EP1144573A2 - Compositions de detergents vaisselle contenant des melanges de tensioactifs a rupture de cristallinite - Google Patents
Compositions de detergents vaisselle contenant des melanges de tensioactifs a rupture de cristalliniteInfo
- Publication number
- EP1144573A2 EP1144573A2 EP99968483A EP99968483A EP1144573A2 EP 1144573 A2 EP1144573 A2 EP 1144573A2 EP 99968483 A EP99968483 A EP 99968483A EP 99968483 A EP99968483 A EP 99968483A EP 1144573 A2 EP1144573 A2 EP 1144573A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- alkyl
- mixtures
- surfactant
- hand dishwashing
- weight
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 531
- 239000004094 surface-active agent Substances 0.000 title claims abstract description 261
- 238000004851 dishwashing Methods 0.000 title claims abstract description 75
- 239000003599 detergent Substances 0.000 title claims description 93
- 125000004432 carbon atom Chemical group C* 0.000 claims abstract description 78
- 150000008055 alkyl aryl sulfonates Chemical class 0.000 claims abstract description 67
- UHOVQNZJYSORNB-UHFFFAOYSA-N monobenzene Natural products C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 claims abstract description 49
- 239000011734 sodium Substances 0.000 claims abstract description 49
- 229910052708 sodium Inorganic materials 0.000 claims abstract description 47
- 238000012360 testing method Methods 0.000 claims abstract description 39
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims abstract description 38
- 125000001183 hydrocarbyl group Chemical group 0.000 claims abstract description 35
- 150000001768 cations Chemical class 0.000 claims abstract description 34
- 239000011575 calcium Substances 0.000 claims abstract description 30
- 229910052791 calcium Inorganic materials 0.000 claims abstract description 25
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims abstract description 24
- 239000011777 magnesium Substances 0.000 claims abstract description 18
- 238000006065 biodegradation reaction Methods 0.000 claims abstract description 15
- 150000002500 ions Chemical class 0.000 claims abstract description 15
- 229910052749 magnesium Inorganic materials 0.000 claims abstract description 13
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 claims abstract description 12
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims abstract description 10
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims abstract description 6
- FODHIQQNHOPUKH-UHFFFAOYSA-N tetrapropylene-benzenesulfonic acid Chemical compound CC1CC11C2=C3S(=O)(=O)OC(C)CC3=C3C(C)CC3=C2C1C FODHIQQNHOPUKH-UHFFFAOYSA-N 0.000 claims abstract description 6
- -1 alkylene carbonates Chemical class 0.000 claims description 148
- 125000000217 alkyl group Chemical group 0.000 claims description 145
- 102000004190 Enzymes Human genes 0.000 claims description 74
- 108090000790 Enzymes Proteins 0.000 claims description 74
- 229940088598 enzyme Drugs 0.000 claims description 74
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 51
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 49
- 238000004140 cleaning Methods 0.000 claims description 49
- 150000004985 diamines Chemical class 0.000 claims description 49
- 239000007788 liquid Substances 0.000 claims description 48
- 239000002904 solvent Substances 0.000 claims description 41
- 102000013142 Amylases Human genes 0.000 claims description 40
- 108010065511 Amylases Proteins 0.000 claims description 40
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 claims description 37
- 238000000034 method Methods 0.000 claims description 37
- 235000019418 amylase Nutrition 0.000 claims description 36
- 108090001060 Lipase Proteins 0.000 claims description 35
- 102000004882 Lipase Human genes 0.000 claims description 35
- 108091005804 Peptidases Proteins 0.000 claims description 35
