EP1240451A1 - Improvements in and relating to laying of pipeline - Google Patents
Improvements in and relating to laying of pipelineInfo
- Publication number
- EP1240451A1 EP1240451A1 EP00985229A EP00985229A EP1240451A1 EP 1240451 A1 EP1240451 A1 EP 1240451A1 EP 00985229 A EP00985229 A EP 00985229A EP 00985229 A EP00985229 A EP 00985229A EP 1240451 A1 EP1240451 A1 EP 1240451A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- pipeline
- winch
- vessel
- sealine
- connector
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 claims abstract description 72
- 238000011084 recovery Methods 0.000 claims abstract description 14
- 230000007246 mechanism Effects 0.000 claims abstract description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 23
- 229920005989 resin Polymers 0.000 claims description 7
- 239000011347 resin Substances 0.000 claims description 7
- 239000003365 glass fiber Substances 0.000 claims description 6
- 239000000463 material Substances 0.000 claims description 6
- 229920001567 vinyl ester resin Polymers 0.000 claims description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 3
- 239000004411 aluminium Substances 0.000 claims description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 3
- 229910052782 aluminium Inorganic materials 0.000 claims description 3
- 229910052799 carbon Inorganic materials 0.000 claims description 3
- 239000002131 composite material Substances 0.000 claims description 3
- 239000013535 sea water Substances 0.000 claims description 3
- 239000010936 titanium Substances 0.000 claims description 3
- 229910052719 titanium Inorganic materials 0.000 claims description 3
- 230000013011 mating Effects 0.000 claims description 2
- 230000001419 dependent effect Effects 0.000 claims 1
- 229910000831 Steel Inorganic materials 0.000 description 25
- 239000010959 steel Substances 0.000 description 25
- 230000008878 coupling Effects 0.000 description 7
- 238000010168 coupling process Methods 0.000 description 7
- 238000005859 coupling reaction Methods 0.000 description 7
- 230000008569 process Effects 0.000 description 4
- 238000003466 welding Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 230000000750 progressive effect Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000000284 resting effect Effects 0.000 description 2
- 239000003643 water by type Substances 0.000 description 2
- 241000272186 Falco columbarius Species 0.000 description 1
- 229920000271 Kevlar® Polymers 0.000 description 1
- 230000000881 depressing effect Effects 0.000 description 1
- -1 for example Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000004761 kevlar Substances 0.000 description 1
- 239000003562 lightweight material Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 230000010399 physical interaction Effects 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L1/00—Laying or reclaiming pipes; Repairing or joining pipes on or under water
- F16L1/12—Laying or reclaiming pipes on or under water
- F16L1/16—Laying or reclaiming pipes on or under water on the bottom
- F16L1/166—Reclaiming pipes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L1/00—Laying or reclaiming pipes; Repairing or joining pipes on or under water
- F16L1/12—Laying or reclaiming pipes on or under water
- F16L1/16—Laying or reclaiming pipes on or under water on the bottom
- F16L1/18—Laying or reclaiming pipes on or under water on the bottom the pipes being S- or J-shaped and under tension during laying
- F16L1/19—Laying or reclaiming pipes on or under water on the bottom the pipes being S- or J-shaped and under tension during laying the pipes being J-shaped
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L1/00—Laying or reclaiming pipes; Repairing or joining pipes on or under water
- F16L1/12—Laying or reclaiming pipes on or under water
- F16L1/20—Accessories therefor, e.g. floats or weights
- F16L1/202—Accessories therefor, e.g. floats or weights fixed on or to vessels
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L1/00—Laying or reclaiming pipes; Repairing or joining pipes on or under water
- F16L1/12—Laying or reclaiming pipes on or under water
- F16L1/20—Accessories therefor, e.g. floats or weights
- F16L1/202—Accessories therefor, e.g. floats or weights fixed on or to vessels
- F16L1/207—Pipe handling apparatus
Definitions
- This invention relates generally to the laying of pipelines and in particular to a method for abandoning (or abandoning and recovering) a pipeline.
- the invention also relates to a system for use in such a method.
- Such a system and such a method are referred to herein as an A/R system and an A/R method.
- such abandonment and recovery is carried out by a method such as: welding an abandonment/recovery head onto the end of the pipeline being laid; connecting a steel rope to the head; transferring pipeline tension from the pipeline tensioning arrangement on the laying vessel that is used during normal laying to a winch on the vessel; and laying the pipeline and head on the sea bed.
- the vessel may also have to disconnect the rope from the winch and abandon the rope for later recovery; the end of the rope may then be marked by a buoy connected to it directly or via a pennant line.
- the steel rope associated with the winch must have a very high tensile strength to support the high load resulting from the long length of pipeline, which initially extends from the seabed to the vessel . That requires a steel rope having a larger diameter, which, in turn, increases its weight. A higher load capacity is then required of the winch. The problem is increased because a very long steel rope and a very long pennant line are required, which creates further weight.
- the factors just described mean that the provision of a conventionally designed A/R system on a vessel able to operate in deep water is unduly expensive. The effect of the factors referred to above is to make the provision of an effective and economical A/R system problematic when pipelines are being laid in deep water.
- a method of abandoning a pipeline being laid by a vessel including the steps of reducing the tension at sea level of the sealine being laid by the vessel, and thereafter lowering the end of the sealine towards the seabed using a line from a winch on the vessel.
- the tension is reduced by at least 15%.
- the tension is reduced by at least 30%, and more preferably by at least 40%.
- the maximum load bearing capacity of the winch may therefore be less than the maximum load bearing capacity of the pipe laying and tensioning arrangement that is used for laying the pipeline. Similarly the load bearing capacity of the winch line can be reduced thereby enabling its diameter to be reduced. In an example of the invention the load bearing capacity of the winch is reduced to about 50% of the maximum tension under which the vessel is designed to lay a pipeline.
