Nothing Special   »   [go: up one dir, main page]

EP1121492B1 - Guy cable deflector - Google Patents

Guy cable deflector Download PDF

Info

Publication number
EP1121492B1
EP1121492B1 EP99947576A EP99947576A EP1121492B1 EP 1121492 B1 EP1121492 B1 EP 1121492B1 EP 99947576 A EP99947576 A EP 99947576A EP 99947576 A EP99947576 A EP 99947576A EP 1121492 B1 EP1121492 B1 EP 1121492B1
Authority
EP
European Patent Office
Prior art keywords
cable
deflector
strands
deflector according
channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99947576A
Other languages
German (de)
French (fr)
Other versions
EP1121492A1 (en
Inventor
Louis Demilecamps
Cyrille Fargier
Etienne Rousselet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vinci Construction Grands Projets SAS
Original Assignee
Vinci Construction Grands Projets SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vinci Construction Grands Projets SAS filed Critical Vinci Construction Grands Projets SAS
Publication of EP1121492A1 publication Critical patent/EP1121492A1/en
Application granted granted Critical
Publication of EP1121492B1 publication Critical patent/EP1121492B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D19/00Structural or constructional details of bridges
    • E01D19/14Towers; Anchors ; Connection of cables to bridge parts; Saddle supports
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C5/00Reinforcing elements, e.g. for concrete; Auxiliary elements therefor
    • E04C5/08Members specially adapted to be used in prestressed constructions
    • E04C5/12Anchoring devices

Definitions

  • the present invention relates to a diverter for n-strand cable separated, of the type comprising at least one body which has two opposite faces at least approximately perpendicular to a longitudinal axis of the body, and which is pierced of n holes traversing the body from one side to the other of the latter and arranged according to a mesh network, each hole having an inner diameter corresponding to the diameter outside of a cable strand.
  • the strands of the cable are usually arranged in the form of a mesh network, for example, a network to triangular mesh.
  • a mesh network for example, a network to triangular mesh.
  • the mesh should be as small and compact as possible so as to minimize the cable resistance to wind and reduce the cost of this running part, especially the cost of the cable sheath and the material injected into this sheath for the cable protection.
  • the strands be separated from each other in such a way that one can juxtapose the jaws of tightening or the sleeves which are used to individually fix the strands to the head anchor. It is therefore usually provided with a deflator which makes it possible to pass the strands from the wide mesh of the anchor head to the compact mesh of the part current of the stay cable.
  • the strands At the anchor head and at the deflector, the strands not undergo sharp angular deflection and should not touch each other in order to improve the fatigue behavior of the anchor. More generally, we seek to limit, or even eliminate, the metal-to-metal contacts because, in use, such contacts are likely to cause wear by small deflections, which those skilled in the art call "fretting corrosion".
  • a common technique is therefore to subject each strand a small angular deviation, which is generally less than 2 ° and usually about 1 °, in placing a deflector at a distance from the anchor head such as the deflection of most deviated strands, that is to say those on the periphery of the cable, either less than the angle indicated above.
  • the deflector is usually constituted by a device of the collar type, which clamps the strands sheathed together. The strands then touch each other by their individual sheath.
  • the deflector is usually constituted by a plastic disk, which is pierced with as many holes as strands, each strand passing through a respective hole in the disc and each hole having an axis parallel to the longitudinal axis of the stay cable.
  • the distance between the deflector and the anchor head can reach 3.4 m in the case of a cable composed of 61 strands of the T15S type commonly used for cable cables, and about 2.6 m in the case of a cable consisting of 37 strands.
  • the coaxiality between the anchor head and the deflector must be guaranteed at the risk of introducing an additional angular deflection. Therefore, the deflector must be maintained by a rigid connection (possibly semi-rigid), which can be constituted for example by a formwork tube in a pylon or by a tube embedded in a screed. This link supports significant efforts to "the state ultimate limit ", which requires, in certain anchoring configurations, a mounting of the connecting tube all the more complex as the deflector is placed far anchor head.
  • Cable anchoring systems are known in which each individual strands of the cable is brought to follow a curved path either in a kind deflector placed immediately before the anchor head or heads (US Pat. No. 4,473,915 and US Pat. FR - 1.328.971), or in the structure of the concrete structure (US-4,442,646, FIG. 4), still in the anchor head itself (US-4,442,646, FIG. 6, US-4,484,425).
  • the said strands pass individually in curved guide tubes which are embedded in a concrete matrix or cement grout.
  • the guide tubes In anchoring systems known from US Pat. Nos. 4,473,915 and 4,442,646. and US-4,484,425, the guide tubes have an inside diameter substantially larger than the outer diameter of the individual strands. A resin epoxy, mortar or grout is injected to fill the spaces gaps between each strand and the inner wall of the guide tube which surrounds it. With a such a known arrangement, it is not possible to obtain a deviation of the strands such the strands of the bundle of strands coming out of the deviator, on the side of the current of the cable, are arranged according to a mesh network having a very small mesh size.
  • the diameter inside of the guide tubes should be of the order of 22 mm to allow a good injection of the residual space between the strand and the tube with a grout of cement.
  • the thickness of the wall of the guide tubes depends of course on the nature of the material that constitutes them and their type; we can consider that this thickness is between 2 and 3 mm.
  • the cross-section overall bundle of parallel strands forming the cable has a relative diameter large, requiring the use of a protective cable sheath itself having a relatively large diameter adapted to that of the cable.
  • the cable is a cable of stay cable, it presents a relatively high wind resistance because of the relatively large diameter of its sheath.
  • an epoxy resin, a mortar or a cement grout is injected into the guide tubes, the strands can no longer be extracted from the said tubes after taking the injected material. As a result, it is not possible to carry out a strand-on-strand replacement if necessary, and that the cable must then be completely replaced as well as at least part of its anchoring systems.
  • the present invention therefore aims to provide a deflector allowing to achieve both a substantial reduction in the total length of the zone of deflection and anchoring strands of a guy cable, a mesh size also as small as possible for the mesh network formed by the strands in the current part cable, and the possibility of replacing one or more cable strands, strand by strand, and while avoiding subjecting said strands to angular deviations localized unacceptable.
  • the invention provides a deflector according to claim 1.
  • each channel of the deflector has a predefined curvature, constant or non-constant, which is compatible with the strength of the strand and its resistance to fatigue, and which allows to pass the strands of the first mesh size at the second mesh size, respectively at the level of first and second faces of the body of the deflector, on a length of deflection which, as will be seen later, is much less than that which is necessary with the conventional deflectors placed away from the anchor head.
  • the radius of curvature (min of R) of the diverter channels that are located at the periphery of the mesh network have a preference value greater than or equal to 2 m and preferably for example, the value (min of R) is equal to 2.5 m.
  • said first mesh size (m 1 ) has a value that satisfies the relation: ⁇ + 1,5 mm ⁇ m 1 ⁇ ⁇ + 5 mm where ⁇ is the value of the inner diameter of the channels which itself satisfies the relation: ⁇ + 0.4 mm ⁇ ⁇ ⁇ ⁇ + 2 mm where ⁇ is the diameter value of a cable strand.
  • each curved path of the deviator channels has two parts successive curved in opposite directions, namely, starting from the first face of the body of the deflector, a first part having a concavity turned towards the outside of the body, followed by a second part having a concavity turned towards the interior of the body.
  • each curved path of the deflector channels is curved monotonous way from the first to the second face of the deviator's body.
  • the size of the mesh of the mesh network formed by the deviator channels on the second face of it can be chosen to match the mesh size of the holes in the anchor head.
  • the deflector can be attached to the anchor head to form a very compact set.
  • each channel of the deviator is contiguous to a corresponding hole in the anchor head and forms with it a path continuous for the strand that passes through them, threading the strands through the holes of the anchor head and the diverter channels is greatly facilitated and one can get pass guide tubes which, with some known deflectors located at a distance of the anchor head, should be provided between the deflector and the anchor head for guide the strands from one to the other of these two elements.
  • each strand is in contact with the inner surface of the corresponding channel of the deflector over a length relatively large compared to a conventional deflector. Because of this relatively long contact length, and because of the curved shape of the path followed by each strand in the deflector, each strand is submitted in service, when it is stretched, to a frictional force in the corresponding channel of the deflector, in the where the strands are attached to the anchoring head by means of clamping jaws, the friction forces applied to the strands by the deflector make it possible to reduce the amplitude of the stresses of fatigue experienced by the strands in the clamping jaws anchor head. In this respect, the deflector according to the invention thus acts as a filtered.
  • Figure 1 shows a conventional anchor 1 for a guy cable multi-strand 2.
  • Anchor 1 comprises an anchor head 4, which is pierced with n holes 5 (37 holes in the example shown) in each of which the strands 3 of the stay cable 2 are anchored individually in a known manner, for example by means of keys or conical jaws 6, in which case the holes 5 are partly cylindrical and partly conical.
  • the holes 5 of the anchoring head 4 are arranged according to an arrangement forming a mesh network, for example equilateral triangle mesh (Figure 3), which has a given size of mesh, for example 33 mm in the case where we use T15S type 1770 or 1860 MPa strands (corresponding to a force guarantee at break of 265,500 or 279,000 N) which have a diameter of 15,7 mm.
  • the mesh size is the distance between the axes of any pair of adjacent holes 5.
  • the current part of the cable of guy 2 is the part that extends between the anchor 1 shown in Figure 1 and another anchor (not shown) located at the other end of the stay cable 2, and which passes usually in a sheath 9 (only a very small part of this sheath is visible in Figure 1) constituted for example by a high density polyethylene tube (HDPE).
  • a sheath 9 constituted for example by a high density polyethylene tube (HDPE).
  • HDPE high density polyethylene tube
  • the deflector 7 made for example of HDPE, is attached to one end of a metal tube 11, itself fixed or embedded in a portion 12 of a structure to guy.
  • the tube 11 supports and maintains the deflector 7 at a predefined distance l 1 (FIG. 4) from the anchoring head 4.
  • This distance l 1 is usually chosen so that the angular deflection ⁇ produced by the deflector 7 remains lower or equal to a preset value usually 1 to 2 ° for all the strands 3 so that, in use, they are not subjected to too much fatigue at the point where they leave the deflector 7, that is to say at the exit orifices, holes 8 oriented towards the anchoring head 4, and possibly also at the point where they enter the anchoring head 4, that is to say at the inlet orifices of the holes 5 facing the deflector 7 if the axes of the holes 5 are parallel to the longitudinal central axis 13 of the anchorage 1.
  • d denotes the transverse offset experienced by any of the strands 3 of the cable 2 between the deflector 7 and the anchoring head 4.
  • e 1 the distance between the axis 13 and the axis of the hole 8 through which the strand 3 passes in the deflector 7, and e 2 the distance between the axis 13 and the axis of the hole 5 through which the strand passes in the anchoring head 4
  • the distance l 1 must be calculated for the holes of highest rank.
  • a cable 2 of 37 strands of the T15S type with a mesh size m 1 of 18 mm, a mesh size m 2 of 33 mm, an angular deflection ⁇ of 1 ° and a value of r equal to 3, we obtain a distance l 1 equal to 2.56 m.
  • r is equal to 4 and with the same values of the parameters m 1 , m 2 and ⁇ , we obtain for the distance for the distance l 1 a value of 3.44 m. From the foregoing, it can thus be seen that in the conventional anchor 1 shown in FIG. 1, the distance l 1 must be relatively large. Thanks to the present invention, this distance can be considerably reduced as will now be seen.
  • FIG. 5 shows an anchor 10 using a deflector 7 according to a first embodiment of the invention.
  • the elements of the anchor 10 of FIG. 5 which are identical or which play the same role as those of the conventional anchor 1 of FIG. 1 are designated by the same reference numbers and will not be described again in detail.
  • the deflector 7 of the anchor 10 of FIG. 5 is in the form of a body 14, for example cylindrical, which has an axial length greater than that of the deflector 7 of the conventional anchor 1 of FIG. and which comprises as many channels 8 as there are strands 3 in the cable 2.
  • Each channel 8 preferably has an inside diameter ⁇ which satisfies the relation: ⁇ + 0.4 mm ⁇ ⁇ ⁇ + 2 mm where ⁇ is the outside diameter of a strand 3.
  • the mesh network formed by the channels 8 of the deflector 7 of FIG. 5 has a first mesh dimension m 1 which may be the same as that of the mesh network formed by the holes of the 7 of Figures 1 and 2.
  • the mesh network formed by the channels 8 of the deflector 7 of Figure 5 has a second dimension of mesh m 2 which is greater than the first mesh size m 1 and which is preferably equal to the mesh size of the network formed by the holes 5 of the anchor head 4. In these conditions, the deflector 7 and the head of anchorage 4 can be joined to each other as shown in Figure 5.
  • the central channel 8 of the deflector 7 which is located on the axis longitudinal axis of the body 14 and which is straight
  • all the other channels 8 of the deflector 7 of the 5 extend between the two faces of the body 14 along a curved path, which has any point a curvature at most equal to a predefined maximum curvature.
  • the curved path of the channels located at the periphery of the network mesh have a stronger curvature than that of the channel paths closer to the longitudinal axis of the body 14, while remaining nevertheless less than the curvature predefined maximum.
  • this predefined maximum curvature is chosen so as to be compatible with the mechanical strength of the strands 3 and with their resistance to fatigue.
  • the minimum radius of curvature of the channel curve 8 is at least 1 m, preferably at least equal to 2 m, for example equal to 2.5 m.
  • each channel 8 of the deviator 7 comprises two successive parts curved in opposite directions. More precisely, starting from the face of the body 14 which is turned towards the sheath 9, each channel 8 has a curved path that has a first part whose concavity is radially outwardly of the body 14, and a second part whose concavity is turned radially inwardly of said body 14, the two parts are connecting to one another continuously.
  • the length of the deflection zone of the strands 3 of the cable 2 is equal to the axial length of the body 14 of the deflector 7. Comparing FIGS. 1 and 5, in which the anchors 1 and 10 have been drawn to the same scale, it can be seen that the length of the zone of the deviation of the strands 3 in the anchorage 10 is significantly shorter than the length of the deflection zone of the strands 3 in the conventional anchoring 1, the length of this last zone corresponding to the distance l 1 .
  • the length of the deflection zone of strands 3, that is to say the length of the body 14 of the deflector 7, can be further reduced more.
  • the other channels 8 of the deflector 7 have a curved path which is curved monotonically from one of the end faces of the body 14 to its opposite end face, each curved path having a concavity oriented radially outwardly of the body 14.
  • each curved path has the shape of an arc of a circle, that is to say that it has a constant curvature, without this constitutes an imperative limitation of the invention.
  • every curve could have a curvature that varies from an end face to the face opposite end of the body 14, provided however that at each point of each curved path the curvature remains lower than the predefined maximum curvature above.
  • the length 1 2 of the deflector 7 according to the invention (FIG. 6) is 5.4 times smaller than the length 1 of the the deflection area of the conventional anchorage 1 and, for a 61-strand cable, the length l 2 is 6.4 times smaller than the length l 1 .
  • the length l 2 of the deflector 7 would be approximately equal to twice that of the deflector 7 of FIG. 6, the values obtained in this case remaining, however, significantly lower than those of the length l 1 .
  • the length of the metal tube 11 which supports and keeps the deflector can be greatly reduced, since its length can be equal to the length l 2 of the deflector as shown in Figures 5 and 6.
  • the deflector 7 according to the invention (FIG. 5 or 6) can be manufactured from different ways, which will now be described with reference to Figures 8 to 11.
  • the body 14 of the deflector 7 is in a castable and curable plastic material, such as for example a resin possibly containing fillers or a mortar based on resin.
  • Channels 8 are defined by cores, for example by curved tubes (not shown) and which respectively have predefined curvatures corresponding to the desired curvature of the path of each channel 8.
  • the tubes may be plastic or metal.
  • a sheet 15 made of a metal that is less hard and more electropositive than the steel constituting the cable strands, is placed around each tube or elongated core used to form each channel 8 and the tubes are placed inside a mold (not shown), which can be itself constituted in part by the tube 11 shown in FIG. sheet 15 may be for example zinc or aluminum alloy and it has example a thickness of about 5/10 mm (this thickness was strongly exaggerated in figure 8 for the clarity of the drawing).
  • the castable and curable resin intended to form the body 14 is then cast or injected into the mold.
  • the tubes serving as cores for molding are removed from the body 14 after demolding, while the leaves 15 remain in the 8 channels to double their inner surface.
  • the body 14 of the deflector 7 is made by molding in the same manner as the embodiment of FIG. except that, in this case, the channels 8 are not internally lined with a sheet or other metal coating.
  • the cores for forming the channels 8 in the body 14 may have a skin and / or be coated with a material facilitating their removal from the body 14 after molding of it.
  • each channel 8 is machined in the material of the body of the deflector 7, for example by means of a tool 16 in the form of a half-diabolo, which has a curved profile corresponding to the desired curvature of the curved path of the channel 8.
  • the deflector 7 is preferably constituted by several bodies, for example three bodies 14a, 14b, and 14c, pierced with n holes and arranged successively on the same longitudinal axis and preferably juxtaposed, the holes homologues of the three bodies 14a, 14b and 14c each defining a curved channel continuous 8 for a strand 3 of the cable 2.
  • Each hole or channel 8 of the intermediate body 14b which has an axial length greater than that of the two end bodies 14a and 14c can be drilled using the tool 16 from each of the two end faces intermediate body 14b, so that the two holes thus formed are join in the middle of the intermediate body 14b.
  • the shoulders that appear at the interfaces of the three bodies 14a, 14b and 14c, because of differences in diameter of the holes 8 at these places, can be slaughtered by milling, as shown in 17, so as not to interfere with the threading of the strand in the aligned holes of the three body 14a-14c.
  • These three bodies can be made of metal, preferably in a less hard metal and more electropositive than the steel constituting the strands, for example aluminum or an aluminum alloy.
  • the three bodies 14a to 14c can also be made of steel, but in this case the surface of the channels 8 will preferably be lined with a layer of softer material than steel constituting the strands of the cable. If this layer is itself metallic, it can be deposited for example by an electrolytic deposition process or by any other appropriate method.
  • the deflector 7 is obtained by a mixed process combining the methods described above.
  • the diverter 7 can be constituted by two juxtaposed bodies 14a and 14d.
  • the body 14a whose holes 8 are the closest to each other, can be metal or material thermoplastic material, for example a material selected from the range of HDPE or 6.
  • the body 14a can then be produced according to the machining technique. removal of material described with reference to FIG. 10, or according to a technique injection pressure.
  • the body 14d can be produced according to the technique of molding a thermosetting plastic material described with reference to FIG. 9.
  • the deflector 7 according to the invention is attached to the head 4, although this provision is particularly favorable from the point of view the guidance of the strands 3 and the point of view of the total length of the anchor 10.
  • the deflector 7 is composed of several successive bodies, these are not necessarily attached to each other, but they can be slightly spaced apart from each other, for example a few dozen centimeters.
  • the body 14 or the bodies 14a to 14c are not necessarily cylindrical, but they may be frustoconical or partly cylindrical and partly frustoconical, or they may have a non-circular section, for example a polygonal section.
  • each channel 8 has a constant curvature (arc) throughout its length.
  • the curvature of each curved path may indeed vary over all or part of the path length, provided that at any point of said path the value (min of R) of the radius of curvature remains within the limits indicated above.
  • each channel may have a curved path portion, with the same curvature for all channels, but different curved path lengths (the channels at the periphery of the mesh network having the longest curved path portions, and channels near the middle of the mesh network having the shortest curved path portions), and a straight path portion following the curved path portion.
  • the free spaces between each strand and the wall of the corresponding channel of the deflector can be filled with a protective agent against corrosion such as, for example, a flexible viscoelastic resin, a wax oil, grease, or other soft materials that do not interfere with the possibility of replacement of one or more strands, strand by strand.
  • a protective agent against corrosion such as, for example, a flexible viscoelastic resin, a wax oil, grease, or other soft materials that do not interfere with the possibility of replacement of one or more strands, strand by strand.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Bridges Or Land Bridges (AREA)
  • Insulated Conductors (AREA)
  • Electric Cable Installation (AREA)
  • Ropes Or Cables (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Description

