piece 12 placed spacer 38 and the screw member 23 is firmly clamped in the valve housing. The anchor bolt 27 and with it the armature disk 28 and that with the anchor bolt coupled control valve member 25 are constantly by themselves Supporting closing spring 31 in the closing direction acts so that the control valve member 25 normally is in the closed position on the valve seat 24. When excited of the electromagnet is the armature plate 28 and the stop part 26 also the anchor bolt 27 to the electromagnet Moved, whereby the drain channel 17 to the relief space 19 is opened. Between the control valve member 25 and the anchor plate 28 there is an annular shoulder 33 on the anchor bolt 27, when the electromagnet is excited on the flange 32 stops and so the opening stroke of the control valve member 25th limited. The setting between the opening stroke is used the flange 32 and the valve piece 12 arranged spacer 38th

    Das Öffnen und Schließen des Einspritzventils wird wie nachfolgend beschrieben von dem Magnetventil 30 gesteuert. Der Ankerbolzen 27 ist ständig durch die Schließfeder 31 in Schließrichtung beaufschlagt, so daß das Steuerventilglied 25 bei nicht erregtem Elektromagneten in Schließstellung am Ventilsitz 24 anliegt und der Steuerdruckraum 14 zur Entlastungsseite 19 hin verschlossen ist, so daß sich dort über den Zulaufkanal sehr schnell der hohe Druck aufbaut, der auch im Kraftstoffhochdruckspeicher ansteht. Über die Fläche der Stirnseite 13 erzeugt der Druck im Steuerdruckraum 14 eine Schließkraft auf den Ventilkolben 6 und die damit in Verbindung stehende Ventilnadel, die größer ist als die andererseits in Öffnungsrichtung in Folge des anstehenden Hochdrucks wirkenden Kräfte. Wird der Steuerdruckraum 14 durch Öffnen des Magnetventils zur Entlastungsseite 19 hin geöffnet, baut sich der Druck in dem geringen Volumen des Steuerdruckraumes 14 sehr schnell ab, da dieser über die Zulaufdrossel 15 von der Hochdruckseite abgekoppelt ist. Infolgedessen überwiegt die auf die Ventilnadel in Öffnungsrichtung wirkende Kraft aus dem an der Ventilnadel anstehenden Kraftstoffhochdruck, so daß die Ventilnadel nach oben bewegt und dabei die wenigstens eine Einspritzöffnung zur Einspritzung geöffnet wird. Schließt jedoch das Magnetventil 30 den Kraftstoffablaufkanal 17, kann der Druck im Steuerdruckraum 14 durch den über den Zulaufkanal 15 nachfließenden Kraftstoff wieder aufgebaut werden, so daß die ursprüngliche Schließkraft ansteht und die Ventilnadel des Kraftstoffeinspritzventils schließt.The opening and closing of the injection valve is as follows described controlled by the solenoid valve 30. The Anchor bolt 27 is constantly in through the closing spring 31 Closing direction applied, so that the control valve member 25 when the electromagnet is not energized in the closed position on Valve seat 24 abuts and the control pressure chamber 14 to the relief side 19 is closed so that there over the inlet channel very quickly builds up the high pressure that is also present in the high-pressure fuel reservoir. Over the area the end face 13 generates the pressure in the control pressure chamber 14 a closing force on the valve piston 6 and thus in Connected valve needle that is larger than the other in the opening direction as a result of the pending High pressure forces. If the control pressure chamber 14 by opening the solenoid valve to the relief side 19 opened, the pressure builds up in the small volume of the Control pressure chamber 14 very quickly, since this via the inlet throttle 15 is decoupled from the high pressure side. Consequently predominates on the valve needle in the opening direction force acting on the valve needle High fuel pressure so that the valve needle is up moves and the at least one injection opening Injection is opened. However, the solenoid valve closes 30 the fuel drain channel 17, the pressure in the control pressure chamber 14 through the one flowing in via the inlet channel 15 Fuel can be rebuilt so that the original Closing force is applied and the valve needle of the fuel injector closes.