- 102000035195 Peptidases Human genes 0.000 claims description 35
- 235000014113 dietary fatty acids Nutrition 0.000 claims description 34
- 239000000194 fatty acid Substances 0.000 claims description 34
- 229930195729 fatty acid Natural products 0.000 claims description 34
- 150000001412 amines Chemical class 0.000 claims description 33
- 239000004367 Lipase Substances 0.000 claims description 31
- 150000004665 fatty acids Chemical class 0.000 claims description 31
- 235000019421 lipase Nutrition 0.000 claims description 31
- 229910052700 potassium Inorganic materials 0.000 claims description 29
- 229910052799 carbon Inorganic materials 0.000 claims description 27
- 239000003795 chemical substances by application Substances 0.000 claims description 26
- 229920000642 polymer Polymers 0.000 claims description 26
- 239000003381 stabilizer Substances 0.000 claims description 26
- 239000002736 nonionic surfactant Substances 0.000 claims description 25
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 24
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical class C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 claims description 23
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 claims description 23
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 22
- 239000002304 perfume Substances 0.000 claims description 22
- 239000004365 Protease Substances 0.000 claims description 21
- 239000003752 hydrotrope Substances 0.000 claims description 21
- 229940025131 amylases Drugs 0.000 claims description 20
- 229910052739 hydrogen Inorganic materials 0.000 claims description 20
- 239000001257 hydrogen Substances 0.000 claims description 18
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 16
- 125000001165 hydrophobic group Chemical group 0.000 claims description 16
- 150000008051 alkyl sulfates Chemical class 0.000 claims description 15
- 229920001577 copolymer Polymers 0.000 claims description 14
- 239000002562 thickening agent Substances 0.000 claims description 14
- 125000000129 anionic group Chemical group 0.000 claims description 13
- 239000003945 anionic surfactant Substances 0.000 claims description 13
- 239000003963 antioxidant agent Substances 0.000 claims description 13
- 235000006708 antioxidants Nutrition 0.000 claims description 13
- 150000003467 sulfuric acid derivatives Chemical class 0.000 claims description 13
- 239000007864 aqueous solution Substances 0.000 claims description 11
- 125000001424 substituent group Chemical group 0.000 claims description 11
- 108010084185 Cellulases Proteins 0.000 claims description 10
- 102000005575 Cellulases Human genes 0.000 claims description 10
- 239000012188 paraffin wax Substances 0.000 claims description 10
- XFNJVJPLKCPIBV-UHFFFAOYSA-N trimethylenediamine Chemical compound NCCCN XFNJVJPLKCPIBV-UHFFFAOYSA-N 0.000 claims description 10
- 238000005406 washing Methods 0.000 claims description 10
- 125000002947 alkylene group Chemical group 0.000 claims description 9
- 125000001301 ethoxy group Chemical group [H]C([H])([H])C([H])([H])O* 0.000 claims description 9
- 239000002280 amphoteric surfactant Substances 0.000 claims description 8
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 claims description 8
- 125000006273 (C1-C3) alkyl group Chemical group 0.000 claims description 7
- 125000003545 alkoxy group Chemical group 0.000 claims description 7
- 239000000975 dye Substances 0.000 claims description 7
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 7
- JZUHIOJYCPIVLQ-UHFFFAOYSA-N 2-methylpentane-1,5-diamine Chemical compound NCC(C)CCCN JZUHIOJYCPIVLQ-UHFFFAOYSA-N 0.000 claims description 6
- BAVYZALUXZFZLV-UHFFFAOYSA-N Methylamine Chemical compound NC BAVYZALUXZFZLV-UHFFFAOYSA-N 0.000 claims description 6
- 239000000843 powder Substances 0.000 claims description 6
- 125000002572 propoxy group Chemical group [*]OC([H])([H])C(C([H])([H])[H])([H])[H] 0.000 claims description 6
