EP1159297A2 - Hiv related peptides - Google Patents
Hiv related peptidesInfo
- Publication number
- EP1159297A2 EP1159297A2 EP00904245A EP00904245A EP1159297A2 EP 1159297 A2 EP1159297 A2 EP 1159297A2 EP 00904245 A EP00904245 A EP 00904245A EP 00904245 A EP00904245 A EP 00904245A EP 1159297 A2 EP1159297 A2 EP 1159297A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- seq
- hiv
- antibodies
- antigenic
- peptide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 108090000765 processed proteins & peptides Proteins 0.000 title claims description 195
- 102000004196 processed proteins & peptides Human genes 0.000 title description 115
- 229960005486 vaccine Drugs 0.000 claims abstract description 35
- 230000007774 longterm Effects 0.000 claims abstract description 15
- 208000031886 HIV Infections Diseases 0.000 claims abstract description 14
- 230000000890 antigenic effect Effects 0.000 claims description 68
- 241000713772 Human immunodeficiency virus 1 Species 0.000 claims description 65
- 238000000034 method Methods 0.000 claims description 56
- 150000001413 amino acids Chemical class 0.000 claims description 49
- 239000000203 mixture Substances 0.000 claims description 46
- 108090000623 proteins and genes Proteins 0.000 claims description 34
- 102000004169 proteins and genes Human genes 0.000 claims description 30
- 210000002966 serum Anatomy 0.000 claims description 29
- 208000030507 AIDS Diseases 0.000 claims description 27
- 230000027455 binding Effects 0.000 claims description 25
- 238000009739 binding Methods 0.000 claims description 25
- 241001465754 Metazoa Species 0.000 claims description 22
- 239000000523 sample Substances 0.000 claims description 14
- 238000012216 screening Methods 0.000 claims description 9
- 102000014914 Carrier Proteins Human genes 0.000 claims description 7
- 108091008324 binding proteins Proteins 0.000 claims description 7
- 239000012472 biological sample Substances 0.000 claims description 7
- 230000036039 immunity Effects 0.000 claims description 5
- 230000001939 inductive effect Effects 0.000 claims description 4
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 claims 5
- 230000004083 survival effect Effects 0.000 abstract description 2
- 208000010648 susceptibility to HIV infection Diseases 0.000 abstract 1
- 241000725303 Human immunodeficiency virus Species 0.000 description 43
- 230000002163 immunogen Effects 0.000 description 39
- 235000001014 amino acid Nutrition 0.000 description 36
- 239000000427 antigen Substances 0.000 description 31
- 108091007433 antigens Proteins 0.000 description 31
- 102000036639 antigens Human genes 0.000 description 31
- 238000002965 ELISA Methods 0.000 description 26
- 235000018102 proteins Nutrition 0.000 description 25
- 229920001184 polypeptide Polymers 0.000 description 22
- 230000009257 reactivity Effects 0.000 description 22
- 208000015181 infectious disease Diseases 0.000 description 16
- 241000282693 Cercopithecidae Species 0.000 description 14
- 239000002671 adjuvant Substances 0.000 description 14
- 210000004027 cell Anatomy 0.000 description 14
- 150000007523 nucleic acids Chemical class 0.000 description 14
- 201000010099 disease Diseases 0.000 description 12
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 12
- 241000699670 Mus sp. Species 0.000 description 11
- 125000003275 alpha amino acid group Chemical group 0.000 description 10
- 239000002502 liposome Substances 0.000 description 10
- 230000015572 biosynthetic process Effects 0.000 description 9
- 238000009472 formulation Methods 0.000 description 9
- 230000003472 neutralizing effect Effects 0.000 description 9
- 108020004707 nucleic acids Proteins 0.000 description 9
- 102000039446 nucleic acids Human genes 0.000 description 9
- 239000000243 solution Substances 0.000 description 9
- 125000003277 amino group Chemical group 0.000 description 8
- 238000003018 immunoassay Methods 0.000 description 8
- 238000002347 injection Methods 0.000 description 8
- 239000007924 injection Substances 0.000 description 8
- 230000004048 modification Effects 0.000 description 8
- 238000012986 modification Methods 0.000 description 8
- 239000002245 particle Substances 0.000 description 8
- 238000005406 washing Methods 0.000 description 8
- 241000580858 Simian-Human immunodeficiency virus Species 0.000 description 7
- 210000001744 T-lymphocyte Anatomy 0.000 description 7
- 230000005875 antibody response Effects 0.000 description 7
- 238000003556 assay Methods 0.000 description 7
- 210000003719 b-lymphocyte Anatomy 0.000 description 7
- 230000003053 immunization Effects 0.000 description 7
- 238000002649 immunization Methods 0.000 description 7
- 230000005847 immunogenicity Effects 0.000 description 7
- 238000006386 neutralization reaction Methods 0.000 description 7
- 239000002773 nucleotide Substances 0.000 description 7
- 125000003729 nucleotide group Chemical group 0.000 description 7
- 238000012360 testing method Methods 0.000 description 7
- 101000739160 Homo sapiens Secretoglobin family 3A member 1 Proteins 0.000 description 6
- 108060003951 Immunoglobulin Proteins 0.000 description 6
- 102100025193 OTU domain-containing protein 4 Human genes 0.000 description 6
- 101800001690 Transmembrane protein gp41 Proteins 0.000 description 6
- 241000700605 Viruses Species 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 108020001507 fusion proteins Proteins 0.000 description 6
- 102000037865 fusion proteins Human genes 0.000 description 6
- 102000018358 immunoglobulin Human genes 0.000 description 6
- 238000001727 in vivo Methods 0.000 description 6
- 239000003446 ligand Substances 0.000 description 6
- 230000001225 therapeutic effect Effects 0.000 description 6
- 208000037357 HIV infectious disease Diseases 0.000 description 5
- 108700010908 HIV-1 proteins Proteins 0.000 description 5
- 108010021625 Immunoglobulin Fragments Proteins 0.000 description 5
- 239000004472 Lysine Substances 0.000 description 5
- 241000282560 Macaca mulatta Species 0.000 description 5
- 108091028043 Nucleic acid sequence Proteins 0.000 description 5
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 5
- 239000000872 buffer Substances 0.000 description 5
- 238000007796 conventional method Methods 0.000 description 5
- 238000010790 dilution Methods 0.000 description 5
- 239000012895 dilution Substances 0.000 description 5
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 5
- 239000000839 emulsion Substances 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 239000013604 expression vector Substances 0.000 description 5
- 230000004927 fusion Effects 0.000 description 5
- 210000002443 helper t lymphocyte Anatomy 0.000 description 5
- 208000033519 human immunodeficiency virus infectious disease Diseases 0.000 description 5
- 230000028993 immune response Effects 0.000 description 5
- 235000018977 lysine Nutrition 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 239000011859 microparticle Substances 0.000 description 5
- -1 octadecyl ester Chemical class 0.000 description 5
- 239000002953 phosphate buffered saline Substances 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- 230000001681 protective effect Effects 0.000 description 5
- 239000013598 vector Substances 0.000 description 5
- 239000004971 Cross linker Substances 0.000 description 4
- 108020004414 DNA Proteins 0.000 description 4
- BWGNESOTFCXPMA-UHFFFAOYSA-N Dihydrogen disulfide Chemical compound SS BWGNESOTFCXPMA-UHFFFAOYSA-N 0.000 description 4
- 206010061818 Disease progression Diseases 0.000 description 4
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 4
- 102000008394 Immunoglobulin Fragments Human genes 0.000 description 4
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 4
- 108010067902 Peptide Library Proteins 0.000 description 4
- 108020004511 Recombinant DNA Proteins 0.000 description 4
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 4
- 230000001588 bifunctional effect Effects 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 4
- 230000021615 conjugation Effects 0.000 description 4
- 230000000875 corresponding effect Effects 0.000 description 4
- 210000001151 cytotoxic T lymphocyte Anatomy 0.000 description 4
- 238000001514 detection method Methods 0.000 description 4
- 239000000539 dimer Substances 0.000 description 4
- 230000005750 disease progression Effects 0.000 description 4
- 238000000338 in vitro Methods 0.000 description 4
- 230000001965 increasing effect Effects 0.000 description 4
- 108020003175 receptors Proteins 0.000 description 4
- 239000011780 sodium chloride Substances 0.000 description 4
- 125000006850 spacer group Chemical group 0.000 description 4
- 210000001519 tissue Anatomy 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- NHBKXEKEPDILRR-UHFFFAOYSA-N 2,3-bis(butanoylsulfanyl)propyl butanoate Chemical compound CCCC(=O)OCC(SC(=O)CCC)CSC(=O)CCC NHBKXEKEPDILRR-UHFFFAOYSA-N 0.000 description 3
- WFDIJRYMOXRFFG-UHFFFAOYSA-N Acetic anhydride Chemical compound CC(=O)OC(C)=O WFDIJRYMOXRFFG-UHFFFAOYSA-N 0.000 description 3
- WVDDGKGOMKODPV-UHFFFAOYSA-N Benzyl alcohol Chemical compound OCC1=CC=CC=C1 WVDDGKGOMKODPV-UHFFFAOYSA-N 0.000 description 3
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 3
- 108010041986 DNA Vaccines Proteins 0.000 description 3
- 229940021995 DNA vaccine Drugs 0.000 description 3
- 102000004190 Enzymes Human genes 0.000 description 3
- 108090000790 Enzymes Proteins 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- 241000724791 Filamentous phage Species 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- 241000282412 Homo Species 0.000 description 3
- 108700005091 Immunoglobulin Genes Proteins 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 230000001580 bacterial effect Effects 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 230000000903 blocking effect Effects 0.000 description 3
- 229940098773 bovine serum albumin Drugs 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 239000000969 carrier Substances 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000003153 chemical reaction reagent Substances 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 239000003085 diluting agent Substances 0.000 description 3
- 229940088598 enzyme Drugs 0.000 description 3
- 230000001747 exhibiting effect Effects 0.000 description 3
- 239000012634 fragment Substances 0.000 description 3
- 229940072221 immunoglobulins Drugs 0.000 description 3
- 238000007918 intramuscular administration Methods 0.000 description 3
- 239000000178 monomer Substances 0.000 description 3
- 230000007935 neutral effect Effects 0.000 description 3
- 231100000252 nontoxic Toxicity 0.000 description 3
- 230000003000 nontoxic effect Effects 0.000 description 3
- 244000052769 pathogen Species 0.000 description 3
- 230000001717 pathogenic effect Effects 0.000 description 3
- 238000002823 phage display Methods 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 238000007920 subcutaneous administration Methods 0.000 description 3
- 208000024891 symptom Diseases 0.000 description 3
- 239000003981 vehicle Substances 0.000 description 3
- 230000003612 virological effect Effects 0.000 description 3
- DFVFTMTWCUHJBL-UHFFFAOYSA-N 4-azaniumyl-3-hydroxy-6-methylheptanoate Chemical compound CC(C)CC(N)C(O)CC(O)=O DFVFTMTWCUHJBL-UHFFFAOYSA-N 0.000 description 2
- 108090000565 Capsid Proteins Proteins 0.000 description 2
- 102100023321 Ceruloplasmin Human genes 0.000 description 2
- 108010069514 Cyclic Peptides Proteins 0.000 description 2
- 102000001189 Cyclic Peptides Human genes 0.000 description 2
- QSJXEFYPDANLFS-UHFFFAOYSA-N Diacetyl Chemical compound CC(=O)C(C)=O QSJXEFYPDANLFS-UHFFFAOYSA-N 0.000 description 2
- 101710082714 Exotoxin A Proteins 0.000 description 2
- 239000004471 Glycine Substances 0.000 description 2
- 101800000324 Immunoglobulin A1 protease translocator Proteins 0.000 description 2
- 241000282553 Macaca Species 0.000 description 2
- 101710125418 Major capsid protein Proteins 0.000 description 2
- 241000699666 Mus <mouse, genus> Species 0.000 description 2
- NQTADLQHYWFPDB-UHFFFAOYSA-N N-Hydroxysuccinimide Chemical class ON1C(=O)CCC1=O NQTADLQHYWFPDB-UHFFFAOYSA-N 0.000 description 2
- PCLIMKBDDGJMGD-UHFFFAOYSA-N N-bromosuccinimide Chemical compound BrN1C(=O)CCC1=O PCLIMKBDDGJMGD-UHFFFAOYSA-N 0.000 description 2
- 241000288906 Primates Species 0.000 description 2
- 108700033844 Pseudomonas aeruginosa toxA Proteins 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 239000004480 active ingredient Substances 0.000 description 2
- 230000001154 acute effect Effects 0.000 description 2
- 230000010933 acylation Effects 0.000 description 2
- 238000005917 acylation reaction Methods 0.000 description 2
- 238000001261 affinity purification Methods 0.000 description 2
- 230000029936 alkylation Effects 0.000 description 2
- 238000005804 alkylation reaction Methods 0.000 description 2
- BYFGZMCJNACEKR-UHFFFAOYSA-N aluminium(i) oxide Chemical compound [Al]O[Al] BYFGZMCJNACEKR-UHFFFAOYSA-N 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 239000011324 bead Substances 0.000 description 2
- KQHXBDOEECKORE-UHFFFAOYSA-L beryllium sulfate Chemical compound [Be+2].[O-]S([O-])(=O)=O KQHXBDOEECKORE-UHFFFAOYSA-L 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 210000004369 blood Anatomy 0.000 description 2
- 239000008280 blood Substances 0.000 description 2
- AIYUHDOJVYHVIT-UHFFFAOYSA-M caesium chloride Chemical compound [Cl-].[Cs+] AIYUHDOJVYHVIT-UHFFFAOYSA-M 0.000 description 2
- 230000021235 carbamoylation Effects 0.000 description 2
- 150000001718 carbodiimides Chemical class 0.000 description 2
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 2
- 235000012000 cholesterol Nutrition 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 2
- 108091036078 conserved sequence Proteins 0.000 description 2
- XLJMAIOERFSOGZ-UHFFFAOYSA-M cyanate Chemical compound [O-]C#N XLJMAIOERFSOGZ-UHFFFAOYSA-M 0.000 description 2
- XVOYSCVBGLVSOL-UHFFFAOYSA-N cysteic acid Chemical compound OC(=O)C(N)CS(O)(=O)=O XVOYSCVBGLVSOL-UHFFFAOYSA-N 0.000 description 2
- 235000018417 cysteine Nutrition 0.000 description 2
- 210000000172 cytosol Anatomy 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000003745 diagnosis Methods 0.000 description 2
- 230000029087 digestion Effects 0.000 description 2
- 125000005313 fatty acid group Chemical group 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- BTCSSZJGUNDROE-UHFFFAOYSA-N gamma-aminobutyric acid Chemical compound NCCCC(O)=O BTCSSZJGUNDROE-UHFFFAOYSA-N 0.000 description 2
- LEQAOMBKQFMDFZ-UHFFFAOYSA-N glyoxal Chemical compound O=CC=O LEQAOMBKQFMDFZ-UHFFFAOYSA-N 0.000 description 2