- a reduction in the load bearing capacity (SW ) of the winch is critical in enabling an effective and economical A/R system to be provided even on a vessel designed to be capable of laying large diameter pipelines in deep water.
- the step of reducing the tension at sea level of the sealine being laid by the vessel comprises connecting one or more light elongate members to the end of the pipeline and lowering the elongate members into the sea.
- a "light" elongate member it should be understood that the member is to be light per unit length, when submerged in water, by comparison with the weight in water of the pipeline to which it is connected, so that the effect of connecting the light elongate member in the sealine is to reduce the weight of the sealine. It will be appreciated that any reduction in weight of the sealine extending between the vessel and the seabed will reduce the tension in the sealine at sea level.
- connection of a further length of pipeline sealed at both ends to prevent flooding represents connection of a light elongate member and reduces the tension in the sealine.
- the use of such sealed pipeline or similar members may alone reduce the tension to a level that the winch is able to bear.
- the tension in the pipeline may be too great for the winch to bear,- in this case connecting a length of sealed pipeline will not reduce the tension and a lighter member is required to be connected; preferably such a member is sufficiently light that it is buoyant and, more preferably, generates an upward buoyancy force in water of the order of one half its weight in air or more.
- Said at least one buoyant elongate member may be composed principally of a lightweight material, for example, one selected from the group comprising glass fibre reinforced resins, other composite materials, carbon, titanium and aluminium.
- a lightweight material for example, one selected from the group comprising glass fibre reinforced resins, other composite materials, carbon, titanium and aluminium.
- the material is a glass fibre reinforced vinyl ester resin.
- Parts of the elongate member, for example, end fittings, may be made of heavier material, for example, steel.
- An intermediate elongate member is preferably connected between the end of the pipeline and a buoyant elongate member.
- the intermediate elongate member is preferably hollow and sealed against the ingress of water.
- the intermediate elongate member may be of sufficient weight not to be buoyant when empty.
- the member is provided with a valve to enable the interior of the intermediate elongate member to be flooded by sea water.
- the method may further include the step of cutting the intermediate elongate member, connecting the winch line to the end of the elongate member that is connected to the pipeline and recovering the end of the pipeline.
- the ability to flood the interior of the intermediate elongate member enables pressures to be equalised, thereby facilitating the cutting of the member .
- the tension that has to be applied to them is substantially the same as when laying pipe. It is a much preferred feature of the invention that the one or more elongate members are lowered using a pipe laying and tensioning arrangement on the vessel that is used for laying the pipeline; usually there is only one such tensioning arrangement although it may have several component parts .
- the diameter of the light elongate members is substantially the same as the diameter of the ordinary lengths of pipe making up the pipeline. Indeed the light elongate members are preferably of the same general dimensions as an ordinary length of pipe.
- the invention enables the load bearing capacity of the winch to be substantially less than the load bearing capacity of the tensioning arrangement.
- the method of the invention therefore preferably includes the subsequent step of disconnecting the sealine from the winch line.
- the disconnection can be effected in a variety of ways. A first possibility, if an ROV is provided as would normally be the case, is for the disconnection of the sealine from the winch line to be initiated by a physical contact of the ROV with a connector connecting the sealine to the winch line.
- disconnection it is also possible for disconnection to be initiated remotely in other ways, for example by a signal transmitted from an ROV or the vessel; the signal may be an acoustic signal. In that case the disconnection can be effected without the need for any physical interaction with an ROV or any other outside agency.
- the disconnection takes place automatically at a predetermined angle of the adjoining ends of the winch line and the sealine attached thereto. That predetermined angle is preferably in the range of 45° to 75° and in an embodiment of the invention is about 60° .
- the disconnection is initiated by physical contact from the ROV, it is preferable that the physical contact amounts merely to a signal and that disconnection is able to take place with little or no intervention by the ROV or any other physical manipulation.
- the energy required for disconnection is stored in the connecting arrangement.
- said at least one elongate member is connected to the pipeline through a connection which allows pivoting of the elongate member about a horizontal axis when the pipeline is lying horizontally.
- a connection which allows pivoting of the elongate member about a horizontal axis when the pipeline is lying horizontally.
- a method of abandoning a pipeline being laid by a vessel including the steps of connecting one or more buoyant elongate members to the end of the pipeline, thereafter lowering the elongate members into the sea and then abandoning the pipeline, wherein one or more elongate members are so connected to the pipeline that the end of the elongate member at the end of the pipeline projects upwardly from the seabed, thereby facilitating the future recovery of the pipeline.
- at least one elongate member is connected to the pipeline through a connection which allows pivoting of the elongate member about a horizontal axis when the pipeline is lying horizontally.
- the method of the first aspect of the invention also preferably provides for recovery of the pipeline after abandonment .
- the method preferably further includes recovering the abandoned pipeline by carrying out the further steps of raising the end of the sealine to the vessel using the winch, and raising the sealine further using a pipe laying and tensioning arrangement on the vessel that is used for laying the pipeline.
- the further steps also include a preliminary step of connecting the winch line to the sealine.
- the invention further provides an A/R system for carrying out a method of abandoning a pipeline as defined above with reference to either the first or second aspects of the invention.
- a system preferably includes a winch, a winch line and one or more light elongate members.
- the system includes one or more buoyant elongate members.
- the A/R system preferably includes a connector for connecting the winch line releasably to the one or more buoyant elongate members.
- the connector preferably includes a stored energy arrangement for providing energy to actuate the release of the winch line from the one or more elongate members .
- the stored energy arrangement may take various forms including an electrical battery but preferably the energy is stored as pressurised hydraulic fluid in an accumulator and preferably the release of the winch line is hydraulically actuated.
- the hydraulic actuation may serve to extend or retract radially extending parts of a male element fitted inside a female element and unable to disengage when the parts are extended.
- a joint may be provided for connecting the one or more buoyant elongate members to a pipeline.