- 239000006057 Non-nutritive feed additive Substances 0.000 claims description 5
- 102000003992 Peroxidases Human genes 0.000 claims description 5
- 239000003082 abrasive agent Substances 0.000 claims description 5
- 239000000872 buffer Substances 0.000 claims description 5
- 239000000969 carrier Substances 0.000 claims description 5
- 125000004122 cyclic group Chemical group 0.000 claims description 5
- 239000000499 gel Substances 0.000 claims description 5
- 150000004676 glycans Chemical class 0.000 claims description 5
- 239000008187 granular material Substances 0.000 claims description 5
- 229920001282 polysaccharide Polymers 0.000 claims description 5
- 239000005017 polysaccharide Substances 0.000 claims description 5
- 229920001296 polysiloxane Polymers 0.000 claims description 5
- 150000003871 sulfonates Chemical class 0.000 claims description 5
- 150000003457 sulfones Chemical class 0.000 claims description 5
- 125000004178 (C1-C4) alkyl group Chemical group 0.000 claims description 4
- 108700020962 Peroxidase Proteins 0.000 claims description 4
- 125000005250 alkyl acrylate group Chemical group 0.000 claims description 4
- 150000001555 benzenes Chemical class 0.000 claims description 4
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 claims description 4
- 150000002314 glycerols Chemical class 0.000 claims description 4
- NAQMVNRVTILPCV-UHFFFAOYSA-N hexane-1,6-diamine Chemical compound NCCCCCCN NAQMVNRVTILPCV-UHFFFAOYSA-N 0.000 claims description 4
- 239000004530 micro-emulsion Substances 0.000 claims description 4
- WTSXICLFTPPDTL-UHFFFAOYSA-N pentane-1,3-diamine Chemical compound CCC(N)CCN WTSXICLFTPPDTL-UHFFFAOYSA-N 0.000 claims description 4
- MXRIRQGCELJRSN-UHFFFAOYSA-N O.O.O.[Al] Chemical compound O.O.O.[Al] MXRIRQGCELJRSN-UHFFFAOYSA-N 0.000 claims description 3
- 230000000844 anti-bacterial effect Effects 0.000 claims description 3
- 229940121375 antifungal agent Drugs 0.000 claims description 3
- 239000003899 bactericide agent Substances 0.000 claims description 3
- 125000004106 butoxy group Chemical group [*]OC([H])([H])C([H])([H])C(C([H])([H])[H])([H])[H] 0.000 claims description 3
- 150000001721 carbon Chemical group 0.000 claims description 3
- IUNMPGNGSSIWFP-UHFFFAOYSA-N dimethylaminopropylamine Chemical compound CN(C)CCCN IUNMPGNGSSIWFP-UHFFFAOYSA-N 0.000 claims description 3
- 229920001519 homopolymer Polymers 0.000 claims description 3
- 239000003112 inhibitor Substances 0.000 claims description 3
- 239000000077 insect repellent Substances 0.000 claims description 3
- 239000004973 liquid crystal related substance Substances 0.000 claims description 3
- 125000001570 methylene group Chemical group [H]C([H])([*:1])[*:2] 0.000 claims description 3
- SYSQUGFVNFXIIT-UHFFFAOYSA-N n-[4-(1,3-benzoxazol-2-yl)phenyl]-4-nitrobenzenesulfonamide Chemical class C1=CC([N+](=O)[O-])=CC=C1S(=O)(=O)NC1=CC=C(C=2OC3=CC=CC=C3N=2)C=C1 SYSQUGFVNFXIIT-UHFFFAOYSA-N 0.000 claims description 3
- 125000004169 (C1-C6) alkyl group Chemical group 0.000 claims description 2
- KUYYOUXQOPCFDK-UHFFFAOYSA-N 2-[1-(2-aminoethoxy)ethoxy]ethanamine Chemical compound NCCOC(C)OCCN KUYYOUXQOPCFDK-UHFFFAOYSA-N 0.000 claims description 2
- RNLHGQLZWXBQNY-UHFFFAOYSA-N 3-(aminomethyl)-3,5,5-trimethylcyclohexan-1-amine Chemical compound CC1(C)CC(N)CC(C)(CN)C1 RNLHGQLZWXBQNY-UHFFFAOYSA-N 0.000 claims description 2
- 229940045714 alkyl sulfonate alkylating agent Drugs 0.000 claims description 2
- 150000008052 alkyl sulfonates Chemical class 0.000 claims description 2
- 125000005529 alkyleneoxy group Chemical group 0.000 claims description 2
- 239000003429 antifungal agent Substances 0.000 claims description 2
- 125000000732 arylene group Chemical group 0.000 claims description 2
- RGTXVXDNHPWPHH-UHFFFAOYSA-N butane-1,3-diamine Chemical compound CC(N)CCN RGTXVXDNHPWPHH-UHFFFAOYSA-N 0.000 claims description 2