    Beim Schließen des Magnetventils drückt die Schließfeder 31 den Ankerbolzen 27 mit dem Steuerventilglied 25 schlagartig gegen den Ventilsitz 24. Ein nachteiliges Abprellen oder Nachschwingen des Steuerventilgliedes entsteht dadurch, daß der Aufschlag des Ankerbolzen am Ventilsitz eine elastische Verformung desselben bewirkt, welche als Energiespeicher wirkt, wobei ein Teil der Energie wiederum auf das Steuerventilglied übertragen wird, das dann zusammen mit dem Ankerbolzen vom Ventilsitz 24 abprellt. Das in Fig. 1 gezeigte bekannte Magnetventil verwendet daher einen zweiteiligen Anker mit einer vom Ankerbolzen 27 abgekoppelten Ankerplatte 28. Auf diese Weise läßt sich zwar die insgesamt auf den Ventilsitz auftreffende Masse verringern, jedoch kann die Ankerplatte 28 in nachteiliger Weise nachschwingen. Daher wird ein zwischen der Ankerplatte 28 und der Gleithülse 34 angeordneter Überhubanschlag verwandt, der beispielsweise in Form eines mit einer Ausnehmung versehenen Scheibenteils ausgebildet sein kann. Der Überhubanschlag kann aber auch durch die der Ankerplatte 28 zugewandte Stirnseite des Gleitstücks gebildet werden. Die Distanzscheibe 38, das Gleitstück 34 und der Überhubanschlag werden im Magnetventilgehäuse ortsfest eingespannt. Der Überhubanschlag begrenzt den maximal möglichen Verschiebeweg der Ankerplatte 28 auf dem Ankerbolzen 27. Das Nachschwingen der Ankerplatte 28 wird durch einen zwischen dem Überhubanschlag und der Ankerplatte 28 gebildeten hydraulischen Dämpfungsraum reduziert und die Ankerplatte 28 gelangt schneller wieder in ihre Ausgangslage am dem Anschlagteil 26 zurück. Die Einstellung des Überhubweges beziehungsweise des maximalen Gleitweges der Ankerplatte 28 auf dem Ankerbolzen 27 ist jedoch recht aufwendig und erfolgt durch Austauschen von Distanzscheiben oder Abschleifen des Gleitstücks.When the solenoid valve closes, the closing spring 31 presses the anchor bolt 27 with the control valve member 25 abruptly against the valve seat 24. An adverse bounce or The control valve member oscillates because: the impact of the anchor bolt on the valve seat is elastic Deformation of the same causes what as energy storage acts, with part of the energy in turn on the control valve member is transmitted, which then together with the anchor bolt bounces off the valve seat 24. The known one shown in FIG Solenoid valve therefore uses a two-part armature with an anchor plate 28 decoupled from the anchor bolt 27. In this way, the total on the valve seat reduce the impact mass, but the anchor plate can 28 reverberate in a disadvantageous manner. Therefore, a arranged between the anchor plate 28 and the sliding sleeve 34 Over stroke stop related, for example in the form of a formed with a recessed disc part can be. The overstroke can also by the Anchor plate 28 facing end face of the slider is formed become. The spacer 38, the slider 34 and the Overstroke stops are fixed in place in the solenoid valve housing. The overstroke limit limits the maximum possible Displacement of the anchor plate 28 on the anchor bolt 27. Das Raising of the anchor plate 28 is between the overstroke and the anchor plate 28 formed hydraulic Damping space reduced and the anchor plate 28 arrives faster back to their starting position on the stop part 26 back. The setting of the overtravel respectively the maximum sliding path of the anchor plate 28 on the anchor bolt However, 27 is quite complex and is done by Replacing spacers or grinding the slider.