- 230000036449 good health Effects 0.000 description 2
- 239000000833 heterodimer Substances 0.000 description 2
- 210000004408 hybridoma Anatomy 0.000 description 2
- 230000003100 immobilizing effect Effects 0.000 description 2
- 230000001900 immune effect Effects 0.000 description 2
- 210000000987 immune system Anatomy 0.000 description 2
- 238000003119 immunoblot Methods 0.000 description 2
- 238000009169 immunotherapy Methods 0.000 description 2
- 238000010348 incorporation Methods 0.000 description 2
- 238000011534 incubation Methods 0.000 description 2
- 230000002458 infectious effect Effects 0.000 description 2
- 230000005764 inhibitory process Effects 0.000 description 2
- JDNTWHVOXJZDSN-UHFFFAOYSA-N iodoacetic acid Chemical compound OC(=O)CI JDNTWHVOXJZDSN-UHFFFAOYSA-N 0.000 description 2
- 108010045069 keyhole-limpet hemocyanin Proteins 0.000 description 2
- 150000002632 lipids Chemical class 0.000 description 2
- 210000004698 lymphocyte Anatomy 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 229960005030 other vaccine in atc Drugs 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 230000036961 partial effect Effects 0.000 description 2
- 238000010647 peptide synthesis reaction Methods 0.000 description 2
- 210000003819 peripheral blood mononuclear cell Anatomy 0.000 description 2
- 210000001322 periplasm Anatomy 0.000 description 2
- 239000000546 pharmaceutical excipient Substances 0.000 description 2
- OJUGVDODNPJEEC-UHFFFAOYSA-N phenylglyoxal Chemical compound O=CC(=O)C1=CC=CC=C1 OJUGVDODNPJEEC-UHFFFAOYSA-N 0.000 description 2
- 229920000136 polysorbate Polymers 0.000 description 2
- 238000004393 prognosis Methods 0.000 description 2
- 229940070741 purified protein derivative of tuberculin Drugs 0.000 description 2
- 239000001397 quillaja saponaria molina bark Substances 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000006722 reduction reaction Methods 0.000 description 2
- 230000010076 replication Effects 0.000 description 2
- 229930182490 saponin Natural products 0.000 description 2
- 150000007949 saponins Chemical class 0.000 description 2
- FSYKKLYZXJSNPZ-UHFFFAOYSA-N sarcosine Chemical compound C[NH2+]CC([O-])=O FSYKKLYZXJSNPZ-UHFFFAOYSA-N 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 239000000829 suppository Substances 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 229960000814 tetanus toxoid Drugs 0.000 description 2
- 239000003053 toxin Substances 0.000 description 2
- 231100000765 toxin Toxicity 0.000 description 2
- 108700012359 toxins Proteins 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 230000014616 translation Effects 0.000 description 2
- 238000011282 treatment Methods 0.000 description 2
- 210000002845 virion Anatomy 0.000 description 2
- ASWBNKHCZGQVJV-UHFFFAOYSA-N (3-hexadecanoyloxy-2-hydroxypropyl) 2-(trimethylazaniumyl)ethyl phosphate Chemical compound CCCCCCCCCCCCCCCC(=O)OCC(O)COP([O-])(=O)OCC[N+](C)(C)C ASWBNKHCZGQVJV-UHFFFAOYSA-N 0.000 description 1
- KMOUUZVZFBCRAM-OLQVQODUSA-N (3as,7ar)-3a,4,7,7a-tetrahydro-2-benzofuran-1,3-dione Chemical compound C1C=CC[C@@H]2C(=O)OC(=O)[C@@H]21 KMOUUZVZFBCRAM-OLQVQODUSA-N 0.000 description 1
- IXPNQXFRVYWDDI-UHFFFAOYSA-N 1-methyl-2,4-dioxo-1,3-diazinane-5-carboximidamide Chemical compound CN1CC(C(N)=N)C(=O)NC1=O IXPNQXFRVYWDDI-UHFFFAOYSA-N 0.000 description 1
- FPIPGXGPPPQFEQ-UHFFFAOYSA-N 13-cis retinol Natural products OCC=C(C)C=CC=C(C)C=CC1=C(C)CCCC1(C)C FPIPGXGPPPQFEQ-UHFFFAOYSA-N 0.000 description 1
- 150000003923 2,5-pyrrolediones Chemical class 0.000 description 1
- KFDPCYZHENQOBV-UHFFFAOYSA-N 2-(bromomethyl)-4-nitrophenol Chemical compound OC1=CC=C([N+]([O-])=O)C=C1CBr KFDPCYZHENQOBV-UHFFFAOYSA-N 0.000 description 1
- FALRKNHUBBKYCC-UHFFFAOYSA-N 2-(chloromethyl)pyridine-3-carbonitrile Chemical compound ClCC1=NC=CC=C1C#N FALRKNHUBBKYCC-UHFFFAOYSA-N 0.000 description 1
- OTLLEIBWKHEHGU-UHFFFAOYSA-N 2-[5-[[5-(6-aminopurin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy]-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3,5-dihydroxy-4-phosphonooxyhexanedioic acid Chemical compound C1=NC=2C(N)=NC=NC=2N1C(C(C1O)O)OC1COC1C(CO)OC(OC(C(O)C(OP(O)(O)=O)C(O)C(O)=O)C(O)=O)C(O)C1O OTLLEIBWKHEHGU-UHFFFAOYSA-N 0.000 description 1
- WTOFYLAWDLQMBZ-UHFFFAOYSA-N 2-azaniumyl-3-thiophen-2-ylpropanoate Chemical compound OC(=O)C(N)CC1=CC=CS1 WTOFYLAWDLQMBZ-UHFFFAOYSA-N 0.000 description 1
- LJGHYPLBDBRCRZ-UHFFFAOYSA-N 3-(3-aminophenyl)sulfonylaniline Chemical compound NC1=CC=CC(S(=O)(=O)C=2C=C(N)C=CC=2)=C1 LJGHYPLBDBRCRZ-UHFFFAOYSA-N 0.000 description 1
- HVCOBJNICQPDBP-UHFFFAOYSA-N 3-[3-[3,5-dihydroxy-6-methyl-4-(3,4,5-trihydroxy-6-methyloxan-2-yl)oxyoxan-2-yl]oxydecanoyloxy]decanoic acid;hydrate Chemical class O.OC1C(OC(CC(=O)OC(CCCCCCC)CC(O)=O)CCCCCCC)OC(C)C(O)C1OC1C(O)C(O)C(O)C(C)O1 HVCOBJNICQPDBP-UHFFFAOYSA-N 0.000 description 1
- FBTSQILOGYXGMD-LURJTMIESA-N 3-nitro-L-tyrosine Chemical class OC(=O)[C@@H](N)CC1=CC=C(O)C([N+]([O-])=O)=C1 FBTSQILOGYXGMD-LURJTMIESA-N 0.000 description 1
- JAJQQUQHMLWDFB-UHFFFAOYSA-N 4-azaniumyl-3-hydroxy-5-phenylpentanoate Chemical compound OC(=O)CC(O)C(N)CC1=CC=CC=C1 JAJQQUQHMLWDFB-UHFFFAOYSA-N 0.000 description 1
- SLXKOJJOQWFEFD-UHFFFAOYSA-N 6-aminohexanoic acid Chemical compound NCCCCCC(O)=O SLXKOJJOQWFEFD-UHFFFAOYSA-N 0.000 description 1
- 108010042708 Acetylmuramyl-Alanyl-Isoglutamine Proteins 0.000 description 1
- 208000020154 Acnes Diseases 0.000 description 1
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 1
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 1
- 239000005995 Aluminium silicate Substances 0.000 description 1
- 241000272478 Aquila Species 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 description 1
- 241000588832 Bordetella pertussis Species 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- 241000283707 Capra Species 0.000 description 1
- 101710132601 Capsid protein Proteins 0.000 description 1
- 101710169873 Capsid protein G8P Proteins 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 206010007559 Cardiac failure congestive Diseases 0.000 description 1
- 208000017667 Chronic Disease Diseases 0.000 description 1
- 101710094648 Coat protein Proteins 0.000 description 1
- 241000557626 Corvus corax Species 0.000 description 1
- 241000186216 Corynebacterium Species 0.000 description 1
- YXQDRIRSAHTJKM-IMJSIDKUSA-N Cys-Ser Chemical compound SC[C@H](N)C(=O)N[C@@H](CO)C(O)=O YXQDRIRSAHTJKM-IMJSIDKUSA-N 0.000 description 1
- 229920002307 Dextran Polymers 0.000 description 1
- 238000009007 Diagnostic Kit Methods 0.000 description 1
- 238000012286 ELISA Assay Methods 0.000 description 1
- 238000008157 ELISA kit Methods 0.000 description 1
- 101710091045 Envelope protein Proteins 0.000 description 1
- 238000000729 Fisher's exact test Methods 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 1
- SXRSQZLOMIGNAQ-UHFFFAOYSA-N Glutaraldehyde Chemical compound O=CCCCC=O SXRSQZLOMIGNAQ-UHFFFAOYSA-N 0.000 description 1
- AEMRFAOFKBGASW-UHFFFAOYSA-N Glycolic acid Chemical class OCC(O)=O AEMRFAOFKBGASW-UHFFFAOYSA-N 0.000 description 1
- 102100021181 Golgi phosphoprotein 3 Human genes 0.000 description 1
- 229940033332 HIV-1 vaccine Drugs 0.000 description 1
- 206010019280 Heart failures Diseases 0.000 description 1
- 208000009889 Herpes Simplex Diseases 0.000 description 1
- 208000007514 Herpes zoster Diseases 0.000 description 1
- 108010048209 Human Immunodeficiency Virus Proteins Proteins 0.000 description 1
- 241000701044 Human gammaherpesvirus 4 Species 0.000 description 1
- 206010051151 Hyperviscosity syndrome Diseases 0.000 description 1
- 108010067060 Immunoglobulin Variable Region Proteins 0.000 description 1
- 102100034349 Integrase Human genes 0.000 description 1
- 102100034353 Integrase Human genes 0.000 description 1
- SNDPXSYFESPGGJ-BYPYZUCNSA-N L-2-aminopentanoic acid Chemical compound CCC[C@H](N)C(O)=O SNDPXSYFESPGGJ-BYPYZUCNSA-N 0.000 description 1
- XUJNEKJLAYXESH-REOHCLBHSA-N L-Cysteine Chemical compound SC[C@H](N)C(O)=O XUJNEKJLAYXESH-REOHCLBHSA-N 0.000 description 1
- AHLPHDHHMVZTML-BYPYZUCNSA-N L-Ornithine Chemical compound NCCC[C@H](N)C(O)=O AHLPHDHHMVZTML-BYPYZUCNSA-N 0.000 description 1
- ZGUNAGUHMKGQNY-ZETCQYMHSA-N L-alpha-phenylglycine zwitterion Chemical compound OC(=O)[C@@H](N)C1=CC=CC=C1 ZGUNAGUHMKGQNY-ZETCQYMHSA-N 0.000 description 1
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 1
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 1
- SNDPXSYFESPGGJ-UHFFFAOYSA-N L-norVal-OH Natural products CCCC(N)C(O)=O SNDPXSYFESPGGJ-UHFFFAOYSA-N 0.000 description 1
- LRQKBLKVPFOOQJ-YFKPBYRVSA-N L-norleucine Chemical compound CCCC[C@H]([NH3+])C([O-])=O LRQKBLKVPFOOQJ-YFKPBYRVSA-N 0.000 description 1
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 1
- 239000004166 Lanolin Substances 0.000 description 1
- 108010013709 Leukocyte Common Antigens Proteins 0.000 description 1
- 102000017095 Leukocyte Common Antigens Human genes 0.000 description 1
- HLFSDGLLUJUHTE-SNVBAGLBSA-N Levamisole Chemical compound C1([C@H]2CN3CCSC3=N2)=CC=CC=C1 HLFSDGLLUJUHTE-SNVBAGLBSA-N 0.000 description 1
- 208000016604 Lyme disease Diseases 0.000 description 1
- 102000043129 MHC class I family Human genes 0.000 description 1
- 108091054437 MHC class I family Proteins 0.000 description 1
- 241000282561 Macaca nemestrina Species 0.000 description 1
- 101710156564 Major tail protein Gp23 Proteins 0.000 description 1
- PEEHTFAAVSWFBL-UHFFFAOYSA-N Maleimide Chemical compound O=C1NC(=O)C=C1 PEEHTFAAVSWFBL-UHFFFAOYSA-N 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 239000000020 Nitrocellulose Substances 0.000 description 1
- 108700001237 Nucleic Acid-Based Vaccines Proteins 0.000 description 1
- 101710141454 Nucleoprotein Proteins 0.000 description 1
- 150000007930 O-acyl isoureas Chemical class 0.000 description 1
- AHLPHDHHMVZTML-UHFFFAOYSA-N Orn-delta-NH2 Natural products NCCCC(N)C(O)=O AHLPHDHHMVZTML-UHFFFAOYSA-N 0.000 description 1
- UTJLXEIPEHZYQJ-UHFFFAOYSA-N Ornithine Natural products OC(=O)C(C)CCCN UTJLXEIPEHZYQJ-UHFFFAOYSA-N 0.000 description 1
- 241000283973 Oryctolagus cuniculus Species 0.000 description 1
- 108010058846 Ovalbumin Proteins 0.000 description 1
- 102000057297 Pepsin A Human genes 0.000 description 1
- 108090000284 Pepsin A Proteins 0.000 description 1
- 102000035195 Peptidases Human genes 0.000 description 1
- 108091005804 Peptidases Proteins 0.000 description 1
- 208000037581 Persistent Infection Diseases 0.000 description 1
- 206010035226 Plasma cell myeloma Diseases 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 101710193132 Pre-hexon-linking protein VIII Proteins 0.000 description 1
- 101710083689 Probable capsid protein Proteins 0.000 description 1
- 101710188315 Protein X Proteins 0.000 description 1
- 206010037423 Pulmonary oedema Diseases 0.000 description 1
- 108010077895 Sarcosine Proteins 0.000 description 1
- 108010071390 Serum Albumin Proteins 0.000 description 1
- 102000007562 Serum Albumin Human genes 0.000 description 1
- 229930182558 Sterol Natural products 0.000 description 1
- 238000000692 Student's t-test Methods 0.000 description 1
- 108010008038 Synthetic Vaccines Proteins 0.000 description 1
- 230000024932 T cell mediated immunity Effects 0.000 description 1
- 108091008874 T cell receptors Proteins 0.000 description 1
- 102000016266 T-Cell Antigen Receptors Human genes 0.000 description 1
- 108020005038 Terminator Codon Proteins 0.000 description 1
- NYTOUQBROMCLBJ-UHFFFAOYSA-N Tetranitromethane Chemical compound [O-][N+](=O)C([N+]([O-])=O)([N+]([O-])=O)[N+]([O-])=O NYTOUQBROMCLBJ-UHFFFAOYSA-N 0.000 description 1
- 102000009843 Thyroglobulin Human genes 0.000 description 1
- 108010034949 Thyroglobulin Proteins 0.000 description 1
- 201000005485 Toxoplasmosis Diseases 0.000 description 1
- UATJOMSPNYCXIX-UHFFFAOYSA-N Trinitrobenzene Chemical compound [O-][N+](=O)C1=CC([N+]([O-])=O)=CC([N+]([O-])=O)=C1 UATJOMSPNYCXIX-UHFFFAOYSA-N 0.000 description 1
- FPIPGXGPPPQFEQ-BOOMUCAASA-N Vitamin A Natural products OC/C=C(/C)\C=C\C=C(\C)/C=C/C1=C(C)CCCC1(C)C FPIPGXGPPPQFEQ-BOOMUCAASA-N 0.000 description 1
- UZQJVUCHXGYFLQ-AYDHOLPZSA-N [(2s,3r,4s,5r,6r)-4-[(2s,3r,4s,5r,6r)-4-[(2r,3r,4s,5r,6r)-4-[(2s,3r,4s,5r,6r)-3,5-dihydroxy-6-(hydroxymethyl)-4-[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3,5-dihydroxy-6-(hy Chemical compound O([C@H]1[C@H](O)[C@@H](CO)O[C@H]([C@@H]1O)O[C@H]1[C@H](O)[C@@H](CO)O[C@H]([C@@H]1O)O[C@H]1CC[C@]2(C)[C@H]3CC=C4[C@@]([C@@]3(CC[C@H]2[C@@]1(C=O)C)C)(C)CC(O)[C@]1(CCC(CC14)(C)C)C(=O)O[C@H]1[C@@H]([C@@H](O[C@H]2[C@@H]([C@@H](O[C@H]3[C@@H]([C@@H](O[C@H]4[C@@H]([C@@H](O[C@H]5[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O5)O)[C@H](O)[C@@H](CO)O4)O)[C@H](O)[C@@H](CO)O3)O)[C@H](O)[C@@H](CO)O2)O)[C@H](O)[C@@H](CO)O1)O)[C@@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O UZQJVUCHXGYFLQ-AYDHOLPZSA-N 0.000 description 1
- 238000002679 ablation Methods 0.000 description 1
- 239000002251 absorbable suture material Substances 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 239000003463 adsorbent Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000000443 aerosol Substances 0.000 description 1
- 238000003314 affinity selection Methods 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- FPIPGXGPPPQFEQ-OVSJKPMPSA-N all-trans-retinol Chemical compound OC\C=C(/C)\C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C FPIPGXGPPPQFEQ-OVSJKPMPSA-N 0.000 description 1
- 229940037003 alum Drugs 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- ILRRQNADMUWWFW-UHFFFAOYSA-K aluminium phosphate Chemical compound O1[Al]2OP1(=O)O2 ILRRQNADMUWWFW-UHFFFAOYSA-K 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- 229940103272 aluminum potassium sulfate Drugs 0.000 description 1
- 230000001668 ameliorated effect Effects 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 229940093740 amino acid and derivative Drugs 0.000 description 1
- 150000003862 amino acid derivatives Chemical class 0.000 description 1
- 125000000539 amino acid group Chemical group 0.000 description 1
- 229960002684 aminocaproic acid Drugs 0.000 description 1
- 230000036436 anti-hiv Effects 0.000 description 1
- 230000000840 anti-viral effect Effects 0.000 description 1
- 230000030741 antigen processing and presentation Effects 0.000 description 1
- 125000000637 arginyl group Chemical group N[C@@H](CCCNC(N)=N)C(=O)* 0.000 description 1
- 235000003704 aspartic acid Nutrition 0.000 description 1
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 1
- 235000019445 benzyl alcohol Nutrition 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 1