- 238000007865 diluting Methods 0.000 claims description 2
- HIXDQWDOVZUNNA-UHFFFAOYSA-N 2-(3,4-dimethoxyphenyl)-5-hydroxy-7-methoxychromen-4-one Chemical compound C=1C(OC)=CC(O)=C(C(C=2)=O)C=1OC=2C1=CC=C(OC)C(OC)=C1 HIXDQWDOVZUNNA-UHFFFAOYSA-N 0.000 claims 1
- JDVPQXZIJDEHAN-UHFFFAOYSA-N succinamic acid Chemical class NC(=O)CCC(O)=O JDVPQXZIJDEHAN-UHFFFAOYSA-N 0.000 claims 1
- 235000019441 ethanol Nutrition 0.000 description 55
- 239000000463 material Substances 0.000 description 50
- 239000000047 product Substances 0.000 description 35
- 150000003839 salts Chemical group 0.000 description 34
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 33
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerol Natural products OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 32
- 150000001875 compounds Chemical class 0.000 description 32
- 239000004927 clay Substances 0.000 description 30
- 108090000637 alpha-Amylases Proteins 0.000 description 28
- 102000004139 alpha-Amylases Human genes 0.000 description 27
- 239000003054 catalyst Substances 0.000 description 26
- 239000002253 acid Substances 0.000 description 25
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 23
- 238000005273 aeration Methods 0.000 description 22
- 239000002689 soil Substances 0.000 description 22
- 150000001298 alcohols Chemical class 0.000 description 21
- 239000000243 solution Substances 0.000 description 20
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 19
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 19
- 239000011591 potassium Substances 0.000 description 19
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 18
- 238000009472 formulation Methods 0.000 description 18
- 239000004615 ingredient Substances 0.000 description 18
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 17
- 239000007859 condensation product Substances 0.000 description 17
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 17
- 229920005646 polycarboxylate Polymers 0.000 description 17
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 16
- 239000004382 Amylase Substances 0.000 description 16
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 16
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 16
- 125000001931 aliphatic group Chemical group 0.000 description 16
- 239000003921 oil Substances 0.000 description 16
- 235000019198 oils Nutrition 0.000 description 16
- AKEJUJNQAAGONA-UHFFFAOYSA-N sulfur trioxide Chemical compound O=S(=O)=O AKEJUJNQAAGONA-UHFFFAOYSA-N 0.000 description 16
- 229940024171 alpha-amylase Drugs 0.000 description 15
- 229920006395 saturated elastomer Polymers 0.000 description 15
- 239000010457 zeolite Substances 0.000 description 15
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical class [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 14
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 14
- 239000002738 chelating agent Substances 0.000 description 14
- 239000000523 sample Substances 0.000 description 14
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 13
- 229910021536 Zeolite Inorganic materials 0.000 description 13
- 239000004519 grease Substances 0.000 description 13
- 230000002209 hydrophobic effect Effects 0.000 description 13
- 125000002768 hydroxyalkyl group Chemical group 0.000 description 13
- QUCDWLYKDRVKMI-UHFFFAOYSA-M sodium;3,4-dimethylbenzenesulfonate Chemical compound [Na+].CC1=CC=C(S([O-])(=O)=O)C=C1C QUCDWLYKDRVKMI-UHFFFAOYSA-M 0.000 description 13
- 239000000126 substance Substances 0.000 description 13
- 230000000694 effects Effects 0.000 description 12
- 235000011187 glycerol Nutrition 0.000 description 12
- 239000012535 impurity Substances 0.000 description 12
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 11
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 11
- 150000007513 acids Chemical class 0.000 description 11
