Nothing Special   »   [go: up one dir, main page]

EP1167259A2 - Blattgutstapelvorrichtung und Verfahren zur Steuerung des Einlaufs von Blattgut in ein Staplerrad - Google Patents

Blattgutstapelvorrichtung und Verfahren zur Steuerung des Einlaufs von Blattgut in ein Staplerrad Download PDF

Info

Publication number
EP1167259A2
EP1167259A2 EP01112072A EP01112072A EP1167259A2 EP 1167259 A2 EP1167259 A2 EP 1167259A2 EP 01112072 A EP01112072 A EP 01112072A EP 01112072 A EP01112072 A EP 01112072A EP 1167259 A2 EP1167259 A2 EP 1167259A2
Authority
EP
European Patent Office
Prior art keywords
sheet material
sheets
sheet
stacker
stacker wheel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP01112072A
Other languages
English (en)
French (fr)
Other versions
EP1167259A3 (de
EP1167259B1 (de
Inventor
Alexander Dr. Steinkogler
Thomas Hildebrandt
Michael Stapfer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Giesecke and Devrient GmbH
Original Assignee
Giesecke and Devrient GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Giesecke and Devrient GmbH filed Critical Giesecke and Devrient GmbH
Publication of EP1167259A2 publication Critical patent/EP1167259A2/de
Publication of EP1167259A3 publication Critical patent/EP1167259A3/de
Application granted granted Critical
Publication of EP1167259B1 publication Critical patent/EP1167259B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H29/00Delivering or advancing articles from machines; Advancing articles to or into piles
    • B65H29/38Delivering or advancing articles from machines; Advancing articles to or into piles by movable piling or advancing arms, frames, plates, or like members with which the articles are maintained in face contact
    • B65H29/40Members rotated about an axis perpendicular to direction of article movement, e.g. star-wheels formed by S-shaped members
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2511/00Dimensions; Position; Numbers; Identification; Occurrences
    • B65H2511/20Location in space
    • B65H2511/22Distance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2511/00Dimensions; Position; Numbers; Identification; Occurrences
    • B65H2511/50Occurence
    • B65H2511/51Presence
    • B65H2511/514Particular portion of element
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2513/00Dynamic entities; Timing aspects
    • B65H2513/20Acceleration or deceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2701/00Handled material; Storage means
    • B65H2701/10Handled articles or webs
    • B65H2701/19Specific article or web
    • B65H2701/1912Banknotes, bills and cheques or the like