    In Fig. 2 ist ein erstes Ausführungsbeispiel der Erfindung dargestellt. Gleiche Teile sind mit gleichen Bezugsziffern versehen. Wie zu erkennen ist, verwendet das erfindungsgemäße Magnetventil eine Ankerplatte 28 an deren von dem Elektromagneten 29 abgewandten Seite ein axial verstellbares Stellglied 50 angeordnet ist. Zur Einstellung des maximalen Gleitweges der Ankerplatte 28 kann das Stellglied 50 relativ zu der dem Elektromagneten zugewandten Stirnseite 41 der Ankerplatte 28 in Gleitrichtung der Ankerplatte 28 verstellt werden. Hierzu sind verschiedene Ausführungsformen möglich. Das Stellglied 50 kann beispielsweise eine Schiebebuchse sein. In dem hier dargestellten bevorzugten Ausführungsbeispiel ist das Stellglied 50 jedoch an der Ankerplatte 28 über ein Gewinde verstellbar angeordnet und weist an seiner der Gleithülse 34 zugewandten Stirnseite 51 eine axiale Durchgangsöffnung 53 zur Durchführung des Ankerbolzens 27 auf. Das Stellglied 50 ist als ein mit einem Innengewinde 46 versehenes Schraubglied ausgebildet, die auf einen von dem Ankerbolzen 27 durchdrungenen und mit einem Außengewinde 45 versehenen Abschnitt 42 der Ankerplatte 28 aufgeschraubt ist, welcher Abschnitt 42 einen zur Gleithülse 34 hin abstehenden Stutzen der Ankerplatte 28 bildet. Im linken Teil der Fig. 2 ist das Stellglied in einer Anfangsposition gezeigt, in der es bis zum Anschlag auf den Stutzen 42 aufgeschraubt ist. Zur Einstellung des maximalen Gleitweges der Ankerplatte 28 wird das Stellglied in die im rechten Teil der Fig. 2 gezeigte Position geschraubt. Dies kann so durchgeführt werden, daß das Stellglied 50 zunächst so weit von dem Stutzen 42 der Ankerplatte 28 abgeschraubt wird, bis es mit seiner Stirnseite 51 an der Stirnseite 52 des Gleitstücks 34 anstößt. Anschließend wird es wieder ein definiertes Stück weit auf den Stutzen 42 aufgeschraubt, wobei der gewünschte Überhubweg zwischen der Stirnseite 51 des Stellgliedes 50 und der Stirnseite 52 des Gleitstücks 34 in Abhängigkeit von der Gewindesteigung genau eingestellt wird. Wahlweise kann auch das Stellglied 50 fixiert werden und die Ankerplatte 28 gedreht werden, bis der richtige Überhubweg eingestellt ist. Vorzugsweise weist das Schraubengewinde des Stellgliedes eine geringe Gewindesteigung auf. In einem bevorzugten Ausführungsbeispiel beträgt der axiale Verstellweg des Stellgliedes 50 in bezug auf die Stirnseite 41 der Ankerplatte 28 bei einer vollen Umdrehung 0,25 Millimeter. Mit dem Sondergewinde M7 x 0,25 (nach DIN 134 T1.11 (12.86)) kann dann beispielsweise ein Überhubweg von ca. 15 µm durch eine Drehung des Stellgliedes um etwa 21° eingestellt werden. Durch die flache Gewindesteigung ist von einer Selbsthemmung des Gewindes auszugehen, so daß sich das Stellglied 50 nicht mit der Zeit verstellt. Gegebenenfalls können zusätzlich Arretierungsmittel vorgesehen sein. Hierzu können beispielsweise UV-aushärtbare Arretierungsmittel eingesetzt werden, die nach Einstellung des Überhubweges mittels einer UV-Lampe ausgehärtet werden. Wie im rechten Teil von Fig. 2 erkennbar ist, bildet die Stirnseite 51 des Stellgliedes 50 und die der Stirnseite 51 des Stellgliedes zugewandte Stirnseite 52 der ortsfesten Gleithülse 34 zwischen sich einen hydraulischen Dämpfungsraum aus, durch den ein Nachschwingen der Ankerplatte 28 gedämpft wird.2 is a first embodiment of the invention shown. The same parts have the same reference numbers Mistake. As can be seen, uses the invention Solenoid valve has an armature plate 28 on its electromagnet 29 facing away from an axially adjustable actuator 50 is arranged. For setting the maximum glide path the anchor plate 28 may be relative to the actuator 50 the end face 41 of the armature plate facing the electromagnet 28 can be adjusted in the sliding direction of the anchor plate 28. Various embodiments are possible for this. The Actuator 50 can be a sliding bushing, for example. In is the preferred embodiment shown here the actuator 50, however, on the anchor plate 28 via a thread arranged adjustable and has the sliding sleeve on it 34 facing end face 51 an axial through opening 53 for carrying out the anchor bolt 27. The actuator 50 is provided with an internal thread 46 Screw member formed on one of the anchor bolts 27 penetrated and provided with an external thread 45 Section 42 of the anchor plate 28 is screwed on, which Section 42 a nozzle protruding toward the sliding sleeve 34 the anchor plate 28 forms. In the left part of Fig. 2 that is Actuator shown in an initial position in which it is up is screwed to the stop on the connecting piece 42. For setting the maximum sliding path of the anchor plate 28 is Actuator in the position shown in the right part of FIG. 2 screwed. This can be done so that the Actuator 50 initially so far from the nozzle 42 of the anchor plate 28 is unscrewed until its end face 51st abuts on the end face 52 of the slider 34. Subsequently it is again a defined distance on the nozzle 42 screwed on, the desired overtravel between the End face 51 of the actuator 50 and the end face 52 of the Slider 34 depending on the thread pitch exactly is set. Optionally, the actuator 50 can also be fixed are and the anchor plate 28 are rotated until the correct overtravel is set. Preferably that Screw thread of the actuator has a small thread pitch on. In a preferred embodiment the axial displacement of the actuator 50 with respect to the Face 41 of the anchor plate 28 at a full revolution 0.25 millimeters. With the special thread M7 x 0.25 (according to DIN 134 T1.11 (12.86)) can then, for example, an overtravel distance of approx. 15 µm by rotating the actuator by approx. 21 ° can be set. Due to the flat thread pitch is from a self-locking of the thread to go out, so that Actuator 50 is not adjusted over time. Possibly can also be provided locking means. For this For example, UV-curable locking agents can be used after setting the overtravel by means of be cured with a UV lamp. As in the right part of Fig. 2 can be seen, forms the end face 51 of the actuator 50 and that facing the end face 51 of the actuator Front 52 of the stationary sliding sleeve 34 between them hydraulic damping chamber through which a reverberation the anchor plate 28 is damped.