- the joint preferably allows pivotal movement of the one or more buoyant elongate members about an axis transverse to the longitudinal axis of the end of the pipeline. Furthermore the joint preferably also allows pivoting of the one or more buoyant elongate members about the longitudinal axis of the end of the pipeline. By allowing such pivoting it becomes possible to arrange for the one or more buoyant elongate members to pivot upwardly from the part of the sealine resting on the seabed and therefore to enable a connection between the winch line and the buoyant members to be well clear of the seabed.
- the invention still further provides a pipe laying vessel including an A/R system as defined in any of the paragraphs above.
- the vessel preferably includes a tensioning arrangement for withstanding the tension exerted by a pipeline during laying and a winch for use when abandoning the pipeline during laying, wherein the safe working load of the winch is lower than the safe working load of the tensioning arrangement .
- the invention also provides a pipe laying vessel including an A/R system and comprising: a tensioning arrangement for withstanding the tension exerted by a pipeline during laying, a winch and a winch line, wherein the safe working load of the winch is lower than the safe working load of the tensioning arrangement.
- Such a vessel may have any of the features referred to in the paragraphs above .
- a method for disconnecting a winch line from a pipeline including the steps of: connecting a first part of a connector to the pipeline, providing a second part of the connector on the winch line, the first and second parts being able to mate with one another and being provided with a locking/unlocking arrangement that can be remotely actuated, mating the first and second parts of the connector and locking them together, and when the first and second parts of the connector are underwater, remotely actuating the locking/unlocking arrangement to unlock the parts and thereafter disconnecting the parts.
- a disconnection system for disconnecting a winch line from a pipeline, the system comprising: a first part of a connector, the first part being connectable to a pipeline; and a second part of the connector, the second part being connectable to a winch line; the first and second parts being able to be connected and locked together by a locking mechanism and being able to be unlocked when underwater by remote actuation of the locking mechanism.
- the remote actuation may be automatic at a certain angle, may be initiated by a physical contact by an ROV or may be initiated by an acoustic signal.
- the first and second parts of the connector include a male part and a female part, the male part being accommodated by the female part when the first and second parts are connected. In that embodiment, the first part forms the female part and the second part forms the male part
- the disconnection system preferably comprises a plurality of radially movable locking members being movable to and from positions in which the members lock the first and second parts together.
- the locking members may for example be moved, in use, by axial movement of a camming surface.
- Fig. 2 shows the vessel of Fig. 1 abandoning a pipeline and rope in shallow waters according to the prior art
- Fig. 3 shows an A/R system embodying the invention, shortly after the abandonment process has been initiated and before the end of the pipeline to be abandoned has reached the seabed;
- Figs . 4a to 4c show progressive stages in the process of abandoning the pipeline
- Fig . 5a shows the arrangement of the system when recovery of the pipeline is just about to begin
- Fig. 5b shows the next stage in the recovery process
- Figs. 6a to 6c show progressive stages, comparable to Figs. 4a to 4c, in a slightly modified process of abandoning the pipeline;
- Fig. 7 is a sectional view of an intermediate string for use in the described embodiment
- Fig. 8a is a sectional view of a seabed joint connected to one end of the intermediate string
- Fig. 8b is a sectional view along the lines b-b in Fig. 8a;
- Fig. 9 is a sectional view of an abandonment string for use in the described embodiment
- Fig. 10 is a sectional view of a female part of a connector fixed to an end of the abandonment string of Fig. 9;
- Fig. 11a is a sectional view of a male part of the connector whose female part is shown in Fig. 10, with the connector shown in a released (retracted) state; and Fig. lib is a sectional view in a plane perpendicular to the plane of the section of Fig. 11a of the male part shown in Fig. 11a, with the connector shown in a locking (extended) state .
- FIGs. 1 and 2 illustrate such a method.
- a vessel 1 is shown that has been laying a pipeline 2 on the seabed 3 but has interrupted laying, for example because of bad weather.
- an abandonment/recovery head 4 was welded to the end of the pipeline and a steel rope 5 connected to the head 4.
- the other end of the steel rope 5 is mounted on a winch (not shown) on the vessel 1.
- the rope 5 is connected, at the end which is not connected to the A/R head 4, to a pennant line 6, which is in turn connected to a marker buoy 7.
- the connection of the pennant line 6 to the rope 5 can be carried out on the vessel .
- the vessel 1 shown in Figs. 1 and 2 is an S-lay vessel; that is, the pipeline 2 generally has the form of an elongated "S" during the laying procedure.
- Such an S-lay vessel is most suitable for laying a pipeline in relatively shallow water.
- the A/R system and method that will now be described with reference to the remaining drawings is especially suited for the case where a pipeline is being laid in deep water using the J-lay technique, in which the pipeline generally has the form of a "J" during the laying procedure.
- the A/R method and system is illustrated in Figs. 3 to 5.
- the pipeline 2 is being laid, using a J-lay technique, by the vessel and the end of the pipeline is at the vessel, indicated by reference numeral 10 and is being allowed to pass down a tower 10A of the vessel.
- a tensioning arrangement of a kind known per se is provided on the tower 10A; as the pipeline is laid, so lengths of pipe are added to the end of the pipeline in a manner known per se .
- One suitable form of vessel and tower arrangement is described in our application No.
- the pipe laying operation is changed: instead of welding a further length of pipe to the end of the pipeline 2, an intermediate string 11 of the same diameter as the pipe is welded to the end of the pipeline 2.
- the intermediate string has a length of about 48m and a diameter of about 60cm; it is made of steel and sealed at each end.
- the intermediate string 11 is passed down the tower 10A using the tensioning arrangement on the tower in the same way as an ordinary length of pipe.
- One end of an abandonment string 13 is connected to the upper end of the intermediate string 11; in this case, however, in place of a welded connection, a special joint 12 (referred to herein as a seabed joint) is provided between the intermediate string 11 and the abandonment string 13.