- 239000012620 biological material Substances 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 239000005018 casein Substances 0.000 description 1
- BECPQYXYKAMYBN-UHFFFAOYSA-N casein, tech. Chemical compound NCCCCC(C(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(CC(C)C)N=C(O)C(CCC(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(C(C)O)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(COP(O)(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(N)CC1=CC=CC=C1 BECPQYXYKAMYBN-UHFFFAOYSA-N 0.000 description 1
- 235000021240 caseins Nutrition 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 125000003636 chemical group Chemical group 0.000 description 1
- 238000007385 chemical modification Methods 0.000 description 1
- AWGTVRDHKJQFAX-UHFFFAOYSA-M chloro(phenyl)mercury Chemical compound Cl[Hg]C1=CC=CC=C1 AWGTVRDHKJQFAX-UHFFFAOYSA-M 0.000 description 1
- 239000003593 chromogenic compound Substances 0.000 description 1
- 239000012568 clinical material Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000007859 condensation product Substances 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 1
- 150000001945 cysteines Chemical class 0.000 description 1
- 231100000433 cytotoxic Toxicity 0.000 description 1
- 230000001472 cytotoxic effect Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000001212 derivatisation Methods 0.000 description 1
- 239000008121 dextrose Substances 0.000 description 1
- FFYPMLJYZAEMQB-UHFFFAOYSA-N diethyl pyrocarbonate Chemical compound CCOC(=O)OC(=O)OCC FFYPMLJYZAEMQB-UHFFFAOYSA-N 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 125000000118 dimethyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 125000004119 disulfanediyl group Chemical group *SS* 0.000 description 1
- 239000002552 dosage form Substances 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 239000003937 drug carrier Substances 0.000 description 1
- 239000012636 effector Substances 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 239000002158 endotoxin Substances 0.000 description 1
- 108010078428 env Gene Products Proteins 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 231100000776 exotoxin Toxicity 0.000 description 1
- 239000002095 exotoxin Substances 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 235000013861 fat-free Nutrition 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 238000005194 fractionation Methods 0.000 description 1
- 238000004108 freeze drying Methods 0.000 description 1
- 108700004026 gag Genes Proteins 0.000 description 1
- 229960003692 gamma aminobutyric acid Drugs 0.000 description 1
- 108010074605 gamma-Globulins Proteins 0.000 description 1
- 238000001415 gene therapy Methods 0.000 description 1
- 235000013922 glutamic acid Nutrition 0.000 description 1
- 239000004220 glutamic acid Substances 0.000 description 1
- 239000007973 glycine-HCl buffer Substances 0.000 description 1
- 150000002334 glycols Chemical class 0.000 description 1
- 229940015043 glyoxal Drugs 0.000 description 1
- 125000002795 guanidino group Chemical group C(N)(=N)N* 0.000 description 1
- 208000006454 hepatitis Diseases 0.000 description 1
- 231100000283 hepatitis Toxicity 0.000 description 1
- 125000000623 heterocyclic group Chemical group 0.000 description 1
- 125000000487 histidyl group Chemical group [H]N([H])C(C(=O)O*)C([H])([H])C1=C([H])N([H])C([H])=N1 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 150000002463 imidates Chemical class 0.000 description 1
- 125000002883 imidazolyl group Chemical group 0.000 description 1
- 238000010324 immunological assay Methods 0.000 description 1
- 230000001024 immunotherapeutic effect Effects 0.000 description 1
- 239000002596 immunotoxin Substances 0.000 description 1
- 230000002637 immunotoxin Effects 0.000 description 1
- 231100000608 immunotoxin Toxicity 0.000 description 1
- 229940051026 immunotoxin Drugs 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 125000001041 indolyl group Chemical group 0.000 description 1
- 239000012678 infectious agent Substances 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 239000013546 insoluble monolayer Substances 0.000 description 1
- 238000010255 intramuscular injection Methods 0.000 description 1
- 239000007927 intramuscular injection Substances 0.000 description 1
- 238000001990 intravenous administration Methods 0.000 description 1
- PGLTVOMIXTUURA-UHFFFAOYSA-N iodoacetamide Chemical compound NC(=O)CI PGLTVOMIXTUURA-UHFFFAOYSA-N 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 229940039717 lanolin Drugs 0.000 description 1
- 235000019388 lanolin Nutrition 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 230000021633 leukocyte mediated immunity Effects 0.000 description 1
- 229960001614 levamisole Drugs 0.000 description 1
- HEHQDWUWJVPREQ-XQJZMFRCSA-N lipid X Chemical compound CCCCCCCCCCC[C@@H](O)CC(=O)N[C@H]1[C@@H](OP(O)(O)=O)O[C@H](CO)[C@@H](O)[C@@H]1OC(=O)C[C@H](O)CCCCCCCCCCC HEHQDWUWJVPREQ-XQJZMFRCSA-N 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 239000006193 liquid solution Substances 0.000 description 1
- 230000005923 long-lasting effect Effects 0.000 description 1
- 210000003563 lymphoid tissue Anatomy 0.000 description 1
- 125000003588 lysine group Chemical class [H]N([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])(N([H])[H])C(*)=O 0.000 description 1
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 1
- 239000001095 magnesium carbonate Substances 0.000 description 1
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 1
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 1
- 210000004962 mammalian cell Anatomy 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- SJFKGZZCMREBQH-UHFFFAOYSA-N methyl ethanimidate Chemical compound COC(C)=N SJFKGZZCMREBQH-UHFFFAOYSA-N 0.000 description 1
- 230000011987 methylation Effects 0.000 description 1
- 238000007069 methylation reaction Methods 0.000 description 1
- 239000000693 micelle Substances 0.000 description 1
- 239000011325 microbead Substances 0.000 description 1
- 235000013336 milk Nutrition 0.000 description 1
- 239000008267 milk Substances 0.000 description 1
- 210000004080 milk Anatomy 0.000 description 1
- 230000003278 mimic effect Effects 0.000 description 1
- 108091005601 modified peptides Proteins 0.000 description 1
- 238000010369 molecular cloning Methods 0.000 description 1
- 229940031348 multivalent vaccine Drugs 0.000 description 1
- BSOQXXWZTUDTEL-ZUYCGGNHSA-N muramyl dipeptide Chemical compound OC(=O)CC[C@H](C(N)=O)NC(=O)[C@H](C)NC(=O)[C@@H](C)O[C@H]1[C@H](O)[C@@H](CO)O[C@@H](O)[C@@H]1NC(C)=O BSOQXXWZTUDTEL-ZUYCGGNHSA-N 0.000 description 1
- 230000035772 mutation Effects 0.000 description 1
- 201000000050 myeloid neoplasm Diseases 0.000 description 1
- APVPOHHVBBYQAV-UHFFFAOYSA-N n-(4-aminophenyl)sulfonyloctadecanamide Chemical compound CCCCCCCCCCCCCCCCCC(=O)NS(=O)(=O)C1=CC=C(N)C=C1 APVPOHHVBBYQAV-UHFFFAOYSA-N 0.000 description 1
- 239000007923 nasal drop Substances 0.000 description 1
- 229940100662 nasal drops Drugs 0.000 description 1
- 239000007922 nasal spray Substances 0.000 description 1
- 229940097496 nasal spray Drugs 0.000 description 1
- 239000006199 nebulizer Substances 0.000 description 1
- 239000013642 negative control Substances 0.000 description 1
- PGSADBUBUOPOJS-UHFFFAOYSA-N neutral red Chemical compound Cl.C1=C(C)C(N)=CC2=NC3=CC(N(C)C)=CC=C3N=C21 PGSADBUBUOPOJS-UHFFFAOYSA-N 0.000 description 1
- 238000006396 nitration reaction Methods 0.000 description 1
- 229920001220 nitrocellulos Polymers 0.000 description 1
- 230000009871 nonspecific binding Effects 0.000 description 1
- 229940023146 nucleic acid vaccine Drugs 0.000 description 1
- 230000003571 opsonizing effect Effects 0.000 description 1
- 229960003104 ornithine Drugs 0.000 description 1
- 229940092253 ovalbumin Drugs 0.000 description 1
- 239000006179 pH buffering agent Substances 0.000 description 1
- 238000007911 parenteral administration Methods 0.000 description 1
- 229940111202 pepsin Drugs 0.000 description 1
- 125000001151 peptidyl group Chemical group 0.000 description 1
- 230000002572 peristaltic effect Effects 0.000 description 1
- 239000008194 pharmaceutical composition Substances 0.000 description 1
- 150000003904 phospholipids Chemical class 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 230000004962 physiological condition Effects 0.000 description 1
- 239000006187 pill Substances 0.000 description 1
- 230000036470 plasma concentration Effects 0.000 description 1
- 108700004029 pol Genes Proteins 0.000 description 1
- 229920001606 poly(lactic acid-co-glycolic acid) Polymers 0.000 description 1
- 230000008488 polyadenylation Effects 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- GRLPQNLYRHEGIJ-UHFFFAOYSA-J potassium aluminium sulfate Chemical compound [Al+3].[K+].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O GRLPQNLYRHEGIJ-UHFFFAOYSA-J 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 235000019833 protease Nutrition 0.000 description 1
- 238000000159 protein binding assay Methods 0.000 description 1
- 108020001580 protein domains Proteins 0.000 description 1
- 238000001243 protein synthesis Methods 0.000 description 1
- 229940023143 protein vaccine Drugs 0.000 description 1
- 208000005333 pulmonary edema Diseases 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- NGVDGCNFYWLIFO-UHFFFAOYSA-N pyridoxal 5'-phosphate Chemical compound CC1=NC=C(COP(O)(O)=O)C(C=O)=C1O NGVDGCNFYWLIFO-UHFFFAOYSA-N 0.000 description 1
- 235000007682 pyridoxal 5'-phosphate Nutrition 0.000 description 1
- 239000011589 pyridoxal 5'-phosphate Substances 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 229940124551 recombinant vaccine Drugs 0.000 description 1
- 238000005932 reductive alkylation reaction Methods 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 238000007363 ring formation reaction Methods 0.000 description 1
- CVHZOJJKTDOEJC-UHFFFAOYSA-N saccharin Chemical compound C1=CC=C2C(=O)NS(=O)(=O)C2=C1 CVHZOJJKTDOEJC-UHFFFAOYSA-N 0.000 description 1
- 229940043230 sarcosine Drugs 0.000 description 1
- 238000013207 serial dilution Methods 0.000 description 1
- 230000000405 serological effect Effects 0.000 description 1
- 230000001568 sexual effect Effects 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000000661 sodium alginate Substances 0.000 description 1
- 235000010413 sodium alginate Nutrition 0.000 description 1
- 229940005550 sodium alginate Drugs 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 230000009870 specific binding Effects 0.000 description 1
- 210000000952 spleen Anatomy 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
- 150000003432 sterols Chemical class 0.000 description 1
- 235000003702 sterols Nutrition 0.000 description 1
- 230000004936 stimulating effect Effects 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 229940014800 succinic anhydride Drugs 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 238000013268 sustained release Methods 0.000 description 1
- 239000012730 sustained-release form Substances 0.000 description 1
- 230000009885 systemic effect Effects 0.000 description 1
- 239000003826 tablet Substances 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 125000003396 thiol group Chemical group [H]S* 0.000 description 1
- 229960002175 thyroglobulin Drugs 0.000 description 1
- 125000002088 tosyl group Chemical group [H]C1=C([H])C(=C([H])C([H])=C1C([H])([H])[H])S(*)(=O)=O 0.000 description 1
- 238000013518 transcription Methods 0.000 description 1
- 230000035897 transcription Effects 0.000 description 1
- 230000002463 transducing effect Effects 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 150000003626 triacylglycerols Chemical class 0.000 description 1
- 125000000430 tryptophan group Chemical group [H]N([H])C(C(=O)O*)C([H])([H])C1=C([H])N([H])C2=C([H])C([H])=C([H])C([H])=C12 0.000 description 1
- 201000008827 tuberculosis Diseases 0.000 description 1
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 1
- 241001515965 unidentified phage Species 0.000 description 1
- 241001430294 unidentified retrovirus Species 0.000 description 1
- 238000002255 vaccination Methods 0.000 description 1
- 239000013603 viral vector Substances 0.000 description 1
- 238000001429 visible spectrum Methods 0.000 description 1
- 235000019155 vitamin A Nutrition 0.000 description 1
- 239000011719 vitamin A Substances 0.000 description 1
- 229940045997 vitamin a Drugs 0.000 description 1
- 238000001262 western blot Methods 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/005—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
- A61P31/14—Antivirals for RNA viruses
- A61P31/18—Antivirals for RNA viruses for HIV
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/08—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from viruses
- C07K16/10—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from viruses from RNA viruses
- C07K16/1036—Retroviridae, e.g. leukemia viruses
- C07K16/1045—Lentiviridae, e.g. HIV, FIV, SIV
- C07K16/1063—Lentiviridae, e.g. HIV, FIV, SIV env, e.g. gp41, gp110/120, gp160, V3, PND, CD4 binding site
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N7/00—Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/30—Immunoglobulins specific features characterized by aspects of specificity or valency
- C07K2317/34—Identification of a linear epitope shorter than 20 amino acid residues or of a conformational epitope defined by amino acid residues
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2740/00—Reverse transcribing RNA viruses
- C12N2740/00011—Details
- C12N2740/10011—Retroviridae
- C12N2740/10022—New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2740/00—Reverse transcribing RNA viruses
- C12N2740/00011—Details
- C12N2740/10011—Retroviridae
- C12N2740/15011—Lentivirus, not HIV, e.g. FIV, SIV
- C12N2740/15022—New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2740/00—Reverse transcribing RNA viruses
- C12N2740/00011—Details
- C12N2740/10011—Retroviridae
- C12N2740/16011—Human Immunodeficiency Virus, HIV
- C12N2740/16021—Viruses as such, e.g. new isolates, mutants or their genomic sequences
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2740/00—Reverse transcribing RNA viruses
- C12N2740/00011—Details
- C12N2740/10011—Retroviridae
- C12N2740/16011—Human Immunodeficiency Virus, HIV
- C12N2740/16111—Human Immunodeficiency Virus, HIV concerning HIV env
- C12N2740/16122—New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
Definitions
- HIV-1 human immunodeficiency virus- 1
- Efforts to develop a protective human immunodeficiency virus- 1 (HIV-1) vaccine have been hindered by difficulties in identifying epitopes capable of inducing broad neutralizing antibody responses.