La présente invention concerne un déviateur pour câble de hauban à n torons séparés, du type comprenant au moins un corps qui a deux faces opposées au moins approximativement perpendiculaires à un axe longitudinal du corps, et qui est percé de n trous traversant le corps d'une face à l'autre de celui-ci et disposés selon un réseau maillé, chaque trou ayant un diamètre intérieur correspondant au diamètre extérieur d'un toron du câble.The present invention relates to a diverter for n-strand cable separated, of the type comprising at least one body which has two opposite faces at least approximately perpendicular to a longitudinal axis of the body, and which is pierced of n holes traversing the body from one side to the other of the latter and arranged according to a mesh network, each hole having an inner diameter corresponding to the diameter outside of a cable strand.

Dans un câble de hauban, les torons du câble, vus en coupe transversale, sont usuellement disposés sous la forme d'un réseau maillé, par exemple, un réseau à maille triangulaire. Dans la partie courante du câble de hauban, c'est-à-dire dans la partie du câble s'étendant entre deux ancrages situés aux extrémités du câble. la maille doit être aussi petite et compacte que possible de manière à minimiser la résistance du câble au vent et à réduire le coût de cette partie courante, en particulier le coût de la gaine du câble et de la matière injectée dans cette gaine pour la protection du câble. En revanche, au niveau de chaque ancrage, les torons doivent être écartés les uns des autres de telle façon que l'on puisse juxtaposer les mors de serrage ou les manchons qui servent à fixer individuellement les torons à la tête d'ancrage. Il est donc usuellement prévu un déviateur qui permet de faire passer les torons de la maille large de la tête d'ancrage à la maille compacte de la partie courante du câble de hauban.In a stay cable, the strands of the cable, seen in cross-section, are usually arranged in the form of a mesh network, for example, a network to triangular mesh. In the current part of the cable of stay, that is to say in the part of the cable extending between two anchors at the ends of the cable. the mesh should be as small and compact as possible so as to minimize the cable resistance to wind and reduce the cost of this running part, especially the cost of the cable sheath and the material injected into this sheath for the cable protection. On the other hand, at each anchor, the strands be separated from each other in such a way that one can juxtapose the jaws of tightening or the sleeves which are used to individually fix the strands to the head anchor. It is therefore usually provided with a deflator which makes it possible to pass the strands from the wide mesh of the anchor head to the compact mesh of the part current of the stay cable.

Au niveau de la tête d'ancrage et au niveau du déviateur, les torons ne doivent pas subir de déviation angulaire brusque et ne doivent pas se toucher afin d'améliorer le comportement à la fatigue de l'ancrage. De manière plus générale, on cherche à limiter au maximum, voire à supprimer, les contacts toron-métal car, en service, de tels contacts sont susceptibles de provoquer de l'usure par petits débattements, ce que les hommes de l'art appellent le "fretting corrosion".At the anchor head and at the deflector, the strands not undergo sharp angular deflection and should not touch each other in order to improve the fatigue behavior of the anchor. More generally, we seek to limit, or even eliminate, the metal-to-metal contacts because, in use, such contacts are likely to cause wear by small deflections, which those skilled in the art call "fretting corrosion".

Une technique usuelle consiste donc à faire subir à chaque toron une petite déviation angulaire, qui est en général inférieure à 2° et usuellement d'environ 1°, en plaçant un déviateur à une distance de la tête d'ancrage telle que la déviation des torons les plus déviés, c'est-à-dire ceux qui se trouvent à la périphérie du câble, soit inférieure à l'angle indiqué ci-dessus. A common technique is therefore to subject each strand a small angular deviation, which is generally less than 2 ° and usually about 1 °, in placing a deflector at a distance from the anchor head such as the deflection of most deviated strands, that is to say those on the periphery of the cable, either less than the angle indicated above.

Dans le cas de torons individuellement gainés, le déviateur est usuellement constitué par un dispositif du type collier, qui serre les torons gainés entre eux. Les torons se touchent alors par leur gaine individuelle.In the case of individually wrapped strands, the deflector is usually constituted by a device of the collar type, which clamps the strands sheathed together. The strands then touch each other by their individual sheath.

Dans le cas de torons non gainés individuellement, le déviateur est usuellement constitué par un disque en matière plastique, qui est percé d'autant de trous que de torons, chaque toron passant par un trou respectif du disque et chaque trou ayant un axe parallèle à l'axe longitudinal du câble de hauban.In the case of strands not sheathed individually, the deflector is usually constituted by a plastic disk, which is pierced with as many holes as strands, each strand passing through a respective hole in the disc and each hole having an axis parallel to the longitudinal axis of the stay cable.

Cette technique connue de déviation présente toutefois un certain nombre d'inconvénients. Dans le cas des torons non gainés, lors de leur enfilage, les torons doivent être guidés depuis la tête d'ancrage jusqu'au déviateur, puisque ces deux pièces sont éloignées l'une de l'autre et que chaque toron doit passer dans deux trous qui se correspondent dans les deux pièces, c'est-à-dire qui ont la même position dans le réseau maillé. En outre, dans tous les cas, c'est-à-dire que les torons soient gainés ou non, le déviateur doit être placé à une distance relativement importante de la tête d'ancrage de sorte que la longueur totale de la zone d'ancrage plus la zone de déviation est elle-même importante. Comme on le verra plus loin, avec un déviateur classique, la distance entre le déviateur et la tête d'ancrage peut atteindre 3,4 m dans le cas d'un câble composé de 61 torons du type T15S couramment utilisés pour les câbles de haubans, et d'environ 2,6 m dans le cas d'un câble composé de 37 torons.This known deviation technique, however, has a number disadvantages. In the case of unsheathed strands, when threaded, the strands must be guided from the anchoring head to the deflector, since these two parts are distant from each other and that each strand must pass through two holes which correspond in both rooms, that is to say which have the same position in the mesh network. In addition, in all cases, that is to say that the strands are sheathed or not, the deflector must be placed at a relatively large distance from the head anchor so the total length of the anchor area plus the area of deviation is itself important. As we will see later, with a deviator conventional, the distance between the deflector and the anchor head can reach 3.4 m in the case of a cable composed of 61 strands of the T15S type commonly used for cable cables, and about 2.6 m in the case of a cable consisting of 37 strands.