- the seabed joint 12 allows rotation of the adjoining end of the abandonment string about the longitudinal axis of the intermediate string 11 and also allows pivoting of the abandonment string 13 about an axis perpendicular to its longitudinal axis.
- the abandonment string 13 is of the same diameter as the pipe forming the pipeline 2 and in the particular example described has a length of about 50m and a diameter of about 60cm.
- the abandonment string is made principally of a glass fibre reinforced vinyl ester resin, is sealed at both ends, and is highly buoyant in water.
- the abandonment string 13 is also passed down the tower
- a connector 14 (referred to herein as an A/R connector) is provided at the upper end of the abandonment string 13 and one end of a steel rope 16 is connected, via the A/R connector, to the abandonment string 13. The steel rope is connected to a winch (not shown) on the vessel .
- the tension in the sealine is transferred from the tensioning arrangement on the tower 10A to the winch.
- the tension that the winch has to withstand is less than the tension that was accommodated during laying of the pipeline by the tower 10A and also less than the tension in the pipeline 2 at its end connected to the intermediate string 11.
- the steel rope 16 is then let out from the winch lowering the pipeline 2 and strings 11, 13 towards the seabed, to the position shown in Fig. 3 (where the lowermost part of the pipeline is merely represented by a dotted line) .
- the strings 2, 11, 13 are lowered to the seabed by the A/R winch.
- FIG. 4a shows the situation after further letting out of the steel rope 16 from the winch: the pipeline 2 and intermediate string 11 are lying flat on the seabed 3 and the buoyant abandonment string 13 has pivoted about joint 12 so that it is substantially vertical. The A/R winch then lowers the steel rope 16 further so that the abandonment string 13 becomes inclined to the vertical as shown in Fig. 4b.
- the A/R connector 14 automatically disconnects the rope 16 from the string 13 and the rope is then winched back to the vessel 10.
- the abandonment string 13 is then free and pivots about joint 12 back to the vertical under its own buoyancy to the position shown in Fig. 4c.
- connection of the string 13 via the A/R connector 14 to the rope 16 can be performed by manoeuvring the vessel 10 to the required position and using an ROV 20 as shown in Fig. 5a.
- the rope 16 can then be guided to the A/R connector 14 with the help of an acoustic camera or sonar and the connection reestablished following an actuation signal from the vessel 10 or by a physical manipulation by the ROV 20; for example, a manipulator of the ROV can operate a ball valve, installed in a dedicated ROV panel on the upper part of the A/R connector 14, as will be described further below.
- Fig. 5b shows the situation after the connection has been made.
- the winch is used to haul in the steel rope 16 until the A/R connector 14 reaches the tower 10A of the vessel; tension in the string 13 is then transferred from the winch to the tower 10A; the rope 16 disconnected; the string 13 raised up the tower and, once the string 11 reaches the tower 10A, the string 13 is disconnected from the string 11; the string 11 is then raised up the tower until the upper end of the pipeline 2 reaches the tower 10A; the string 11 is then cut from the pipeline 2; thereafter laying of the pipeline can begin again.
- Figs. 6a to 6c show a modification that can be made to the procedure described above.
- a quick connector 30 can be used to make the connections between the abandonment strings 13.
- Such connectors enabling connections to be made between strings at a welding station on the tower 10A are available commercially.
- An example is the Merlin connector of Oil States Industries (UK) Ltd.
- Another modification to the procedure described above to reduce the tension that the winch has to accommodate in the case of a flooded pipeline is to connect a number of lengths 40 of sealed empty pipeline to the end of the pipeline 2, prior to connecting the intermediate string 11.
- Such a procedure can be adopted instead of or as well as the use of a plurality of abandonment strings 13.
- Such lengths of sealed empty pipeline are preferably provided at each end with valves to allow fluid flow along those lengths if or when desired.
- the string 11 is formed principally of a main central section 111 and has two end sections 112 and 115.
- the end section 112 is connected by welds 113 to the pipeline 2 and to the central section 111; the end section 112 incorporates a hemispherical section 114 which provides a seal between the pipeline 2 and the interior of the string 11.
- the end section 115 is connected by welds 116 to a first part 121 of the joint 12 and incorporates a hemispherical section 117 which provides a seal between the interior of the string 11 and the unsealed joint 12.
- Figs. 8a and 8b show the construction of the joint 12.
- the first part 121 is hollow of generally circular cross- section and houses a cylindrical part 122 of a connector element 123 that is rotatably mounted in the part 121 for rotation about the central longitudinal axis of the intermediate string 11.
- the connector element 123 has, at the opposite end to the cylindrical part 122, a central pivot mounting 124 having a transverse through bore 125 (Fig. 7) .
- a pair of forked arms 126 of a third part 127 of the connector extend on either side of the pivot mounting 124 and have transverse through bores aligned with the bore in the mounting 124.
- a pin 128 passes through the aligned through bores and provides a pivot mounting of the third part 127 relative to the connector element 123.
- the third part 127 (to which the abandonment string 13 is connected, as will be described below) is able to pivot relative to the connector element 123 from a position in which the string is at an angle of 60° to the vertical (the position shown in Fig. 4b and one of the positions shown in dotted outline in Fig. 8a) through a vertical position to a position inclined backwardly at an angle of 25° to the vertical (the other of the extreme positions shown in dotted outline in Fig. 8a) .
- the abandonment string 13 is shown in Fig. 9. It generally comprises a series of tubular members 131 joined together at welded butt strap joints 132. In the example shown four tubular members 131 make up one abandonment string 13.
- the third part 127 of the seabed joint terminates in an annular portion 129 which is welded to a matching annular portion 133 of a steel insert provided at the adjoining end of the abandonment string 13.
- the steel insert 133 is fixed in the member 131 at the time that the string is formed and has annular grooves at the interface with the glass reinforced resin of the member 131 so that a pressure resistant watertight and strong mechanical connection is formed between the steel insert and the member 131.