- the high mutation rate that occurs in HIV-1 envelope proteins and the complex structure of gpl20 as an oligomer associated with gp41 results in a high degree of antigenic polymorphism.
- antigenic and immunogenic mimics of HIV-1 epitopes that are specific to HIV-resistant individuals.
- the epitope mimics were identified by screening random peptide libraries using sera from HJN-infected subjects who were long term non- progressors (LT ⁇ Ps). After extensive counter-screening with HIV-negative sera, we isolated peptides specifically recognized by antibodies from HIV-1 infected individuals.
- the present invention includes an antigenic peptide of less than 100 amino acids having an antigenic subsequence selected from the group consisting of X- KSSGKLISL-X (SEQ ID NO: 1), X-CNGRLYCGP-X (SEQ ID NO:2)and X-
- GTKLVCFAA-X (SEQ ID NO:3), wherein X is independently an amino acid or sequence of amino acids with the ?rovt-5O that X is not identical to the amino acid or amino acids naturally flanking the corrosponding subsequences in HIV-1.
- An additional embodiment of this invention is a vaccine for protecting against HIV-1 infection comprising an antigenic peptide of less than 100 amino acids having an antigenic subsequence selected from the group consisting of X-KSSGKLISL-X (SEQ ID NOJ), X-CNGRLYCGP-X (SEQ ID NO:2) and X-GTKLVCFAA-X (SEQ ID NO:3), wherein X is independently an amino acid or sequence of amino acids with the proviso that X is not identical to the amino acid or amino acids naturally flanking the subsequences in HIV-1.
- Embodiments of the present invention also include a composition for raising antibodies against HIV-1, said composition comprising an antigenic determinant selected from the group consisting of KSSGKLISL (SEQ ID NO:4), CNGRLYCGP (SEQ ID NO:5) and GTKLVCFAA (SEQ ID NO:6), wherein the composition does not give rise to HTV-specific antibodies to more than eight other antigenic determinants on HIV-1.
- a further embodiment of this invention is a vaccine for protecting against
- HIV-1 said vaccine comprising an antigenic determinant selected from the group consisting of KSSGKLISL (SEQ ID NO:4), CNGRLYCGP (SEQ ID NO:5) and GTKLVCFAA (SEQ ID NO: 6), wherein the composition does not give rise to HIV- specific antibodies to more than eight other antigenic determinants on HIV-1.
- the present invention also encompasses a method for raising antibodies against HIV-1, said method comprising administering to an animal competent to raise antibodies an amount of a composition comprising an antigenic determinant selected from the group consisting of KSSGKLISL (SEQ ID NO:4), CNGRLYCGP (SEQ ID NO:5) and GTKLVCFAA (SEQ ID NO:6), wherein the composition does not give rise to HIV- specific antibodies to more than eight other antigenic determinants on HIN-1, said amount sufficient to raise antibodies in the animal.
- KSSGKLISL SEQ ID NO:4
- CNGRLYCGP SEQ ID NO:5
- GTKLVCFAA SEQ ID NO:6
- An additional embodiment of the invention comprises binding proteins which specifically bind to a peptide selected from the group consisting of: KSSGKLISL (SEQ ID ⁇ O:4), CNGRLYCGP (SEQ ID NO:5) and GTKLVCFAA (SEQ ID NO:6).
- a preferred embodiment comprises a binding protein wherein the protein is an antibody.
- An alternative embodiment of the invention comprises an antibody which specifically binds to a peptide sequence selected from the group consisting of: KSSGKLISL (SEQ ID NO:4), CNGRLYCGP (SEQ ID NO:5) and GTKLVCFAA (SEQ ID NO:6).
- Variants of antibodies including an antigen binding site, such as chimeric antibodies, humanized antibodies, veneered antibodies, and recombinantly engineered single chain antibodies which bind to the peptides of the present invention are included within the scope of the invention.
- the invention additionally includes a method for inducing passive immunity in a host against HIV-1 comprising the step of administering an amount of antibody which specifically binds to a protein selected from the group consisting of: KSSGKLISL (SEQ ID NO:4), CNGRLYCGP (SEQ ID NO:5) and GTKLVCFAA (SEQ ID NO: 6) said amount sufficient to induce passive immunity against HIV-1.
- KSSGKLISL SEQ ID NO:4
- CNGRLYCGP SEQ ID NO:5
- GTKLVCFAA SEQ ID NO: 6
- An alternative embodiment comprises a method for detecting HIV-1 in biological samples said method comprising detecting the presence of HIV-1 in a sample with an antibody which specifically binds to a protein selected from the group consisting of: KSSGKLISL (SEQ ID NO:4), CNGRLYCGP (SEQ ID NO:5) and GTKLVCFAA (SEQ ID NO: 6) in an amount sufficient to detect the presence of HIV-1 in a sample.
- KSSGKLISL SEQ ID NO:4
- CNGRLYCGP SEQ ID NO:5
- GTKLVCFAA SEQ ID NO: 6
- a further embodiment of the invention comprises a method for detecting HlV-specific antibodies in a person suspected of being infected with HIV-1 said method comprising the step of incubating a biological sample from the person with an antigenic determinant selected from the group consisting of KSSGKLISL (SEQ ID NO:4), CNGRLYCGP (SEQ ID NO:5) and GTKLVCFAA (SEQ ID NO:6) in an amount sufficient to detect the presence of antibodies which bind to the antigenic determinant.
- Other embodiments of the invention include a method for selecting for antibodies specific to patients with long term nonprogression (LTNP) into AIDS said method comprising: (a) screening serum from LTNP patients for HIV specific antibodies and comparing the antibodies to patients with AIDS.
- the invention includes peptides specific to antibodies from patients with long term nonprogression (LTNP) into AIDS said peptides generated via a method comprising: (a) screening serum from LTNP patients for HlV-specific antibodies, and; (b) comparing the antibodies to patients with AIDS.
- An alternative embodiment comprises phagotopes having peptides exhibiting antigens specific to antibodies found in patients with long term nonprogression (LTNP) into AIDS.
- LTNP long term nonprogression
- a further embodiment of the invention comprises an antigenic peptide of less than 100 amino acids having an antigenic subsequence selected from the group consisting of EATWYPAP (SEQ ID NO:7), TKTLIYGGA (SEQ ID NO:8), KRIVIGPQT (SEQ ID NO:9), CCGCLTCSV (SEQ ID NO: 10), SGRLYCHESW (SEQ ID NOJ 1), FALSHYDKP (SEQ ID NOJ2), and RPTLRFQGA (SEQ ID NOJ3).
- an antigenic subsequence selected from the group consisting of EATWYPAP (SEQ ID NO:7), TKTLIYGGA (SEQ ID NO:8), KRIVIGPQT (SEQ ID NO:9), CCGCLTCSV (SEQ ID NO: 10), SGRLYCHESW (SEQ ID NOJ 1), FALSHYDKP (SEQ ID NOJ2), and RPTLRFQGA (SEQ ID NOJ3).
- Embodiments of the invention also include a vaccine for protecting against HIV-1 infection comprising an antigenic peptide of less than 100 amino acids having an antigenic subsequence selected from the group consisting of EATWYPAP (SEQ ID NO:7), TKTLIYGGA (SEQ ID NO:8), KRIVIGPQT (SEQ ID NO:9), CCGCLTCSV (SEQ ID NOJ0), SGRLYCHESW (SEQ ID NOJ 1), FALSHYDKP (SEQ ID NOJ2), and RPTLRFQGA (SEQ ID NO.J3).
- EATWYPAP SEQ ID NO:7
- TKTLIYGGA SEQ ID NO:8
- KRIVIGPQT SEQ ID NO:9
- CCGCLTCSV SEQ ID NOJ0
- SGRLYCHESW SEQ ID NOJ 1
- FALSHYDKP SEQ ID NOJ2
- RPTLRFQGA SEQ ID NO.J3
- An additional embodiment of the invention comprises an antigenic peptide of less than 100 amino acids having an antigenic subsequence selected from the group consisting of EGEFCKSSGKLISLCGDPAK (SEQ ID NO: 14), EGEFCQTKLVCF AAAGDPAK (SEQ ID NO: 15), EGEFCCNGRLYCQPCGDPAK (SEQ ID NO: 16), EGEFCCAGQLTCSVCGDPAK (SEQ ID NO: 17), CSGRLYCHESWC (SEQ ID NO: 18), and TKTLIYQGA (SEQ ID NO: 19).
- EGEFCKSSGKLISLCGDPAK SEQ ID NO: 14
- EGEFCQTKLVCF AAAGDPAK SEQ ID NO: 15
- EGEFCCNGRLYCQPCGDPAK SEQ ID NO: 16
- EGEFCCAGQLTCSVCGDPAK SEQ ID NO: 17
- CSGRLYCHESWC SEQ ID NO: 18
- TKTLIYQGA SEQ ID NO: 19
- the invention also includes a vaccine for protecting against HIV-1 infection comprising an antigenic peptid of less than 100 amino acids having an antigenic subsequence selected from the group consisting of EGEFCKSSGKLISLCGDPAK (SEQ ID NO: 14), EGEFCQTKLNCFAAAGDPAK (SEQ ID NO: 15), EGEFCCNGRLYCQPCGDPAK (SEQ ID NO: 16), EGEFCCAGQLTCSVCGDPAK (SEQ ID NO: 17), CSGRLYCHESWC (SEQ ID NO: 18), and TKTLIYQGA (SEQ ID NO: 19).
- a further diagnostic embodiment includes the use of peptides of the invention to determine prognosis or disease progression in persons with chronic diseases or infections. As will be apparent from the discussion below, other methods and embodiments are also contemplated.
- FIG. 1 Amino acid sequences of the HIV-specific phagotopes.
- the amino acid sequences of peptides displayed on the HIV-specific phagotopes are shown as single letter codes, a, Homology between the amino acid sequences of pi 95, p217 and pi 97 and discrete regions of HIV gpl60. Gray boxes indicate identity; similarity among amino acid residues is indicated as gray shading, b, consensus homology of pi 97 with a gp41 domain conserved between HIV-1 subtypes A through G.
- c Amino acid sequences of epitopes with no obvious sequence homology with HIV protein domains.
- Phagotope-specific antibodies bind to HIV-1.
- a ELISA reactivities of immunoaffinity purified antibodies with HTV-1.
- Antibodies were immunoaffinity purified from LTNP serum 6090 using single phagotopes as ligands and tested for ELISA reactivity against HIV-1 virions by using a standard ELISA kit (Organon). Purified antibodies were tested at 5-10 ng/ml; HJN-negative (CS) and serum 6090 (HIV-1S) were tested at 1.J0O dilution. Data are expressed as mean + SEM of four independent determinations, b, The binding of phagotope-specific antibodies to HIV-1 is specifically displaced by the related phagotopes.
- ELISA reactivities of single immunopurified antibodies to HIV-1 were tested in the presence of the indicated concentrations of pi 95 ( ⁇ ), pl97 ( ⁇ ), p217 (•), p287 (A), ⁇ 335 (T). The binding of each antibody to HIV was also tested in presence of increasing concentrations of wild-type phages (open symbols).