- 229910052783 alkali metal Inorganic materials 0.000 description 11
- 235000001727 glucose Nutrition 0.000 description 11
- 238000002360 preparation method Methods 0.000 description 11
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 10
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 10
- 150000001413 amino acids Chemical group 0.000 description 10
- 150000007942 carboxylates Chemical class 0.000 description 10
- 125000002091 cationic group Chemical group 0.000 description 10
- 239000002270 dispersing agent Substances 0.000 description 10
- 239000011521 glass Substances 0.000 description 10
- 239000008103 glucose Substances 0.000 description 10
- 238000004519 manufacturing process Methods 0.000 description 10
- 239000002245 particle Substances 0.000 description 10
- 239000007787 solid Substances 0.000 description 10
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 10
- JLVVSXFLKOJNIY-UHFFFAOYSA-N Magnesium ion Chemical compound [Mg+2] JLVVSXFLKOJNIY-UHFFFAOYSA-N 0.000 description 9
- ULUAUXLGCMPNKK-UHFFFAOYSA-N Sulfobutanedioic acid Chemical class OC(=O)CC(C(O)=O)S(O)(=O)=O ULUAUXLGCMPNKK-UHFFFAOYSA-N 0.000 description 9
- 150000001340 alkali metals Chemical class 0.000 description 9
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 9
- 239000006172 buffering agent Substances 0.000 description 9
- 229960004756 ethanol Drugs 0.000 description 9
- 229910001425 magnesium ion Inorganic materials 0.000 description 9
- 230000000087 stabilizing effect Effects 0.000 description 9
- KWIUHFFTVRNATP-UHFFFAOYSA-N Betaine Natural products C[N+](C)(C)CC([O-])=O KWIUHFFTVRNATP-UHFFFAOYSA-N 0.000 description 8
- KWIUHFFTVRNATP-UHFFFAOYSA-O N,N,N-trimethylglycinium Chemical compound C[N+](C)(C)CC(O)=O KWIUHFFTVRNATP-UHFFFAOYSA-O 0.000 description 8
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 8
- WQDUMFSSJAZKTM-UHFFFAOYSA-N Sodium methoxide Chemical compound [Na+].[O-]C WQDUMFSSJAZKTM-UHFFFAOYSA-N 0.000 description 8
- 241000223258 Thermomyces lanuginosus Species 0.000 description 8
- 150000003863 ammonium salts Chemical class 0.000 description 8
- 230000001580 bacterial effect Effects 0.000 description 8
- 229960003237 betaine Drugs 0.000 description 8
- 229920001223 polyethylene glycol Polymers 0.000 description 8
- 230000008569 process Effects 0.000 description 8
- 235000013772 propylene glycol Nutrition 0.000 description 8
- 229960004063 propylene glycol Drugs 0.000 description 8
- 150000004760 silicates Chemical class 0.000 description 8
- 239000000377 silicon dioxide Substances 0.000 description 8
- RPACBEVZENYWOL-XFULWGLBSA-M sodium;(2r)-2-[6-(4-chlorophenoxy)hexyl]oxirane-2-carboxylate Chemical compound [Na+].C=1C=C(Cl)C=CC=1OCCCCCC[C@]1(C(=O)[O-])CO1 RPACBEVZENYWOL-XFULWGLBSA-M 0.000 description 8
- 239000006228 supernatant Substances 0.000 description 8
- 239000003760 tallow Substances 0.000 description 8
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 7
- 241000193830 Bacillus <bacterium> Species 0.000 description 7
- WVDDGKGOMKODPV-UHFFFAOYSA-N Benzyl alcohol Chemical compound OCC1=CC=CC=C1 WVDDGKGOMKODPV-UHFFFAOYSA-N 0.000 description 7
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 7
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 7
- 229910000323 aluminium silicate Inorganic materials 0.000 description 7
- 150000001408 amides Chemical class 0.000 description 7
- 230000008901 benefit Effects 0.000 description 7
- 229910001424 calcium ion Inorganic materials 0.000 description 7
- 239000003093 cationic surfactant Substances 0.000 description 7
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 7
- 238000002156 mixing Methods 0.000 description 7
- 229910052757 nitrogen Inorganic materials 0.000 description 7
- 230000001590 oxidative effect Effects 0.000 description 7
- 229920001451 polypropylene glycol Polymers 0.000 description 7