De plus, la coaxialité entre la tête d'ancrage et le déviateur doit être garantie sous peine d'introduire une déviation angulaire supplémentaire. Par conséquent, le déviateur doit être maintenu par une liaison rigide (éventuellement semi-rigide), qui peut être constituée par exemple, par un tube de coffrage dans un pylône ou par un tube encastré dans une chape. Cette liaison supporte des efforts importants à "l'état limite ultime", ce qui nécessite, dans certaines configurations d'ancrage, un encastrement du tube de liaison d'autant plus complexe que le déviateur est placé loin de la tête d'ancrage.In addition, the coaxiality between the anchor head and the deflector must be guaranteed at the risk of introducing an additional angular deflection. Therefore, the deflector must be maintained by a rigid connection (possibly semi-rigid), which can be constituted for example by a formwork tube in a pylon or by a tube embedded in a screed. This link supports significant efforts to "the state ultimate limit ", which requires, in certain anchoring configurations, a mounting of the connecting tube all the more complex as the deflector is placed far anchor head.

Pour toutes les raisons qui précèdent, il est souhaitable de réduire la distance entre le déviateur et la tête d'ancrage. Un moyen pour réduire cette distance peut consister à réduire la distance entre les torons adjacents dans la tête d'ancrage, comme cela se fait dans certains procédés d'ancrage en vue de réduire les dimensions de la tête d'ancrage elle-même. Toutefois, la réduction de la distance entre les torons adjacents, autrement dit la réduction de la dimension de la maille du réseau maillé formé par les torons dans la tête d'ancrage, est nécessairement limitée, d'une part à cause de la présence des mors de serrage ou des manchons filés qui servent à fixer individuellement les torons sur la tête d'ancrage et qui doivent pouvoir être juxtaposés sur cette dernière, et d'autre part parce que des trous trop rapprochés dans la tête d'ancrage affaibliraient cette dernière et nuiraient par conséquent à sa résistance mécanique. Il en résulte donc que cette solution connue ne permet qu'une réduction limitée de la distance entre le déviateur et la tête d'ancrage.For all the above reasons, it is desirable to reduce the distance between the deflector and the anchor head. One way to reduce this distance to reduce the distance between the adjacent strands in the anchor head, as is done in some anchoring processes to reduce dimensions the anchor head itself. However, reducing the distance between the strands adjacent, ie the reduction of mesh size of the mesh network formed by the strands in the anchoring head, is necessarily limited, on the one hand to because of the presence of the clamping jaws or spun sleeves which serve to fix individually the strands on the anchor head and which must be able to be juxtaposed on the latter, and secondly because holes too close together in the anchor head would weaken the anchor and would therefore adversely affect its mechanical resistance. It follows therefore that this known solution only allows one limited reduction in the distance between the deflector and the anchor head.

On connaít par ailleurs des systèmes d'ancrage de câble, dans lesquels chacun des torons individuels du câble est amené à suivre un trajet courbe soit dans une sorte de déviateur placé immédiatement avant la ou les têtes d'ancrage (US - 4.473.915 et FR - 1.328.971), soit dans la structure de l'ouvrage en béton (US-4.442.646, figure 4), soit encore dans la tête d'ancrage elle-même (US-4.442.646, figure 6, US-4.484.425). Dans tous ces systèmes d'ancrage connus, qui permettent de réduire sensiblement la longueur totale de la zone de déviation et d'ancrage des torons du câble, les dits torons passent individuellement dans des tubes courbes de guidage qui sont noyés dans une matrice en béton ou en un coulis de ciment.Cable anchoring systems are known in which each individual strands of the cable is brought to follow a curved path either in a kind deflector placed immediately before the anchor head or heads (US Pat. No. 4,473,915 and US Pat. FR - 1.328.971), or in the structure of the concrete structure (US-4,442,646, FIG. 4), still in the anchor head itself (US-4,442,646, FIG. 6, US-4,484,425). In all these known anchoring systems, which make it possible to reduce substantially the total length of the deflection and anchoring zone of the strands of the cable, the said strands pass individually in curved guide tubes which are embedded in a concrete matrix or cement grout.

Dans les systèmes d'ancrage connus par les brevets US-4.473.915, US-4.442.646 et US-4.484.425, les tubes de guidage ont un diamètre intérieur sensiblement plus grand que le diamètre extérieur des torons individuels. Une résine époxy, un mortier ou un coulis de ciment est injecté de façon à remplir les espaces vides entre chaque toron et la paroi interne du tube de guidage qui l'entoure. Avec un tel arrangement connu, il n'est pas possible d'obtenir une déviation des torons telle que les torons du faisceau de torons sortant du déviateur, du côté de la partie courante du câble, soient disposés selon un réseau maillé ayant une très petite dimension de maille. Cela tient au cumul des épaisseurs des différents matériaux entrant dans la fabrication du déviateur entre deux torons adjacents quelconques du câble, et au fait que le béton, le mortier et le coulis de ciment sont inaptes à résister à des efforts de traction importants lorsqu'ils sont mis en oeuvre avec de faibles épaisseurs.In anchoring systems known from US Pat. Nos. 4,473,915 and 4,442,646. and US-4,484,425, the guide tubes have an inside diameter substantially larger than the outer diameter of the individual strands. A resin epoxy, mortar or grout is injected to fill the spaces gaps between each strand and the inner wall of the guide tube which surrounds it. With a such a known arrangement, it is not possible to obtain a deviation of the strands such the strands of the bundle of strands coming out of the deviator, on the side of the current of the cable, are arranged according to a mesh network having a very small mesh size. This is due to the accumulation of thicknesses of different materials involved in the manufacture of the deflector between any two adjacent strands of the cable, and the fact that concrete, mortar and grout are unable to withstand high tensile forces when they are used with weak thicknesses.

Plus précisément, dans les systèmes d'ancrage et de déviation courts décrits dans les trois brevets US précités, la dimension minimale de maille est la somme :

  • du diamètre intérieur des tubes de guidage des torons,
  • de deux épaisseurs de paroi de ces tubes de guidage,
  • d'une épaisseur minimale du matériau enrobant les tubes de guidage et les maintenant en position, c'est-à-dire un coulis de ciment ou un béton selon la description du brevet US 4.473.915.
More specifically, in the short anchoring and deflection systems described in the aforementioned three US patents, the minimum mesh size is the sum:
  • the inside diameter of the strand guide tubes,
  • two wall thicknesses of these guide tubes,
  • a minimum thickness of the material encasing the guide tubes and holding them in position, that is to say a cement slurry or a concrete according to the description of US Patent 4,473,915.

Pour un câble constitué de torons T15S, couramment utilisé, le diamètre intérieur des tubes de guidage doit être de l'ordre de 22 mm pour permettre une bonne injection de l'espace résiduel entre le toron et le tube avec un coulis de ciment.For a cable made of T15S strands, commonly used, the diameter inside of the guide tubes should be of the order of 22 mm to allow a good injection of the residual space between the strand and the tube with a grout of cement.

L'épaisseur de la paroi des tubes de guidage dépend bien sûr de la nature du matériau qui les constitue et de leur type ; on peut considérer que cette épaisseur est comprise entre 2 et 3 mm.The thickness of the wall of the guide tubes depends of course on the nature of the material that constitutes them and their type; we can consider that this thickness is between 2 and 3 mm.

Pour résister aux efforts de pression exercés par chaque toron sur la paroi du matériau enrobant les tubes de guidage, du fait de la courbure et de la tension des torons, une valeur de 5 mm semble un minimum pour l'épaisseur du béton ou du coulis entre deux tubes adjacents.To withstand the pressure forces exerted by each strand on the wall of the coating material of the guide tubes, due to the curvature and tension of the strands, a value of 5 mm seems to be a minimum for the thickness of concrete or grout between two adjacent tubes.

En ajoutant ces valeurs, on trouve que la valeur minimale de la maille d'un câble constitué selon le brevet US 4.473.15 est de 31 mm.Adding these values, we find that the minimum value of the mesh of a cable formed according to US Patent 4,473.15 is 31 mm.

Les autres systèmes d'ancrage et de déviation courts connus et présentant des caractéristiques similaires (US 4.848.425, US 4.442.646, FR 1.328.971) conduisent à des valeurs comparables, et même quelquefois supérieures. Il est possible d'affirmer qu'avec ces systèmes connus, on ne peut obtenir une dimension de maille inférieure à une valeur voisine de 30 mm dans la partie courante du câble.Other known short anchoring and deflection systems with similar characteristics (US 4,848,425, US 4,442,646, FR 1,328,971) lead to comparable, and sometimes even higher, values. It is possible to say with these known systems, it is impossible to obtain a mesh size smaller than a value close to 30 mm in the current part of the cable.

Si on prend pour exemple deux câbles couramment utilisés dans les applications de haubanage, l'un de 37 torons T15S, l'autre de 61 torons T15S, l'un et l'autre arrangés selon une maille triangulaire équilatérale autour d'un toron central, on trouve que le premier câble s'inscrit dans un cercle d'encombrement de diamètre 196 mm, tandis que le deuxième câble s'inscrit dans un cercle d'encombrement de diamètre 256 mm.If we take for example two cables commonly used in guying applications, one of 37 T15S strands, the other of 61 T15S strands, one and the other arranged in an equilateral triangular mesh around a central strand, one finds that the first cable fits into a circle of size clutter 196 mm, while the second cable fits into a circle of diameter 256 mm.

Il en résulte que. dans la partie courante du câble, la section transversale globale du faisceau de torons parallèles formant le câble a un diamètre relativement grand, nécessitant l'utilisation d'une gaine de protection du câble ayant elle-même un diamètre relativement grand adapté à celui du câble. Ceci conduit à un câble gainé relativement coûteux, à cause de la gaine de diamètre relativement grand et à cause de la plus grande quantité de matière qui doit y être injectée pour la protection du câble. En outre, dans le cas où le câble est un câble de hauban, il présente une résistance au vent relativement grande à cause du diamètre relativement grand de sa gaine. Enfin, du fait qu'une résine époxy, un mortier ou un coulis de ciment est injecté dans les tubes de guidage, les torons ne peuvent plus être extraits desdits tubes après la prise de la matière injectée. Il en résulte qu'il n'est pas possible d'effectuer un remplacement toron par toron en cas de besoin, et que le câble doit alors être remplacé en totalité ainsi qu'au moins une partie de ses systèmes d'ancrage.It follows that. in the running part of the cable, the cross-section overall bundle of parallel strands forming the cable has a relative diameter large, requiring the use of a protective cable sheath itself having a relatively large diameter adapted to that of the cable. This leads to a sheathed cable relatively expensive, because of the relatively large diameter sheath and because of of the largest amount of material to be injected for the protection of the cable. In addition, in the case where the cable is a cable of stay cable, it presents a relatively high wind resistance because of the relatively large diameter of its sheath. Finally, because an epoxy resin, a mortar or a cement grout is injected into the guide tubes, the strands can no longer be extracted from the said tubes after taking the injected material. As a result, it is not possible to carry out a strand-on-strand replacement if necessary, and that the cable must then be completely replaced as well as at least part of its anchoring systems.

Dans le système d'ancrage connu par le brevet FR-1.328.971 précité, aucune matière n'est injectée dans les tubes de guidage, de sorte que, en service, les torons individuels peuvent glisser librement dans lesdits tubes. Ceci permet de retendre ultérieurement les torons s'ils ont perdus une partie de leur tension, et de remplacer en cas de besoin un ou plusieurs torons du câble, toron par toron, sans avoir à remplacer la totalité du câble et de ses ancrages. Toutefois, dans ce dernier système d'ancrage connu, les torons du faisceau de torons sortant du déviateur, du côté de la partie courante du câble, sont espacés transversalement les uns des autres d'une distance relativement grande par rapport à leur distance mutuelle dans la partie courante du câble, dans laquelle les torons sont nettement plus resserrés comme cela est souhaitable. Ceci est obtenu en disposant devant le déviateur une bague ou manchon tronconique qui resserre les torons en direction de la partie courante du câble et, inversement. leur permet de s'épanouir en direction de leurs tubes respectifs de guidage dans le déviateur. La bague ou manchon tronconique fait donc aussi office de déviateur et ce système d'ancrage connu comporte donc en réalité deux déviateurs placés bout à bout.In the anchoring system known from the aforementioned FR-1.328.971 patent, no material is injected into the guide tubes, so that, in use, the strands individuals can freely slide in said tubes. This allows to tighten later strands if they lost some of their tension, and replace if necessary one or more strands of the cable, strand by strand, without having to replace the entire cable and its anchors. However, in this last system known anchor, the strands of the bundle of strands leaving the deflector, on the side of the part of the cable are transversely spaced apart from one another relatively large distance compared to their mutual distance in the part current of the cable, in which the strands are much narrower like this is desirable. This is achieved by placing in front of the deflector a ring or frustoconical sleeve which tightens the strands towards the running part of the cable and, conversely. allows them to flourish towards their respective tubes guide in the deflector. The frustoconical sleeve or sleeve is therefore also diverter function and this known anchor system therefore actually comprises two deflectors placed end to end.