    Die Rückholfeder 35 stützt sich mit ihrem einen Ende an dem Flansch 32 des Gleitstücks 34 und mit ihrem anderen Ende an der von der Stirnseite 41 abgewandten Seite 43 der Ankerplatte 28 ab und umgibt das Stellglied 50, welches daher nur schwer zugänglich ist. Ein besonders vorteilhaftes Ausführungsbeispiel, in welchem das Stellglied 50 besser zugänglich ist, ist in Fig. 3 dargestellt. Im Unterschied zu dem in Fig. 2 dargestellten Ausführungsbeispiel weist das Stellglied 50 in seitlicher Verlängerung seiner dem Gleitstück 34 zugewandten Stirnseite 51 einen umlaufenden Kragen 55 auf, an dem sich die Rückholfeder 35 mit ihrem von dem Gleitstück 34 abgewandten Ende abstützt. Die linke Seite in Fig. 3 zeigt die Anfangsposition, die rechte Seite die eingestellte Endposition. Wie zu erkennen ist, wird das Stellglied 50 in Fig. 3 nicht durch die Rückholfeder 35 umgeben und ist daher für den Einstellprozeß besser zugänglich. So können Werkzeuge an den Seiten des Stellgliedes besser angesetzt werden. Auch in diesem Ausführungsbeispiel kann wahlweise durch Drehung der Ankerplatte bei festgehaltenem Stellglied oder durch Drehung des Stellgliedes bei festgehaltener Ankerplatte der maximale Gleitweg der Ankerplatte 28 auf dem Ankerbolzen 27 genau eingestellt werden.The return spring 35 is supported with one end on the Flange 32 of the slider 34 and with its other end the side 43 of the anchor plate facing away from the end face 41 28 and surrounds the actuator 50, which is therefore only is difficult to access. A particularly advantageous embodiment in which the actuator 50 is more accessible is shown in Fig. 3. In contrast to that in Fig. 2 shows the actuator 50 in a lateral extension of its facing the slider 34 Front 51 on a circumferential collar 55 on which the return spring 35 facing away from the slider 34 End supports. The left side in Fig. 3 shows the Start position, the right side the set end position. As can be seen, the actuator 50 in FIG. 3 not surrounded by the return spring 35 and is therefore for the Adjustment process more accessible. So tools can be on the Sides of the actuator are better positioned. Also in this Embodiment can optionally by rotating the anchor plate with the actuator held or by rotation of the actuator with the anchor plate held in place the maximum Sliding path of the anchor plate 28 on the anchor bolt 27 is precisely adjusted become.