Definitions

  • the invention relates to a sheet material stacking device, in particular a spiral stacker, and a method for controlling the infeed of sheet material in Storage compartments of a continuously or intermittently rotating stacker wheel.
  • Spiral stacker are used for example in sheet inspection and -sorting devices used in which stack of sheets, for example Bundles of banknotes, first separated, then for test purposes passed through a sensor system and finally by means of spiral stackers can be stacked in different stacks.
  • the function The spiral stacker consists of the single sheets that are transported by turning it into a spiral path before it is finally deposited decelerate. It is not critical in most applications, if not every storage compartment of the stacking wheel with one sheet when stacking is occupied or if a storage compartment exceptionally contains more than one Sheet is occupied.
  • DE 27 56 223 C2 proposes a more constant, given Rotation speed of the stacker wheel the deviation of the individual Determine the sheet from its ideal position using a sensor and the leading edge of the sheet with a finger at the moment of Handing over the sheet by an amount proportional to the determined deviation to push down so far that the leading edge of the sheet is at the ideal sheet entry point enters the storage compartment.
  • the quantitative measurement of the position deviation takes place at a distance in front of the transfer point, so sufficient Time to influence the leading edge of the sheet by individual Deflecting the finger is available.
  • a disadvantage of the last-mentioned solution proposal is that with closely following one another Scroll very high accelerations of the forklift wheel are necessary to get the next storage compartment into the ideal entry position in good time bring to. Another disadvantage arises in connection with overlapping sheets, which is particularly important when processing used banknotes can occur due to their poor condition.
  • the object of the present invention is therefore a sheet material stacking device as well as a method for controlling the entry of sheet material into storage compartments to provide a stacker wheel, the stacker wheel so is influenced that even with very short leaf spacing or overlapping A defined stacking is enabled.
  • the invention also provides that a group or groups of at least two sheets are sensed and can be evaluated, and that based on the evaluation result measures are taken for this group or groups of leaves, which are capable of a reliable handover of all sheets of this Ensure group in the storage compartments of the stacker wheel.
  • the Evaluation not only the next approaching sheet but at least the next two sheets approaching, it becomes possible anticipating the entry of the sheets into the stacker wheel for the whole Control group of leaves.
  • the kinematics of the stacker wheel be influenced in a forward-looking manner, with the influence on the location and / or speed and / or acceleration of the Stacker wheels can relate.
  • a sheet material sensor which has one or more Determines information about the approaching sheet material, for example the Distance between two sheets, the length of a sheet or the total length several overlapping sheets, the total thickness of several itself overlapping sheets, or other information, which conclusions allow the relative location of two or more sheets.
  • the sheet material sensor is expediently at a sufficient distance arranged in front of the stacker wheel so that the information about the following Sheet evaluated relative to the previous sheet and a corresponding one Influence on the forklift wheel can be made, before running the leading sheet into a storage compartment of the stacker wheel starts.
  • the distance between the stacker wheel and the sheet material sensor should be therefore correspond to a length that results from the maximum length of the editing sheets, the normal distance between the sheets and an additional route, the additional route depending of the transport speed is such that it is sufficient Time to evaluate the sheet material sensor information and suitable Influencing the individual leaf flow is available.
  • a preferred embodiment of the invention provides for distance measurement between two sheets and the total length measurement of the sheets or to combine overlapping sheets.
  • This is in easily possible with a single sheet sensor, for example can be designed as a light barrier and preferably located in the distance to the stacker wheel described above.
  • the light barrier By means of the light barrier the presence of sheet material in the transport path can be easily determine.
  • the period of time between two consecutive serves Scrolling passes as a measure of the distance between the sheets and the time that elapses between the distance measurement as Measure of the length of a sheet or group of sheets.
  • the truck wheel can stop for a short time or rotate at a very slow rotation speed, so that both sheets can enter a common storage compartment.
  • alternative can temporarily increase the speed of rotation of the truck wheel to compensate for the shortened distance, so that the two leaves enter separate storage compartments.
  • the stacker wheel stopped or rotating at a slow speed or at least be slowed down to the extent that all leaves of this group completely picked up by sheets in a common storage compartment become. If not before this sheet group has entered the storage compartment it is determined that the next sheet or the next sheet group follows with a sufficient distance, the stacker wheel makes sense stopped so that the next sheet or the next one Sheet group can enter the same stacker compartment. Only when on again sufficiently large distance is determined, the stacker wheel on the next storage compartment positioned and, if necessary, again from the individual Leaf flow control on the synchronized control (synchronization the stacker wheel rotation speed with the sheet separation rate) changed.
  • the total length of the overlapping sheets determined and evaluated, so it can be determined exactly at which point the overlap begins and ends. Under these conditions it is possible to accelerate by short-term acceleration the stacker wheel separates the overlapping sheets in this way to ensure that the sheets run into separate storage compartments. However, it must be ensured that the acceleration is not too violent and speeds of the stacker wheel breaking in Prevent leaves or cause them to be ejected.
  • the stacker wheel advantageously rotates at single or multiple synchronous speeds, the synchronous speed v s resulting from the nominal singling rate r N (sheets per minute) and the number n F of storage compartments per revolution.
  • a multiple synchronous speed means that in nominal operation of the machine, ie with synchronized singling rate and stacker wheel speed, not every compartment of the stacker wheel is occupied with a sheet. This reduces the risk that successive sheets interfere with stacking if they collide with kinks or folds.
  • each storage compartment can be specifically assigned one sheet in order to reduce the duration of the positioning of the stacker wheel on the next desired storage compartment.
  • a special embodiment of the invention provides that in addition to or instead of influencing the kinematics of the stacker wheel Sheet material speed in at least a partial area of the sheet material transport route is affected to irregularly spaced leaves or themselves bring overlapping sheets to a normalized distance so that the Shrinkage of a sheet more often becomes possible for each storage compartment.
  • This is a Transport system provided which has at least one transport route segment has, whose transport speed depends on the sheet material sensor information can be influenced.
  • FIG. 1 The overall view of a spiral stacker shown schematically in FIG. 1 shows a stacker wheel 1 with a number distributed spirally over the circumference Storage compartments 2, which are formed by partitions 20.
  • the stacker wheel 1 rotates in the direction of arrow 10 and takes sheets 7A, 7B, which over a in Direction of arrow 11 driven transport system 5 are fed into the Storage compartments 2 and transports the sheets in the circumferential direction of the Stacker wheel 1 until it is finally removed from the storage compartments by a scraper 4 2 are pulled and fall onto a stack 3.
  • the spirally curved Partitions take on the function of the transported Sheets 7A, 7B to be braked continuously.
  • the stacker wheel preferably rotates at a multiple of the synchronous speed appropriate speed.
  • a sheet material sensor 16 is arranged at a greater distance from the stacker wheel 1.
  • the sheet material sensor 16 is designed as a light barrier and detects this The presence or absence of sheet material in the transport system 5.
  • a proximity sensor 6 which is also a light barrier is formed and serves the leading edge of an approaching Detect sheet 7A. On this proximity sensor 6 can under In particular, circumstances are waived, as will be explained below if a sheet transport speed sensor 17 is provided is.
  • a synchronized cycle length t 0 of successive leaves 7A, 7B results, which is inversely proportional to the separation rate v N and is composed of a time span t L (standard length), this is the time it takes a sheet to be transported over any point of the transport system and a time period t a (synchronized distance) that passes between two successive sheets 7A, 7B.
  • Both the synchronized distance t a and the standard length t L are determined with the sheet material sensor 16.
  • the distance between the proximity sensor 6 and the sheet material sensor 16 is selected to be greater than the synchronized cycle length t 0 , so that at the point in time when the leading sheet 7A reaches the proximity sensor 6, an evaluation device 18 already evaluates the information supplied by the sheet material sensor 16 is and is certain whether the synchronized cycle length t 0 between the two successive sheets 7A, 7B lies within predetermined tolerance limits or whether there is an impermissible irregularity, for example in the distance between the two sheets or in the total length of a sheet or a group of sheets.
  • the proximity sensor 6 detects the arrival of a sheet 7A
  • information about the position of the next sheet 7B is already available, so that the kinematics of the stacker wheel 1 can be influenced in a manner coordinated with the individual, asynchronous sheet flow.
  • the stacker wheel 1 is stopped to allow incoming overlapping sheets or sheets with a short distance between successive sheets to enter a common storage compartment 2, and only when the distance between two successive sheets 7A, 7B is above a minimum distance brought the next storage compartment 2 of the stacker wheel 1 into the run-in position.
  • a position sensor 14 provides information about the exact positioning of the stacker wheel, which detects the stacker wheel position on the basis of a contact disk 13 and forwards it to the evaluation unit 18.
  • the position sensor 14 has only a resolution which corresponds to the number of storage compartments 2 or the dividing walls 20, a higher resolution can be achieved by evaluating information from the drive of the stacker wheel 1 in addition to the position sensor 14. If the drive is formed by a stepper motor, the steps taken by the stepper motor can be counted, for example. Since it is known how many steps there are between two partitions 20 or storage compartments 2, the exact position can thus be determined.
  • FIGS. A section of the transport path of the sheet material 7 in the direction of the arrow is shown schematically, the sheets 7A, 7B and 7A, 7B, 7C each defining a group of sheets whose relative position to one another is determined and evaluated by means of the sheet material sensor 16, to suitably influence the kinematics, ie the position, the speed or the acceleration, of the stacker wheel 1 on the basis of the evaluation result.
  • t 0 denotes the synchronized cycle length, that is to say the distance between two successive sheets in synchronized operation without irregularities occurring, which is composed of the synchronized distance t a and the length t L of the sheet material to be processed, as previously explained.
  • Fig. 2 shows the case of an irregularity in the distance between the sheets 7A, 7B.
  • the actual distance t ' a between the leaves 7A, 7B of this group of leaves is smaller than the synchronized distance t a . If no measures are taken, this can result in the trailing sheet 7B still running with its front sheet edge into the storage compartment 2, in which the leading sheet 7A has already been received, so that the trailing sheet 7B collides with the partition 20.
  • the proximity sensor 6 determining the arrival of the leading sheet 7A at a point in time at which the irregularity of the sheet spacing has already been recognized and evaluated, a suitable measure can be taken to prevent this collision.
  • the singling wheel 1 can be stopped so that all incoming sheets 7A, 7B, ... can be received in a common storage compartment 2 until the sheet material sensor 16 has a sufficiently large distance t ' a ⁇ t a to a subsequent sheet 7C or a subsequent one Group of sheets reports that the stacking wheel continues to cycle.
  • the speed sensor 17 provides information about the sheet material transport speed and is taken into account when influencing the kinematics of the stacker wheel 1, it is also possible to specifically influence the rotational speed of the stacker wheel 1 in such a way that the trailing sheet 7B enters the next desired storage compartment 2 enters.
  • the stacker wheel 1 only has to be briefly accelerated or prepositioned by a corresponding amount.
  • the stacker wheel 1 only has to be braked by a corresponding amount in order to ensure that the lagging sheet 7B does not collide to reach the next desired storage compartment.
  • This measure can in turn consist in stopping the stacker wheel 1 or moving it at a low speed until all the sheets in this group of sheets are accommodated in the same storage compartment 2, ie until the sheet material sensor 16 reports a distance t ' a between two successive sheets which is larger or larger is equal to the synchronized distance t a .
  • the sheets 7A, 7B, 7C are followed by a further sheet, the distance t ' a of which is comparatively small, measures are taken to influence the stacker wheel, as described in connection with FIG. 2.
  • FIG. 4 shows a case in which the sheet material sensor 16 is (at least also) designed as a thickness sensor. That is, the sheet material sensor 16 determines on the basis of the actually determined thickness d 'of the sheet material whether there is an impermissible deviation from the predetermined sheet material thickness d 0 and, in the positive case, concludes that a group of sheets 7A, 7B overlap. As a measure thereupon, the same measures come into consideration as were explained in connection with FIG. 3, where also overlapping sheets were determined (however on the basis of the determination of the total length t ' L ).
  • the sheet material sensor 16 designed as a thickness sensor can also be used as a light barrier be formed, however, the intensity of the leaf material light shining through is measured. This allows you to use a single sensor both the leading edge of the leading sheet 7A (simple Light barrier) as well as the front edge of the following sheet 7B and the trailing edge of the leading sheet 7A (intensity measurement) determine their exact location. This enables the stacker wheel 1 taking into account the sheet material transport speed accelerate that the sheets 7A and 7B enter separate storage compartments 2. That is, the information is also in this particular embodiment of the sheet transport speed of interest, for example can be determined by means of the speed sensor 17 by the Rotational speed of a transport wheel is determined.
  • the proximity sensor 6 can also be dispensed with, since it is only the Provides information that sheet material 7 is approaching stacker wheel 1, in order to get the sheet material into a storage compartment 2 in time necessary measures to influence the kinematics of the stacker wheel 1 to be able to meet. But is the speed of sheet transport, for example through the speed sensor 17, known, the range is sufficient Sheet material sensor 16 for determining the point in time at which the sheet material will hit the stacker wheel 1. Because this time comes in easily determined from the quotient of the sheet material sensor distance Transport speed.
  • Taking the transport speed into account when determining the Influencing measures on the kinematics of the stacker wheel can be advantageous can also be used to control the movement of the stacker wheel to adjust the time available for shrinking the next sheet so that the positioning of the stacker wheel until the next one arrives Sheet is just completed.
  • the transport system 5 is a transport route segment 12A, 12B, the transport speed of which can be influenced.
  • the speed of the Transport route segments 12A, 12B controlled. Gaps within groups of leaves can be varied on the synchronized distance and overlapping sheets can be pulled apart. This makes stacking from one sheet per storage compartment possible more often.
  • FIG. 1 8 a control finger is shown in FIG. 1 8, which is transported in the direction of arrow 9 vertically from above onto the Leaf material acts and with which it is therefore possible, the leaf material to press downwards relative to the transport direction, for example in In the case of rapidly successive sheets, the trailing sheet 7B to the next to deflect the desired storage compartment 2, even if this storage compartment has not yet reached the actual entry position at this point.
  • the invention not only enables irregularities to occur from synchronized operation to individual leaf flow control switch, but is also particularly suitable for constantly in mode the individual leaf flow control to work when, for example Sheet material of various formats must be stacked.
  • the truck is constructed according to a concept which deviates from the described spiral stacker, in which the sheet material but are still handed over to the truck at defined times must to ensure safe and good storage in the truck.
  • a stacker can have, for example, a rotating drum, which has openings on its surface at certain intervals, which with are under a negative pressure.
  • Others periodically, continuously or intermittently operated stacking devices, for example as patchers can be formed, are also possible if as with rotating Stacker statements can be made about the times at which the sheet material is picked up by the stacking devices to the to enable described control.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Pile Receivers (AREA)
  • Discharge By Other Means (AREA)

Abstract

In einer Blattgutstapelvorrichtung, insbesondere einem Spiralfachstapler, wird die relative Lage einer Gruppe von Blättern 7A, 7B ermittelt, beispielsweise der Abstand ta zwischen den Blättern oder die Gesamtlänge tL von einander überlappenden Blättern. Ein Blattgutsensor 16 ist zu diesem Zweck in großem Abstand vor dem Eingabepunkt 15 angebracht, so daß Unregelmäßigkeiten wie Abstand und/oder Überlappung innerhalb der Gruppe von Blättern 7A, 7B berücksichtigt und entsprechende Maßnahmen getroffen werden können, noch bevor das vorauseilende Blatt 7A in ein Staplerfach 2 des Staplerrads 1 einläuft. Je nach Art der festgestellten Unregelmäßigkeit wird das Staplerrad 1 angehalten, abgebremst oder beschleunigt, um ein kollisionsfreies Einlaufen der Gruppe von Blättern in ein gemeinsames Ablagefach 2 oder in getrennte Ablagefächer 2 zu ermöglichen. In besonderen Ausführungsformen wird auf die Blattgutgeschwindigkeit mittels separat steuerbaren Transportstreckensegmenten 12a, 12b und/oder auf den Eingabepunkt 15 mittels eines Regelfingers 8 Einfluß genommen. <IMAGE>