Bien que le système d'ancrage connu par le brevet FR-1.328.91 ne présente pas les inconvénients susmentionnés des systèmes d'ancrages décrits dans les trois brevets US précités, il présente néanmoins l'inconvénient que la déviation des torons doit être assurée par deux déviateurs successifs pour que le câble et sa gaine protectrice aient un diamètre aussi faible que possible dans la partie courant du câble. Although the anchoring system known from the FR-1.328.91 patent does not present the aforementioned disadvantages of the anchoring systems described in the three aforementioned US patents, it nevertheless has the disadvantage that the deflection of the strands must be provided by two successive diverters for the cable and its sheath protector have a diameter as small as possible in the current part of the cable.

En outre, en se référant à la figure 1 du brevet FR-1.328.971, on voit que au moins les torons situés à la périphérie du câble subissent deux flexions ou déviations angulaires relativement brusques (> 5°) respectivement dans les régions des deux faces d'extrémité du manchon tronconique.Furthermore, with reference to FIG. 1 of patent FR-1.328.971, it can be seen that at minus the strands on the periphery of the cable undergo two bends or deviations relatively sharp angles (> 5 °) respectively in the regions of the two end faces of the frustoconical sleeve.

De plus, comme les torons ne sont pas maintenus espacés les uns des autres dans la région de l'extrémité de plus petit diamètre du manchon tronconique, la flexion relativement brusque qu'ils subissent à cet endroit les amène à venir en contact les uns avec les autres au moins pour ce qui concerne les torons situés dans les couches périphériques du câble. Du fait de ces flexions relativement brusques et des contacts qui en résultent entre les torons situés dans lesdites couches périphériques, ainsi que entre les torons les plus extérieurs du câble et le bord d'extrémité de plus petit diamètre du manchon tronconique et entre les torons et le bord des ouvertures des tubes courbes de guidage, et du fait des inévitables petits déplacements des torons sous l'effet des charges dynamiques auxquelles ils sont soumis en service, les torons sont sujets à la fatigue et à une usure par petits débattements ("fretting corrosion") dans les régions sus-indiquées.In addition, as the strands are not kept spaced from each other in the region of the smaller diameter end of the frustoconical sleeve, the relatively sudden bending that they undergo at this point causes them to come into contact with each other at least with respect to the strands located in the peripheral layers of the cable. Because of these relatively sudden inflections and resulting contacts between the strands in said layers peripherals, as well as between the outermost strands of the cable and the edge end of smaller diameter of the tapered sleeve and between the strands and the edge of curved guide tube openings, and because of the inevitable small displacements of the strands under the effect of the dynamic loads to which they are subjected in service, the strands are subject to fatigue and wear by small fretting corrosion in the above-mentioned regions.

La présente invention a donc pour but de fournir un déviateur permettant d'obtenir à la fois une réduction substantielle de la longueur totale de la zone de déviation et d'ancrage des torons d'un câble de hauban, une dimension de maille aussi petite que possible pour le réseau maillé formé par les torons dans la partie courante du câble, et la possibilité de remplacement d'un ou plusieurs torons du câble, toron par toron, et tout en évitant de soumettre lesdits torons à des déviations angulaires localisées inacceptables.The present invention therefore aims to provide a deflector allowing to achieve both a substantial reduction in the total length of the zone of deflection and anchoring strands of a guy cable, a mesh size also as small as possible for the mesh network formed by the strands in the current part cable, and the possibility of replacing one or more cable strands, strand by strand, and while avoiding subjecting said strands to angular deviations localized unacceptable.

A cet effet, l'invention fournit un déviateur conforme à la revendication 1. For this purpose, the invention provides a deflector according to claim 1.

Le trajet courbe de chaque canal du déviateur a une courbure prédéfinie, constante ou non constante, qui est compatible avec la résistance mécanique du toron et sa tenue à la fatigue, et qui permet de faire passer les torons de la première dimension de maille à la seconde dimension de maille, respectivement au niveau des première et seconde faces du corps du déviateur, sur une longueur de déviation qui, comme on le verra plus loin, est très inférieure à celle qui est nécessaire avec les déviateurs classiques placés à distance de la tête d'ancrage. Pour des torons du type T15, T15S ou T16, qui sont couramment utilisés pour former des câbles de hauban, le rayon de courbure (min. de R) des canaux du déviateur qui sont situés à la périphérie du réseau maillé ont une valeur de préférence supérieure ou égale à 2 m et de préférence inférieure ou égale à 4 m, par exemple, la valeur (min. de R) est égale à 2,5 m.The curved path of each channel of the deflector has a predefined curvature, constant or non-constant, which is compatible with the strength of the strand and its resistance to fatigue, and which allows to pass the strands of the first mesh size at the second mesh size, respectively at the level of first and second faces of the body of the deflector, on a length of deflection which, as will be seen later, is much less than that which is necessary with the conventional deflectors placed away from the anchor head. For strands of the type T15, T15S or T16, which are commonly used to form guy cables, the radius of curvature (min of R) of the diverter channels that are located at the periphery of the mesh network have a preference value greater than or equal to 2 m and preferably for example, the value (min of R) is equal to 2.5 m.

De préférence, ladite première dimension de maille (m1) a une valeur qui satisfait à la relation : Φ + 1,5 mm ≤ m1 ≤ Φ + 5 mm    dans laquelle Φ est la valeur du diamètre intérieur des canaux qui satisfait elle-même à la relation : ϕ + 0,4 mm ≤ Φ ≤ ϕ + 2 mm    dans laquelle ϕ est la valeur du diamètre d'un toron du câble.Preferably, said first mesh size (m 1 ) has a value that satisfies the relation: Φ + 1,5 mm ≤ m 1 ≤ Φ + 5 mm where Φ is the value of the inner diameter of the channels which itself satisfies the relation: φ + 0.4 mm ≤ Φ ≤ φ + 2 mm where φ is the diameter value of a cable strand.

Dans un premier mode de réalisation du déviateur selon l'invention, utilisable avec une tête d'ancrage dont les trous ont des axes parallèles à l'axe longitudinal du câble, chaque trajet courbe des canaux du déviateur comporte deux parties successives courbées en sens opposés, à savoir, partant de la première face du corps du déviateur, une première partie ayant une concavité tournée vers l'extérieur du corps, suivie d'une seconde partie ayant une concavité tournée vers l'intérieur du corps.In a first embodiment of the deflector according to the invention, usable with an anchor head whose holes have axes parallel to the longitudinal axis of the cable, each curved path of the deviator channels has two parts successive curved in opposite directions, namely, starting from the first face of the body of the deflector, a first part having a concavity turned towards the outside of the body, followed by a second part having a concavity turned towards the interior of the body.

Dans un autre mode de réalisation du déviateur selon l'invention, utilisable avec une tête d'ancrage dont les trous ont des axes qui convergent vers l'axe longitudinal du câble, chaque trajet courbe des canaux du déviateur est courbé de façon monotone de la première à la seconde face du corps du déviateur.In another embodiment of the deflector according to the invention, usable with an anchor head whose holes have axes that converge towards the axis length of the cable, each curved path of the deflector channels is curved monotonous way from the first to the second face of the deviator's body.

Dans les deux cas, la dimension de la maille du réseau maillé formé par les canaux du déviateur sur la seconde face de celui-ci (seconde dimension de maille) peut être choisie de manière à correspondre à la dimension de maille des trous de la tête d'ancrage. Dans ces conditions, le déviateur peut être accolé à la tête d'ancrage pour former un ensemble très compact. En outre, comme chaque canal du déviateur est contigu à un trou correspondant de la tête d'ancrage et forme avec lui un trajet continu pour le toron qui passe à travers eux, l'enfilage des torons à travers les trous de la tête d'ancrage et les canaux du déviateur est grandement facilité et l'on peut se passer des tubes de guidage qui, avec certains déviateurs connus situés à distance de la tête d'ancrage, devaient être prévus entre le déviateur et la tête d'ancrage pour guider les torons de l'un à l'autre de ces deux éléments.In both cases, the size of the mesh of the mesh network formed by the deviator channels on the second face of it (second dimension of mesh) can be chosen to match the mesh size of the holes in the anchor head. Under these conditions, the deflector can be attached to the anchor head to form a very compact set. In addition, as each channel of the deviator is contiguous to a corresponding hole in the anchor head and forms with it a path continuous for the strand that passes through them, threading the strands through the holes of the anchor head and the diverter channels is greatly facilitated and one can get pass guide tubes which, with some known deflectors located at a distance of the anchor head, should be provided between the deflector and the anchor head for guide the strands from one to the other of these two elements.

En outre, dans le déviateur selon l'invention, chaque toron est en contact avec la surface intérieure du canal correspondant du déviateur sur une longueur relativement importante par rapport à un déviateur classique. Du fait de cette longueur de contact relativement grande, et du fait de la forme courbe du trajet suivi par chaque toron dans le déviateur, chaque toron est soumis en service, lorsqu'il est tendu, à une force de frottement dans le canal correspondant du déviateur, Dans le cas où les torons sont fixés à la tête d'ancrage au moyen de mors de serrage, les forces de frottement appliquées aux torons par le déviateur permettent de diminuer l'amplitude des sollicitations de fatigue subies par les torons dans les mors de serrage de la tête d'ancrage. A cet égard, le déviateur selon l'invention agit donc comme un filtre. In addition, in the diverter according to the invention, each strand is in contact with the inner surface of the corresponding channel of the deflector over a length relatively large compared to a conventional deflector. Because of this relatively long contact length, and because of the curved shape of the path followed by each strand in the deflector, each strand is submitted in service, when it is stretched, to a frictional force in the corresponding channel of the deflector, in the where the strands are attached to the anchoring head by means of clamping jaws, the friction forces applied to the strands by the deflector make it possible to reduce the amplitude of the stresses of fatigue experienced by the strands in the clamping jaws anchor head. In this respect, the deflector according to the invention thus acts as a filtered.

D'autres caractéristiques et avantages de l'invention apparaítront au cours de la description détaillée suivante de divers exemples de réalisation du déviateur, donnés en référence aux dessins annexés sur lesquels :

  • la figure 1 est une vue en partie en élévation et en partie en coupe longitudinale montrant un ancrage pour câble de hauban utilisant un déviateur classique ;
  • les figures 2 et 3 sont des vues en coupe transversale respectivement suivant les lignes A-A et B-B de la figure 1 ;
  • la figure 4 est un schéma permettant d'expliquer le calcul de la longueur de la zone de déviation qui est nécessaire pour dévier transversalement d'une quantité prédéterminée un toron d'un câble dans le cas du déviateur conventionnel de la figure 1 ;
  • la figure 5 est une vue semblable à la figure 1 montrant un ancrage pour câble de hauban utilisant un déviateur selon l'invention, la figure 5 montrant en outre une première forme du trajet courbe des canaux du déviateur dans le cas où les trous de la tête d'ancrage ont des axes parallèles à l'axe médian longitudinal du câble ;
  • la figure 6 est une figure semblable à la figure 5, également avec un déviateur selon l'invention, montrant une seconde forme du trajet courbe des canaux du déviateur dans le cas où les trous de la tête d'ancrage ont des axes qui convergent vers l'axe médian longitudinal du câble ;
  • la figure 7 est un schéma permettant d'expliquer le calcul de la longueur de la zone de déviation qui est nécessaire pour dévier transversalement de ladite quantité prédéterminée un toron d'un câble dans le cas du déviateur de la figure 6 ;
  • les figures 8 à 11 sont des vues en élévation latérale, avec arrachement, montrant quatre formes concrètes de réalisation d'un déviateur selon l'invention conforme à la figure 6.
Other features and advantages of the invention will become apparent from the following detailed description of various embodiments of the deflector, given with reference to the accompanying drawings in which:
  • Figure 1 is a view partly in elevation and partly in longitudinal section showing an anchor for cable stay using a conventional deflector;
  • Figures 2 and 3 are cross-sectional views respectively along the lines AA and BB of Figure 1;
  • Fig. 4 is a diagram for explaining the calculation of the length of the deflection area which is necessary to transversely deflect a strand of a cable in a predetermined amount from the conventional deflector of Fig. 1;
  • FIG. 5 is a view similar to FIG. 1 showing an anchor for stay cable using a deflector according to the invention, FIG. 5 further showing a first form of the curved path of the deflector channels in the case where the holes of the anchoring head have axes parallel to the longitudinal median axis of the cable;
  • FIG. 6 is a figure similar to FIG. 5, also with a deflector according to the invention, showing a second form of the curved path of the deflector channels in the case where the holes of the anchor head have axes which converge towards the longitudinal median axis of the cable;
  • Fig. 7 is a diagram for explaining the calculation of the length of the deflection area which is necessary to transversely deviate from said predetermined amount a strand of a cable in the case of the deflector of Fig. 6;
  • Figures 8 to 11 are side elevational views, broken away, showing four concrete embodiments of a deflector according to the invention according to Figure 6.

La figure 1 montre un ancrage conventionnel 1 pour un câble de hauban multi-torons 2.Figure 1 shows a conventional anchor 1 for a guy cable multi-strand 2.