- 239000011541 reaction mixture Substances 0.000 description 7
- 239000010865 sewage Substances 0.000 description 7
- OAYXUHPQHDHDDZ-UHFFFAOYSA-N 2-(2-butoxyethoxy)ethanol Chemical compound CCCCOCCOCCO OAYXUHPQHDHDDZ-UHFFFAOYSA-N 0.000 description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 6
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 6
- 239000002202 Polyethylene glycol Substances 0.000 description 6
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 6
- 230000002378 acidificating effect Effects 0.000 description 6
- 125000003342 alkenyl group Chemical group 0.000 description 6
- 125000000539 amino acid group Chemical group 0.000 description 6
- 125000003118 aryl group Chemical group 0.000 description 6
- 239000007844 bleaching agent Substances 0.000 description 6
- 235000010216 calcium carbonate Nutrition 0.000 description 6
- 150000001720 carbohydrates Chemical group 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 6
- 239000000460 chlorine Substances 0.000 description 6
- 229910052801 chlorine Inorganic materials 0.000 description 6
- 229960004106 citric acid Drugs 0.000 description 6
- ZYGHJZDHTFUPRJ-UHFFFAOYSA-N coumarin Chemical compound C1=CC=C2OC(=O)C=CC2=C1 ZYGHJZDHTFUPRJ-UHFFFAOYSA-N 0.000 description 6
- GUJOJGAPFQRJSV-UHFFFAOYSA-N dialuminum;dioxosilane;oxygen(2-);hydrate Chemical compound O.[O-2].[O-2].[O-2].[Al+3].[Al+3].O=[Si]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O GUJOJGAPFQRJSV-UHFFFAOYSA-N 0.000 description 6
- IJKVHSBPTUYDLN-UHFFFAOYSA-N dihydroxy(oxo)silane Chemical compound O[Si](O)=O IJKVHSBPTUYDLN-UHFFFAOYSA-N 0.000 description 6
- 150000002148 esters Chemical class 0.000 description 6
- 230000002538 fungal effect Effects 0.000 description 6
- 150000002334 glycols Chemical class 0.000 description 6
- 238000010348 incorporation Methods 0.000 description 6
- 229940094522 laponite Drugs 0.000 description 6
- XCOBTUNSZUJCDH-UHFFFAOYSA-B lithium magnesium sodium silicate Chemical group [Li+].[Li+].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[Na+].[Na+].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].O1[Si](O2)([O-])O[Si]3([O-])O[Si]1([O-])O[Si]2([O-])O3.O1[Si](O2)([O-])O[Si]3([O-])O[Si]1([O-])O[Si]2([O-])O3.O1[Si](O2)([O-])O[Si]3([O-])O[Si]1([O-])O[Si]2([O-])O3.O1[Si](O2)([O-])O[Si]3([O-])O[Si]1([O-])O[Si]2([O-])O3.O1[Si](O2)([O-])O[Si]3([O-])O[Si]1([O-])O[Si]2([O-])O3.O1[Si](O2)([O-])O[Si]3([O-])O[Si]1([O-])O[Si]2([O-])O3 XCOBTUNSZUJCDH-UHFFFAOYSA-B 0.000 description 6
- 239000011976 maleic acid Substances 0.000 description 6
- 229910052760 oxygen Inorganic materials 0.000 description 6
- 239000011347 resin Substances 0.000 description 6
- 229920005989 resin Polymers 0.000 description 6
- 239000010802 sludge Substances 0.000 description 6
- 229910021647 smectite Inorganic materials 0.000 description 6
- 239000000758 substrate Substances 0.000 description 6
- 235000000346 sugar Nutrition 0.000 description 6
- 230000008961 swelling Effects 0.000 description 6
- 108010075550 termamyl Proteins 0.000 description 6
- 229960004418 trolamine Drugs 0.000 description 6
- 125000004417 unsaturated alkyl group Chemical group 0.000 description 6
- ZNQVEEAIQZEUHB-UHFFFAOYSA-N 2-ethoxyethanol Chemical compound CCOCCO ZNQVEEAIQZEUHB-UHFFFAOYSA-N 0.000 description 5
- 229910021532 Calcite Inorganic materials 0.000 description 5
- BHPQYMZQTOCNFJ-UHFFFAOYSA-N Calcium cation Chemical compound [Ca+2] BHPQYMZQTOCNFJ-UHFFFAOYSA-N 0.000 description 5
- 101000605014 Homo sapiens Putative L-type amino acid transporter 1-like protein MLAS Proteins 0.000 description 5
- 102100038206 Putative L-type amino acid transporter 1-like protein MLAS Human genes 0.000 description 5
- 108010056079 Subtilisins Proteins 0.000 description 5
- 102000005158 Subtilisins Human genes 0.000 description 5
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 5