Description

Die Erfindung betrifft eine Blattgutstapelvorrichtung, insbesondere Spiralfachstapler, sowie ein Verfahren zur Steuerung des Einlaufs von Blattgut in Ablagefächer eines kontinuierlich oder intermittierend rotierenden Staplerrades.
Spiralfachstapler werden beispielsweise in Blattgutprüf- und -sortiervorrichtungen eingesetzt in welchen Blattgutstapel, beispielsweise Banknotenbündel, zunächst vereinzelt werden, anschließend zu Prüfzwekken durch eine Sensorik hindurchgeführt werden und schließlich mittels Spiralfachstaplern in verschiedenen Stapeln abgestapelt werden. Die Funktion der Spiralfachstapler besteht dabei darin, die antransportierten Einzelblätter durch das Umlenken in eine spiralförmige Bahn vor ihrer endgültigen Ablage abzubremsen. Es ist dabei in den meisten Anwendungsfällen unkritisch, wenn beim Abstapeln nicht jedes Ablagefach des Stapelrades mit einem Blatt belegt wird oder wenn ein Ablagefach ausnahmsweise mit mehr als einem Blatt belegt wird.
Es ist jedoch darauf zu achten, daß die Blätter im Moment ihrer Übergabe ans Staplerrad nicht mit einer die Ablagefächer trennenden Trennwand kollidieren. Die Vorderkante eines Blattes sollte daher dem Staplerrad in einem idealen Eingabepunkt zwischen zwei Trennwänden zugeführt werden, um ein kollisionsfreies und vollständiges Einlaufen des Blattes in ein Ablagefach sicherzustellen. Da die Blätter aufgrund von Schlupf im Transportsystem oder aufgrund unterschiedlicher Blattformate nicht immer in synchronem zeitlichen Abstand in das Staplerrad einlaufen, stellt sich das Problem der exakten Einlaufsteuerung unabhängig davon, ob das Staplerrad intermittierend oder kontinuierlich rotiert. In beiden Fällen ist es notwendig, eine asynchrone Blattzuführung und das rotierende Staplerrad so zu synchronisieren, daß jedes Blatt vollständig und kollisionsfrei in ein Ablagefach des Staplerrades übergeben wird.
In der DE 27 56 223 C2 wird vorgeschlagen, bei vorgegebener, konstanter Rotationsgeschwindigkeit des Staplerrades die Abweichung des einzelnen Blattes von seiner idealen Lage mittels einem Sensor quantitativ zu bestimmen und die Blattvorderkante mittels eines Fingers im Moment der Blattübergabe um einen zur ermittelten Abweichung proportionalen Betrag soweit herunter zu drücken, daß die Blattvorderkante im idealen Blatteingabepunkt in das Ablagefach einläuft. Die quantitative Messung der Lageabweichung erfolgt in einem Abstand vor der Übergabestelle, damit ausreichend Zeit zur Einflußnahme auf die Blattvorderkante durch individuelles Auslenken des Fingers zur Verfügung steht.
In den GB 2 168 687 A und EP 0 082 195 B1 wird anstelle des Einflußnehmens auf die Blattvorderkante vorgeschlagen, die Positionierung des Staplerrades zu beeinflussen, indem zunächst die Blattvorderkante eines herannahenden Blattes in einer bestimmten Entfernung vor der Übergabestelle detektiert wird und daraufhin die Schrittgeschwindigkeit des Staplerrads abhängig von der Transportgeschwindigkeit des Blatts kurzfristig so beeinflußt wird, daß die Blattvorderkante im idealen Eingabepunkt in ein Ablagefach des Staplerrads einläuft.
Nachteilig an dem letztgenannten Lösungsvorschlag ist, daß bei dicht aufeinanderfolgenden Blättern sehr hohe Beschleunigungen des Staplerrads notwendig sind, um das nächste Ablagefach rechtzeitig in die ideale Einlaufposition zu bringen. Ein weiterer Nachteil ergibt sich im Zusammenhang mit sich überlappenden Blättern, was insbesondere bei der Verarbeitung von gebrauchten Banknoten aufgrund deren schlechten Zustands auftreten kann.
In solchen Fällen ist die Wahrscheinlichkeit hoch, daß das hintere Blatt nicht vollständig erfaßt und aus dem Staplerrad herausgeschleudert wird.
Aufgabe der vorliegenden Erfindung ist es daher, eine Blattgutstapelvorrichtung sowie ein Verfahren zur Steuerung des Einlaufs von Blattgut in Ablagefächer eines Staplerrades zur Verfügung zu stellen, wobei das Staplerrad so beeinflußt wird, daß auch bei sehr kurzen Blattabständen oder sich überlappenden Blättern ein definiertes Abstapeln ermöglicht wird.
Diese Aufgabe wird erfindungsgemäß durch ein Verfahren und eine Blattgutstapelvorrichtung mit den Merkmalen der unabhängigen Patentansprüche gelöst. Vorteilhafte Ausführungsformen der Erfindung sind in davon abhängigen Ansprüchen angegeben.
Während im Stand der Technik das Herannahen einer Blattvorderkante ermittelt und ausgewertet wurde, um aufgrund der ermittelten Daten Maßnahmen zu treffen, die dazu geeignet sind, ein kollisionsfreies Einlaufen des Blattes in ein Ablagefach sicherzustellen, sieht die Erfindung vor, daß auch eine Gruppe oder Gruppen von mindestens zwei Blättern sensorisch erfaßt und ausgewertet werden können, und daß anhand des Auswerteergebnisses für diese Gruppe oder Gruppen von Blättern Maßnahmen getroffen werden, die dazu geeignet sind, eine zuverlässige Übergabe aller Blätter dieser Gruppe in die Ablagefächer des Staplerrades zu gewährleisten. Indem die Auswertung nicht nur das nächste herannahende Blatt sondern zumindest die beiden nächsten herannahenden Blätter berücksichtigt, wird es möglich, den Einlauf der Blätter ins Staplerrad vorausschauend für die gesamte Gruppe von Blättern zu steuern. Insbesondere kann die Kinematik des Staplerrades vorausschauend beeinflußt werden, wobei sich die Beeinflussung auf die Lage und/oder Geschwindigkeit und/oder Beschleunigung des Staplerrades beziehen kann.
Zu diesem Zweck ist ein Blattgutsensor vorgesehen, der ein oder mehrere Informationen über das herannahende Blattgut ermittelt, beispielsweise den Abstand zwischen zwei Blättern, die Länge eines Blattes bzw. die Gesamtlänge mehrerer sich überlappender Blätter, die Gesamtdicke mehrerer sich überlappender Blätter, oder andere Informationen, welche Rückschlüsse auf die relative Lage von zwei oder mehr Blättern zulassen.
Der Blattgutsensor wird zweckmäßiger Weise in einem ausreichenden Abstand vor dem Staplerrad angeordnet, damit die Information über das nachfolgende Blatt relativ zum vorangehenden Blatt ausgewertet und eine entsprechende Einflußnahme auf das Staplerrad vorgenommen werden kann, bevor das vorauseilende Blatt in ein Ablagefach des Staplerrads einzulaufen beginnt. Der Abstand zwischen dem Staplerrad und dem Blattgutsensor sollte daher einer Länge entsprechen, die sich aus der maximalen Länge der zu bearbeitenden Blätter, dem normalen Abstand zwischen den Blättern und einer zusätzlichen Strecke zusammensetzt, wobei die zusätzliche Strecke abhängig von der Transportgeschwindigkeit so zu bemessen ist, daß ausreichend Zeit zur Auswertung der Blattgutsensorinformationen und geeigneten Einflußnahme auf den individuellen Blattfluß zur Verfügung steht.
Eine bevorzugte Ausführungsform der Erfindung sieht vor, die Abstandsmessung zwischen zwei Blättern und die Gesamtlängenmessung der Blätter bzw. einander überlappender Blätter miteinander zu kombinieren. Dies ist in einfacher Weise mit einem einzigen Blattgutsensor möglich, der beispielsweise als Lichtschranke ausgebildet sein kann und sich vorzugsweise in dem zuvor beschriebenen Abstand zum Staplerrad befindet. Mittels der Lichtschranke läßt sich das Vorhandensein von Blattgut im Transportweg problemlos feststellen. Dabei dient die Zeitspanne, die zwischen zwei aufeinanderfolgenden Blättern vergeht, als Maß für den Abstand zwischen den Blättern und die Zeitspanne, die zwischen der Abstandsmessung vergeht, als Maß für die Länge eines Blattes oder einer Gruppe von Blättern. Wenn das ermittelte Abstands- und/oder Längenmaß in unzulässiger Weise von einem vorgegebenem Schwellenwert abweicht, wird von einem vorgegebenen, mit der Blattgutvereinzelungsrate synchronisierten Bewegungsablauf des Staplerrads gezielt abgewichen und auf das Staplerrad entsprechend dem individuell ermittelten Blattfluß Einfluß genommen, indem das Staplerrad entweder beschleunigt, abgebremst oder angehalten wird oder nur mit sehr geringer Geschwindigkeit rotiert.
Je nach Art der festgestellten Unregelmäßigkeit sind beispielsweise folgende Maßnahmen denkbar: Wird ein Abstand zwischen zwei Blättern festgestellt, der unter einem Mindestabstand liegt, so kann das Staplerrad kurzzeitig angehalten werden oder mit sehr geringer Rotationsgeschwindigkeit drehen, damit beide Blätter in ein gemeinsames Ablagefach einlaufen können. Alternativ kann die Rotationsgeschwindigkeit des Staplerrads kurzfristig erhöht werden, um den verkürzten Abstand auszugleichen, so daß die beiden Blätter in getrennte Ablagefächer einlaufen.
Überschreitet der ermittelte Abstand einen vorgegebenen Maximalabstand, so bietet es sich an, das Staplerrad kurzzeitig abzubremsen, um dem vergrößerten Abstand Rechnung zu tragen, so daß beide Blätter zuverlässig in voneinander getrennte Ablagefächer einlaufen.
Überschreitet die ermittelte Länge eines Blattes bzw. einer Gruppe von sich überlappenden Blättern eine vorgegebene Maximallänge, so kann das Staplerrad angehalten werden oder mit geringfügiger Geschwindigkeit rotieren oder zumindest soweit abgebremst werden, daß alle Blätter dieser Gruppe von Blättern in einem gemeinsamen Ablagefach vollständig aufgenommen werden. Sofern nicht noch vor dem Einlaufen dieser Blattgruppe in das Ablagefach festgestellt wird, daß das nächste Blatt oder die nächste Blattgruppe mit einem ausreichenden Abstand folgt, wird das Staplerrad sinnvollerweise angehalten, damit auch das nächstfolgende Blatt bzw. die nächstfolgende Blattgruppe in das selbe Staplerfach einlaufen kann. Erst wenn wieder ein ausreichend großer Abstand ermittelt wird, wird das Staplerrad auf das nächste Ablagefach positioniert und gegebenenfalls wieder von der individuellen Blattflußsteuerung auf die synchronisierte Steuerung (Synchronisation der Staplerradrotationsgeschwindigkeit mit der Blattgutvereinzelungsrate) umgestellt.