Bien que pour des raisons de simplification et de clarté de la figure 1, celle-ci ne montre que deux torons 3, le câble de hauban 2 comporte usuellement un grand nombre de torons, par exemple 37 torons 3 comme montrés dans les figures 2 et 3. L'ancrage 1 comprend une tête d'ancrage 4, qui est percée de n trous 5 (37 trous dans l'exemple représenté) dans chacun desquels les torons 3 du câble de hauban 2 sont ancrés individuellement de manière connue, par exemple au moyen de clavettes ou mors coniques 6, auquel cas les trous 5 sont en partie cylindriques et en partie coniques. Les trous 5 de la tête d'ancrage 4 sont disposés selon un arrangement formant un réseau maillé, par exemple à maille triangulaire équilatérale (figure 3), qui a une dimension donnée de maille, par exemple 33 mm dans le cas où l'on utilise des torons du type T15S de classe 1770 ou 1860 MPa (correspondant à une force garantie à la rupture de 265.500 ou 279.000 N) qui ont un diamètre de 15,7 mm. La dimension de maille correspond à la distance entre les axes d'une paire quelconque de trous 5 adjacents.Although for the sake of simplicity and clarity of Figure 1, this one shows only two strands 3, the stay cable 2 usually has a large number of strands, for example 37 strands 3 as shown in FIGS. 2 and 3. Anchor 1 comprises an anchor head 4, which is pierced with n holes 5 (37 holes in the example shown) in each of which the strands 3 of the stay cable 2 are anchored individually in a known manner, for example by means of keys or conical jaws 6, in which case the holes 5 are partly cylindrical and partly conical. The holes 5 of the anchoring head 4 are arranged according to an arrangement forming a mesh network, for example equilateral triangle mesh (Figure 3), which has a given size of mesh, for example 33 mm in the case where we use T15S type 1770 or 1860 MPa strands (corresponding to a force guarantee at break of 265,500 or 279,000 N) which have a diameter of 15,7 mm. The mesh size is the distance between the axes of any pair of adjacent holes 5.

L'ancrage 1 représenté dans la figure 1 comprend en outre un déviateur 7 percé de n trous 8 (n = 37 dans l'exemple représenté), qui permet de convertir l'arrangement des torons 3 dans la tête d'ancrage 4 en un arrangement formant un réseau maillé (figure 2) qui a une dimension de maille plus petite que celle du réseau maillé des trous 5 de la tête d'ancrage 4, par exemple une dimension de maille de 18 mm, pour la partie courante du câble de hauban 2. La partie courante du câble de hauban 2 est la partie qui s'étend entre l'ancrage 1 montré dans la figure 1 et un autre ancrage (non montré) situé à l'autre extrémité du câble de hauban 2, et qui passe usuellement dans une gaine 9 (seule une toute petite partie de cette gaine est visible dans la figure 1) constituée par exemple par un tube en polyéthylène haute densité (PEHD).The anchor 1 shown in Figure 1 further comprises a deflector 7 pierced with n holes 8 (n = 37 in the example shown), which makes it possible to convert the arrangement of the strands 3 in the anchoring head 4 into an arrangement forming a mesh network (FIG. 2) which has a mesh size smaller than that of the network meshed holes 5 of the anchoring head 4, for example a mesh size of 18 mm, for the current part of the cable of guy 2. The current part of the cable of guy 2 is the part that extends between the anchor 1 shown in Figure 1 and another anchor (not shown) located at the other end of the stay cable 2, and which passes usually in a sheath 9 (only a very small part of this sheath is visible in Figure 1) constituted for example by a high density polyethylene tube (HDPE).

Le déviateur 7, réalisé par exemple en PEHD, est fixé à l'une des extrémités d'un tube métallique 11, lui-même fixé ou encastré dans une partie 12 d'un ouvrage à haubaner. Le tube 11 supporte et maintient le déviateur 7 à une distance prédéfinie l1 (figure 4) de la tête d'ancrage 4. Cette distance l1 est usuellement choisie de telle façon que la déviation angulaire α produite par le déviateur 7 reste inférieure ou égale à une valeur prédéfinie usuellement à 1 à 2 ° pour tous les torons 3 afin que, en service, ceux-ci ne soient pas soumis à une fatigue trop importante à l'endroit où ils sortent du déviateur 7, c'est-à-dire aux orifices de sortie des trous 8 orientés vers la tête d'ancrage 4, et éventuellement aussi à l'endroit où ils entrent dans la tête d'ancrage 4, c'est-à-dire aux orifices d'entrée des trous 5 orientés vers le déviateur 7 si les axes des trous 5 sont parallèles à l'axe médian longitudinal 13 de l'ancrage 1.The deflector 7, made for example of HDPE, is attached to one end of a metal tube 11, itself fixed or embedded in a portion 12 of a structure to guy. The tube 11 supports and maintains the deflector 7 at a predefined distance l 1 (FIG. 4) from the anchoring head 4. This distance l 1 is usually chosen so that the angular deflection α produced by the deflector 7 remains lower or equal to a preset value usually 1 to 2 ° for all the strands 3 so that, in use, they are not subjected to too much fatigue at the point where they leave the deflector 7, that is to say at the exit orifices, holes 8 oriented towards the anchoring head 4, and possibly also at the point where they enter the anchoring head 4, that is to say at the inlet orifices of the holes 5 facing the deflector 7 if the axes of the holes 5 are parallel to the longitudinal central axis 13 of the anchorage 1.

En se référant à la figure 4, si l'on désigne par d le décalage transversal subi par l'un quelconque des torons 3 du câble 2 entre le déviateur 7 et la tête d'ancrage 4. par e1 la distance entre l'axe 13 et l'axe du trou 8 par lequel passe le toron 3 dans le déviateur 7, et par e2 la distance entre l'axe 13 et l'axe du trou 5 par lequel passe le toron dans la tête d'ancrage 4, la distance l1 est alors donnée par l'équation suivante : l1 = dtgα = e2 - e1 tgα Referring to FIG. 4, if d denotes the transverse offset experienced by any of the strands 3 of the cable 2 between the deflector 7 and the anchoring head 4. by e 1 the distance between the axis 13 and the axis of the hole 8 through which the strand 3 passes in the deflector 7, and e 2 the distance between the axis 13 and the axis of the hole 5 through which the strand passes in the anchoring head 4 , the distance l 1 is then given by the following equation: l 1 = d tgα = e 2 - e 1 tgα

Les distances e1 et e2 sont elles-mêmes données par les équations suivantes : e1 = r.m1 e2= r.m2    dans lesquelles m1 et m2 sont respectivement les dimensions de maille des réseaux formés par les trous 8 et 5 respectivement dans le déviateur 7 et dans la tête d'ancrage 4, et r est un nombre correspondant au rang du trou 8 ou 5 considéré par rapport à l'axe 13. A partir des équations (1) à (3), la distance l1 peut être exprimée par l'équation suivante : l1 = r(m2 - m1)tgα The distances e 1 and e 2 are themselves given by the following equations: e 1 = rm 1 e 2 = rm 2 in which m 1 and m 2 are respectively the mesh dimensions of the networks formed by the holes 8 and 5 respectively in the deflector 7 and in the anchoring head 4, and r is a number corresponding to the rank of the hole 8 or 5 considered relative to the axis 13. From the equations (1) to (3), the distance l 1 can be expressed by the following equation: l 1 = r (m 2 - m 1 ) tgα

Etant donné que les torons 3 qui subissent la plus forte déviation angulaire α sont ceux qui se trouvent à la périphérie du réseau maillé de trous, en particulier ceux qui passent dans les trous qui sont situés aux sommets de l'hexagone formé par le réseau de trous et qui ont le rang le plus élevé (les trous de rang 3 dans l'exemple représenté sur la figure 3), la distance l1 doit donc être calculée pour les trous de rang le plus élevé. Pour un câble 2 de 37 torons du type T15S, avec une dimension de maille m1 de 18 mm, une dimension de maille m2 de 33 mm, une déviation angulaire α de 1° et une valeur de r égale à 3, on obtient une distance l1 égale à 2,56 m. Pour un câble 2 de 61 torons, r est égal à 4 et avec les mêmes valeurs des paramètres m1, m2 et α, on obtient pour la distance pour la distance l1 une valeur de 3,44 m. D'après ce qui précède, on voit donc que, dans l'ancrage 1 conventionnel montré dans la figure 1, la distance l1 doit être relativement importante. Grâce à la présente invention, cette distance peut être considérablement réduite comme on va maintenant le voir.Since the strands 3 which undergo the strongest angular deflection α are those which are at the periphery of the mesh network of holes, in particular those which pass through the holes which are located at the vertices of the hexagon formed by the grating holes and which have the highest rank (the holes of rank 3 in the example shown in Figure 3), the distance l 1 must be calculated for the holes of highest rank. For a cable 2 of 37 strands of the T15S type, with a mesh size m 1 of 18 mm, a mesh size m 2 of 33 mm, an angular deflection α of 1 ° and a value of r equal to 3, we obtain a distance l 1 equal to 2.56 m. For a cable 2 of 61 strands, r is equal to 4 and with the same values of the parameters m 1 , m 2 and α, we obtain for the distance for the distance l 1 a value of 3.44 m. From the foregoing, it can thus be seen that in the conventional anchor 1 shown in FIG. 1, the distance l 1 must be relatively large. Thanks to the present invention, this distance can be considerably reduced as will now be seen.

La figure 5 montre un ancrage 10 utilisant un déviateur 7 selon une première forme de réalisation de l'invention. Les éléments de l'ancrage 10 de la figure 5 qui sont identiques ou qui jouent le même rôle que ceux de l'ancrage conventionnel 1 de la figure 1 sont désignés par les mêmes numéros de référence et ne seront pas décrits à nouveau en détail. Le déviateur 7 de l'ancrage 10 de la figure 5 se présente sous la forme d'un corps 14, par exemple cylindrique, qui a une longueur axiale plus grande que celle du déviateur 7 de l'ancrage conventionnel 1 de la figure 1, et qui comporte autant de canaux 8 qu'il y a de torons 3 dans le câble 2. Chaque canal 8 a de préférence un diamètre intétieur Φ qui satisfait à la relation : ϕ + 0,4 mm ≤ Φ ≤ ϕ + 2 mm    dans laquelle ϕ est le diamètre extérieur d'un toron 3.Figure 5 shows an anchor 10 using a deflector 7 according to a first embodiment of the invention. The elements of the anchor 10 of FIG. 5 which are identical or which play the same role as those of the conventional anchor 1 of FIG. 1 are designated by the same reference numbers and will not be described again in detail. The deflector 7 of the anchor 10 of FIG. 5 is in the form of a body 14, for example cylindrical, which has an axial length greater than that of the deflector 7 of the conventional anchor 1 of FIG. and which comprises as many channels 8 as there are strands 3 in the cable 2. Each channel 8 preferably has an inside diameter Φ which satisfies the relation: φ + 0.4 mm ≤ Φ ≤ φ + 2 mm where φ is the outside diameter of a strand 3.

Sur la face du corps 14 orienté vers la gaine 9, le réseau maillé formé par les canaux 8 du déviateur 7 de la figure 5 a une première dimension de maille m1 qui peut être la même que celle du réseau maillé formé par les trous du déviateur 7 des figures 1 et 2. Sur la face opposée du corps 14, qui est tournée vers la tête d'ancrage 4, le réseau maillé formé par les canaux 8 du déviateur 7 de la figure 5 a une seconde dimension de maille m2 qui est plus grande que la première dimension de maille m1 et qui est de préférence égale à la dimension de maille du réseau formé par les trous 5 de la tête d'ancrage 4. Dans ces conditions, le déviateur 7 et la tête d'ancrage 4 peuvent être accolés l'un à l'autre comme montré dans la figure 5.On the face of the body 14 facing the sheath 9, the mesh network formed by the channels 8 of the deflector 7 of FIG. 5 has a first mesh dimension m 1 which may be the same as that of the mesh network formed by the holes of the 7 of Figures 1 and 2. On the opposite face of the body 14, which faces the anchoring head 4, the mesh network formed by the channels 8 of the deflector 7 of Figure 5 has a second dimension of mesh m 2 which is greater than the first mesh size m 1 and which is preferably equal to the mesh size of the network formed by the holes 5 of the anchor head 4. In these conditions, the deflector 7 and the head of anchorage 4 can be joined to each other as shown in Figure 5.

A l'exception du canal central 8 du déviateur 7, qui est situé sur l'axe longitudinal du corps 14 et qui est droit, tous les autres canaux 8 du déviateur 7 de la figure 5 s'étendent entre les deux faces du corps 14 suivant un trajet courbe, qui a en tout point une courbure au plus égale à une courbure maximale prédéfinie. Dans cette forme de réalisation, le trajet courbe des canaux situés à la périphérie du réseau maillé ont une courbure plus forte que celle des trajets des canaux plus proches de l'axe longitudinal du corps 14, tout en restant cependant inférieure à la courbure maximale prédéfinie. Comme indiqué plus haut, cette courbure maximale prédéfinie est choisie de façon à être compatible avec la résistance mécanique des torons 3 et avec leur tenue à la fatigue. Avec des torons 3 du type T15S qui sont les plus couramment utilisés pour les câbles de haubans, le rayon minimal de courbure du trajet courbe des canaux 8 est au moins égal à 1 m, de préférence au moins égal à 2 m, par exemple égal à 2,5 m.With the exception of the central channel 8 of the deflector 7, which is located on the axis longitudinal axis of the body 14 and which is straight, all the other channels 8 of the deflector 7 of the 5 extend between the two faces of the body 14 along a curved path, which has any point a curvature at most equal to a predefined maximum curvature. In this embodiment, the curved path of the channels located at the periphery of the network mesh have a stronger curvature than that of the channel paths closer to the longitudinal axis of the body 14, while remaining nevertheless less than the curvature predefined maximum. As stated above, this predefined maximum curvature is chosen so as to be compatible with the mechanical strength of the strands 3 and with their resistance to fatigue. With strands 3 of type T15S which are the most commonly used for guy cables, the minimum radius of curvature of the channel curve 8 is at least 1 m, preferably at least equal to 2 m, for example equal to 2.5 m.