- c Displacement of HIV-1 binding by peptides corresponding to the phage-displayed epitopes shown in Fig. 2 a,c.
- ELISA reactivities of single immunoaffinity purified antibodies with the related phagotopes were tested in the presence of increasing concentrations of peptides 195 ( ⁇ ), 197 (A), 217 ( ⁇ ), 287 (p), 335 (•).
- HIV-1 immunoblotting with phagotope-specific human antibodies.
- Immunoffinity purified antibodies were tested at 60 ng/ml for binding to HIV-1 proteins in Western blot by a diagnostic kit (Cambridge Biotech.); 6090 LT ⁇ P serum was tested at 1 : 1000 dilution.
- FIG. 4 ELISA reactivities of monkey sera with HIV-specific phagotopes. Sera of naive monkeys (SHIV Negative) and SHIV-infected animals were tested for binding to HIN-1 phagotopes. Results are expressed as fold increase of OD405nm values of tested phagotope over the OD405nm values of wild-type-phage. Cutoff values were set as detailed in the legend to Fig. la. All the pre-infection sera of SHIV-positive animals tested negative by ELISA (not shown).
- A125, 42C, E50 and AK98 are Rhesus macaques; 4138, 4150 and 79 are cynomologous macaques; these animals were infected with SHIVMDl (Shibata et al, J. Infect. Dis. 176:362 (1997)). 17860 and 17846 are pigtail macaques infected with SHIVMD14YE (Shibata et al, J. Infect. Dis. 176:362 (1997)).
- FIG. 5 Assays of the neutralization of HIV-1 by phagotope-specific antibodies.
- C57B16 mice were immunized with either wild-type phages (p) or with pi 95 ( ⁇ ), pi 97 (D), p217 (•), p287 Qi), p335 (A)).
- IgG were purified from immunized mice and tested for inhibition of H-N ⁇ iB ( a ) or ⁇ L4-3 (b) infection in the MT2 assay (Montefiori et al, J. Clin. Microbiol 26:231 (1988)).
- Neutralization of AD8 infection was performed on PHA-activated PBMC (Montefiori et al, J. Virol. 72:1886 (1998)) (c). Results are expressed as percentages of protection and are representative of three independent experiments. IgG from BALB/c immunized mice gave comparable results (not shown).
- This invention provides for peptides and antibodies which are associated with long term survival of persons infected with HIV-1. Immunogenic peptides are identified herein and are correlated with HIV-specific proteins. Other immunogenic peptides are conformational equivalents of epitopes on HIV-1 proteins and have little amino acid identity to known HIV-1 proteins. The following teaches those of skill how to make and use the peptides of this invention.
- binding protein is a protein which binds specifically to a target ligand.
- the term includes both antibodies and proteins generated by random selection such as those displayed on phage.
- an "antibody” refers to a protein functionally defined as a binding protein and structurally defined as comprising an amino acid sequence that is recognized by one of skill as being derived from the framework region of an immunoglobulin encoding gene of an animal producing antibodies.
- An antibody can consist of one or more polypeptides substantially encoded by immunoglobulin genes or fragments of immunoglobulin genes.
- the recognized immunoglobulin genes include the kappa, lambda, alpha, gamma, delta, epsilon and mu constant region genes, as well as myriad immunoglobulin variable region genes.
- Light chains are classified as either kappa or lambda.
- Heavy chains are classified as gamma, mu, alpha, delta, or epsilon, which in turn define the immunoglobulin classes, IgG, IgM, IgA, IgD and IgE, respectively.
- a typical immunoglobulin (antibody) structural unit is known to comprise a tetramer.
- Each tetramer is composed of two identical pairs of polypeptide chains, each pair having one "light” (about 25 kD) and one "heavy” chain (about 50-70 kD).
- the N- terminus of each chain defines a variable region of about 100 to 110 or more amino acids primarily responsible for antigen recognition.
- the terms variable light chain (VL) and variable heavy chain (VH) refer to these light and heavy chains respectively.
- Antibodies exist as intact immunoglobulins or as a number of well- characterized fragments produced by digestion with various peptidases.
- pepsin digests an antibody below the disulfide linkages in the hinge region to produce F(ab)'2, a dimer of Fab which itself is a light chain joined to VH-CH1 by a disulfide bond.
- the F(ab)'2 may be reduced under mild conditions to break the disulfide linkage in the hinge region thereby converting the (Fab')2 dimer into an Fab' monomer.
- the Fab' monomer is essentially an Fab with part of the hinge region (see, e.g., Fundamental Immunology, W.E. Paul, ed., Raven Press, N.Y. (1993), for a more detailed description of other antibody fragments).
- antibody as used herein also includes antibody fragments either produced by the modification of whole antibodies or synthesized de novo using recombinant DNA methodologies.
- Preferred antibodies include single chain antibodies (antibodies that exist as a single polypeptide chain), more preferably single chain Fv antibodies (sFv or scFv) in which a variable heavy and a variable light chain are joined together (directly or through a peptide linker) to form a continuous polypeptide.
- the single chain Fv antibody is a covalently linked VH-VL heterodimer which may be expressed from a nucleic acid including VH- and VL- encoding sequences either joined directly or joined by a peptide-encoding linker.
- Huston et al Proc. Nat. Acad. Sci. USA 85: 5879-5883 (1988). While the VH and VL are connected to each as a single polypeptide chain, the VH and VL domains associate non-covalently.
- the first functional antibody molecules to be expressed on the surface of filamentous phage were single-chain Fv's (scFv), however, alternative expression strategies have also been successful.
- Fab molecules can be displayed on phage if one of the chains (heavy or light) is fused to g3 capsid protein and the complementary chain exported to the periplasm as a soluble molecule.
- the two chains can be encoded on the same or on different replicons; the important point is that the two antibody chains in each Fab molecule assemble post- translationally and the dimer is incorporated into the phage particle via linkage of one of the chains to g3p (see, e.g., U.S. Patent No: 5,733,743).
- scFv antibodies and a number of other structures converting the naturally aggregated, but chemically separated light and heavy polypeptide chains from an antibody V region into a molecule that folds into a three dimensional structure substantially similar to the structure of an antigen- binding site are known to those of skill in the art (.see. e.g., U.S. Patent Nos. 5,091,513; 5,132,405; and 4,956,778).
- Particularly preferred antibodies include all those that have been displayed on phage (e.g., scFv, Fv, Fab and disulfide linked Fv (Reiter et al, Protein Eng., 8: 1323-1331 (1995)).
- Antibodies can also include diantibodies and miniantibodies.
- An antibody combining site is that structural portion of an antibody molecule comprised of a heavy and light chain variable and hypervariable regions that specifically binds (immunoreacts with) an antigen.
- the term immunoreact in its various forms means specific binding between an antigenic determinant-containing molecule and a molecule containing an antibody combining site such as a whole antibody molecule or a portion thereof.
- Antigenic refers to the ability of a composition to give rise to antibodies specific to itself or to give rise to a cell-mediated immune response.
- Antigenic determinant An antigenic determinant or epitope is the site of recognition or binding of an antibody to its target or the site of recognition or binding of a T cell receptor. It is minimally defined by 4-6 amino acids. It can be linear or conformational.
- Phagotope A peptide displayed on phage bound by serum antibodies.
- a monoclonal antibody in its various grammatical forms refers to a population of antibody molecules that contain only one species of antibody combining site capable of immunoreacting with a particular epitope.
- a monoclonal antibody thus typically displays a single binding affinity for any epitope with which it immunoreacts.
- a monoclonal antibody may therefore contain an antibody molecule having a plurality of antibody combining sites, each immunospecific for a different epitope, e.g., a bispecific monoclonal antibody.
- Fusion Polypeptide A polypeptide comprised of at least two polypeptides and a linking sequence to operatively link the two polypeptides into one continuous polypeptide.
- the two polypeptides linked in a fusion polypeptide are typically derived from two independent sources, and therefore a fusion polypeptide comprises two linked polypeptides not normally found linked in nature.
- Synthetic peptide A peptide that is not naturally occurring, but is man-made using methods such as chemical synthesis or recombinant DNA technology.
- Vaccines refer to compositions or mixtures that when introduced into the circulatory system of an animal will evoke a protective response to a pathogen.
- Vaccines can be either passive or active.
- Vaccines are passive when they include immunoglobulins which confer protection and are active when they elicit from the host antibodies which are protective against a pathogen.
- Methods for the production of phage display libraries including vectors and methods of diversifying the population of peptides which are expressed, are well known in the art. (See, for example, Smith and Scott, Methods Enzymol 217: 228- 257 (1993); Scott and Smith, Science 249: 386-390 (1990); and Huse, WO 91/07141 and WO 91/07149.
- Cyclic peptide libraries also are well known in the art (see, for example, Koivunen et al, Methods Enzymol. 245: 346-369 (1994)). These or other well known methods can be used to produce a phage display library
- the library is blocked by contact with non-immobilized antibodies from healthy sera, or selectively screened for disease-specific peptides using an immunoaffinity column prepared with healthy sera and the eluant subsequently used for further selection.
- the disease-enriched library is then contacted with immobilized antibodies from resistant persons or from acutely infected persons and the two populations of antibodies are contrasted using conventional technology to identify the antibodies that are specifically found in the sera of resistant individuals.
- a strategy based on positive selection may be employed wherein a pool of clones bound by serum antibodies from a single resistant (or acutely infected) person is identified using an immunoaffinity column. The pool of clones is then individually screened for those clones that react with a second, different serum from a person of the same disease status as that of the source of the first serum. The positive clones identified with the second serum are then analyzed for their frequency and selectivity of reaction with sera from resistant or acutely infected persons and healthy persons using conventional techniques such as ELISA.
- peptides for raising HIV-specific antibodies The peptides of the invention can be prepared in a wide variety of ways.
- the peptides can be synthesized in solution or on a solid support in accordance with conventional techniques.
- Various automatic synthesizers are commercially available and can be used in accordance with known protocols. See, for example, Stewart & Young, SOLID PHASE PEPTIDE SYNTHESIS, 2D. ED., Pierce Chemical Co. (1984).
- recombinant DNA technology may be employed wherein a nucleotide sequence which encodes a peptide of interest is inserted into an expression vector, transformed or transfected into an appropriate host cell and cultivated under conditions suitable for expression.
- peptide compositions containing multiple peptides may be produced by engineering a nucleic acid sequence to encode a fusion protein comprising the multiple peptide sequences. These procedures are generally known in the art, as described generally in, for example, Sambrook et al, MOLECULAR CLONING, A LABORATORY MANUAL, Cold Spring Harbor Press, Cold Spring Harbor, New York (1989).
- Expression vectors suitable for use in the present invention may comprise at least one expression control element operationally linked to the nucleic acid sequence.
- Expression control elements are inserted in the vector to control and regulate the expression of the nucleic acid sequence. Additional preferred or required operational elements include, but are not limited to, a leader sequence, termination codons, polyadenylation signals, and any other sequences necessary or preferred for the appropriate transcription and subsequent translation of the nucleic acid sequence in the host system. It will be understood by one skilled in the art the correct combination of required or preferred expression control elements will depend on the host system chosen. It will further be understood that the expression vector should contain additional elements necessary for the transfer and subsequent replication of the expression vector containing the nucleic acid sequence in the host system.
- Such elements include, but are not limited to, origins of replication and selectable markers. It will further be understood by one skilled in the art that such vectors are easily constructed using conventional methods (see, e.g., Ausubel et al. in "Current Protocols in Molecular Biology", John Wiley and Sons, New York, N.Y. (1987)) or are commercially available.
- Modification of Peptides With regard to protein based vaccines of the invention, there are a number of strategies for amplifying an immunogen's effectiveness, particularly as related to the art of vaccines. These include strategies whereby an immunogenic peptide may be directly modified to enhance immunogenicity or physical properties such as stability. For example, cyclization or circularization of a peptide can increase the peptide's antigenic and immunogenic potency. See, e.g., U.S. Patent No. 5,001,049 which is incorporated by reference herein.
- the immunogenicity of the peptides of the present invention may also be modulated by coupling to fatty acid moieties to produce lipidated peptides.
- Convenient fatty acid moieties include glycolipid analogs, N-palmityl-S-(2RS)-2,3-bis- (palmitoyloxy)propyl-cysteinyl-serine (PAM3 Cys-Ser), N-palmityl-S-[2,3 bis (palmitoyloxy)-(2RS)-propyl-[R]-cysteine (TPC) or adipalmityl-lysine moiety
- the peptides may also be conjugated to a lipidated amino acid, such as an octadecyl ester of an aromatic acid, such as tyrosine, including actadecyl-tryrosine (OTH).
- a lipidated amino acid such as an octadecyl ester of an aromatic acid, such as tyrosine, including actadecyl-tryrosine (OTH).
- Protein analogs are defined functionally as those compounds that will act chemically and biologically as the peptides provided herein.
- the invention includes analogs which bind with fidelity to the antibodies which are generated using the peptides described herein.
- the analogs will find advantage as more stable and as having longer half life under in vivo conditions.
- Modified peptides are referred to herein as "analog" peptides.
- analog extends to any functional and/or structural equivalent of a peptide characterized by its increased stability and/or efficacy in vivo or in vitro in respect of the practice of the invention.
- analog also is used herein to extend to any amino acid derivative of the peptides as described herein.
- Analogs of the peptides contemplated herein include, but are not limited to, modifications to side chains; and incorporation of unnatural amino acids and/or their derivatives, non-amino acid monomers and cross-linkers. Other methods which impose conformational constraint on the peptides or their analogs are also contemplated.
- peptide of the invention can be modified in a variety of different ways without significantly affecting the functionally important immunogenic behavior thereof. Possible modifications to the peptide sequence may include the following:
- One or more individual amino acids can be substituted by amino acids having comparable or similar properties, thus, for example,: V may be substituted by I; T may be substituted by S; K may be substituted by R; and
- L may be substituted by I, V or M.
- amino acids of the peptides of the invention can be replaced by a "retro-inverso" amino acid, i.e., a bifunctional amine having a functional group corresponding to an amino acid, as discussed in WO 91/13909
- a "retro-inverso" amino acid i.e., a bifunctional amine having a functional group corresponding to an amino acid, as discussed in WO 91/13909
- One or more amino acids can be deleted or added.
- Added amino acids may, for example, comprise residues that correspond to phage coat protein sequences that are adjacent to the phagotope sequence.
- Structural analogs mimicking the 3-dimensional structure of the peptide can be used in place of the peptide itself.