Für den Fall, daß eine Gruppe von einander überlappenden Blättern mit einem Dickensensor ermittelt wird, bietet es sich an, das Staplerrad anzuhalten, da eine Aussage über die Gesamtlänge der einander überlappenden Blätter und somit eine Aussage über die Zeitdauer, die die Blätter zum Einlaufen in das Ablagefach benötigen, nicht ohne weiteres möglich ist. Das Staplerrad wird erst dann auf das nächste Ablagefach positioniert, wenn wieder ein ausreichender Abstand zwischen zwei Blättern bzw. Blattgruppen festgestellt wird.
Wird hingegen zusätzlich zur Gesamtdicke auch die Gesamtlänge der sich überlappenden Blätter ermittelt und ausgewertet, so läßt sich exakt feststellen, an welcher Stelle die Überlappung beginnt und endet. Unter diesen Voraussetzungen ist es möglich, durch zeitlich exakte kurzzeitige Beschleunigung des Staplerrads eine Trennung der sich überlappenden Blätter derart zu erreichen, daß die Blätter in voneinander getrennte Ablagefächer einlaufen. Es muß allerdings sichergestellt werden, daß keine allzu heftigen Beschleunigungen und Geschwindigkeiten des Staplerrades das Einlaufen der Blätter verhindern oder ein Herausschleudern verursachen.
Für die meisten der vorgenannten Ausführungsformen ist es sinnvoll, einen Geschwindigkeitssensor zum Ermitteln der Blattguttransportgeschwindigkeit vorzusehen, um die Ablagefächer des Staplerrades abhängig von der Zeitspanne, die zum Transport des Blattguts zum Staplerrad verbleibt, rechtzeitig positionieren zu können. Des weiteren kann die Transportgeschwindigkeit bei der Einflußnahme auf die Kinematik des Staplerrades derart berücksichtigt werden, daß das Einlaufen eines Blatts oder einer Gruppe von Blättern in ein Ablagefach gerade abgeschlossen ist, bevor das nächste Blatt oder die nächste Gruppe von Blättern in das nächstfolgende Ablagefach einläuft.
Vorteilhafterweise rotiert das Staplerrad mit einfacher oder mehrfacher Synchrongeschwindigkeit, wobei die Synchrongeschwindigkeit vs sich aus der Nennvereinzlerrate rN (Blätter pro Minute) und der Anzahl nF der Ablagefächer pro Umdrehung ergibt. Eine mehrfache Synchrongeschwindigkeit führt dazu, daß im Nennbetrieb der Maschine, d. h. bei synchronisierter Vereinzlerrate und Staplerradgeschwindigkeit, nicht jedes Fach des Staplerrades mit einem Blatt belegt wird. Dadurch verringert sich das Risiko, daß sich aufeinanderfolgende Blätter beim Abstapeln behindern, wenn sie mit Knicken oder Falten aufeinanderprallen. Beim Einlaufen einer Gruppe von Blättern mit kleinen Abständen kann dann gezielt jedes Ablagefach mit einem Blatt belegt werden, um die Dauer der Positionierung des Staplerrads auf das nächste gewünschte Ablagefach zu verringern.
Eine besondere Ausführungsform der Erfindung sieht vor, daß zusätzlich zur oder anstelle der Beeinflussung der Kinematik des Staplerrades die Blattgutgeschwindigkeit in mindestens einem Teilbereich der Blattguttransportstrecke beeinflußt wird, um unregelmäßig beabstandete Blätter oder sich überlappende Blätter auf einen normierten Abstand zu bringen, so daß das Einlaufen eines Blattes je Ablagefach häufiger möglich wird. Dazu ist ein Transportsystem vorgesehen, welches mindestens ein Transportstreckensegment besitzt, dessen Transportgeschwindigkeit abhängig von den Blattgutsensorinformationen beeinflußbar ist.
Gemäß einer weiteren besonderen Ausführungsform der Erfindung kann zusätzlich zur oder anstelle der Beeinflussung der Kinematik des Staplerrads eine Einflußnahme auf die Blätter mittels einem oder mehreren Regelfingern erfolgen, wie dies grundsätzlich in der einleitend erwähnten DE 27 56 223 C2 beschrieben wird, auf deren Offenbarungsgehalt hier insoweit explizit Bezug genommen wird.
Nachfolgend wird die Erfindung beispielhaft anhand der begleitenden Zeichnungen beschrieben.
Darin bedeuten:
Fig. 1
zeigt einen Spiralfachstapler gemäß der vorliegenden Erfindung;
Fig. 2
zeigt das Prinzip der Abstandsmessung;
Fig. 3
zeigt das Prinzip der Gesamtlängenmessung; und
Fig. 4
zeigt das Prinzip der Gesamtdickenmessung.
Die in Fig. 1 schematisch dargestellte Gesamtansicht eines Spiralfachstaplers zeigt ein Staplerrad 1 mit einer Anzahl spiralförmig über den Umfang verteilter Ablagefächer 2, die durch Trennwände 20 gebildet werden. Das Staplerrad 1 dreht in Pfeilrichtung 10 und nimmt Blätter 7A, 7B, die über ein in Pfeilrichtung 11 angetriebenes Transportsystem 5 zugeführt werden, in den Ablagefächern 2 auf und transportiert die Blätter in Umfangsrichtung des Staplerrades 1, bis sie schließlich durch einen Abstreifer 4 aus den Ablagefächern 2 gezogen werden und auf einen Stapel 3 fallen. Die spiralförmig gekrümmten Trennwände übernehmen dabei die Funktion, die antransportierten Blätter 7A, 7B kontinuierlich abzubremsen.
Im Falle eines kontinuierlich angetriebenen Staplerrads 1 ist es von Bedeutung, daß das Blatt 7A im optimalen Eingabepunkt 15 in das Ablagefach 2 einläuft, so daß das Blatt 7A vollständig in das Ablagefach 2 eingelaufen ist, bevor die untere Trennwand 20 des Ablagefachs 2 den Eingabepunkt 15 durchläuft.
Im Normalbetrieb ist die Rotation des Staplerrads 1, unabhängig davon ob das Staplerrad 1 intermittierend oder kontinuierlich rotiert, mit der Vereinzelungsrate synchronisiert und rotiert mit der Synchrongeschwindigkeit vS, die sich ergibt aus der Nennvereinzlerrate rN, d. h. der Anzahl der pro Minute vereinzelten Blätter, und der Anzahl nF der über den Umfang des Staplerrads 1 gleichmäßig verteilten Ablagefächer 2 als: vS = rN/nF.
Vorzugsweise rotiert das Staplerrad mit einer dem Vielfachen der Synchrongeschwindigkeit entsprechenden Geschwindigkeit.
In größerer Entfernung zum Staplerrad 1 ist ein Blattgutsensor 16 angeordnet. Der Blattgutsensor 16 ist als Lichtschranke ausgeführt und detektiert das Vorhandensein bzw. Nichtvorhandensein von Blattgut im Transportsystem 5. Zwischen dem Blattgutsensor 16 und dem Staplerrad 1 ist in der Nähe des Staplerrads 1 ein Näherungssensor 6 angeordnet, der ebenfalls als Lichtschranke ausgebildet ist und dazu dient, die Vorderkante eines sich nähernden Blattes 7A zu detektieren. Auf diesen Näherungssensor 6 kann unter Umständen verzichtet werden, wie nachfolgend noch erläutert wird, insbesondere wenn ein Blattguttransportgeschwindigkeitssensor 17 vorgesehen ist.
Bei einer synchronisierten Vereinzelung von gleichartigen Blättern ohne auftretende Unregelmäßigkeiten (Abstandsvariationen oder Überlappung von Blättern) ergibt sich eine synchronisierte Taktlänge t0 aufeinanderfolgender Blätter 7A, 7B, die zur Vereinzelungsrate vN umgekehrt proportional ist und sich zusammensetzt aus einer Zeitspanne tL (Normlänge), das ist die Zeit, die ein Blatt benötigt, um über einen beliebigen Punkt des Transportsystems transportiert zu werden, und einer Zeitspanne ta (synchronisierter Abstand), die zwischen zwei aufeinanderfolgenden Blätter 7A, 7B vergeht.
Sowohl der synchronisierte Abstand ta als auch die Normlänge tL werden mit dem Blattgutsensor 16 ermittelt.
Der Abstand zwischen dem Näherungssensor 6 und dem Blattgutsensor 16 ist größer als die synchronisierte Taktlänge t0 gewählt, so daß zu dem Zeitpunkt, wenn das vorauseilende Blatt 7A den Näherungssensor 6 erreicht, bereits eine Auswertung der vom Blattgutsensor 16 gelieferten Informationen durch eine Auswerteeinrichtung 18 erfolgt ist und feststeht, ob die synchronisierte Taktlänge t0 zwischen den beiden aufeinanderfolgenden Biättern 7A, 7B innerhalb vorgegebener Toleranzgrenzen liegt oder ob eine unzulässige Unregelmäßigkeit beispielsweise im Abstand zwischen den beiden Blättern oder in der Gesamtlänge eines Blattes bzw. einer Gruppe von Blättern vorliegt. In dem Moment, in der der Näherungssensor 6 das Ankommen eines Blattes 7A feststellt, liegt somit bereits eine Information über die Lage des nächstfolgenden Blatts 7B vor, so daß eine Beeinflussung der Kinematik des Staplerrads 1 abgestimmt auf den individuellen, asynchronen Blattfluß erfolgen kann. Im einfachsten Fall wird das Staplerrad 1 angehalten, um ein Einlaufen von einander überlappenden Blättern oder mit engem Abstand aufeinanderfolgenden Blättern in ein gemeinsames Ablagefach 2 zu ermöglichen, und erst dann, wenn der Abstand zwischen zwei aufeinanderfolgenden Blättern 7A, 7B über einem Mindestabstand liegt, wird das nächste Ablagefach 2 des Staplerrads 1 in die Einlaufposition gebracht. Über die exakte Positionierung des Staplerrads informiert ein Positionssensor 14, der die Staplerradposition anhand einer Kontaktscheibe 13 feststellt und an die Auswerteeinheit 18 weiterleitet. Hat der Positionssensor 14 nur eine Auflösung, die der Anzahl der Ablagefächer 2 bzw. der Trennwände 20 entspricht, kann eine höhere Auflösung dadurch erreicht werden, daß zusätzlich zum Positionssensor 14 Informationen des Antriebs des Staplerrads 1 ausgewertet werden. Wird der Antrieb von einem Schrittmotor gebildet, können beispielsweise die vom Schrittmotor getätigten Schritte gezählt werden. Da bekannt ist, wie viele Schritte zwischen jeweils zwei Trennwänden 20 bzw. Ablagefächern 2 liegen, kann somit die exakte Position bestimmt werden.
Anhand der Figuren 2 bis 4 wird nun das Erfassen verschiedener Unregelmäßigkeiten und die darauf zu treffenden Maßnahmen näher beschrieben. Gezeigt ist jeweils schematisch ein Ausschnitt aus dem Transportweg des Blattguts 7 in Richtung des Pfeils, wobei die Blätter 7A, 7B bzw. 7A, 7B, 7C jeweils eine Gruppe von Blättern definieren, deren relative Lage zueinander mittels dem Blattgutsensor 16 ermittelt und ausgewertet wird, um anhand des Auswerteergebnisses eine geeignete Beeinflussung der Kinematik, d. h. der Lage, der Geschwindigkeit oder der Beschleunigung, des Staplerrads 1 vorzunehmen. Dabei bezeichnet t0 die synchronisierte Taktlänge, d. h. den Abstand zwischen zwei aufeinanderfolgenden Blättern im synchronisierten Betrieb ohne auftretende Unregelmäßigkeiten, die sich zusammensetzt aus dem synchronisierten Abstand ta und der Länge tL des zu verarbeitenden Blattguts, wie zuvor erläutert wurde.