- 229940022663 acetate Drugs 0.000 description 5
- QGZKDVFQNNGYKY-UHFFFAOYSA-N ammonia Natural products N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 5
- 150000001450 anions Chemical class 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 229910000019 calcium carbonate Chemical class 0.000 description 5
- 125000000118 dimethyl group Chemical group [H]C([H])([H])* 0.000 description 5
- 150000002170 ethers Chemical class 0.000 description 5
- 239000000945 filler Substances 0.000 description 5
- 229930195733 hydrocarbon Natural products 0.000 description 5
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 5
- 238000006317 isomerization reaction Methods 0.000 description 5
- 229960004592 isopropanol Drugs 0.000 description 5
- 239000012263 liquid product Substances 0.000 description 5
- 159000000003 magnesium salts Chemical class 0.000 description 5
- 244000005700 microbiome Species 0.000 description 5
- 239000000178 monomer Substances 0.000 description 5
- 229910052680 mordenite Inorganic materials 0.000 description 5
- 239000001301 oxygen Substances 0.000 description 5
- 229910000029 sodium carbonate Inorganic materials 0.000 description 5
- 235000017550 sodium carbonate Nutrition 0.000 description 5
- 159000000000 sodium salts Chemical class 0.000 description 5
- 229910001220 stainless steel Inorganic materials 0.000 description 5
- 239000010935 stainless steel Substances 0.000 description 5
- POAOYUHQDCAZBD-UHFFFAOYSA-N 2-butoxyethanol Chemical compound CCCCOCCO POAOYUHQDCAZBD-UHFFFAOYSA-N 0.000 description 4
- WRMNZCZEMHIOCP-UHFFFAOYSA-N 2-phenylethanol Chemical compound OCCC1=CC=CC=C1 WRMNZCZEMHIOCP-UHFFFAOYSA-N 0.000 description 4
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 4
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 4
- ZCTQGTTXIYCGGC-UHFFFAOYSA-N Benzyl salicylate Chemical compound OC1=CC=CC=C1C(=O)OCC1=CC=CC=C1 ZCTQGTTXIYCGGC-UHFFFAOYSA-N 0.000 description 4
- 239000004215 Carbon black (E152) Substances 0.000 description 4
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 4
- 108010059892 Cellulase Proteins 0.000 description 4
- FKUPPRZPSYCDRS-UHFFFAOYSA-N Cyclopentadecanolide Chemical compound O=C1CCCCCCCCCCCCCCO1 FKUPPRZPSYCDRS-UHFFFAOYSA-N 0.000 description 4
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 4
- YLQBMQCUIZJEEH-UHFFFAOYSA-N Furan Chemical compound C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 4
- GLZPCOQZEFWAFX-UHFFFAOYSA-N Geraniol Chemical compound CC(C)=CCCC(C)=CCO GLZPCOQZEFWAFX-UHFFFAOYSA-N 0.000 description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 4
- 102000004157 Hydrolases Human genes 0.000 description 4
- 108090000604 Hydrolases Proteins 0.000 description 4
- 108091028043 Nucleic acid sequence Proteins 0.000 description 4
- 229910019142 PO4 Inorganic materials 0.000 description 4
- 101710180012 Protease 7 Proteins 0.000 description 4
- 108090000787 Subtilisin Proteins 0.000 description 4
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 4
- 125000002252 acyl group Chemical group 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 235000010338 boric acid Nutrition 0.000 description 4
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 4
- 229940106157 cellulase Drugs 0.000 description 4
- 239000003240 coconut oil Substances 0.000 description 4
- 235000019864 coconut oil Nutrition 0.000 description 4
- 108010005400 cutinase Proteins 0.000 description 4
- 239000008367 deionised water Substances 0.000 description 4
- 150000005690 diesters Chemical class 0.000 description 4
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 4
- 239000004744 fabric Substances 0.000 description 4
- 125000003147 glycosyl group Chemical group 0.000 description 4
- 150000002430 hydrocarbons Chemical class 0.000 description 4
- 239000001866 hydroxypropyl methyl cellulose Substances 0.000 description 4