- side chain modifications contemplated by the present invention include modification of amino groups, such as by reductive alkylation by reaction with an aldehyde followed by reduction with NaBH ; amidination with methylacetimidate; acylation with acetic anhydride; carbamoylation of amino groups with cyanate; trinitrobenzylation of amino groups with 2, 4, 6, trinitrobenzene sulf honic acid (TNBS); acylation of amino groups with succinic anhydride and tetrahydrophthalic anhydride; and pyridoxylation of lysine with pyridoxal-5'-phosphate followed by reduction with NaBIL t .
- the guanidino group of arginine residues may be modified by the formation of heterocyclic condensation products with reagents such as 2,3-butanedione, phenylglyoxal and g
- the carboxyl group may be modified by carbodiimide activation via O- acylisourea formation followed by subsequent derivatization, for example, to a corresponding amide.
- Sulfhydryl groups may be modified by methods such as carboxy- methylation with iodoacetic acid or iodoacetamide; performic acid oxidation to cysteic acid; formation of mixed disulphides with other thiol compounds; reaction with maleimide, maleic anhydride or other substituted maleimide; formation of mercurial derivatives using 4-chloromercur-ibenzoate, 4-chloromercuriphenylsulfonic acid, phenylmercury chloride, 2-chloromercuric-4-nitrophenol and other mercurials; and carbamoylation with cyanate at alkaline pH.
- Tryptophan residues may be modified by, for example, oxidation with N- bromosuccinimide or alkylation of the indole ring with 2-hydroxy-5-nitrobenzyl bromide or sulphenyl halides. Tryosine residues on the other hand, may be altered by nitration with tetranitromethane to form a 3-nitrotyrosine derivative.
- Modification of the imidazole ring of a histidine residue may be accomplished by alkylation with iodoacetic acid derivatives or N-carbethoxylation with diethylpyrocarbonate.
- Examples of incorporating unnatural amino acids and derivatives during peptide synthesis include, but are not limited to, use of norleucine, 4-amino butyric acid, 4-amino-3-hydroxy-5-phenylpentanoic acid, 6-aminohexanoic acid, t-buty glycine, norvaline, phenylglycine, ornithine, sarcosine, 4-amino-3-hydroxy-6-methylheptanoic acid, 2-thienylalanine, and/or D-isomers of amino acids.
- peptides could be conformationally constrained by, for example, incorporation of alpha - methylamino acids, introduction of double bonds between adjacent C atoms of amino acids and the formation of cyclic peptides or analogs by introducing covalent bonds such as forming an amide bond between N and C termini, between two side chains or between a side chain and the N or C terminus.
- the peptides of the invention or their analogs may occur as a single length or as multiple tandem or non-tandem repeats.
- a single type of peptide or analog may form the repeats or the repeats may be composed of different molecules including a suitable carrier.
- the use of the peptides provided herein under in vivo conditions may require their chemical modification since the peptides themselves may not have a sufficiently long serum and/or tissue half-life.
- the peptides may optionally be linked to a carrier molecule, possibly via chemical groups of amino acids of the peptide or via additional amino acids added at the C- or N- terminus.
- a small peptide antigen can be conjugated to a suitable carrier, usually a protein molecule, to enhance its immunogenicity. This procedure has several facets. It can allow multiple copies of an antigen, such as a peptide, to be conjugated to a single larger carrier molecule. Additionally, the carrier may possess properties which facilitate transport, binding, abso ⁇ tion or transfer of the antigen.
- the conjugation between a peptide and a carrier can be accomplished using one of the methods known in the art. Specifically, conjugation can be performed using bifunctional cross-linkers as binding agents as detailed, for example, by Means and Feeney, Bioconjugate Chem. 1:2-12 (1990). Many suitable linkages are known, e.g., using the side chains of Tyr residues.
- Suitable carriers include, e.g., keyhole limpet hemocyanin (KLH), thyroglobulin, serum albumin, purified protein derivative of tuberculin (PPD), ovalbumin, tetanus toxoid, non-protein carriers and many others.
- KLH keyhole limpet hemocyanin
- thyroglobulin serum albumin
- PPD purified protein derivative of tuberculin
- ovalbumin ovalbumin
- tetanus toxoid non-protein carriers and many others.
- the immunogenicity of the peptide compositions of the present invention may further be enhanced by linking the peptides to one or more peptide sequences that are able to a elicit a cellular immune response (see, e.g., WO94/20127).
- Peptides that stimulate cytotoxic T lymphocyte (CTL) responses as well as peptides that stimulate helper T lymphocyte (HTL) responses are useful for linkage to the peptides of the invention.
- the peptides may be linked by a spacer molecule.
- the spacer is typically comprised of relatively small, neutral molecules, such as amino acids or amino acids mimetics, which are uncharged under physiological conditions.
- a peptide of the invention may be linked to a T helper peptide that is recognized by T helper cells in the majority of the population. This can be accomplished by selecting amino acid sequences that bind to many, most, or all of the HLA class II molecules.
- T helper peptide is tetanus toxoid at positions 830-843 (see, e.g., Panina-Bordignon et al, Eur. J. Immunol, 19:2237-2242 (1989)).
- a peptide may be linked to multiple antigenic determinants to enhance immunogenicity.
- a synthetic peptide encoding multiple overlapping T cell antigenic determinants may be used to enhance immunogenicity (see, e.g., Ahlers et al, J. Immunol. 150:5647-5665 (1993).
- cluster peptides contain overlapping, but distinct antigenic determinants.
- the cluster peptide may be synthesized colinearly with a peptide of the invention. In one embodiment, the cluster peptide may be positioned at the amino terminal end of a peptide of the invention.
- the cluster peptide may be linked to a peptide of the invention by one or more spacer molecules.
- a peptide composition comprising a peptide of the invention linked to a cluster peptide may also be used in conjunction with a cluster peptide linked to a CTL- inducting epitope. Such compositions may be administered via alternate routes or using different adjuvants.
- peptides encoding CTL and/or HTL epitopes may be used in conjunction with a peptide of the invention.
- MAP multiple antigen peptide system
- the MAP system is a combination antigen/antigen carrier that is composed of two or more antigenic molecules covalently attached to a dendritic core that is comprised of bifunctional units.
- the dendritic core of a multiple antigen peptide system can be composed of lysine molecules.
- a lysine is attached via peptide bonds through each of its amino groups to two additional lysines.
- This second generation molecule has four free amino groups each of which can be covalently linked to an additional lysine to form a third generation molecule with eight free amino groups.
- a peptide may be attached to each of these free groups to form an octavalent multiple peptide antigen.
- the second generation molecule having four free amino groups can be used to form a tetravalent MAPS, i.e., a MAPS having four peptides covalently linked to the core.
- Many other molecules, including aspartic acid and glutamic acid can be used to form the dendritic core of a multiple peptide antigen system.
- the dendritic core, and the entire MAPS may be conveniently synthesized on a solid resin using the classic Merrifield synthesis procedure.
- Multiple antigen peptide systems have many advantages as antigen carrier systems. Their exact structure and composition is known; the ratio of antigen to carrier is quite high; and several different antigens, e.g., a B cell epitope such as a peptide of the invention, and a T cell epitope, may be attached to a single dendritic core. When both a B cell epitope and a T cell epitope are present it is preferable that they are linked in tandem on the same functional group of the dendritic core. Alternatively, the T cell epitope and the B cell epitope may be on separate branches of the dendritic core.
- the T-cell epitope may be a CTL or HTL-inducing antigenic determinant.
- the peptides of this invention provides a vaccine comprising a chimeric Pseudomon ⁇ s exotoxin A (PE) protein in which the peptides of this invention are inserted into the lb domain of the exotoxin.
- PE Pseudomon ⁇ s exotoxin A
- Pseudomon ⁇ s exotoxin A has been shown to act as a carrier-adjuvant for antigens.
- the protein comprises three prominent globular domains (la, II and III) and one small subdomain (lb).
- Domain la binds to a receptor on most mammalian cell surfaces.
- Domain II translocates the protein into the cytosol.
- Domain II has ADP-ribosylating activity which shuts down protein synthesis.
- the protein can be made non-toxic by, for example, deleting amino acid E553.
- the protein also can be directed to different cells by exchanging the cell binding domain with ligands for other receptors or antibodies. It comprises a loop formed from a disulfide bond between two amino acids in the domain.
- Various genetically modified forms of PE are described, e.g., in United States Patent Nos. 5,602,095; 5,512,658; 5,458,878, and in FitzGerald et al, PCT/US98
- FitzGerald et al. teach a method for replacing amino acid sequences in this loop with sequences from HIV which is applicable to the peptides of this invention. They showed that the non-toxic form of this chimeric protein could elicit HlV-neutralizing antibodies when injected into rabbits. Furthermore, because the chimera gains entry into the cytosol, it may result in the generation of viral peptides and presentation via major histocompatibility complex class I antigens.
- this invention provides a recombinant nucleic acid that comprises a nucleotide sequence encoding a chimeric Pseudomonas exotoxin A protein wherein a nucleotide sequence encoding a peptide of this invention is inserted into a nucleotide sequence encoding the lb loop of Pseudomonas exotoxin A.
- the peptide of this invention can merely be inserted into the loop or can replace part or all of the loop.
- the nucleotide sequence can comprise a nucleotide sequence encoding a ligand for a receptor of choice, wherein the ligand replaces all or part of the la domain.
- the recombinant nucleic acid is an expression vector comprising an expression control sequence operatively linked to the nucleotide sequence encoding the chimeric immunogen.
- a host cell can be transfected with the recombinant nucleic acid and the chimeric protein can be expressed thereby. FitzGerald et al. showed that the chimeric protein can be expressed in a bacterial cell and properly folded so as to have activity. The resulting chimeric immunogens can be used in a vaccine to immunize persons against HIV.
- the monoclonal antibodies of the invention can be made by conventional techniques which are commonly used in hybridoma production (see, e.g. CURRENT PROTOCOLS IN IMMUNOLOGY, Wiley/Greene, NY; and Antibodies A Laboratory Manual, Harlow and Lane, Cold Spring Harbor Laboratory Press, 1989).
- mice are immunized with the peptides of this invention.
- B-cells are taken from the spleens of the immunized mice and fused with NS-1 myeloma cells.
- Polyethylene glycol mixed with dimethyl suffoxide (DMSO) in calcium- and magnesium-free phosphate buffered saline (PBS) can be used as the fusion reagent.
- DMSO dimethyl suffoxide
- PBS calcium- and magnesium-free phosphate buffered saline
- an immunogen preferably a purified protein
- an adjuvant preferably a purified protein
- animals are immunized.
- the animal's immune response to the immunogen preparation is monitored by taking test bleeds and determining the titer of reactivity to the administered protein.
- blood is collected from the animal and antisera are prepared. Further fractionation of the antisera to enrich for antibodies reactive to the protein can be performed if desired.
- Preferred antibodies include single chain antibodies (antibodies that exist as a single polypeptide chain), more preferably single chain Fv antibodies (sFv or scFv) in which a variable heavy and a variable light chain are joined together (directly or through a peptide linker) to form a continuous polypeptide.
- the single chain Fv antibody is a covalently linked VH-VL heterodimer which may be expressed from a nucleic acid including VH- and VL- encoding sequences either joined directly or joined by a peptide- encoding linker. Huston et al, Proc. Nat. Acad. Sci. USA, 85: 5879-5883 (1988).
- VH and VL are connected to each as a single polypeptide chain, the VH and VL domains associate non-covalently.
- the first functional antibody molecules to be expressed on the surface of filamentous phage were single-chain Fv's (scFv), however, alternative expression strategies have also been successful.
- scFv single-chain Fv's
- Fab molecules can be displayed on phage if one of the chains (heavy or light) is fused to g3 capsid protein and the complementary chain exported to the periplasm as a soluble molecule.
- the two chains can be encoded on the same or on different replicons; the important point is that the two antibody chains in each Fab molecule assemble post-translationally and the dimer is inco ⁇ orated into the phage particle via linkage of one of the chains to g3p (see, e.g., U.S. Patent No: 5,733,743).
- the scFv antibodies and a number of other structures converting the naturally aggregated, but chemically separated light and heavy polypeptide chains from an antibody V region into a molecule that folds into a three dimensional structure substantially similar to the structure of an antigen-binding site are known to those of skill in the art (see, e.g., U.S. Patent Nos.
- Antibodies can also include diantibodies and miniantibodies.
- Immunogenic compositions suitable for use as vaccines may be prepared from immunogenic peptides as disclosed herein.
- the immunogenic composition elicits an immune response which produces antibodies that are opsonizing or antiviral. Should the vaccinated subject be challenged by HIN-1 , the antibodies bind to the virus and thereby inactivate it.
- Vaccines containing peptides are generally well known in the art, as exemplified by U.S. Patent ⁇ os. 4,601,903; 4,599,231; 4,599,230; and 4,596,792.
- Vaccines may be prepared as injectables, as liquid solutions or emulsions.
- the peptides may be mixed with pharmaceutically-acceptable excipients which are compatible with the peptides. Excipients may include water, saline, dextrose, glycerol, ethanol, and combinations thereof.
- the vaccine may further contain auxiliary substances such as wetting or emulsifying agents, pH buffering agents, or adjuvants to enhance the effectiveness of the vaccines.
- the immunogens of this invention may be combined or mixed with various solutions and other compounds as is known in the art.
- an immunogen may be administered in water, saline or buffered vehicles with or without various adjuvants or immunodiluting agents.
- adjuvants or agents examples include aluminum hydroxide, aluminum phosphate, aluminum potassium sulfate (alum), beryllium sulfate, silica, kaolin, carbon, water-in-oil emulsions, oil-in-water emulsions, muramyl dipeptide, bacterial endotoxin, lipid X, Corynebacterium parvum (Propionobacterium acnes), Bordetella pertussis, polyribonucleotides, sodium alginate, lanolin, lysolecithin, vitamin A, saponin, liposomes, levamisole, DEAE-dextran, blocked copolymers or other synthetic adjuvants.
- aluminum hydroxide aluminum phosphate, aluminum potassium sulfate (alum), beryllium sulfate, silica, kaolin, carbon, water-in-oil emulsions, oil-in-water emulsions, muramyl dipeptide
- Such adjuvants are available commercially from various sources, for example, Merck Adjuvant 65 (Merck and Company, Inc., Rahway, ⁇ .J.) or Freund's Incomplete Adjuvant and Complete Adjuvant (Difco Laboratories, Detroit, Michigan).
- Other suitable adjuvants are Amphigen (oil-in-water), Alhydrogel (aluminum hydroxide), or a mixture of Amphigen and Alhydrogel. Only aluminum is approved for human use.
- the vaccines are formulated to contain a final concentration of immunogen in the range of from 0.2 to 200 ⁇ g/ml, preferably 5 to 50 ⁇ g/ml, most preferably 15 ⁇ g/ml.
- the vaccine may be inco ⁇ orated into a sterile container which is then sealed and stored at a low temperature, for example 4°C, or it may be freeze-dried. Lyophilization permits long-term storage in a stabilized form.