Fig. 2 zeigt den Fall einer Unregelmäßigkeit des Abstands zwischen den Blättern 7A, 7B. Der tatsächliche Abstand t'a zwischen den Blättern 7A, 7B dieser Gruppe von Blättern ist kleiner als der synchronisierte Abstand ta. Wenn keine Maßnahmen getroffen werden, kann dies zur Folge haben, daß das nacheilende Blatt 7B mit seiner vorderen Blattkante noch in das Ablagefach 2 einläuft, in welchem bereits das vorauseinlende Blatt 7A aufgenommen wurde, so daß das nacheilende Blatt 7B mit der Trennwand 20 kollidiert. Indem der Näherungssensor 6 das Ankommen des vorauseilenden Blatts 7A zu einem Zeitpunkt ermittelt, an dem die Unregelmäßigkeit des Blattabstands bereits erkannt und ausgewertet ist, kann eine geeignete Maßnahme getroffen werden, um diese Kollision zu verhindern.
Beispielsweise kann das Vereinzlerrad 1 angehalten werden, damit alle ankommenden Blätter 7A, 7B, ... in einem gemeinsamen Ablagefach 2 aufgenommen werden können, bis der Blattgutsensor 16 einen ausreichend großen Abstand t'a ≥ ta zu einem nachfolgenden Blatt 7C oder einer nachfolgenden Gruppe von Blättern meldet, der ein Weitertakten des Stapelrads zuläßt. Andererseits, wenn durch den Geschwindigkeitssensor 17 Informationen über die Blattguttransportgeschwindigkeit vorliegen und bei der Beeinflussung der Kinematik des Staplerrads 1 berücksichtigt werden, ist es auch möglich, die Rotationsgeschwindigkeit des Staplerrads 1 gezielt so zu beeinflussen, daß das nacheilende Blatt 7B in das nächste gewünschte Ablagefach 2 einläuft. Dazu muß das Staplerrad 1 lediglich um einen entsprechenden Betrag kurzzeitig beschleunigt oder vorpositioniert werden. Umgekehrt, wenn der Abstand t'a zwischen den Blättern 7A und 7B der Gruppe von Blättern 7A, 7B größer als der synchronisierte Abstand ta ist, muß das Staplerrad 1 lediglich um einen entsprechenden Betrag abgebremst werden, um ein kollisionsfreies Einlaufen des nacheilenden Blattes 7B in das nächste gewünschte Ablagefach zu erreichen.
Anstatt das Staplerrad 1 vollständig anzuhalten, kann dieses auch langsam weiterbewegt werden, so daß sich das Staplerrad 1 während der Dauer des Einlaufens der Blätter 7A, 7B nur jeweils um einen Bruchteil des Ablagefaches 2 weiterbewegt.
In Fig. 3 ist der Fall dargestellt, daß der Blattgutsensor 16 eine Gesamtlänge tL des Blatts bzw. der Gruppe von Blättern 7A, 7B, 7C ermittelt, die über der Normlänge tL liegt. Zum Zeitpunkt, wenn die Annäherung des vorauseilenden Blattes 7A durch den Näherungssensor 6 gemeldet wird, steht somit bereits fest, daß eine Maßnahme ergriffen werden muß, die ein Einlaufen einer Gruppe von sich überlappenden Blättern 7A, 7B, ... getroffen werden muß.
Diese Maßnahme kann wiederum darin bestehen, das Staplerrad 1 anzuhalten oder mit geringer Geschwindigkeit weiterzubewegen, bis alle Blätter dieser Gruppe von Blättern in demselben Ablagefach 2 aufgenommen sind, d. h. bis der Blattgutsensor 16 einen Abstand t'a zwischen 2 aufeinanderfolgenden Blättern meldet, der größer oder gleich dem synchronisierten Abstand ta ist. Mit anderen Worten, wenn auf die Blätter 7A, 7B, 7C ein weiteres Blatt folgt, dessen Abstand t'a vergleichsweise gering ist, werden Maßnahmen zur Beeinflussung des Staplerrads ergriffen, wie sie im Zusammenhang mit Fig. 2 beschrieben wurden.
Fig. 4 zeigt einen Fall, in welchem der Blattgutsensor 16 (zumindest auch) als Dickensensor ausgeführt ist. D. h., der Blattgutsensor 16 stellt aufgrund der tatsächlich ermittelten Dicke d' des Blattguts fest, ob eine unzulässige Abweichung zur vorgegebenen Blattgutdicke d0 vorliegt, und schließt im positiven Fall auf eine Gruppe von einander überlappenden Blättern 7A, 7B. Als Maßnahme hierauf kommen die selben Maßnahmen in Betracht, wie sie im Zusammenhang mit Fig. 3 erläutert wurden, wo ebenfalls einander überlappende Blätter (allerdings aufgrund der Ermittlung der Gesamtlänge t'L)ermittelt wurden.
Der als Dickensensor ausgebildete Blattgutsensor 16 kann ebenfalls als Lichtschranke ausgebildet sein, wobei jedoch die Intensität des durch das Blattgut hindurchscheinenden Lichts gemessen wird. Dadurch lassen sich mit einem einzigen Sensor sowohl die Vorderkante des vorauseilenden Blatts 7A (einfache Lichtschranke) als auch die Vorderkante des nachfolgenden Blatts 7B und die hintere Kante des vorauseilenden Blatts 7A (Intensitätsmessung) nach ihrer exakten Lage ermitteln. Dadurch wird es möglich, das Staplerrad 1 unter Berücksichtigung der Blattguttransportgeschwindigkeit derart zu beschleunigen, daß die Blätter 7A und 7B in separate Ablagefächer 2 einlaufen. D. h., auch bei dieser speziellen Ausführungsform ist die Information über die Blattguttransportgeschwindigkeit von Interesse, die beispielsweise mittels dem Geschwindigkeitssensor 17 ermittelt werden kann, indem die Rotationsgeschwindigkeit eines Transportlaufrads festgestellt wird.
Auf den Nährungssensor 6 kann auch verzichtet werden, da er lediglich die Information zur Verfügung stellt, daß sich Blattgut 7 dem Staplerrad 1 nähert, um noch rechtzeitig vor Einlaufen des Blattguts in ein Ablagefach 2 die notwendigen Maßnahmen zur Beeinflussung der Kinematik des Staplerrads 1 treffen zu können. Ist aber die Blattguttransportgeschwindigkeit, beispielsweise durch den Geschwindigkeitssensor 17, bekannt, so reicht der Blattgutsensor 16 zur Ermittlung des Zeitpunktes, an welchem das Blattgut auf das Staplerrad 1 treffen wird, aus. Denn dieser Zeitpunkt ergibt sich in einfacher Weise aus dem Quotienten des Blattgutsensorabstands zur ermittelten Transportgeschwindigkeit.
Die Berücksichtigung der Transportgeschwindigkeit bei der Bestimmung der Einflußmaßnahmen auf die Kinematik des Staplerrades kann vorteilhaft auch dazu genutzt werden, den Bewegungsablauf des Staplerrads an die bis zum Einlaufen des nächstfolgenden Blatts verfügbare Zeit so anzupassen, daß der Positioniervorgang des Staplerrads bis zum Ankommen des nächstfolgenden Blattes gerade abgeschlossen ist.
Der Spiralfachstapler gemäß Fig. 1 sieht als weitere zusätzliche oder separate Maßnahme vor, daß das Transportsystem 5 ein Transportstreckensegment 12A, 12B besitzt, dessen Transportgeschwindigkeit beeinflußbar ist. Je nachdem, welche Anordnung der Blätter 7A, 7B einer Gruppe von Blättern 7A, 7B von dem Blattgutsensor 16 ermittelt wird, wird die Geschwindigkeit des Transportstreckensegments 12A, 12B gesteuert. Lücken innerhalb von Gruppen von Blättern lassen sich auf den synchronisierten Abstand variieren und überlappende Blätter lassen sich auseinanderziehen. Dadurch wird ein Abstapeln von einem Blatt je Ablagefach häufiger möglich.
Als weitere zusätzliche oder separate Maßnahme ist in Fig. 1 ein Regelfinger 8 dargestellt, der in Richtung des Pfeils 9 senkrecht von oben auf das transportierte Blattgut einwirkt und mit dem es daher möglich ist, das Blattgut relativ zur Transportrichtung nach unten zu drücken, um beispielsweise im Fall rasch aufeinanderfolgender Blätter das nacheilende Blatt 7B zum nächsten gewünschten Ablagefach 2 abzulenken, auch wenn dieses Ablagefach zu diesem Zeitpunkt die eigentliche Einlaufposition noch nicht erreicht hat.
Mit Hilfe der beiden letztgenannten Maßnahmen, d. h. der individuellen Steuerung der Blattguttransportgeschwindigkeit in einem Transportstrekkensegment und/oder dem Ablenken des Blattguts an der Übergabestelle zum Staplerrad 1 mittels eines oder mehrerer Regelfinger 8, ist es auch möglich, den Blattguteinlauf in die Ablagefächer 2 des Staplerrades 1 zu steuern, ohne daß notwendigerweise die Kinematik des Staplerrades beeinflußt werden muß. In beiden Fällen ist es aber von Vorteil, die jeweilige Maßnahme aufgrund von Informationen zu treffen, die aus einer Gruppe von Blättern 7A, 7B, ... abgeleitet werden, damit eine vorausschauende Beeinflussung des Systems möglich ist.
Es ist offensichtlich, daß von der beschriebenen Steuerung des Einlaufs von Blattgut in eine Stapleinrichtung durch die Auswertung einer Gruppe von mindestens zwei Blättern immer dann abgewichen werden muß, wenn nicht mindestens zwei Blätter für die Auswertung vorliegen, wie dies beispielsweise für den Einlauf des ersten Blatts der Fall ist.
Die Erfindung ermöglicht es nicht nur, bei auftretenden Unregelmäßigkeiten von einem synchronisierten Betrieb auf eine individuelle Blattflußsteuerung umzustellen, sondern ist insbesondere auch dazu geeignet, ständig im Modus der individuellen Blattflußsteuerung zu arbeiten, wenn beispielsweise Blattgut unterschiedlichsten Formats abgestapelt werden muß.
Ebenso ist es möglich, das Blattgut im Transportsystem und/oder im Spiralfachstapler sowohl entlang seiner langen Seite als auch entlang seiner kurzen Seite zu tranportieren und/oder abzulegen.
Weiterhin ist es möglich, daß der Stapler nach einem Konzept aufgebaut ist, welches vom beschriebenen Spiralfachstapler abweicht, bei denen das Blattgut aber dennoch zu definierten Zeitpunkten an den Stapler übergeben werden muß, um sicheres und gutes Ablegen im Stapler zu gewährleisten. Ein derartiger Stapler kann beispielsweise eine rotierende Trommel aufweisen, die an ihrer Oberfläche in gewissen Abständen Öffnungen aufweist, die mit einem Unterdruck beaufschlagt sind. Andere periodisch, kontinuierlich oder intermittierend betriebene Stapleinrichtungen, die beispielsweise als Patscher ausgebildet sein können, sind ebenso mölgich, wenn wie bei rotierenden Staplern Aussagen über die Zeitpunkte gemacht werden können, zu denen das Blattgut von den Stapleinrichtungen aufgenommen wird, um die beschriebene Steuerung zu ermöglichen.