- a similar steel insert 134 is provided fixed inside its respective tubular member 131 in the same way as the insert 133.
- the insert 134 terminates in a tubular portion 135 which can be welded to a corresponding portion 140 of a female part 141 of the A/R connector 14 as shown in Fig. 10.
- the female part 141 generally comprises a hollow cylindrical cavity 142 of circular cross-section formed with an inwardly projecting lip 143 around an open end 144.
- a series of six pads 145 are equiangularly spaced around the interior of the cavity to provide guide surfaces for receiving a male part of the connector, as will be described below.
- the male part 171 of the connector 14 in section, with the female part 141 and the end of the abandonment string 13 being shown in dotted outline. It will be seen that the male part 171 has a main body part 172 shaped to fit within the female part 141 with a frustoconical leading end to assist entry into the female part. A peripheral flange
- the main body part 172 limits the penetration of the male part 171 into the female part 141.
- the main body part 172 is a close fit within the pads 145.
- Six locking members 174 are mounted in the main body part 172 and are equiangularly spaced around the body part .
- the locking members 174 are each movable radially between a restricted position shown in Fig. 11a where the radially outermost surface of each member is flush with a circumferential surface 175 of the main body part, and an extended position shown in Fig. lib where the radially outermost surface of each member projects outwardly against the interior of a peripheral wall 146 of the female part 141.
- Figs. 11a and lib when the members 174 are in the retracted position shown in Fig. 11a, the male part 171 of the connector can move freely in and out of the female part 141, but when the members
- the male part 171 is held within the female part 141 by the engagement of the members 174 with the lip 143 of the female part 141.
- Radial movement of the locking members 174 is controlled by axial movement of a wedge member 176 which cammingly engages sloping rear surfaces on the locking members 174 to extend the members and also has keyways in which projecting parts of the locking members 174 engage to retract the members.
- movement of the wedge member 176 along the longitudinal axis of the connector to the right as shown in Figs. 11a and lib serves to extend the members 174 and movement to the left serves to retract them.
- the wedge member 176 is axially mounted by a guide rod 177 engaging a central bore in the main body part 172 and its movement is controlled by a double acting hydraulic cylinder 178 pressurised by a nitrogen pre-charged accumulator 179.
- An oil discharge tank 180 is also provided.
- the hydraulic circuit is arranged so that actuation to cause the cylinder 178 to extend the locking members is achieved by contact of a manipulator on the ROV 20 to actuate a ball valve (not shown) in the vicinity of the flange 173 of the male part 171 of the connector 14, whilst actuation to cause the cylinder 178 to retract the locking members is achieved by contact of a connector part 15 connected to the end of the rope 16 as will now be further described.
- the connector part 15 is shown in dotted outline in Figs. 11a and lib. It has a main body part 151 at one end of which there is an eye 152, to which the steel rope 16 (not shown) is connected and at the opposite end of which a coupling part 153 connected to the male part 171 of the connector 14 is provided.
- the male part 171 has a pair of forked arms 180 between which the coupling part 153 is received, as best seen in Fig. 11a.
- the forked arms 180 and the coupling part 153 have aligned bores through which a pin 154 passes connecting together the connector part 15 and the male part 171, whilst allowing pivotal movement of one part relative to the other.
- the coupling part 153 is formed with a pair of lugs 155.
- the parts are in the relative positions shown in Fig. lib, but as the rope 16 becomes inclined to the string 13 as shown in Fig. 4b, so the coupling part 153 pivots relative to the male part 171 and, in the example illustrated, after pivoting through 60°, one of the lugs 155 comes into contact with and passes against a spring loaded actuator plate 156. Depressing the actuator plate 156 against its spring bias serves to actuate a ball valve controlling the hydraulic cylinder 178 to retract the locking members 174, leaving the male and female parts of the connector 14 free to separate from one another.
- the intermediate string 11 on the seabed can be cut using an ROV, another connection made to the cut end of the intermediate string 11 and the pipeline thereafter recovered.
- the abandonment string is made from tubular members of glass fibre reinforced vinyl ester resin.
- Other materials that may be used include other composite materials such as kevlar, carbon, titanium, aluminium or another material having a high tensile strength and low density.
- a swivel may be incorporated in the connection of the steel rope 16 to the coupling part 153 of the connector part 15.
- actuation of the cylinder 178 is achieved by a mechanical actuation generated either automatically by pivoting of the coupling part 153 or by a manipulator arm of an ROV.
- Other forms of remote actuation may be provided, either in place of or in addition to those described; for example actuation may be effected by an acoustic signal from the vessel 10.
- the intermediate string 11 may be provided with valves in the hemispherical sections 114, 117 to allow liquid flow along the string and/or with one or more valves to allow seawater surrounding the sealine to enter the hollow interior of the string 11. It is advantageous to provide such valves so that the intermediate string can be flooded and pressures equalised in the event that the A/R system does not operate and the intermediate string is to be cut.