    Claims (8)

    1. Solenoid valve for controlling an injection valve of an internal combustion engine, having an electromagnet (29), a movable armature with armature plate (28) and armature pin (27), and a control valve element (25) moved by the armature and interacting with a valve seat (24) in order to open and close a fuel discharge channel (17) of a control pressure chamber (14) of the injection valve (1), which armature plate (28), under the action of its inertial mass, is mounted such that it can be displaced in a sliding manner on the armature pin (27) in the closing direction of the control valve element (25) counter to the stressing force of a return spring (35) acting on the armature plate (28), and having a hydraulic damping device, with which post-pulse oscillation of the armature plate (28) during its dynamic displacement on the armature pin (27) can be damped, which damping device comprises a stationary part (34) and a part (15) moved with the armature plate (28), characterized in that the part (50) moved with the armature plate is formed by an actuating element which is arranged on a section (42) of the armature plate (28) that faces away from the electromagnet (29) and, in order to adjust the maximum sliding travel of the armature plate (28) relative to an end (41) of the armature plate that faces the electromagnet, can be adjusted in the sliding direction of the armature plate (28).
    2. Solenoid valve according to Claim 1, characterized in that one end (51) of the actuating element (50) and one end (52) facing the end (51) of the actuating element and belonging to the part (34) of the damping device that is fixed so as to be stationary in the housing (60) of the solenoid valve (30) between them form a hydraulic damping chamber.
    3. Solenoid valve according to Claim 1 or 2, characterized in that, at its end (52) facing the stationary part (34), the actuating element (50) has an axial through-opening (53) for the armature pin (27) to be led through.
    4. Solenoid valve according to one of Claims 1 to 3, characterized in that the actuating element (50) is arranged on the armature plate (28) such that it can be adjusted via a thread.
    5. Solenoid valve according to Claim 4, characterized in that the actuating element (15) is formed as a screw element provided with an internal thread (46) which is screwed onto a section (42) of the armature plate (28) which is penetrated by the armature pin (27) and provided with an external thread (45).
    6. Solenoid valve according to either of Claims 4 and 5, characterized in that, during a complete revolution of the actuating element (50), the axial displacement travel of the actuating element (50) in relation to the end (41) of the armature plate (28) that faces the electromagnet (29) is preferably less than half a millimetre.
    7. Solenoid valve according to one of Claims 1 to 6, characterized in that the actuating element (50) can be locked in the set position on the armature plate (28).
    8. Solenoid valve according to one of Claims 1 to 7, characterized in that the return spring (35) is supported with one end in the housing (60) of the solenoid valve (30) and with its other end on the actuating element (50). (Fig. 3).
    EP01995615A 2001-01-08 2001-12-15 Electrovalve for controlling an injection valve in an internal combustion engine Expired - Lifetime EP1266135B1 (en)