Claims (24)

  1. Verfahren zur Steuerung des Einlaufs von Blattgut (7), in einen Stapler (1, 2), insbesondere in Ablagefächer (2) eines kontinuierlich oder intermittierend rotierenden Staplerrades (1), bei dem das Vorhandensein von Blattgut in einem definierten Abstand vor dem Stapler (1, 2) sensorisch erfaßt wird und ausgewertet wird und die Kinematik des Staplers (1, 2) abhängig vom Auswerteergebnis so beeinflußt wird, dadurch gekennzeichnet, daß beim Auswerten eine Gruppe von mindestens zwei Blättern (7A, 7B, 70) des Blattguts (7) berücksichtigt wird und die Kinematik des Staplers (1, 2) abhängig von dem Auswerteergebnis für diese Gruppe von Blättern (7A, 7B, 70) beeinflußt wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß von einer synchronisierten Einlaufsteuerung, bei der die Blattgutgeschwindigkeit in einem definierten Verhältnis zur Rotationsgeschwindigkeit des Staplerrads (1) steht, auf eine individuelle Blattflußsteuerung umgeschaltet wird, bei der die Kinematik des Staplerrades (1) für jedes Blatt oder jede Gruppe von Blättern (7A, 7B, 70) individuell gesteuert wird, wenn das Auswerteergebnis für die Gruppe von Blättern Unregelmäßigkeiten im Blattfluß erkennen läßt.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß das sensorische Erfassen des Blattguts (7) in einem Abstand vor dem Staplerrad (1) erfolgt, der größer ist, als die Länge oder Breite des größten zu stapelnden Blatts.
  4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß das sensorische Erfassen des Blattguts (7) zur Ermittlung des Abstandes (ta') zwischen zwei aufeinanderfolgenden Blättern (7A, 7B) dient.
  5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, daß das Staplerrad (1) abgebremst oder angehalten wird oder mit sehr geringer Geschwindigkeit rotiert, wenn der Abstand (ta') kleiner ist als ein vorgegebener Abstand (ta), so daß beide Blätter (7A, 7B) in ein gemeinsames Ablagefach (2) einlaufen.
  6. Verfahren nach Anspruch 4, dadurch gekennzeichnet, daß das Staplerrad (1) beschleunigt wird, wenn der Abstand (ta') kleiner ist als ein vorgegebener Abstand (ta), so daß beide Blätter (7A, 7B) in getrennte Ablagefächer (2) einlaufen.
  7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß das sensorische Erfassen des Blattguts (7) zur Ermittlung der Gesamtlänge (tL') von sich überlappenden Blättern (7A, 7B) dient.
  8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, daß das Staplerrad (1) abgebremst oder angehalten wird oder mit sehr geringer Geschwindigkeit rotiert, wenn die Gesamtlänge (tL') größer ist als eine vorgegebene Länge (tL), so daß alle Blätter (7A, 7B, 7C) der Gruppe von Blättern in ein gemeinsames Ablagefach (2) einlaufen.
  9. Verfahren nach Anspruch 7, dadurch gekennzeichnet, daß das Staplerrad (1) beschleunigt wird, wenn die Gesamtlänge (tL') größer ist als eine vorgegebene Länge (tL), so daß alle oder einzelne Blätter (7A, 7B, 7C) der Gruppe von Blättern in getrennte Ablagefächer (2) einlaufen.
  10. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß das sensorische Erfassen des Blattguts (7) zur Ermittlung der Gesamtdicke (d') von sich überlappenden Blättern (7A, 7B) dient.
  11. Verfahren nach Anspruch 10, dadurch gekennzeichnet, daß das Staplerrad (1) abgebremst oder angehalten wird oder mit sehr geringer Geschwindigkeit rotiert, wenn die Gesamtdicke (d') größer ist als eine vorgegebene Mindestdicke d, so daß beide Blätter (7A, 7B) in ein gemeinsames Ablagefach (2) einlaufen.
  12. Verfahren nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, daß die Blattgutgeschwindigkeit bei der Beeinflussung der Rotationsgeschwindigkeit des Staplerrads (1) derart berücksichtigt wird, daß das Einlaufen eines Blatts oder einer Gruppe von Blättern in ein Ablagefach (2) gerade abgeschlossen ist, bevor das nächste Blatt oder die nächste Gruppe von Blättern in das nächstfolgende Ablagefach (2) einlaufen.
  13. Verfahren nach einem der Ansprüche 2 bis 12, dadurch gekennzeichnet, daß das Staplerrad (1) bei synchronisierter Einlaufsteuerung mit einer Synchrongeschwindigkeit vS = rN / nF rotiert, wobei rN die Nennvereinzlerrate in Blättern pro Minute und nF die Anzahl der Ablagefächer pro Umdrehung des Staplerrads bezeichnen.
  14. Verfahren nach einem der Ansprüche 2 bis 12, dadurch gekennzeichnet, daß das Staplerrad (1) bei synchronisierter Einlaufsteuerung mit einem ganzzahligen Vielfachen der Synchrongeschwindigkeit vS = rN / nF rotiert, wobei rN die Nennvereinzlerrate in Blättern pro Minute und nF die Anzahl der Ablagefächer pro Umdrehung des Staplerrads bezeichnen.
  15. Verfahren nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, daß die Blattgutgeschwindigkeit in mindestens einem Teilbereich (12a) der Blattguttransportstrecke abhängig vom Auswerteergebnis beeinflußt wird.
  16. Verfahren nach einem der Ansprüche 1 bis 15, dadurch gekennzeichnet, daß das Blattgut (7) unmittelbar vor dem Einlaufen in ein Ablagefach (5) des Staplerrads (1) mittels eines oder mehrerer Regelfinger (8) abhängig vom Auswerteergebnis senkrecht zur Blattguttransportrichtung abgelenkt wird, um den Eingabepunkt (15) zu beeinflussen, in welchem das Blattgut (7) in das Ablagefach (5) einläuft.
  17. Blattgutstapelvorrichtung, insbesondere Spiralfachstapler, umfassend:
    eine Stapeleinrichtung (1) zum Aufnehmen von Blattgut (7) in Form von einzelnen Blättern oder einer Gruppe von Blättern (7A, 7B, 7C) und mit einem periodischen, kontinuierlichen oder intermittierenden Antrieb,
    ein Transportsystem (5) zum Zuführen von Blattgut (7) zur Stapleinrichtung (1),
    einen Blattgutsensor (16) zum Erfassen des Vorhandenseins von Blattgut (7) im Transportsystem in einem definierten Abstand zur Stapleeinrichtung (1),
    eine Auswerteeinrichtung (18) zum Auswerten der Blattgutsensordaten und
    eine Steuerungseinrichtung (18) zum Beeinflussen der Kinematik des Antriebs der Stapleinrichtung (1) abhängig vom Auswerteergebnis, dadurch gekennzeichnet, daß in jedem Auswerteergebnis Blattgutsensordaten einer Gruppe von mindestens zwei Blättern (7A, 7B, 7C) berücksichtigt sind.
  18. Blattgutstapelvorrichtung nach Anspruch 17, dadurch gekennzeichnet, daß der Abstand zur Stapleinrichtung (1) größer ist als die Länge oder Breite des größten zu stapelnden Blatts.
  19. Blattgutstapelvorrichtung nach Anspruch 17 oder 18, dadurch gekennzeichnet, daß der Blattgutsensor (16) als Lichtschranke ausgeführt ist.
  20. Blattgutstapelvorrichtung nach einem der Ansprüche 17 bis 19, dadurch gekennzeichnet, daß ein Transportgeschwindigkeitssensor (17) vorgesehen ist.
  21. Blattgutstapelvorrichtung nach einem der Ansprüche 17 bis 20, dadurch gekennzeichnet, daß der Blattgutsensor (16) ein Blattgutdickensensor ist.
  22. Blattgutstapelvorrichtung nach einem der Ansprüche 17 bis 21, dadurch gekennzeichnet, daß zwischen dem Blattgutsensor (16) und der Stapleinrichtung (1) ein Näherungssensor (6) vorgesehen ist.
  23. Blattgutstapelvorrichtung nach einem der Ansprüche 17 bis 22, dadurch gekennzeichnet, daß das Transportsystem (5) mindestens ein Transportstreckensegment (12a, 12b) besitzt, dessen Transportgeschwindigkeit abhängig vom Auswerteergebnis beeinflußbar ist.
  24. Blattgutstapelvorrichtung nach einem der Ansprüche 17 bis 23, dadurch gekennzeichnet, daß ein oder mehrere Regelfinger (8) vorgesehen sind, die abhängig vom Auswerteergebnis das Blattgut (7) unmittelbar vor dem Einlaufen in ein Ablagefach (2) der Stapleinrichtung (1) senkrecht zur Blattguttransportrichtung ablenken.
EP01112072A 2000-06-20 2001-05-28 Blattgutstapelvorrichtung und Verfahren zur Steuerung des Einlaufs von Blattgut in ein Staplerrad Expired - Lifetime EP1167259B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10030226 2000-06-20
DE10030226A DE10030226A1 (de) 2000-06-20 2000-06-20 Blattgutstapelvorrichtung und Verfahren zur Steuerung des Einlaufs von Blattgut in ein Staplerrad