Dans l'exemple de réalisation représenté sur la figure 5, dans lequel les axes des trous 5 de la tête d'ancrage 4 sont parallèles ou sensiblement parallèles à l'axe médian longitudinal 13 de l'ancrage 10, le trajet courbe de chaque canal 8 du déviateur 7 comporte deux parties successives courbées en sens opposés. Plus précisément, partant de la face du corps 14 qui est tourné vers la gaine 9, chaque canal 8 a un trajet courbe qui comporte une première partie dont la concavité est tournée radialement vers l'extérieur du corps 14, et une seconde partie dont la concavité est tournée radialement vers l'intérieur dudit corps 14, les deux parties se raccordant l'une à l'autre de manière continue.In the embodiment shown in FIG. 5, in which the axes holes 5 of the anchoring head 4 are parallel or substantially parallel to the axis longitudinal median 13 of the anchor 10, the curved path of each channel 8 of the deviator 7 comprises two successive parts curved in opposite directions. More precisely, starting from the face of the body 14 which is turned towards the sheath 9, each channel 8 has a curved path that has a first part whose concavity is radially outwardly of the body 14, and a second part whose concavity is turned radially inwardly of said body 14, the two parts are connecting to one another continuously.

Dans le mode de réalisation représenté sur la figure 5, la longueur de la zone de déviation des torons 3 du câble 2 est égale à la longueur axiale du corps 14 du déviateur 7. Si l'on compare les figures 1 et 5, dans lesquelles les ancrages 1 et 10 ont été dessinés à la même échelle, on peut voir que la longueur de la zone de la déviation des torons 3 dans l'ancrage 10 est nettement plus courte que la longueur de la zone de déviation des torons 3 dans l'ancrage conventionnel 1, la longueur de cette dernière zone correspondant à la distance l1.In the embodiment shown in FIG. 5, the length of the deflection zone of the strands 3 of the cable 2 is equal to the axial length of the body 14 of the deflector 7. Comparing FIGS. 1 and 5, in which the anchors 1 and 10 have been drawn to the same scale, it can be seen that the length of the zone of the deviation of the strands 3 in the anchorage 10 is significantly shorter than the length of the deflection zone of the strands 3 in the conventional anchoring 1, the length of this last zone corresponding to the distance l 1 .

Si on utilise une tête d'ancrage 4 comportant des trous 5 dont les axes convergent vers l'axe médian longitudinal 13 de l'ancrage 10 en direction du déviateur 7, comme montré dans la figure 6, la longueur de la zone de déviation des torons 3, c'est-à-dire la longueur du corps 14 du déviateur 7, peut être encore réduite davantage. Dans le mode de réalisation de la figure 6, à l'exception du canal central qui a un trajet rectiligne, les autres canaux 8 du déviateur 7 ont un trajet courbe qui est courbé de façon de monotone depuis l'une des faces d'extrémité du corps 14 jusqu'à sa face d'extrémité opposée, chaque trajet courbe ayant une concavité orientée radialement vers l'extérieur du corps 14. De préférence, chaque trajet courbe a la forme d'un arc de cercle, c'est-à-dire qu'il a une courbure constante, sans que cela constitue une limitation impérative de l'invention. En effet, chaque trajet courbe pourrait avoir une courbure qui varie depuis une face d'extrémité jusqu'à la face d'extrémité opposée du corps 14, à condition toutefois qu'en chaque point de chaque trajet courbe la courbure reste inférieure à la courbure maximale prédéfinie susmentionnée.If we use an anchor head 4 having holes 5 whose axes converge towards the longitudinal median axis 13 of the anchor 10 towards the deflector 7, as shown in FIG. 6, the length of the deflection zone of strands 3, that is to say the length of the body 14 of the deflector 7, can be further reduced more. In the embodiment of Figure 6, with the exception of the central channel which has a rectilinear path, the other channels 8 of the deflector 7 have a curved path which is curved monotonically from one of the end faces of the body 14 to its opposite end face, each curved path having a concavity oriented radially outwardly of the body 14. Preferably each curved path has the shape of an arc of a circle, that is to say that it has a constant curvature, without this constitutes an imperative limitation of the invention. Indeed, every curve could have a curvature that varies from an end face to the face opposite end of the body 14, provided however that at each point of each curved path the curvature remains lower than the predefined maximum curvature above.

En se référant à la figure 7, qui illustre schématiquement la déviation d'un toron 3 par le déviateur 7 de la figure 6 dans le cas où le trajet courbe des canaux 8 a une forme en arc de cercle, la longueur l2 du déviateur 7 est donnée par l'équation suivante : 2 = R sinβ    dans laquelle R est le rayon de l'arc de cercle du trajet courbe suivi par le toron 3 dans le déviateur 7, et β est l'angle au centre dudit arc de cercle. Dans ce cas, le décalage transversal d subi par le toron 3 entre l'entrée et la sortie du déviateur 7 est donné par l'équation suivante : d = e2 - e1 = R(1 - cosβ)    dans laquelle e1 représente la distance entre l'axe 13 et le centre de l'orifice du canal 8, côté gaine 9, et e2 représente la distance entre l'axe 13 et le centre de l'orifice du canal 8, côté tête d'ancrage 4. En tenant compte du fait que les valeurs de e1 et e2 sont là encore données par les équations (2) et (3) indiquées plus haut, et que la somme des carrés du sinus et du cosinus de l'angle β est égale à 1, la longueur l2 du déviateur 7 est alors donnée par l'équation suivante : l2 = [2 r R(m2 - m1)-r2(m2 - m1)2]1/2 Referring to FIG. 7, which schematically illustrates the deflection of a strand 3 by the deflector 7 of FIG. 6 in the case where the curved path of the channels 8 has an arcuate shape, the length l 2 of the deflector 7 is given by the following equation: 2 = R sinβ where R is the radius of the arc of the curved path followed by the strand 3 in the deflector 7, and β is the angle at the center of said arc. In this case, the transverse offset d experienced by the strand 3 between the input and the output of the deflector 7 is given by the following equation: d = e 2 - e 1 = R (1 - cosβ) wherein e 1 represents the distance between the axis 13 and the center of the orifice of the channel 8, sheath side 9, and e 2 represents the distance between the axis 13 and the center of the orifice of the channel 8, side anchor head 4. Taking into account that the values of e 1 and e 2 are again given by the equations (2) and (3) given above, and that the sum of the squares of the sine and the cosine of the angle β is equal to 1, the length l 2 of the deflector 7 is then given by the following equation: l 2 = [2 r R (m 2 - m 1 ) -r 2 (m 2 - m 1 ) 2 ] 1/2

Pour un câble 2 composé de 37 torons 3 du type T15S, en supposant que la valeur du rayon R soit choisie égale à 2,5 m et avec les mêmes valeurs de r, m1 et m2 que celles indiquées plus haut à propos de l'ancrage conventionnel 1 de la figure 1, on obtient une valeur de 0,47 m pour la longueur l2 du déviateur 7 de la figure 6. Pour un câble de hauban 2 composé de 61 torons 3, on obtient de même pour la longueur l2 une valeur de 0.54 m. Afin de faciliter la comparaison entre l'ancrage conventionnel 1 de la figure 1 et l'ancrage selon l'invention de la figure 6, les valeurs de l1 et l2 sont résumées dans le tableau suivant : Nombre de torons du câble r l1 en m l2 en m l1/l2 37 3 2,56 0,47 5,4 61 4 3,44 0,54 6,4 For a cable 2 consisting of 37 strands 3 of the T15S type, assuming that the value of the radius R is chosen equal to 2.5 m and with the same values of r, m 1 and m 2 as those indicated above for conventional anchoring 1 of FIG. 1, a value of 0.47 m is obtained for the length 1 2 of the deflector 7 of FIG. 6. For a cable of stay 2 consisting of 61 strands 3, the same is obtained for the length l 2 a value of 0.54 m. In order to facilitate the comparison between the conventional anchorage 1 of FIG. 1 and the anchorage according to the invention of FIG. 6, the values of 1 and 1 2 are summarized in the following table: Number of cable strands r l 1 in m l 2 in m l 1 / l 2 37 3 2.56 0.47 5.4 61 4 3.44 0.54 6.4

Comme on peut le voir d'après le tableau ci-dessus, pour un câble de 37 torons, la longueur l2 du déviateur 7 selon l'invention (figure 6) est 5,4 fois plus petite que la longueur l1 de la zone de déviation de l'ancrage conventionnel 1 et, pour un câble de 61 torons, la longueur l2 est 6.4 fois plus petite que la longueur l1. Dans le cas du mode de réalisation de la figure 5, la longueur l2 du déviateur 7 serait environ égale au double de celle du déviateur 7 de la figure 6, les valeurs obtenues dans ce cas restant toutefois nettement inférieures à celles de la longueur ℓ1.As can be seen from the table above, for a cable of 37 strands, the length 1 2 of the deflector 7 according to the invention (FIG. 6) is 5.4 times smaller than the length 1 of the the deflection area of the conventional anchorage 1 and, for a 61-strand cable, the length l 2 is 6.4 times smaller than the length l 1 . In the case of the embodiment of FIG. 5, the length l 2 of the deflector 7 would be approximately equal to twice that of the deflector 7 of FIG. 6, the values obtained in this case remaining, however, significantly lower than those of the length ℓ 1 .

Avec le déviateur 7 selon l'invention, la longueur du tube métallique 11 qui supporte et maintient le déviateur peut être fortement réduite, puisque sa longueur peut être égale à la longueur l2 du déviateur comme montré dans les figures 5 et 6.7 with the diverter according to the invention, the length of the metal tube 11 which supports and keeps the deflector can be greatly reduced, since its length can be equal to the length l 2 of the deflector as shown in Figures 5 and 6.

Dans les deux modes de réalisation des figures 5 et 6, les fonctions du déviateur 7 selon l'invention sont les suivantes :

  • guider les torons 3, lors de leur enfilage, depuis la zone courante du câble de hauban 2 dans la gaine 9 où les torons 3 sont disposés parallèlement les uns aux autres selon un réseau à maille étroite, jusque dans les trous 5 de la tête d'ancrage 4, qui sont disposés selon un réseau à maille relativement large, ou, vice-versa, depuis les trous 5 de la tête d'ancrage 4 jusque dans la zone courante du câble de hauban 2 ;
  • imposer aux torons tendus un trajet courbe à l'intérieur du déviateur 7;
  • et transférer les efforts radiaux (créés par la tension des torons du câble et par la courbure de leur trajet à l'intérieur du déviateur) jusqu'à un point fixe de l'ouvrage à haubaner, par l'intermédiaire du tube 11, tout en étant capable de résister aux efforts de traction et de compression auxquels le déviateur est soumis en service en raison de la tension des torons et des charges dynamiques appliquées aux câbles ou transmises par ceux-ci.
In the two embodiments of FIGS. 5 and 6, the functions of the deflector 7 according to the invention are as follows:
  • guiding the strands 3, during their threading, from the current zone of the stay cable 2 into the sheath 9 where the strands 3 are arranged parallel to each other in a narrow mesh pattern, into the holes 5 of the head of the anchorage 4, which are arranged in a relatively wide mesh pattern, or, vice versa, from the holes 5 of the anchoring head 4 to the current zone of the stay cable 2;
  • impose on the stranded strands a curved path inside the deflector 7;
  • and transferring the radial forces (created by the tension of the strands of the cable and the curvature of their path inside the deflector) to a fixed point of the structure to be guyed, through the tube 11, all by being able to withstand the tensile and compressive forces to which the deflector is subjected in service due to the stress of the strands and the dynamic loads applied to or transmitted by the cables.

En outre, le déviateur 7 selon l'invention est conçu de manière à ne pas engendrer des contacts susceptibles de provoquer, en service, une usure préjudiciable des torons 3, par frottement par petits débattements, en particulier lorsque les torons 3 ne sont pas gainés individuellement. A cet effet, la surface intérieure de chaque canal 8, au moins dans sa zone où un toron 3 une fois tendu vient en contact avec ladite surface intérieure, peut être constituée :

  • d'un polymère ou d'une résine, par exemple du PEHD, une résine Epoxy, des polyamides, du polytétrafluroéthylène (PTFE), etc. ;
  • ou d'un métal moins dur que l'acier, et tel que les particules d'oxydation ou d'usure ne soient pas abrasives vis-à-vis de l'acier, de préférence un métal plus électropositif que l'acier, par exemple du zinc ou un alliage d'aluminium.
In addition, the deflector 7 according to the invention is designed so as not to generate contacts likely to cause, in use, damaging wear of the strands 3, by friction by small deflections, particularly when the strands 3 are not sheathed. individually. For this purpose, the inner surface of each channel 8, at least in its zone where a strand 3 when stretched comes into contact with said inner surface, may be constituted:
  • a polymer or a resin, for example HDPE, an epoxy resin, polyamides, polytetrafluoroethylene (PTFE), etc. ;
  • or a metal less hard than steel, and such that the oxidation or wear particles are not abrasive with respect to steel, preferably a more electropositive metal than steel, by example of zinc or an aluminum alloy.