    Applications Claiming Priority (3)

    Application Number Priority Date Filing Date Title
    DE10100422 2001-01-08
    DE10100422A DE10100422A1 (en) 2001-01-08 2001-01-08 Solenoid valve for controlling an injection valve of an internal combustion engine
    PCT/DE2001/004752 WO2002053905A1 (en) 2001-01-08 2001-12-15 Electrovalve for controlling an injection valve in an internal combustion engine

    Publications (2)

    Publication Number Publication Date
    EP1266135A1 EP1266135A1 (en) 2002-12-18
    EP1266135B1 true EP1266135B1 (en) 2004-08-04

    Family

    ID=7669901

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP01995615A Expired - Lifetime EP1266135B1 (en) 2001-01-08 2001-12-15 Electrovalve for controlling an injection valve in an internal combustion engine

    Country Status (5)

    Country Link
    US (1) US6688579B2 (en)
    EP (1) EP1266135B1 (en)
    JP (1) JP4083014B2 (en)
    DE (2) DE10100422A1 (en)
    WO (1) WO2002053905A1 (en)

    Families Citing this family (36)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE10232718A1 (en) 2002-07-18 2004-02-05 Robert Bosch Gmbh Armature assembly for fuel injectors
    DE10257380A1 (en) * 2002-12-09 2004-07-15 Robert Bosch Gmbh Method for setting distances in magnetic circles
    US7156368B2 (en) * 2004-04-14 2007-01-02 Cummins Inc. Solenoid actuated flow controller valve
    ATE468482T1 (en) * 2005-03-14 2010-06-15 Fiat Ricerche ADJUSTABLE DOSING SERVO VALVE OF AN INJECTION VALVE AND ITS ADJUSTMENT METHOD
    DE102005020360A1 (en) * 2005-05-02 2006-11-09 Robert Bosch Gmbh Valve for controlling an injection valve of an internal combustion engine
    DE102005053115A1 (en) * 2005-11-08 2007-05-10 Robert Bosch Gmbh Optimized anchor group guidance for solenoid valves
    US7963458B2 (en) 2006-01-23 2011-06-21 Kimberly-Clark Worldwide, Inc. Ultrasonic liquid delivery device
    US8028930B2 (en) * 2006-01-23 2011-10-04 Kimberly-Clark Worldwide, Inc. Ultrasonic fuel injector
    US7819335B2 (en) * 2006-01-23 2010-10-26 Kimberly-Clark Worldwide, Inc. Control system and method for operating an ultrasonic liquid delivery device
    US8191732B2 (en) 2006-01-23 2012-06-05 Kimberly-Clark Worldwide, Inc. Ultrasonic waveguide pump and method of pumping liquid
    US7424883B2 (en) 2006-01-23 2008-09-16 Kimberly-Clark Worldwide, Inc. Ultrasonic fuel injector
    US7810743B2 (en) 2006-01-23 2010-10-12 Kimberly-Clark Worldwide, Inc. Ultrasonic liquid delivery device
    US7735751B2 (en) * 2006-01-23 2010-06-15 Kimberly-Clark Worldwide, Inc. Ultrasonic liquid delivery device
    US7744015B2 (en) * 2006-01-23 2010-06-29 Kimberly-Clark Worldwide, Inc. Ultrasonic fuel injector
    DE102006045357A1 (en) * 2006-09-26 2008-04-03 Robert Bosch Gmbh Lock washer for a solenoid valve
    EP1918568B1 (en) * 2006-10-24 2009-02-25 C.R.F. Societa Consortile per Azioni Metering solenoid valve for a fuel injector
    DE102007037824A1 (en) * 2007-08-10 2009-02-12 Robert Bosch Gmbh Fuel injection valve for internal combustion engines
    US7533830B1 (en) 2007-12-28 2009-05-19 Kimberly-Clark Worldwide, Inc. Control system and method for operating an ultrasonic liquid delivery device