Publications (3)

Publication Number Publication Date
EP1167259A2 true EP1167259A2 (de) 2002-01-02
EP1167259A3 EP1167259A3 (de) 2004-01-14
EP1167259B1 EP1167259B1 (de) 2006-06-07

Family

ID=7646290

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01112072A Expired - Lifetime EP1167259B1 (de) 2000-06-20 2001-05-28 Blattgutstapelvorrichtung und Verfahren zur Steuerung des Einlaufs von Blattgut in ein Staplerrad

Country Status (4)

Country Link
US (1) US6623001B2 (de)
EP (1) EP1167259B1 (de)
AT (1) ATE328831T1 (de)
DE (2) DE10030226A1 (de)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1219557A2 (de) * 2000-12-26 2002-07-03 Kabushiki Kaisha Toshiba Bogenbearbeitungsvorrichtung
EP1564170A2 (de) * 2004-02-16 2005-08-17 Kabushiki Kaisha Toshiba Vorrichtung zum Stapeln von Bögen
EP1760018A1 (de) * 2005-08-26 2007-03-07 Kabushiki Kaisha Toshiba Vorrichtung zum Stapeln von Bögen
EP2107021A1 (de) * 2008-04-03 2009-10-07 Neopost Technologies Zusammentragen von Postsendungen
DE102010060267A1 (de) * 2010-10-29 2012-05-03 Wincor Nixdorf International Gmbh Vorrichtung und Verfahren zur Handhabung von Wertscheinen mit einem als Weiche benutzten Stackerrad
WO2024088905A1 (de) * 2022-10-25 2024-05-02 Volkswagen Ag Vorrichtung und entsprechendes verfahren zur herstellung eines elektrodenstapels aus elektrodenstapelelementen