- the A/R method and system described above provide numerous advantages. Firstly it is possible to employ a winch and rope whose load bearing capacities are substantially less than the tension in the pipeline during laying. It therefore becomes viable to perform the abandonment/recovery operation even in deep water. Also the buoyant nature of the abandonment string 13 means that connections and disconnections between the steel rope 16 and the string 13 are made at a location well clear of the seabed, thereby facilitating those operations. Furthermore, the nature of the connections between the pipelines 2 and the intermediate string 11, between the intermediate string 11 and the abandonment string 13, and between the abandonment string 13 and the rope 16 are such that they can be made and unmade relatively simply and quickly.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Earth Drilling (AREA)
- Pipeline Systems (AREA)
- Electric Cable Installation (AREA)
- Laying Of Electric Cables Or Lines Outside (AREA)
- Placing Or Removing Of Piles Or Sheet Piles, Or Accessories Thereof (AREA)
- Foundations (AREA)
- Revetment (AREA)
Abstract
Description
Claims
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB9930492 | 1999-12-23 | ||
GBGB9930492.5A GB9930492D0 (en) | 1999-12-23 | 1999-12-23 | Improvements in and relating to laying of pipeline |
PCT/EP2000/013095 WO2001048410A1 (en) | 1999-12-23 | 2000-12-21 | Improvements in and relating to laying of pipeline |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1240451A1 true EP1240451A1 (en) | 2002-09-18 |
EP1240451B1 EP1240451B1 (en) | 2006-10-04 |
Family
ID=10866934
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP00985229A Expired - Lifetime EP1240451B1 (en) | 1999-12-23 | 2000-12-21 | Improvements in and relating to laying of pipeline on a seabed |
Country Status (11)
Country | Link |
---|---|
US (1) | US6729802B2 (en) |
EP (1) | EP1240451B1 (en) |
AT (1) | ATE341731T1 (en) |
AU (1) | AU2170801A (en) |
BR (1) | BR0016701B1 (en) |
CA (1) | CA2394868A1 (en) |
DE (1) | DE60031162D1 (en) |
ES (1) | ES2273741T3 (en) |
GB (1) | GB9930492D0 (en) |
NO (1) | NO331000B1 (en) |
WO (1) | WO2001048410A1 (en) |
Families Citing this family (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1331191A1 (en) | 2002-01-25 | 2003-07-30 | IHC Gusto Engineering B.V. | Floating lifting device |
US7182550B2 (en) * | 2004-05-26 | 2007-02-27 | Heerema Marine Contractors Nederland B.V. | Abandonment and recovery head apparatus |
GB0420189D0 (en) | 2004-09-10 | 2004-10-13 | Saipem Spa | Underwater pipe-laying apparatus and method |
GB0513250D0 (en) * | 2005-06-29 | 2005-08-03 | Stolt Offshore Ltd | Method and apparatus for laying pipelines and related equipment in very deep water |
GB2434340B (en) * | 2006-01-20 | 2008-01-02 | Ohm Ltd | Underwater equipment recovery |
GB2434627B (en) * | 2006-01-31 | 2010-10-20 | Subsea 7 Ltd | Apparatus and method for laying down, abandoning and recovering a pipe on the sea floor |
US7621697B2 (en) | 2006-04-19 | 2009-11-24 | Allseas Group S.A. | Abandonment and recovery system and method, and cable connector |
FR2911173B1 (en) * | 2007-01-10 | 2011-07-22 | Saipem Sa | DEVICE AND METHOD FOR DOWNHILLING OR UPWARDING THE END OF AN UNDERWATER DRIVING FROM A SHIP |
GB0710357D0 (en) * | 2007-05-31 | 2007-07-11 | Acergy Uk Ltd | Methods of laying elongate articles at sea |
CN101715622A (en) * | 2007-06-11 | 2010-05-26 | 维斯塔斯风力系统集团公司 | A tubing arrangement for an offshore facility |
US9534453B2 (en) * | 2008-08-13 | 2017-01-03 | Onesubsea Ip Uk Limited | Umbilical management system and method for subsea well intervention |
GB2463286B (en) | 2008-09-08 | 2012-07-18 | Subsea 7 Ltd | Method and apparatus for at sea pipe abandonment and recovery |
AU2010255883B2 (en) | 2009-06-01 | 2014-07-10 | Saipem S.P.A. | Pipe-laying vessel |
ITMI20091639A1 (en) | 2009-09-25 | 2011-03-26 | Saipem Spa | METHOD AND LIFTING GROUP TO LEAVE AND / OR RECOVER UNDERWATER PIPING THROUGH A LAYING VESSEL AND INSTALLATION VESSEL EQUIPPED WITH SUCH LIFTING GROUP |
IT1396585B1 (en) * | 2009-10-23 | 2012-12-14 | Saipem Spa | METHOD TO LEAVE A UNDERWATER PIPE ON A BED OF A WATER BODY |
US20110142543A1 (en) * | 2009-12-14 | 2011-06-16 | Subsea 7 Limited | Method of Using Sacrificial Pipe String |
GB2476823B (en) * | 2010-01-11 | 2012-05-02 | Subsea 7 Contracting Uk Ltd | Improvements relating to abandonment and recovery of pipelines |
GB2488767B (en) | 2011-03-07 | 2013-06-05 | Technip France | Abandonment and recovery system |
GB201104715D0 (en) * | 2011-03-21 | 2011-05-04 | Saipem Spa | A/R Method and apparatus therefor |
NL2006810C2 (en) * | 2011-05-19 | 2012-11-20 | Allseas Group Sa | Recovery device for recovering a pipeline after the abandonment thereof on the seabed on an s-lay vessel. |
GB2522345B (en) * | 2013-02-06 | 2015-12-02 | Subsea 7 Ltd | Improvements relating to abandonment and recovery of pipelines |
CN103335187B (en) * | 2013-07-18 | 2015-04-01 | 泉州市路通管业科技有限公司 | Method for performing submarine glass fiber reinforced plastic pipeline lunching construction by using submarine glass fiber reinforced plastic pipeline joint |
US9671043B2 (en) | 2013-08-09 | 2017-06-06 | Paul D Hawkins | Systems and methods for retrieving a buried subsea tubular |
CN103527851B (en) * | 2013-10-18 | 2015-06-03 | 中国海洋石油总公司 | Pre-laying process of submarine pipeline start laying system |
GB2509598B (en) | 2013-11-21 | 2017-02-01 | Technip France | Transfer mechanism |
FR3035169B1 (en) * | 2015-04-16 | 2017-05-05 | Technip France | DEVICE FOR MONITORING THE FILLING OF A PIPE DURING INSTALLATION IN A WATER EXTENDER, ASSOCIATED ASSEMBLY AND METHOD |