    US20090212248A1 (en) * 2008-02-27 2009-08-27 Eugeniusz Kozak Solenoid-actuated diaphragm valve
    US7900886B2 (en) * 2008-04-18 2011-03-08 Caterpillar Inc. Valve assembly having a washer
    JP5448104B2 (en) * 2008-10-29 2014-03-19 ジー.ダブリュ.リスク カンパニー,インク. Adjustable dozer valve
    DE602009001184D1 (en) * 2009-02-16 2011-06-09 Fiat Ricerche A method of manufacturing a fuel injection servo valve
    ATE507389T1 (en) * 2009-02-16 2011-05-15 Fiat Ricerche METHOD FOR PRODUCING A FUEL INJECTION SERVO VALVE
    DE102009051677B4 (en) * 2009-11-03 2020-03-26 Continental Automotive Gmbh Injector
    EP2333297B1 (en) * 2009-12-11 2013-03-20 Continental Automotive GmbH Valve assembly for an injection valve and injection valve
    HUE027556T2 (en) * 2012-06-13 2016-10-28 Delphi Int Operations Luxembourg Sarl Fuel injector
    US9206921B1 (en) * 2013-01-02 2015-12-08 Jansen's Aircraft Systems Controls, Inc. Sealed solenoid and solenoid valve
    CN103437928B (en) * 2013-09-06 2016-05-04 中国第一汽车股份有限公司无锡油泵油嘴研究所 Electromagnetic valve type fuel injector control valve assembly
    DE102013220877A1 (en) * 2013-10-15 2015-04-16 Continental Automotive Gmbh Valve
    US9644589B2 (en) * 2013-11-20 2017-05-09 Stanadyne Llc Debris diverter shield for fuel injector
    FR3014994B1 (en) * 2013-12-18 2016-08-05 Commissariat Energie Atomique VALVE FOR FLUID CIRCULATION
    EP3117091A4 (en) 2014-03-10 2017-03-29 G.W. Lisk Company, Inc. Injector valve
    US9359985B2 (en) 2014-09-04 2016-06-07 Caterpillar Inc. Fluid injector actuator with resilient armature overtravel feature
    CN104533679B (en) * 2014-12-30 2016-09-07 南岳电控(衡阳)工业技术股份有限公司 A kind of injector control valve and use the high pressure common rail fuel injection system of this injector control valve
    DE102019213970A1 (en) * 2019-09-13 2021-03-18 Vitesco Technologies GmbH Electromagnetic drive device for a valve of a high-pressure fuel pump
    CN117501002A (en) * 2021-06-04 2024-02-02 康明斯有限公司 Fuel injector apparatus, systems, and methods

    Family Cites Families (8)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US5009390A (en) * 1990-03-01 1991-04-23 Coltec Industries Inc. Electromagnet and reed-type valve assembly
    US5513832A (en) * 1994-04-22 1996-05-07 Lectron Products, Inc. Variable force solenoid valve
    DE19650865A1 (en) * 1996-12-07 1998-06-10 Bosch Gmbh Robert magnetic valve
    IT1289794B1 (en) * 1996-12-23 1998-10-16 Elasis Sistema Ricerca Fiat IMPROVEMENTS TO AN ELECTROMAGNETICALLY OPERATED DOSING VALVE FOR A FUEL INJECTOR.
    IT239878Y1 (en) * 1996-12-23 2001-03-13 Elasis Sistema Ricerca Fiat IMPROVEMENTS TO AN ELECTROMAGNETIC CONTROL DOSING VALVE FOR A FUEL INJECTOR.
    DE19708104A1 (en) 1997-02-28 1998-09-03 Bosch Gmbh Robert magnetic valve
    DE19820341C2 (en) * 1998-05-07 2000-04-06 Daimler Chrysler Ag Actuator for a high pressure injector for liquid injection media
    DE19849210A1 (en) * 1998-10-26 2000-04-27 Bosch Gmbh Robert Fuel injection valve for internal combustion engine fuel injection system has armature movable between two stops, damping spring arranged between second stop and armature