- binders and carriers may include, for example, polyalkalene glycols or triglycerides.
- Oral formulations may include normally employed incipients such as, for example, pharmaceutical grades of saccharine, cellulose and magnesium carbonate. These compositions take the form of solutions, suspensions, tablets, pills, capsules, sustained release formulations or powders and contain 10-95% of the peptides.
- the peptides of this invention can be formulated for administration via the nasal passages.
- Formulations suitable for nasal administration wherein the carrier is a solid, include a coarse powder having a particle size, for example, in the range of about 10 to about 500 microns, which is administered in the manner in which snuff is taken, i.e., by rapid inhalation through the nasal passage from a container of the powder held close up to the nose.
- Suitable formulations wherein the carrier is a liquid for administration as, for example, nasal spray, nasal drops, or by aerosol administration by nebulizer include aqueous or oily solutions of the active ingredient.
- U.S. Patents 5,846,978; 5,663,169; 5,578,597; 5,502,060; 5,476,874; 5,413,999; 5,308,854; 5,192,668; and 5,187,074.
- the vaccines may be administered by any conventional methods including oral administration and parenteral (e.g., subcutaneous or intramuscular) injection.
- the treatment may consist of a single dose of vaccine or a plurality of doses over a period of time.
- the immunogen of the invention can be combined with appropriate doses of compounds including other epitopes of the target bacteria.
- the immunogen could be a component of a recombinant vaccine which could be adaptable for oral administration.
- the proportion of immunogen and adjuvant can be varied over a broad range so long as both are present in effective amounts.
- aluminum hydroxide can be present in an amount of about 0.5% of the vaccine mixture (Al 2 O basis).
- the amount of the immunogen can range from about 5 ⁇ g to about 100 ⁇ g protein per patient of about 70 kg.
- a preferable range is from about 20 ⁇ g to about 40 ⁇ g per dose.
- a suitable dose size is about 0.5 ml. Accordingly, a dose for intramuscular injection, for example, would comprise 0.5 ml containing 20 ⁇ g of immunogen in admixture with 0.5% aluminum hydroxide.
- Vaccines of the invention may be combined with other vaccines for other diseases to produce multivalent vaccines.
- a pharmaceutically effective amount of the immunogen can be employed with a pharmaceutically acceptable carrier such as a protein or diluent useful for the vaccination of mammals, particularly humans.
- Other vaccines may be prepared according to methods well-known to those skilled in the art.
- the therapeutic application of AIDS vaccines can be done by way of nasal administration.
- Various ways of such administration are known in the art.
- the pharmaceutical formulation for nasal administration may be prepared as solutions in saline, employing benzyl alcohol or other suitable preservatives, abso ⁇ tion promoters to enhance bioavailability, fluorocarbons, and/or other solubihzing or dispersing agents known in the art.
- the unit dosage for nasal administration can be from 1 to 3000 mg, preferably 70 to 1000 mg, and most preferably, 1 to 10 mg of active ingredient per unit dosage form.
- suppositories may be desirable.
- oral formulations may be desirable.
- the peptides of the present invention may also be administered in conjunction with immune stimulating complexes (ISCOMS)
- ISCOMS immune stimulating complexes
- ISCOMS are negatively charged cage- like structure of 30-40 nm in size formed spontaneously on mixing cholesterol and Quil A (saponin).
- Protective immunity has been generated in a variety of experimental models of infection including toxoplasmosis and Epstein-Barr virus-induced tumors using ISCOMS as the delivery vehicle for antigens (see, e.g., Mowat and Donachie, Immunol Today, 23:383-385 (1991)).
- Immunogenic compositions using ISCOMS are comprised of the peptides of the invention encapsulated into ISCOMS for delivery.
- Immunotherapy regimens which produce maximal immune responses following the administration of the fewest number of doses, ideally only one dose, are highly desirable. This result can be approached through entrapment of immunogen in microparticles.
- the absorbable suture material poly(lactide-co-glycolide) co-polymer can be fashioned into microparticles containing immunogen (see, e.g., Eldridge et al, Molec. Immunol, 28:287-294 (1991); Moore et al, Vaccine 13:1741-1749 (1995); and Men et al, Vaccine, 13:683-689 (1995)).
- microparticle hydrolysis in vivo produces the non-toxic byproducts, lactic and glycolic acids, and releases immunogen largely unaltered by the entrapment process.
- Microparticle formulations can also provide primary and subsequent booster immunizations in a single administration by mixing immunogen entrapped microparticles with different release rates. Single dose formulations capable of releasing antigen ranging from less than one week to greater than six months can be readily achieved.
- the peptides of the invention may also be administered via liposomes, which serve to target the peptides to a particular tissue, such as lymphoid tissue, or targeted selectively to infected cells, as well as increase the half-life of the peptide composition.
- liposomes include emulsions, foams, micelles, insoluble monolayers, liquid crystals, phosphohpid dispersions, lamellar layers and the like.
- the peptide to be delivered is inco ⁇ orated as part of a liposome, alone or in conjunction with a molecule which binds to, e.g., a receptor prevalent among lymphoid cells, such as monoclonal antibodies which bind to the CD45 antigen, or with other therapeutic or immunogenic compositions.
- a molecule which binds to e.g., a receptor prevalent among lymphoid cells, such as monoclonal antibodies which bind to the CD45 antigen, or with other therapeutic or immunogenic compositions.
- liposomes either filled or decorated with a desired peptide of the invention can be directed to the site of lymphoid cells, where the liposomes then deliver the peptide compositions.
- Liposomes for use in the invention are formed from standard vesicle-forming lipids, which generally include neutral and negatively charged phospholipids and a sterol, such as cholesterol.
- lipids are generally guided by consideration of, e.g., liposome size, acid lability and stability of the liposomes in the blood stream.
- a variety of methods are available for preparing liposomes, as described in, e.g., Szoka, et al, Ann. Rev. Biophys. Bioeng., 9:467 (1980), and U.S. Patent Nos. 4,235,871; 4,501,728; 4,837,028; and 5,019,369.
- Nucleic acid vaccines are examples of nucleic acid vaccines.
- Nucleic acids typically DNA
- DNA vaccine DNA administered for this pu ⁇ ose is referred to as a "DNA vaccine.”
- Methods of making and administering DNA as vaccines are known, and described, e.g., in Wolff et. al, Science, 247: 1465-1468 (1990).
- the dose of a naked nucleic acid composition such as a DNA vaccine or gene therapy vector is from about 1 ⁇ g to 100 ⁇ g for a typical 70 kilogram patient.
- the immunogenic composition can be either a nucleic acid encoding the target protein (e.g., a DNA vaccine) or a virus vector which produces the antigenic protein.
- Subcutaneous or intramuscular doses for naked nucleic acid typically DNA encoding a fusion protein
- Subcutaneous or intramuscular doses for viral vectors comprising the fusion proteins of the invention will range from 1X10 5 pfu to 1X10 9 for a 70kg patient in generally good health.
- Passive immunotherapeutic methods are applicable to persons exhibiting symptoms of HIN-induced disease, including AIDS or related conditions believed to be caused by HIV infection, and humans at risk of HIV infection.
- Patients at risk of infection by HIV include babies of HIV-infected pregnant mothers, recipients of transfusions known to contain HIV, users of HIV contaminated needles, individuals who have participated in high risk sexual activities with known HIV-infected individuals, and the like risk situations. HIV has been disclosed as treatable using passive immunization. See for example Jackson et al, Lancet, September 17:647-652, (1988); Ka ⁇ as et al, Proc. Natl Acad. Sci., USA 87:7613-7616 (1990), Eichberg et al, AIDS Res. Hum.
- the passive immunization method comprises administering a composition comprising more than one species of human monoclonal antibody of this invention, preferably directed to non-competing epitopes or directed to distinct sero types or strains of HIV, as to afford increased effectiveness of the passive immunotherapy.
- a therapeutically (immunotherapeutically) effective amount of a humanized or human antibody is a predetermined amount calculated to achieve the desired effect, i.e., to neutralize the HIV present in the sample or in the patient, and thereby decrease the amount of detectable HIV in the sample or patient.
- an effective amount can be measured by improvements in one or more symptoms associated with HTV-induced disease occurring in the patient, or by serological decreases in HIV antigens.
- the relevant dosage ranges for the administration of the monoclonal or other antibodies of the invention are those large enough to produce the desired effect in which the symptoms of the HIV disease are ameliorated or the likelihood of infection decreased.
- the dosage should not be so large as to cause adverse side effects, such as hyperviscosity syndromes, pulmonary edema, congestive heart failure, and the like. Generally, the dosage will vary with the age, condition, sex and extent of the disease in the patient and can be determined by one of skill in the art. The dosage can be adjusted by the individual physician in the event of any complication.
- a therapeutically effective amount of an antibody of this invention is typically an amount of antibody such that when administered in a physiologically tolerable composition is sufficient to achieve a plasma concentration of from about 0.1 ⁇ g/ml to about 100 ⁇ g/ml, preferably from about 1 ⁇ g/ml to about 5 ⁇ g/ml, and usually about 5 ⁇ g ml.
- the dosage can vary from about 0J mg/kg to about 300 mg/kg, preferably from about 0.2 mg/kg to about 200 mg/kg, most preferably from about 0.5 mg/kg to about 20 mg/kg, in one or more dose administrations daily, for one or several days.
- the antibodies of the invention can be administered parenterally by injection or by gradual infusion over time.
- the HIV infection is typically systemic and therefore most often treated by intravenous administration of therapeutic compositions, other tissues and delivery means are contemplated where there is a likelihood that the tissue targeted contains infectious HIN.
- antibodies of the invention can be administered intravenously, intraperitoneally, intramuscularly, subcutaneously, intracavity, transdermally, and can be delivered by peristaltic means.
- the therapeutic compositions containing antibodies of this invention are conventionally administered intravenously, as by injection of a unit dose, for example.
- unit dose when used in reference to a therapeutic composition of the present invention refers to physically discrete units suitable as unitary dosage for the subject, each unit containing a predetermined quantity of active material calculated to produce the desired therapeutic effect in association with the required diluent; i.e., carrier, or vehicle.
- peptides of this invention or or antibodies specific to the peptides themselves can be used to detect the presence of HIV in serum or in any biological sample.
- the assays will find use in both medical and research settings.
- the peptides are in the range of about 9 residues and up to about 40 residues. The preferred range is 9 to 25 residues.
- the mixture of peptide immunogens is commonly referred to as a "cocktail" preparation for use as an immunogenic composition or a diagnostic reagent.
- the peptides of this invention can be used in such a peptide.
- the peptides of the present invention are useful as antigens in immunoassays which include but are not limited to enzyme-linked immunosorbent assays (ELISA), RIAs, and other non-enzyme linked antibody binding assays, or procedures known in the art for the detection of anti-HIV antibodies.
- immunoassays include but are not limited to enzyme-linked immunosorbent assays (ELISA), RIAs, and other non-enzyme linked antibody binding assays, or procedures known in the art for the detection of anti-HIV antibodies.
- ELISA enzyme-linked immunosorbent assays
- RIAs enzyme-linked immunosorbent assays
- other non-enzyme linked antibody binding assays or procedures known in the art for the detection of anti-HIV antibodies.
- the peptides are immobilized onto a selected surface, for example a surface capable of binding peptides, such as the wells of a polystyrene microtitre plate.
- a non-specific protein such as a solution of bovine serum albumin (BSA) or casein, that is known to be antigenically neutral with regard to the test sample may be bound to the selected surface.
- BSA bovine serum albumin
- casein casein
- the immobilizing surface is then contacted with a sample, such as clinical or biological materials to be tested, in a manner conducive to immune complex (antigen/antibody) formation.
- a sample such as clinical or biological materials to be tested
- This may include diluting the sample with diluents such as solutions of BSA, bovine gamma globulin (BGG) and/or phosphate buffered saline (PBS)/Tween.
- BGG bovine gamma globulin
- PBS phosphate buffered saline
- the sample is then allowed to incubate for from about 2 to 4 hours, at temperatures such as of the order of about 25° to 37° C.
- the sample-contacted surface is washed to remove non-immunocomplexed material.
- the washing procedure may include washing with a solution such as PBS/Tween, or a borate buffer.
- the occurrence, and even amount, of immunocomplex formation may be determined by subjecting the immunocomplex to a second antibody having specificity for the first antibody.
- the second antibody is an antibody having specificity for human immunoglobulins and in general IgG.
- the second antibody may have an associated activity, such as an enzymatic activity that will generate, for example, a color development upon incubating with an appropriate chromogenic substrate. Quantification may then be achieved by measuring the degree of color generation using, for example, a visible spectra spectrophotometer.
- Other uses the degree of color generation such as an enzymatic activity that will generate, for example, a color development upon incubating with an appropriate chromogenic substrate.
- Molecules which bind to the conserved sequences on which the invention is based are also of possible use as agents in the treatment and diagnosis of AIDS and related conditions.
- toxins or other agents e.g., by use of immunotoxins comprising conjugates of antibody to the relevant peptides and a cytotoxic moiety, for binding directly or indirectly to a target conserved sequence of, for example, or gpl20 or gp41.
- HIV e.g., HIV-specific assay
- immunoassay techniques For detection of HIV, e.g., using a variety of immunoassay techniques.
- the peptides of the present invention are useful for the generation of HIV-1 antigen-specific antibodies (including monoclonal antibodies) that can be used to detect HIV-1 or specific antigens thereof, or to neutralize HIV-1 in samples including biological samples.
- HIV-1 antigen-specific antibodies including monoclonal antibodies
- the peptides of the present invention can be used to specifically stimulate HIV-specific B-cells in biological samples from, for example, HIN-infected individuals.
- a further diagnostic embodiment includes the use of the peptides to determine prognosis for Long Term ⁇ on-Progressor patients towards AIDS.
- Example 1 Identification of HIV specific phagotopes a. Affinity selection of HIV-1 mimotopes In order to select for B cell epitopes specifically recognized by serum antibodies of HIV-1 -infected subjects, random phage libraries (RPLs) displayed on phages were screened with HIV-1 positive sera from long-term non-progressor (LT ⁇ P) subjects. This population was chosen because LTNP subjects show higher titers of neutralizing antibodies than sera from AIDS patients (Montefiori et al, J. Infect. Dis. 173:60 (1996)).
- RPLs random phage libraries displayed on phages were screened with HIV-1 positive sera from long-term non-progressor (LT ⁇ P) subjects. This population was chosen because LTNP subjects show higher titers of neutralizing antibodies than sera from AIDS patients (Montefiori et al, J. Infect. Dis. 173:60 (1996)).
- phagotopes were first selected by immuno-affinity purification with the IgG of one HIV-1 positive LTNP individual, and then subjected to immunoscreening by using a second HIV-1 positive LTNP serum.