FR3042839B1 (en) * | 2015-10-26 | 2018-05-04 | Saipem S.A. | METHOD FOR DRAINING AN UNDERWATER DUCT FROM FLUID TRANSPORT WHICH IS IMMERED AND FILLED WITH WATER |
FR3043161B1 (en) * | 2015-11-03 | 2017-12-22 | Technip France | DRIVING, METHOD OF CONTROLLING THE HEIGHT OF WATER IN THE DRIVING AND METHOD OF PLACING THE SAME |
NL2018569B1 (en) * | 2017-03-23 | 2018-10-03 | Bluemarine Offshore Yard Service Bv | Abandonment and recovery system for a subsea pipeline |
GB2576333C (en) * | 2018-08-14 | 2024-05-08 | Subsea 7 Do Brasil Servicos Ltda | Handling loads in subsea operations |
GB2576767B (en) | 2018-08-31 | 2020-09-16 | Acergy France SAS | Abandonment and recovery of pipelines |
Family Cites Families (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3724061A (en) * | 1971-07-07 | 1973-04-03 | D Schipper | Method and apparatus for pipeline connection |
US3751932A (en) * | 1972-02-16 | 1973-08-14 | Exxon Production Research Co | Recovery and repair of offshore pipelines |
US3756034A (en) * | 1972-04-04 | 1973-09-04 | Brown & Root | Method and apparatus for laying pipelines |
US3777499A (en) * | 1972-06-14 | 1973-12-11 | Exxon Production Research Co | Offshore pipeline recovery |
US3835656A (en) * | 1972-09-01 | 1974-09-17 | Shell Oil Co | Method and apparatus for supplying temporary buoyancy to an underwater pipeline |
US3842612A (en) * | 1972-09-20 | 1974-10-22 | Hydrotech Int Inc | Pipeline recovery tool and method |
IT988596B (en) * | 1973-02-23 | 1975-04-30 | Saipem Spa | SYSTEM FOR LIFTING SUBMARINE PIPES |
IT983823B (en) | 1973-04-13 | 1974-11-11 | Saipem Spa | EQUIPMENT CALLED SELF-LOCKING CAP FOR THE HERMETIC CLOSURE AND RECOVERY OF PIPES PLACED ON HIGH BOTTOMS |
GB1498804A (en) * | 1974-04-10 | 1978-01-25 | British Petroleum Co | Pipeline tool |
GB1498790A (en) * | 1974-09-27 | 1978-01-25 | British Petroleum Co | Pipelines |
GR59794B (en) | 1975-03-27 | 1978-02-28 | Doris Dev Richesse Sous Marine | Laying pipes under-water |
GB1543578A (en) * | 1975-06-13 | 1979-04-04 | British Petroleum Co | Method of connecting pipes underwater |
NL7511638A (en) * | 1975-10-03 | 1977-04-05 | Johannes Franciscus Oosterkamp | PROCEDURE FOR INSTALLING PIPELINES IN VERY LARGE WATER DEPTH, AND ARRANGEMENT FOR PERFORMING THIS PROCEDURE. |
US4080799A (en) * | 1976-12-27 | 1978-03-28 | Shell Oil Company | Mechanical pipe end seal/alignment device |
US4155669A (en) * | 1978-02-24 | 1979-05-22 | Brown & Root, Inc. | Deep water repair methods and apparatus |
US4145909A (en) | 1978-03-13 | 1979-03-27 | Exxon Production Research Company | Pipeline bending method |
IT1160284B (en) * | 1978-12-04 | 1987-03-11 | Saipem Spa | EQUIPMENT FOR THE SUPPORT OF SUSPENDED PIPES ON CORRUGATED SEA BOTTOMS EVEN AT LARGE DEPTHS |
IT1163671B (en) * | 1979-04-05 | 1987-04-08 | Pirelli | METHOD AND PLANT FOR RECOVERING A LONG SHAPE BODY, PIPE, SUBMARINE ELECTRIC CABLE OR SIMILAR ELEMENT |
US4493590A (en) * | 1979-12-26 | 1985-01-15 | Shell Oil Company | Method and apparatus for on surface joining of submarine pipeline segments using an eccentric hinge |
FR2479943B1 (en) * | 1980-04-04 | 1985-07-05 | Petroles Cie Francaise | PROCESS AND LINE FOR DEPOSITING A PIPELINE AT SEA |
US4547163A (en) * | 1980-06-03 | 1985-10-15 | Licentia Patent-Verwaltungs-G.M.B.H. | Oil transfer apparatus |
IT1190969B (en) | 1982-08-25 | 1988-02-24 | Saipem Spa | AUTOMATIC RELEASE ABANDONING HEAD |
FR2660400B1 (en) | 1990-03-30 | 1992-07-03 | Coflexip | DEVICE FOR LAYING TUBULAR CONDUITS COMPRISING A SUBMERSIBLE MOBILE CLIP AND METHOD USING SUCH A DEVICE. |
US5190107A (en) * | 1991-04-23 | 1993-03-02 | Shell Oil Company | Heave compensated support system for positioning subsea work packages |
US5188483A (en) * | 1991-07-25 | 1993-02-23 | Shell Oil Company | Subsea pipeline recovery clamp |
GB2301647B (en) | 1994-02-19 | 1997-12-03 | Coflexip Stena Offshore Ltd | Pipelaying vessel |
GB2286648B (en) | 1994-02-19 | 1997-04-23 | Stena Offshore Ltd | Pipe-launching ramp assembly and pipelaying vessel |
GB9403216D0 (en) | 1994-02-19 | 1994-04-13 | Stena Offshore Ltd | Pipelaying vessel |
US5573353A (en) | 1994-05-24 | 1996-11-12 | J. Ray Mcdermott, S.A. | Vertical reel pipe laying vessel |
IT1277185B1 (en) * | 1995-03-23 | 1997-11-05 | Snam Progetti | METHOD FOR CONNECTING SUBMARINE PIPES PARTICULARLY SUITABLE FOR HIGH DEPTHS AND LARGE DIAMETERS |
GB2313896B (en) | 1995-03-29 | 1999-04-28 | Coflexip Stena Offshore Ltd | Apparatus for handling elongate members |
GB9616395D0 (en) | 1996-08-03 | 1996-09-11 | Coflexip Stena Offshore Ltd | Pipe laying vessel and method |
GB2321290B (en) | 1997-01-17 | 2001-05-30 | Mcdermott Sa J Ray | Improvements relating to the laying of underwater pipeline |
-
1999
- 1999-12-23 GB GBGB9930492.5A patent/GB9930492D0/en not_active Ceased
-
2000
- 2000-12-21 US US10/168,566 patent/US6729802B2/en not_active Expired - Lifetime
- 2000-12-21 ES ES00985229T patent/ES2273741T3/en not_active Expired - Lifetime
- 2000-12-21 EP EP00985229A patent/EP1240451B1/en not_active Expired - Lifetime
- 2000-12-21 AU AU21708/01A patent/AU2170801A/en not_active Abandoned
- 2000-12-21 WO PCT/EP2000/013095 patent/WO2001048410A1/en active IP Right Grant
- 2000-12-21 CA CA002394868A patent/CA2394868A1/en not_active Abandoned
- 2000-12-21 AT AT00985229T patent/ATE341731T1/en not_active IP Right Cessation
- 2000-12-21 DE DE60031162T patent/DE60031162D1/en not_active Expired - Lifetime
- 2000-12-21 BR BRPI0016701-0A patent/BR0016701B1/en not_active IP Right Cessation
-
2002