    Also Published As

    Publication number Publication date
    WO2002053905A1 (en) 2002-07-11
    DE10100422A1 (en) 2002-07-11
    US6688579B2 (en) 2004-02-10
    JP2004516425A (en) 2004-06-03
    DE50103110D1 (en) 2004-09-09
    EP1266135A1 (en) 2002-12-18
    US20030178593A1 (en) 2003-09-25
    JP4083014B2 (en) 2008-04-30

    Similar Documents

    Publication Publication Date Title
    EP1266135B1 (en) Electrovalve for controlling an injection valve in an internal combustion engine
    EP2021617B1 (en) Fuel injector comprising a pressure-compensated control valve
    EP1259729B1 (en) Electromagnetic valve for controlling an injection valve of an internal combustion engine
    EP2171258B1 (en) Control valve for a fuel injection valve
    EP1332282B1 (en) Electromagnetic valve for controlling an injection valve of an internal combustion engine
    DE10131201A1 (en) Solenoid valve for controlling an injection valve of an internal combustion engine
    EP2092187B1 (en) Injector for injecting fuel
    EP2307697B1 (en) Fuel injector with two-piece armature
    EP1390614B1 (en) Electromagnetic valve for controlling an injection valve of an internal combustion engine
    DE10131199A1 (en) Solenoid valve for controlling an injection valve of an internal combustion engine
    EP1348074A1 (en) Electromagnetic valve for controlling an injection valve of an internal combustion engine
    EP1346144A2 (en) Electromagnetic valve for controlling an injection valve of an internal combustion engine
    WO2008049699A1 (en) Fuel injector
    EP1339969A1 (en) Magnetic valve for controlling an injection valve of an internal combustion engine
    WO2008049671A1 (en) Fuel injector
    EP2025922B1 (en) Fuel injector valve for combustion engines
    DE102007011047A1 (en) Magnetventilinjektor
    EP2276922B1 (en) Fuel injector with solenoid valve
    EP1256709B1 (en) Solenoid valve for controlling an injection valve of an internal combustion engine
    EP1999363B1 (en) Fuel injection valves for internal combustion engines
    DE10113008A1 (en) Solenoid valve for controlling an injection valve of an internal combustion engine
    EP1179675A2 (en) Solenoid valve controlling the injection valve of an internal combustion engine and electromagnet for it
    DE19963926A1 (en) Control valve for i.c. engine fuel injection device has adjustable stop for limiting stroke of valve element

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

    17P Request for examination filed

    Effective date: 20030808

    GRAP Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOSNIGR1

    GRAS Grant fee paid

    Free format text: ORIGINAL CODE: EPIDOSNIGR3

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): DE FR GB IT

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FG4D

    Free format text: GERMAN

    REF Corresponds to:

    Ref document number: 50103110

    Country of ref document: DE

    Date of ref document: 20040909

    Kind code of ref document: P

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20041130

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FD4D

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    ET Fr: translation filed
    26N No opposition filed

    Effective date: 20050506

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20110107

    Year of fee payment: 10

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20101221

    Year of fee payment: 10

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: IT

    Payment date: 20101228

    Year of fee payment: 10

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20111215

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    Effective date: 20120831

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20111215

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20111215

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20120102

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20130225

    Year of fee payment: 12

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R119

    Ref document number: 50103110

    Country of ref document: DE

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R119

    Ref document number: 50103110

    Country of ref document: DE

    Effective date: 20140701

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20140701