La matrice, c'est-à-dire la matière du corps 14, peut être constituée:

  • du même matériau que la surface des canaux 8, à condition que ce matériau ait les propriétés mécaniques requises, notamment une résistance mécanique suffisante pour supporter les efforts susmentionnés, en particulier une résistance à la compression supérieure à 20 MPa et une résistance à la traction supérieure à 10 MPa (dans le cas où on utilise des résines pour former la matrice du corps 14, les résines peuvent contenir des charges appropriées comme par exemple des particules de silice ou de la poudre de zinc, la taille des particules de silice ou de zinc étant alors inférieure à la quantité (m1 - Φ)/4) ;
  • ou d'un matériau différent de celui qui constitue la surface des canaux 8, par exemple en acier.
The matrix, that is to say the material of the body 14, may consist of:
  • of the same material as the surface of the channels 8, provided that this material has the required mechanical properties, in particular sufficient mechanical strength to withstand the aforementioned forces, in particular a compressive strength greater than 20 MPa and a higher tensile strength at 10 MPa (in the case where resins are used to form the matrix of the body 14, the resins may contain suitable fillers such as, for example, silica particles or zinc powder, the size of the silica or zinc particles being then less than the quantity (m 1 - Φ) / 4);
  • or a material different from that which constitutes the surface of the channels 8, for example made of steel.

Le déviateur 7 selon l'invention (figure 5 ou 6) peut être fabriqué de différentes manières, qui vont maintenant être décrites en faisant référence aux figures 8 à 11.The deflector 7 according to the invention (FIG. 5 or 6) can be manufactured from different ways, which will now be described with reference to Figures 8 to 11.

Dans le mode de réalisation de la figure 8, le corps 14 du déviateur 7 est en une matière plastique coulable et durcissable, comme par exemple une résine contenant éventuellement des charges ou un mortier à base de résine. Les canaux 8 sont définis par des noyaux, par exemple par des tubes courbes (non montrés) et qui ont respectivement des courbures prédéfinies correspondant à la courbure désirée du trajet de chaque canal 8. Les tubes peuvent être en matière plastique ou en métal. Une feuille 15 en un métal moins dur et plus électropositif que l'acier constituant les torons du câble, est placée autour de chaque tube ou noyau allongé servant à former chaque canal 8 et les tubes sont placés à l'intérieur d'un moule (non montré), qui peut être lui-même constitué en partie par le tube 11 montré dans la figure 5 ou 6. La feuille 15 peut être par exemple en zinc ou en alliage d'aluminium et elle a par exemple une épaisseur d'environ 5/10 mm (cette épaisseur a été fortement exagérée dans la figure 8 pour la clarté du dessin).In the embodiment of FIG. 8, the body 14 of the deflector 7 is in a castable and curable plastic material, such as for example a resin possibly containing fillers or a mortar based on resin. Channels 8 are defined by cores, for example by curved tubes (not shown) and which respectively have predefined curvatures corresponding to the desired curvature of the path of each channel 8. The tubes may be plastic or metal. A sheet 15 made of a metal that is less hard and more electropositive than the steel constituting the cable strands, is placed around each tube or elongated core used to form each channel 8 and the tubes are placed inside a mold (not shown), which can be itself constituted in part by the tube 11 shown in FIG. sheet 15 may be for example zinc or aluminum alloy and it has example a thickness of about 5/10 mm (this thickness was strongly exaggerated in figure 8 for the clarity of the drawing).

La résine coulable et durcissable destinée à former le corps 14 est ensuite coulée ou injectée dans le moule. Les tubes servant de noyaux pour le moulage sont retirés du corps 14 après son démoulage, tandis que les feuilles 15 restent dans les canaux 8 afin de doubler leur surface intérieure.The castable and curable resin intended to form the body 14 is then cast or injected into the mold. The tubes serving as cores for molding are removed from the body 14 after demolding, while the leaves 15 remain in the 8 channels to double their inner surface.

Dans le mode de réalisation de la figure 9, le corps 14 du déviateur 7 est réalisé par moulage de la même manière que le mode de réalisation de la figure 8, excepté que, dans ce cas, les canaux 8 ne sont pas garnis intérieurement d'une feuille ou autre revêtement métallique. Dans les modes de réalisation des figures 8 et 9, les noyaux servant à la formation des canaux 8 dans le corps 14 peuvent présenter une dépouille et/ou être revêtus d'une matière facilitant leur enlèvement du corps 14 après moulage de celui-ci.In the embodiment of FIG. 9, the body 14 of the deflector 7 is made by molding in the same manner as the embodiment of FIG. except that, in this case, the channels 8 are not internally lined with a sheet or other metal coating. In the embodiments of Figures 8 and 9, the cores for forming the channels 8 in the body 14 may have a skin and / or be coated with a material facilitating their removal from the body 14 after molding of it.

Dans le mode de réalisation de la figure 10, chaque canal 8 est usiné dans la matière du corps du déviateur 7, par exemple à l'aide d'un outil 16 en forme de demi-diabolo, qui a un profil courbe correspondant à la courbure désirée du trajet courbe du canal 8. Dans ce cas, le déviateur 7 est de préférence constitué par plusieurs corps, par exemple trois corps 14a, 14b, et 14c, percés de n trous et disposés successivement sur un même axe longitudinal et de préférence juxtaposés, les trous homologues des trois corps 14a, 14b et 14c définissant à chaque fois un canal courbe continu 8 pour un toron 3 du câble 2. Chaque trou ou canal 8 du corps intermédiaire 14b, qui a une longueur axiale plus grande que celle des deux corps extrêmes 14a et 14c peut être foré à l'aide de l'outil 16 à partir de chacune des deux faces d'extrémité du corps intermédiaire 14b, de telle façon que les deux trous ainsi formés se rejoignent au milieu du corps intermédiaire 14b. Dans ce cas, les épaulements qui apparaissent aux interfaces des trois corps 14a, 14b et 14c, du fait des différences de diamètre des trous 8 à ces endroits, peuvent être abattus par des fraisages, comme montré en 17, afin de ne pas gêner l'enfilage du toron dans les trous alignés des trois corps 14a-14c. Ces trois corps peuvent être réalisés en métal, de préférence dans un métal moins dur et plus électropositif que l'acier constituant les torons, par exemple en aluminium ou en un alliage d'aluminium. Toutefois, les trois corps 14a à 14c peuvent être également réalisés en acier, mais dans ce cas la surface des canaux 8 sera de préférence doublée d'une couche de matière moins dure que l'acier constituant les torons du câble. Si cette couche est elle-même métallique, elle pourra être déposée par exemple par un procédé de dépôt électrolytique ou par tout autre procédé approprié.In the embodiment of FIG. 10, each channel 8 is machined in the material of the body of the deflector 7, for example by means of a tool 16 in the form of a half-diabolo, which has a curved profile corresponding to the desired curvature of the curved path of the channel 8. In this case, the deflector 7 is preferably constituted by several bodies, for example three bodies 14a, 14b, and 14c, pierced with n holes and arranged successively on the same longitudinal axis and preferably juxtaposed, the holes homologues of the three bodies 14a, 14b and 14c each defining a curved channel continuous 8 for a strand 3 of the cable 2. Each hole or channel 8 of the intermediate body 14b, which has an axial length greater than that of the two end bodies 14a and 14c can be drilled using the tool 16 from each of the two end faces intermediate body 14b, so that the two holes thus formed are join in the middle of the intermediate body 14b. In this case, the shoulders that appear at the interfaces of the three bodies 14a, 14b and 14c, because of differences in diameter of the holes 8 at these places, can be slaughtered by milling, as shown in 17, so as not to interfere with the threading of the strand in the aligned holes of the three body 14a-14c. These three bodies can be made of metal, preferably in a less hard metal and more electropositive than the steel constituting the strands, for example aluminum or an aluminum alloy. However, the three bodies 14a to 14c can also be made of steel, but in this case the surface of the channels 8 will preferably be lined with a layer of softer material than steel constituting the strands of the cable. If this layer is itself metallic, it can be deposited for example by an electrolytic deposition process or by any other appropriate method.

Dans le mode de réalisation de la figure 11, le déviateur 7 est obtenu par un procédé mixte combinant les procédés décrits plus haut. Par exemple, le déviateur 7 peut être constitué par deux corps juxtaposés 14a et 14d. Le corps 14a, dont les trous 8 sont les plus rapprochés les uns des autres, peut être en métal ou en matière thermoplastique, par exemple une matière choisie dans la gamme des PEHD ou des polyamides 6. Le corps 14a peut alors être réalisé selon la technique d'usinage par enlèvement de matière décrite à propos de la figure 10, ou selon une technique d'injection sous pression. Le corps 14d peut être réalisé selon la technique de moulage d'une matière plastique thermodurcissable décrite à propos de la figure 8 ou 9.In the embodiment of FIG. 11, the deflector 7 is obtained by a mixed process combining the methods described above. For example, the diverter 7 can be constituted by two juxtaposed bodies 14a and 14d. The body 14a, whose holes 8 are the closest to each other, can be metal or material thermoplastic material, for example a material selected from the range of HDPE or 6. The body 14a can then be produced according to the machining technique. removal of material described with reference to FIG. 10, or according to a technique injection pressure. The body 14d can be produced according to the technique of molding a thermosetting plastic material described with reference to FIG. 9.

Avec le déviateur selon l'invention, et lorsqu'on utilise des torons T15S, il est possible d'adopter une dimension de maille m1 aussi petite que 18 mm. Pour deux câbles constitués respectivement de 37 et 61 torons, on trouve que le premier câble s'inscrit dans un cercle d'encombrement de diamètre 124 mm, tandis que le deuxième câble s'inscrit dans un cercle d'encombrement de diamètre 160 mm. Le gain d'encombrement sur la section courante du câble obtenu grâce à l'invention est donc considérable, de l'ordre de 37 % en diamètre, ou de 60 % en section par rapport aux câbles pourvus des systèmes d'ancrage et de déviation courts décrits dans les brevets US 4.442.646, 4.473.915 et 4.484.425.With the deflector according to the invention, and when using T15S strands, it is possible to adopt a mesh size m 1 as small as 18 mm. For two cables constituted respectively of 37 and 61 strands, it is found that the first cable is part of a circle of space of diameter 124 mm, while the second cable is part of a circle of size 160 mm in diameter. The space saving on the current section of the cable obtained by virtue of the invention is therefore considerable, of the order of 37% in diameter, or 60% in section with respect to the cables provided with anchoring and deflection systems. short described in US Patents 4,442,646, 4,473,915 and 4,484,425.

Il va de soi que les modes de réalisation de la présente invention, qui ont été décrits ci-dessus, ont été donnés à titre d'exemple purement indicatif et nullement limitatif, et que de nombreuses modifications peuvent être apportées par l'homme de l'art sans pour autant sortir du cadre de invention telle que définie dans les revendications. Par exemple, il n'est pas absolument indispensable que le déviateur 7 selon l'invention soit accolé à la tête d'ancrage 4, bien que cette disposition soit particulièrement favorable du point de vue du guidage des torons 3 et du point de vue de la longueur totale de l'ancrage 10. En outre, dans le cas où le déviateur 7 est composé de plusieurs corps successifs, ceux-ci ne sont pas nécessairement accolés les uns aux autres, mais ils peuvent être légèrement espacés les uns des autres, par exemple de quelques dizaines de centimètres. En outre, le corps 14 ou les corps 14a à 14c ne sont pas nécessairement cylindriques, mais ils peuvent être tronconiques ou en partie cylindriques et en partie tronconiques, ou encore ils peuvent avoir une section non circulaire, par exemple une section polygonale.It goes without saying that the embodiments of the present invention, which have been described above, have been given as a purely indicative example and not at all limiting, and that many modifications can be made by the man of the art without departing from the scope of invention as defined in the claims. For example, it is not absolutely essential that the deflector 7 according to the invention is attached to the head 4, although this provision is particularly favorable from the point of view the guidance of the strands 3 and the point of view of the total length of the anchor 10. In in addition, in the case where the deflector 7 is composed of several successive bodies, these are not necessarily attached to each other, but they can be slightly spaced apart from each other, for example a few dozen centimeters. In addition, the body 14 or the bodies 14a to 14c are not necessarily cylindrical, but they may be frustoconical or partly cylindrical and partly frustoconical, or they may have a non-circular section, for example a polygonal section.

Il n'est pas non plus indispensable que le trajet courbe de chaque canal 8 ait une courbure constante (arc de cercle) sur toute sa longueur. La courbure de chaque trajet courbe peut en effet varier sur tout ou partie de la longueur du trajet, pourvu que en tout point dudit trajet la valeur (min. de R) du rayon de courbure reste comprise dans les limites indiquées plus haut.
Par exemple, à l'exception du canal central du réseau maillé, chaque canal peut avoir une portion de trajet courbe, avec une courbure identique pour tous les canaux, mais des longueurs de trajet courbe différentes (les canaux situés à la périphérie du réseau maillé ayant les portions de trajet courbe les plus longues, et les canaux situés près du milieu du réseau maillé ayant les portions de trajet courbe les plus courtes), et une portion de trajet rectiligne qui suit la portion de trajet courbe.
Nor is it essential that the curved path of each channel 8 has a constant curvature (arc) throughout its length. The curvature of each curved path may indeed vary over all or part of the path length, provided that at any point of said path the value (min of R) of the radius of curvature remains within the limits indicated above.
For example, with the exception of the central channel of the mesh network, each channel may have a curved path portion, with the same curvature for all channels, but different curved path lengths (the channels at the periphery of the mesh network having the longest curved path portions, and channels near the middle of the mesh network having the shortest curved path portions), and a straight path portion following the curved path portion.