- TG-1 cells were infected with eluted phages at a multiplicity of infection (MOI) of 1 X 10 "3 and plated at a density of 1 X 10 4 TU/plate. The following day, bacterial colonies were collected, amplified and superinfected with M13K07 at an MOI of 50. Two thousand colonies were replated on a lawn of TG-1 cells in the presence of 35 ⁇ g/ml of isopropyl- 1-thio- ⁇ -D-galactoside (IPTG). Plates were layered with nitrocellulose filters for 16 h at 37 °C.
- MOI multiplicity of infection
- Filters were incubated with serum at a 1 :50 dilution in immunoscreening buffer (5% non-fat dry milk, 0.1% Nonidet p40, 3 X 10 ⁇ wild-type phages, 5 X 10 9 M13K07 UN-killed phages/ml, 10 ⁇ l of TGI bacterial extract) for 16 h, at 4 °C. Positive colonies were detected by an anti-human (Fc-specific) alkaline phosphatase-conjugated antibody (Sigma).
- immunoscreening buffer 5% non-fat dry milk, 0.1% Nonidet p40, 3 X 10 ⁇ wild-type phages, 5 X 10 9 M13K07 UN-killed phages/ml, 10 ⁇ l of TGI bacterial extract
- micro titer plates were coated with anti Ml 3 antibody (Pharmacia, Piscataway, NJ) at 10 ⁇ g ml overnight at 4 °C in coating buffer. Fifty ⁇ l of cleared phage supernatant with an equal volume of blocking buffer were incubated for 1 h at 37 °C. Plates were washed extensively and supplemented with human serum at 1 : 100 dilution followed by an overnight incubation at 4 °C.
- selection 1 LTNP sera 6090 and 3976 were utilized for immunoaffinity and immunoscreening steps, respectively.
- selection 2 was performed by using LTNP sera 3872 and 8075.
- Selection 1 performed on a cysteine constrained pVIII9aa-cys library (Luzzago et al, Gene 128:5 (1993)), resulted in the identification of five HIV-specific clones; selection 2, conducted on an unconstrained pVIII9aa library (Felici et al, J. Mol. Biol. 222:301 (1991)) led to isolation of five additional phagotopes (Fig. la).
- Clone p217 was restricted in its reactivity to a subset of LTNP sera (f: 23); however, it was completely unreactive with a pool of AIDS sera (Fig. la). This suggests that p217-specific antibodies may exert a protective role in disease progression. Analysis of the reactivities of sera for each phagotope showed that antibody titers to pi 63, p217 and p335 were significantly higher in sera from LTNPs than from AIDS patients (p ⁇ 0.05, Fig. lb). Again, these results suggest that antibody responses to these epitopes might afford a degree of protection against disease progression.
- Fig. 2 The amino acid sequences of the phage-displayed peptides are shown in Fig. 2.
- a BLAST analysis revealed that the pi 95 epitope shares sequence homology with the gp 120 VI region (residues 112-120) of HIV 1-U 16374, a primary isolate from an acute seroconverter (Zhu et al, J. Virol. 69:1324 (1995)); the p217 sequence matched with the gpl20 C2 region (residues 198-205) of HIV 1-U 116077, a primary isolate from an AIDS patient (Shapshak et al, Adv. Exp. Med. Biol, 373:225 (1995)) (Fig 2a).
- Residues within these regions have been predicted to be immunologically accessible by selected mAbs and by X ray crystal structure (Kwong et al, Nature 393:648 (1998); Wyatt et al, Nature 393:705 (1998)).
- the pl97 epitope mapped to a region of gp41 (residues 602-605) of the HIVANT70 primary isolate (Vanden et al, J. Virol. 68:1586 (1994)). This region is conserved among primary isolates of HIV subtypes A through G and defines a disulfide-bonded structure important for the association of gpl20 and gp41 (Cotropia et al, J. Acquir. Immune Defic.
- Fig. la The antibody reactivities shown in Fig. la indicate that the phage- displayed peptides behave as antigenic mimics of viral determinants generated in the course of HIV infection. Therefore, it is possible to immunoaffinity purify antibodies specific for each phagotope from sera of HIV-infected individuals by using single phagotopes as ligands. To this end, pl95, pl97, p217, p287 and p335 were utilized to purify the phagotope-specific antibodies from LTNP serum 6090. Affinity purification of phagotope specific human antibodies was accomplished using 60mm diameter dishes coated with 5 X 10 n CsCl-purified phages overnight at 4 °C.
- phagotope specific antibodies purified from serum to IgG concentrations of 5-10 ng/ml, recognized HIV-1 proteins by ELISA (Fig. 3a); this reactivity was specifically displaced by the related phagotopes, but not by wild-type or unrelated phages (Fig. 3b and data not shown).
- peptides corresponding to the epitopes displayed on phages pi 95, pi 97, and p335 effectively displaced the binding of Abs to HIV-1, indicating that these peptides acquire in solution a conformation similar to the one expressed by both the phage-displayed peptides and the HIV epitopes (Fig. 3c).
- Simian HJN [SHIN] recombinant viruses expressing HIV env on the backbone of SIV isolates are a useful model of HIV-1 infection in primates (Shibata et al, J. Virol. 71 :8141 (1997)).
- SHIV-infected monkeys raise high titers of neutralizing Abs that correlate with long-lasting protection from subsequent challenge with pathogenic SHIV (Igarashi et al, J. Gen. Virol. 78:985 (1997)) or SIV-mac239 (Miller et al, J. Virol 71:1911 (1997)). Since the HIV-specific phagotopes are immunogenic mimics ofHJN-1 env proteins (Fig.
- Phagotope pi 63 and p483 which were consistently recognized by LT ⁇ P and AIDS sera (FigJa), did not react with SHIV sera, suggesting that they are antigenic mimics of HIV-1 epitopes encoded for gag or pol genes.
- Sera from uninfected monkeys tested negative in ELISA (Fig 4). These results indicate that macaques are genetically similar to humans in antigen processing and presentation, since their antibodies efficiently recognized human B-cell epitopes; in this regard, the selected phagotopes should induce HIN-specific antibodies, and could be exploited to immunize monkeys before SHIV challenge.
- HIV-1 -binding antibodies of this invention exert neutralizing activity in vitro if directed to accessible epitopes of infectious virions.
- HIN-1 phagotopes have a conformation that fits in the antigen-binding site of the related serum antibodies, and would be expected to elicit antibodies in vivo with specificities similar to the original serum IgG utilized to select them.
- HIV-1 phagotopes pl95, pl97, p217, p287 and p335 were used to immunize BALB/c or C57B/6 mice.
- Phage were CsCl purified and used at a concentration of 6 X 10 12 particles/ml in 0.9%> NaCl with an equal volume of CFA or IF A.
- Four to five-week-old female BALB/c and C57B1 mice were immunized by i.p. injection of 200 ⁇ l of antigen emulsion at weeks 0, 3, 6, 9, 12 and bled on day 0 and day 7-10 after each additional injection.
- Serum IgG was purified from mouse sera with T-Gel Adsorbent (Pierce, Rockford, IL). All mice developed comparable titers of Abs against wild-type phages, and a strong antibody response to the original phagotopes used as immunogens (not shown).
- the selected phagotopes fulfilled the requirement for an effective immunogen.
- Abs from phagotope- immunized mice neutralized HIV-1 strains in vitro, suggesting that they bind well to the virus under physiologic conditions and could possibly prevent or inhibit HIV infection when induced in phagotope-immunized primates.
- serum Abs of SHIV-infected monkeys showed a strong reactivity with the phage-displayed epitopes.
- bacteriophages are excellent immunogens that induce a specific T cell dependent antibody response by parenteral as well as oral administration (Galfre et al, Methods Enzymol, 267:109 (1996); Delmastro et al, Vaccine 15:1276 (1997)).
- the adjuvant QS21 (Aquila Pharmaceuticals) was used in an amount of
- Example 7 Engineered peptide epitopes.
- the peptide sequences present on phagotopes 195, 197, 217, 287 and 335 were also modified to obtain peptide epitopes capable of functioning as antigenic and immunogenic mimics of the original epitopes displayed on the phages.
- the modifications were generated by randomly changing the number of residues flanking the core sequence previously identified, and/or by subjecting the core sequence to amino acid substitutions until the resulting peptides were found to exhibit ELISA reactivities similar to that of the original peptides displayed on the phagotopes.
- the amino acid sequences of modifed peptides generated in this manner are as follows: P195 analog: EGEFCKSSGKLISLCGDPAK (SEQ ID NO: 14)
- P287 analog EGEFCCAGQLTCSVCGDPAK (SEQ ID NO: 17)
- the engineered eptiopes are then determined to be immunogenic as described in Example 4-6.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Virology (AREA)
- Genetics & Genomics (AREA)
- Medicinal Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Immunology (AREA)
- Biochemistry (AREA)
- Biophysics (AREA)
- Oncology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Wood Science & Technology (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- AIDS & HIV (AREA)
- Zoology (AREA)
- Microbiology (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Tropical Medicine & Parasitology (AREA)
- Communicable Diseases (AREA)
- Gastroenterology & Hepatology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Hematology (AREA)
- Peptides Or Proteins (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
Abstract
Description
Claims
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11543099P | 1999-01-11 | 1999-01-11 | |
US115430P | 1999-01-11 | ||
US13276099P | 1999-05-06 | 1999-05-06 | |
US132760P | 1999-05-06 | ||
PCT/US2000/000372 WO2000042068A2 (en) | 1999-01-11 | 2000-01-07 | Hiv related peptides |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1159297A2 true EP1159297A2 (en) | 2001-12-05 |
Family
ID=26813196
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP00904245A Withdrawn EP1159297A2 (en) | 1999-01-11 | 2000-01-07 | Hiv related peptides |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP1159297A2 (en) |
AU (1) | AU2603100A (en) |
WO (1) | WO2000042068A2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006050420A2 (en) * | 2004-11-01 | 2006-05-11 | Trinity Biosystems, Inc. | Chimeric immunogens that comprise ovalbumin |
WO2010096042A1 (en) | 2008-10-30 | 2010-08-26 | Dana-Farber Cancer Institute | Mimotopes of hiv env |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IL99077A0 (en) * | 1990-08-13 | 1992-07-15 | Merck & Co Inc | New embodiments of the hiv principal neutralizing determinant and pharmaceutical compositions containing them |
GB9215129D0 (en) * | 1992-07-16 | 1992-08-26 | Medical Res Council | Development relating to human immunodeficiency viruses |
CA2139517A1 (en) * | 1992-07-20 | 1994-02-03 | Paul M. Keller | Immunological conjugates of ompc and hiv-specific selected principal neutralization epitopes |
DE4405810A1 (en) * | 1994-02-23 | 1995-08-24 | Behringwerke Ag | Peptides derived from a retrovirus from the HIV group and their use |
AU748700B2 (en) * | 1998-06-12 | 2002-06-13 | Aventis Pasteur | HIV virus mimotopes |
TWI229679B (en) * | 1998-06-20 | 2005-03-21 | United Biomedical Inc | Artificial T helper cell epitopes as immune stimulators for synthetic peptide immunogens |
-
2000
- 2000-01-07 EP EP00904245A patent/EP1159297A2/en not_active Withdrawn
- 2000-01-07 AU AU26031/00A patent/AU2603100A/en not_active Abandoned
- 2000-01-07 WO PCT/US2000/000372 patent/WO2000042068A2/en not_active Application Discontinuation
Non-Patent Citations (1)
Title |
---|
See references of WO0042068A2 * |
Also Published As
Publication number | Publication date |
---|---|
WO2000042068A9 (en) | 2002-04-11 |
WO2000042068A3 (en) | 2000-12-21 |
AU2603100A (en) | 2000-08-01 |
WO2000042068A2 (en) | 2000-07-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2201421C2 (en) | Synthetic hiv peptide (variants), immunogenic composition for induction of immune response against hiv peptides, diagnostic set for assay of hiv-specific antibodies | |
JP4278293B2 (en) | Methods and compositions for inhibiting the growth of HIV | |
US5866320A (en) | Nucleic acids encoding for non-infectious, replication-defective, self-assembling HIV-1 viral particles containing antigenic markers in the gag coding region | |
US6544752B1 (en) | Anigenically-marked non-infectious retrovirus-like particles | |
JP5946766B2 (en) | Combinations or fusions of HIV-related peptides for use in HIV vaccine compositions or as diagnostic tools | |
US6518030B1 (en) | Antigentically-marked non-infectious retrovirus-like particles | |
AU4704899A (en) | Antigenic complex comprising immunostimulatory peptide, cd4, and chemokine receptor domain for hiv treatment and immune disorders | |
Berzofsky | Development of artificial vaccines against HIV using defined epitopes | |
US6139843A (en) | Peptide compositions for the treatment of HIV | |
JP2004509601A (en) | Recombinant expression of non-infectious HIV-like particles | |
CA2307503A1 (en) | Peptides for use as a vaccine or treatment for hiv infection | |
JPH09512561A (en) | Synthetic vaccine for protection against human immunodeficiency virus infection | |
JPH11515006A (en) | Synthetic vaccine for prevention of human immunodeficiency virus infection | |
US6911527B1 (en) | HIV related peptides | |
WO2000042068A2 (en) | Hiv related peptides | |
JP4036895B2 (en) | Vaccine against infectious pathogen having intracellular phase, composition for treatment and prevention of HIV infection, antibody and diagnostic method | |
US9796773B2 (en) | Neutralizing antibodies that bind to the HIV-1 Env V2 critical neutralization domain | |
WO2013040564A2 (en) | Antibody recognizing arbitrarily designed epitope of three or more amino acid residues in a peptide and method of generating thereof | |
AU2006200454A1 (en) | Compositions and methods for treating viral infections | |
US20050065320A1 (en) | Mutated env gene, mutated env glycoprotein and the use thereof | |
Ding et al. | Induction of multi-epitopespecific antibodies against HIV-1 by multi-epitopevaccines | |
Scott et al. | The Membrane-Proximal External Region of | |
HIV | HIV-1 Immune Escape and Neutralizing Antibodies | |
Schlienger et al. | Recombinant hepatitis B surface antigen as carrier of human immunodeficiency virus (HIV) epitopes: Towards a dual immunogenic vaccine | |
Hirsch et al. | Simian Immunodeficiency Virus (SIV) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20010728 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
17Q | First examination report despatched |
Effective date: 20041208 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: C12N 15/73 20060101ALI20051215BHEP Ipc: G01N 33/53 20060101ALI20051215BHEP Ipc: C07K 16/10 20060101ALI20051215BHEP Ipc: A61K 39/21 20060101ALI20051215BHEP Ipc: C07K 14/16 20060101AFI20051215BHEP |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20060620 |