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10142331C1 (de) * 2001-08-30 2003-03-27 Siemens Dematic Ag Verfahren und Anordnung zum Erkennen von Überlappungen
US6877740B2 (en) * 2003-07-30 2005-04-12 C.G. Bretting Manufacturing Company, Inc. Starwheel feed apparatus and method
JP4230874B2 (ja) * 2003-10-01 2009-02-25 株式会社小森コーポレーション 排紙装置及びその方法
DE102006023988B3 (de) * 2006-05-22 2008-01-24 Siemens Ag Anordnung zum Beschleunigen oder Verzögern von in einem Fördersystem transportierten Fördergütern
JP4217736B2 (ja) * 2006-11-09 2009-02-04 シャープ株式会社 シート搬送装置、前記シート搬送装置を備えてなる自動原稿送り装置、および、前記シート搬送装置を備えてなる画像形成装置
DE102006057776B3 (de) * 2006-12-07 2008-01-31 Siemens Ag Verfahren und Vorrichtung zum Umlenken flacher Gegenstände
DE102010017668B4 (de) * 2010-06-30 2019-12-12 Wincor Nixdorf International Gmbh Vorrichtung zum Stapeln von Wertscheinen mit einem getakteten Stackerrad
US9016682B2 (en) * 2013-01-24 2015-04-28 Ncr Corporation Item location
US8967611B2 (en) * 2013-05-31 2015-03-03 Hewlett-Packard Indigo B.V. Initiating an alignment correction cycle
US11383952B2 (en) * 2019-12-03 2022-07-12 Xerox Corporation Sheet stacker having movable arms maintaining stack quality

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4088314A (en) * 1977-04-22 1978-05-09 Eastman Kodak Company Synchronous stacking device
DE2756223A1 (de) * 1977-12-16 1979-06-21 Gao Ges Automation Org Verfahren zur steuerung des einlaufs von transportgut in einen spiralfachstapler
DE3026163A1 (de) * 1979-07-09 1981-01-15 Stobb Walter John Vorrichtung und verfahren zur steuerung der geschwindigkeit eines dem zusammentragen von bogen o.dgl. dienenden staplers
GB2168687A (en) * 1984-12-21 1986-06-25 De La Rue Syst Sheet feeding
US5641156A (en) * 1993-09-20 1997-06-24 Kabushiki Kaisha Toshiba Apparatus for inspecting sheet materials and conveying device used therefor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4638993A (en) * 1981-06-29 1987-01-27 Ncr Corporation Position control for a stacker wheel
JPS61130160A (ja) * 1984-11-30 1986-06-18 Hitachi Ltd 紙葉類集積装置
JPS6221663A (ja) 1985-07-19 1987-01-30 Hitachi Ltd 紙葉類の集積装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4088314A (en) * 1977-04-22 1978-05-09 Eastman Kodak Company Synchronous stacking device
DE2756223A1 (de) * 1977-12-16 1979-06-21 Gao Ges Automation Org Verfahren zur steuerung des einlaufs von transportgut in einen spiralfachstapler
DE3026163A1 (de) * 1979-07-09 1981-01-15 Stobb Walter John Vorrichtung und verfahren zur steuerung der geschwindigkeit eines dem zusammentragen von bogen o.dgl. dienenden staplers
GB2168687A (en) * 1984-12-21 1986-06-25 De La Rue Syst Sheet feeding
US5641156A (en) * 1993-09-20 1997-06-24 Kabushiki Kaisha Toshiba Apparatus for inspecting sheet materials and conveying device used therefor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 010, no. 323 (M-531), 5. November 1986 (1986-11-05) -& JP 61 130160 A (HITACHI LTD), 18. Juni 1986 (1986-06-18) *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1219557A2 (de) * 2000-12-26 2002-07-03 Kabushiki Kaisha Toshiba Bogenbearbeitungsvorrichtung
EP1219557A3 (de) * 2000-12-26 2003-11-26 Kabushiki Kaisha Toshiba Bogenbearbeitungsvorrichtung
US6796557B2 (en) 2000-12-26 2004-09-28 Kabushiki Kaisha Toshiba Sheet processing apparatus having a plurality of calculation sections
CN100408458C (zh) * 2004-02-16 2008-08-06 株式会社东芝 纸叶类收集装置
EP1564170A3 (de) * 2004-02-16 2007-03-28 Kabushiki Kaisha Toshiba Vorrichtung zum Stapeln von Bögen
EP1564170A2 (de) * 2004-02-16 2005-08-17 Kabushiki Kaisha Toshiba Vorrichtung zum Stapeln von Bögen
US7438289B2 (en) 2004-02-16 2008-10-21 Kabushiki Kaisha Toshiba Sheet material stacking apparatus
EP1760018A1 (de) * 2005-08-26 2007-03-07 Kabushiki Kaisha Toshiba Vorrichtung zum Stapeln von Bögen
US7699313B2 (en) 2005-08-26 2010-04-20 Kabushiki Kaisha Toshiba Paper sheet stacking apparatus
EP2107021A1 (de) * 2008-04-03 2009-10-07 Neopost Technologies Zusammentragen von Postsendungen
US8430390B2 (en) 2008-04-03 2013-04-30 Neopost Technologies Gathering postal items
DE102010060267A1 (de) * 2010-10-29 2012-05-03 Wincor Nixdorf International Gmbh Vorrichtung und Verfahren zur Handhabung von Wertscheinen mit einem als Weiche benutzten Stackerrad
WO2024088905A1 (de) * 2022-10-25 2024-05-02 Volkswagen Ag Vorrichtung und entsprechendes verfahren zur herstellung eines elektrodenstapels aus elektrodenstapelelementen

Also Published As

Publication number Publication date
DE50110003D1 (de) 2006-07-20
ATE328831T1 (de) 2006-06-15
EP1167259A3 (de) 2004-01-14
EP1167259B1 (de) 2006-06-07
DE10030226A1 (de) 2002-01-03
US20020020963A1 (en) 2002-02-21
US6623001B2 (en) 2003-09-23

Similar Documents

Publication Publication Date Title
EP0708419B1 (de) Verfahren und Vorrichtung zur Verarbeitung von Banknoten
EP1167259B1 (de) Blattgutstapelvorrichtung und Verfahren zur Steuerung des Einlaufs von Blattgut in ein Staplerrad
DE3934869C2 (de) Münzenbearbeitungsmaschine
DE69126911T2 (de) Doppelte Zusammentragmaschine
DE60123563T2 (de) Bogenbearbeitungsvorrichtung
DE3838321C2 (de)
DE2541813C2 (de) Einrichtung zum Ordnen einer Anzahl ungeordnet herangeführter Behälter zu einer einzigen sich fortbewegenden Reihe
DE3544093A1 (de) Verfahren zum steuern des abzugsvorganges bei einer vereinzelungseinrichtung und anordnung zur durchfuehrung des verfahrens
EP1513753B1 (de) Vorrichtung zum vereinzeln von blattgut
EP1149037B1 (de) Verfahren und vorrichtung zur bildung eines bündels von einzelblättern
EP1663828B1 (de) Vorrichtung und verfahren zum vereinzeln von blattgut
DE3816690C2 (de)
DE19939164B4 (de) Verfahren zur Verarbeitung von Bedruckstoffen
DE10120904A1 (de) Verfahren und Vorrichtung für die Bearbeitung von Blattgut
EP2316766B9 (de) Ausschleusstation für Kartonzuschnitte und Verfahren zum Herstellen und Ausschleusen von Kartonzuschnitten
EP1747159B1 (de) Verfahren und vorrichtung zum stapeln von blattgut
DE69118582T2 (de) Blattstapel- und Blattzuführvorrichtung
DE60304429T2 (de) Puffertransportsystem für ein Kuvertiersystem
DE3617920A1 (de) Verfahren zur zurueckweisung eines nicht-akzeptablen blattes
EP0185395B1 (de) Vorrichtung zum Vereinzeln von Blattgut
DE10234970A1 (de) Verfahren und Vorrichtung zum Stapeln von Blattgut
DE69002363T2 (de) Verfahren und Vorrichtung zum Zuführen von Artikeln.
DE69208593T2 (de) Vorrichtung zum Vereinzeln und Zuführen von Papierblättern und Steuerungsverfahren dafür, und dieses Verfahren verwendender Kassenautomat
DE3037166C2 (de) Verfahren zum Schneiden von Kartonzuschnitten sowie Steuerschaltung zur Durchführung des Verfahrens
WO2001070610A1 (de) Blattbearbeitungsvorrichtung und verfahren zum einrichten einer blattbearbeitungsvorrichtung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17P Request for examination filed

Effective date: 20040714

AKX Designation fees paid

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: STAPFER, MICHAEL

Inventor name: HILDEBRANDT, THOMAS

Inventor name: STEINKOGLER, ALEXANDER, DR.

17Q First examination report despatched

Effective date: 20050304

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060607

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060607

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060607

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20060607

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50110003

Country of ref document: DE

Date of ref document: 20060720

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060907

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060907

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060918

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20060830

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061107

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

EN Fr: translation not filed
26N No opposition filed

Effective date: 20070308

BERE Be: lapsed

Owner name: GIESECKE & DEVRIENT G.M.B.H.

Effective date: 20070531

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070531

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070309

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060908

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070528

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060607

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070528

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060607

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50110003

Country of ref document: DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20140531

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50110003

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151201

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20180118 AND 20180124

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20200522

Year of fee payment: 20

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20210527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20210527