En outre, si on le désire, les espaces libres entre chaque toron et la paroi du canal correspondant du déviateur peuvent être remplis avec un agent de protection contre la corrosion tel que, par exemple, une résine visco-élastique souple, une cire pétrolière, de la graisse, ou d'autres matières souples n'entravant pas la possibilité de remplacement d'un ou plusieurs torons, toron par toron.In addition, if desired, the free spaces between each strand and the wall of the corresponding channel of the deflector can be filled with a protective agent against corrosion such as, for example, a flexible viscoelastic resin, a wax oil, grease, or other soft materials that do not interfere with the possibility of replacement of one or more strands, strand by strand.

Claims (21)

  1. Deflector for a stay cable (2) with n separate strands (3), including at least one body (14) which has two opposing sides at least approximately perpendicular to a longitudinal axis (13) of the body and which includes n channels (8) passing through the body from one side to the other side thereof and arranged according to a lattice network, and in which each channel (8) has an internal diameter Φ selected in such a way as to define, in operation, a radial play just sufficient for one strand (3) of the cable (2) to pass freely in the channel, the lattice network formed by the channels (8) has, on a first of the two opposing sides of the body (14), a first lattice dimension (m1), and on the second side of the body (14) a second lattice dimension (m2) larger than the first lattice dimension, and in which, apart from a central channel situated on the longitudinal axis of the body (14), each channel (8) runs between the first and second sides of the body along a curved course,
    the channels (8) which are situated at the periphery of the lattice network and which have, among all the channels (8), the curved course having the smallest radius of curvature (R min), having at every point of their course a curvature less than or equal to a maximum predefined curvature, characterised in that the body (14) is in a material capable of being shaped with thicknesses less than 2 mm and having compressive strength greater than 20 MPa and tractive resistance greater than 10 MPa, and in that said smallest radius of curvature has a value (R min) which satisfies the relation: 1 m ≤ (R mm) ≤ 5 m.
  2. Deflector according to Claim 1, characterised in that said smallest radius of curvature has a value (R min) which satisfies the relation: 2 m ≤ (R min) ≤ 4 m.
  3. Deflector according to either one of Claims 1 or 2, characterised in that said first lattice dimension (m1) has a value which satisfies the relation: Φ + 1.5 mm ≤ m1 ≤ Φ + 5 mm    where Φ is the value of the internal diameter of the channels (8) which itself satisfies the relation: ϕ + 0.4 mm ≤ Φ ≤ ϕ + 2 mm    where ϕ is the value of the diameter of one strand (3) of the cable (2).
  4. Deflector according to any one of Claims 1 to 3, characterised in that the body (14) is made from a resin which can be cast and hardened, which is cast or injected into a mould, and in that the channels (8) are defined by elongated and curved cores, which have respectively predefined curvatures and which are embedded in the material of the body (14) during moulding and removed from the body afterunmoulding thereof.
  5. Deflector according to Claim 4, characterised in that the resin contains a charge.
  6. Deflector according to Claim 5, characterised in that the charge is constituted by particles of silicon or by zinc powder, the particles of silicon or of zinc being smaller in size than the quantity (m1 -Φ)/4.
  7. Deflector according to any one of Claims 4 to 6, characterised in that the internal surface of each channel (8), at least in its zone where a strand (3), once stretched, comes into contact with said internal surface, is lined with a sheet (15) of a softer and more electropositive metal than steel, said sheet being placed around the elongated core serving to form the corresponding channel and being left in place in said channel after moulding of the body (14) and removal of said elongated core.
  8. Deflector according to Claim 7, characterised in that said sheet of metal is made of zinc or aluminium alloy and has a thickness of approximately 5/10 mm.
  9. Deflector according to any of Claims 1 to 3, characterised in that the channels (8) are machined in the material of the body (14).
  10. Deflector according to Claim 9, characterised in that the body (14) is made of a softer and more electropositive metal than the steel constituting the strands (3) of the cable (2).
  11. Deflector according to Claim 9, characterised in that the body (14) is made of steel and in that the internal surface of the channels (8) is lined with a layer of material less hard than the steel constituting the strands (3) of the cable (2).
  12. Deflector according to any of Claims 1 to 11, characterised in that it includes several bodies (14a-14c) perforated by n holes and arranged successively on the same longitudinal axis (13).
  13. Deflector according to Claim 12, characterised in that the bodies (14a-14c) are in contact two by two and their homologous holes define in each case a continuous curved channel (8) for a strand (3) of the cable (2).
  14. Deflector according to Claim 13, characterised in that a first body (14a) of the bodies (14a and 14d) is made of metal and its holes are realised by machining, and in that a second (14d) of the bodies (14a and 14d) is made by moulding a plastic material.
  15. Deflector according to Claim 13, characterised in that a first body (14a) of the bodies (14a and 14d) is made of a thermoplastic material and is realised by one of the two techniques consisting of injection under pressure and machining by removal of material, and in that a second (14d) of the bodies (14a and 14d) is made by moulding a plastic thermosetting material.
  16. Deflector according to any of Claims 1 to 15, characterised in that it also includes a retaining tube (11), of the same length as the body (14) which tightly surrounds said body and which serves to fix the latter onto a structure (12) to which the stay cable (2) is anchored.
  17. Deflector according to any of Claims 1 to 16, characterised in that each channel (8) has a curved course which includes two successive parts curving in opposite directions, to wit, starting from the first side of the body (14), a first part having a concavity turned towards the exterior of the body, followed by a second part having a concavity turned towards the interior of the body.
  18. Deflector according to any of Claims 1 to 16, characterised in that each channel (8) has a course which curves monotonously from the first to the second side of the body (14).
  19. Deflector according to Claim 18, characterised in that each curved course takes the form of an arc of a circle.
  20. Device for anchoring a multi-strand stay cable, including an anchorage head (4) which contains n holes (5) in each of which the strands (3) of the stay cable (2) are individually anchored, and which are positioned according to an arrangement forming a lattice network which has a given dimension of lattice, and a deflector (7) allowing the arrangement of the strands (3) to be converted in the anchorage head (4) into an arrangement forming a lattice network which has a lattice dimension smaller than said given dimension of lattice, for a running part of said cable (2), characterised in that the deflector (7) is a deflector according to any one of claims 1 to 19.
  21. Stay comprising a cable (2) composed of several separate strands (3), and two anchoring devices (1) situated at the extremities of the cable, characterised in that at least one of the two anchoring devices (1) is an anchoring device according to claim 20.
EP99947576A 1998-10-16 1999-10-14 Guy cable deflector Expired - Lifetime EP1121492B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9812980 1998-10-16
FR9812980 1998-10-16
PCT/FR1999/002496 WO2000023654A1 (en) 1998-10-16 1999-10-14 Guy cable deflector

Publications (2)

Publication Number Publication Date
EP1121492A1 EP1121492A1 (en) 2001-08-08
EP1121492B1 true EP1121492B1 (en) 2003-07-23

Family

ID=9531638

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99947576A Expired - Lifetime EP1121492B1 (en) 1998-10-16 1999-10-14 Guy cable deflector

Country Status (11)

Country Link
EP (1) EP1121492B1 (en)
JP (1) JP4104826B2 (en)
KR (1) KR100573995B1 (en)
AR (1) AR020809A1 (en)
AT (1) ATE245727T1 (en)
AU (1) AU6097399A (en)
CA (1) CA2346558A1 (en)
DE (1) DE69909813D1 (en)
PE (1) PE20000998A1 (en)
TW (1) TW434353B (en)
WO (1) WO2000023654A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11148355A (en) * 1997-11-14 1999-06-02 Mazda Motor Corp In-cylinder injection type spark ignition engine
FR2806107B1 (en) * 2000-03-13 2002-10-11 Freyssinet Int Stup DEVIATION SADDLE FOR CABLE AND CIVIL ENGINEERING STRUCTURE COMPRISING SUCH A DEVIATION SADDLE
GB2514621B (en) * 2013-05-31 2020-04-15 Vsl Int Ag Cable anchorage
CN106812251A (en) * 2015-12-01 2017-06-09 衡阳市新德力预应力有限公司 A kind of prestressing force pull end anchor
JP7430617B2 (en) * 2020-10-16 2024-02-13 日本碍子株式会社 Wafer mounting table
CN114808734B (en) * 2022-05-19 2024-07-26 柳州桂桥缆索有限公司 Construction method of stay cable front fulcrum cradle soft and hard connection conversion system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1328971A (en) * 1962-04-21 1963-06-07 Stup Procedes Freyssinet Device for tensioning and anchoring prestressing cables made up of a large number of wires or strands
GB1117114A (en) * 1964-10-26 1968-06-12 Lift Slab Pty Ltd Anchorages for concrete pre-stressing tendons
US4442646A (en) * 1980-10-28 1984-04-17 Ponteggi Est S.P.A. Device for anchoring tensioning elements
DE3138819C2 (en) * 1981-09-30 1986-10-23 Dyckerhoff & Widmann AG, 8000 München Method for assembling a tension member running freely between its anchoring points, in particular a stay cable for a stay cable bridge
US4484425A (en) * 1982-07-21 1984-11-27 Figg And Muller Engineers, Inc. Anchorage of cables

Also Published As

Publication number Publication date
AR020809A1 (en) 2002-05-29
KR20010033161A (en) 2001-04-25
JP4104826B2 (en) 2008-06-18
TW434353B (en) 2001-05-16
ATE245727T1 (en) 2003-08-15
JP2002527653A (en) 2002-08-27
WO2000023654A1 (en) 2000-04-27
EP1121492A1 (en) 2001-08-08
AU6097399A (en) 2000-05-08
KR100573995B1 (en) 2006-04-25
DE69909813D1 (en) 2003-08-28
PE20000998A1 (en) 2000-10-13
CA2346558A1 (en) 2000-04-27

Similar Documents

Publication Publication Date Title
EP1181422B1 (en) Device for anchoring a structural cable
WO2017216115A1 (en) Connection end piece for a flexible line, and associated flexible line and method
WO1984002732A1 (en) Filiform elements usable for reinforcing mouldable materials, particularly concrete
EP3017229B1 (en) Flexible pipe comprising connection end-piece with a spacing member and associated mounting method
FR2511721A1 (en) CURVED CONNECTION DEVICE BETWEEN TWO RECTILINE PORTIONS OF A TENSILE CABLE
LU84984A1 (en) CABLES AND THEIR MANUFACTURING METHOD
EP0439411A1 (en) Composite insulator and its manufacturing process
EP2649239B1 (en) Device for diverting a structural cable, such as a guy line, and construction comprising same
CA3071589A1 (en) Reinforcement anchoring device
EP1121492B1 (en) Guy cable deflector
FR2962935A1 (en) PIECE OF COMPOSITE MATERIAL, METHOD OF MANUFACTURE, AND ROD OBTAINED BY THIS PROCESS
EP2889439B1 (en) Anchoring device with spacer for strapping frames
EP0098825A1 (en) Fibres for the reinforcement of mouldable materials with a hydraulic or other bonding agent, and their manufacture
BE852353A (en) IMPROVEMENT IN DRIVE CONTROL AND TRANSMISSION RODS
FR2671158A1 (en) REINFORCED STIFFENER AND ITS MANUFACTURING METHOD.
FR2505057A1 (en) Non-metallic fibre=optic cable - has fibre cable forming core helically surrounded by optical fibres inside outer sheath
FR2634856A1 (en) Concrete pipe
EP2803763B1 (en) Improved pulling and lifting cable and method for manufacturing such a cable
CA2364994A1 (en) Cable sheath with several parallel strands and stay equipped therewith
WO2023169994A1 (en) Connector for connecting first and second elements of a structure to one another
FR2575498A1 (en) Device for anchoring cables, particularly bridge stays
FR2484584A1 (en) TIGHTENING DEVICE FOR MULTI-TORON WATER CABLE
EP1659232A1 (en) Prestressed concrete element , its manufacturing method, and hoop reinforcement tube for the manufacturing of a prestressed concrete element
FR2567946A1 (en) Improvements to methods and devices for locally deflecting the prestressing reinforcement
EP1216777A1 (en) Cable saw comprising variable diameter coil springs between the cutting elements

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20010405

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: VINCI CONSTRUCTION GRANDS PROJETS

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030723

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20030723

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030723

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030723

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030723

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030723

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: FRENCH

REF Corresponds to:

Ref document number: 69909813

Country of ref document: DE

Date of ref document: 20030828

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031014

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031014

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031023

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031023

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031023

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031024

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031031

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031031

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031103

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031223

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20030723

GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 20030723

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

BERE Be: lapsed

Owner name: *VINCI CONSTRUCTION GRANDS PROJETS

Effective date: 20031031

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20040426

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 19

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20180920

Year of fee payment: 20