- 2002-06-21 NO NO20023019A patent/NO331000B1/en not_active IP Right Cessation
Non-Patent Citations (1)
Title |
---|
See references of WO0148410A1 * |
Also Published As
Publication number | Publication date |
---|---|
NO331000B1 (en) | 2011-09-05 |
BR0016701B1 (en) | 2009-08-11 |
DE60031162D1 (en) | 2006-11-16 |
BR0016701A (en) | 2002-09-24 |
WO2001048410A1 (en) | 2001-07-05 |
ES2273741T3 (en) | 2007-05-16 |
NO20023019D0 (en) | 2002-06-21 |
ATE341731T1 (en) | 2006-10-15 |
EP1240451B1 (en) | 2006-10-04 |
US20030099515A1 (en) | 2003-05-29 |
GB9930492D0 (en) | 2000-02-16 |
US6729802B2 (en) | 2004-05-04 |
CA2394868A1 (en) | 2001-07-05 |
NO20023019L (en) | 2002-08-21 |
AU2170801A (en) | 2001-07-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6729802B2 (en) | System and method for abandoning and recovering pipeline | |
US6113315A (en) | Recoverable system for mooring mobile offshore drilling units | |
US10072467B2 (en) | Method and apparatus for elevating the tapered stress joint or flex joint of an SCR above the water | |
CA1234541A (en) | Remote ball connector | |
US4459931A (en) | Method and apparatus for tension setting and compression releasing tubular connectors | |
US5044827A (en) | Method for recovering wet buckled pipe | |
EP3368404B1 (en) | Disconnectable tower yoke assembly and method of using same | |
US5593249A (en) | Diverless flowline connection system | |
US4347012A (en) | Method and apparatus for tension setting and compression releasing tubular connectors | |
US4445804A (en) | Method and apparatus for remote recovery of submerged pipelines | |
AU2011204506B2 (en) | Improvements relating to abandonment and recovery of pipelines | |
US4459065A (en) | Subsea winching apparatus and method | |
GB2033463A (en) | Method and apparatus for releasably connecting together two objects | |
EP0034890B1 (en) | Connector assembly, methods of forming connections and anchored marine structures | |
US4493590A (en) | Method and apparatus for on surface joining of submarine pipeline segments using an eccentric hinge | |
US3299950A (en) | Pipe line connector | |
WO2020028483A1 (en) | Disconnectable spread mooring and riser tower system and method | |
AU743420B2 (en) | Method and apparatus for suction anchor and mooring deployment and connection | |
GB2429990A (en) | Drilling guide frame assembly | |
US5178429A (en) | Pipeline recovery head | |
GB2510569A (en) | A method of abandoning and recovering a pipeline | |
CA1153566A (en) | Method and apparatus for the offshore joining of pipe strings near the surface of a water body | |
EP3829969B1 (en) | Disconnectable spread mooring and riser tower system and method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20020710 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
17Q | First examination report despatched |
Effective date: 20040203 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAC | Information related to communication of intention to grant a patent modified |
Free format text: ORIGINAL CODE: EPIDOSCIGR1 |
|
RTI1 | Title (correction) |
Free format text: IMPROVEMENTS IN AND RELATING TO LAYING OF PIPELINE ON A SEABED |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20061004 Ref country code: LI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20061004 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20061004 Ref country code: CH Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20061004 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20061004 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REF | Corresponds to: |
Ref document number: 60031162 Country of ref document: DE Date of ref document: 20061116 Kind code of ref document: P |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20061231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070104 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070104 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070105 |
|
REG | Reference to a national code |
Ref country code: GR Ref legal event code: EP Ref document number: 20060404439 Country of ref document: GR |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070316 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
ET | Fr: translation filed | ||
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2273741 Country of ref document: ES Kind code of ref document: T3 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20070705 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20061004 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20061221 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20061004 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IE Payment date: 20141209 Year of fee payment: 15 Ref country code: ES Payment date: 20141111 Year of fee payment: 15 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 16 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20151221 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 17 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20170127 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20151222 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20191223 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GR Payment date: 20191227 Year of fee payment: 20 Ref country code: FR Payment date: 20191226 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20191226 Year of fee payment: 20 Ref country code: IT Payment date: 20191223 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MK Effective date: 20201220 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: PE20 Expiry date: 20201220 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20201220 |