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 description 4
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 description 4
- UFVKGYZPFZQRLF-UHFFFAOYSA-N hydroxypropyl methyl cellulose Chemical group OC1C(O)C(OC)OC(CO)C1OC1C(O)C(O)C(OC2C(C(O)C(OC3C(C(O)C(O)C(CO)O3)O)C(CO)O2)O)C(CO)O1 UFVKGYZPFZQRLF-UHFFFAOYSA-N 0.000 description 4
- 230000006872 improvement Effects 0.000 description 4
- 229910052500 inorganic mineral Inorganic materials 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- KVWWIYGFBYDJQC-UHFFFAOYSA-N methyl dihydrojasmonate Chemical compound CCCCCC1C(CC(=O)OC)CCC1=O KVWWIYGFBYDJQC-UHFFFAOYSA-N 0.000 description 4
- 230000007935 neutral effect Effects 0.000 description 4
- 230000003472 neutralizing effect Effects 0.000 description 4
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 4
- 239000006072 paste Substances 0.000 description 4
- 239000003208 petroleum Substances 0.000 description 4
- 235000021317 phosphate Nutrition 0.000 description 4
- 229920000058 polyacrylate Polymers 0.000 description 4
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 4
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 4
- 229940024999 proteolytic enzymes for treatment of wounds and ulcers Drugs 0.000 description 4
- 150000003333 secondary alcohols Chemical class 0.000 description 4
- 239000000344 soap Substances 0.000 description 4
- 239000011780 sodium chloride Substances 0.000 description 4
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 4
- 235000019832 sodium triphosphate Nutrition 0.000 description 4
- 230000006641 stabilisation Effects 0.000 description 4
- 238000011105 stabilization Methods 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- 238000003860 storage Methods 0.000 description 4
- 150000005846 sugar alcohols Polymers 0.000 description 4
- 229910052723 transition metal Inorganic materials 0.000 description 4
- 150000003624 transition metals Chemical class 0.000 description 4
- 239000002888 zwitterionic surfactant Substances 0.000 description 4
- RQRTXGHHWPFDNG-UHFFFAOYSA-N 1-butoxy-1-propoxypropan-1-ol Chemical compound CCCCOC(O)(CC)OCCC RQRTXGHHWPFDNG-UHFFFAOYSA-N 0.000 description 3
- UPGSWASWQBLSKZ-UHFFFAOYSA-N 2-hexoxyethanol Chemical compound CCCCCCOCCO UPGSWASWQBLSKZ-UHFFFAOYSA-N 0.000 description 3
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 3
- 241000194108 Bacillus licheniformis Species 0.000 description 3
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 description 3
- KXDHJXZQYSOELW-UHFFFAOYSA-N Carbamic acid Chemical compound NC(O)=O KXDHJXZQYSOELW-UHFFFAOYSA-N 0.000 description 3
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 3
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 3
- 101710121765 Endo-1,4-beta-xylanase Proteins 0.000 description 3
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 3
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 3
- 241001465754 Metazoa Species 0.000 description 3
- SEQKRHFRPICQDD-UHFFFAOYSA-N N-tris(hydroxymethyl)methylglycine Chemical compound OCC(CO)(CO)[NH2+]CC([O-])=O SEQKRHFRPICQDD-UHFFFAOYSA-N 0.000 description 3
- 108090000854 Oxidoreductases Proteins 0.000 description 3
- 102000004316 Oxidoreductases Human genes 0.000 description 3
- 239000004698 Polyethylene Substances 0.000 description 3
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 3
- 229920002125 Sokalan® Polymers 0.000 description 3
- 240000008042 Zea mays Species 0.000 description 3
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 3
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 3
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 3
- 150000001336 alkenes Chemical class 0.000 description 3
- 150000003973 alkyl amines Chemical class 0.000 description 3
- 150000004996 alkyl benzenes Chemical class 0.000 description 3
- 125000005907 alkyl ester group Chemical group 0.000 description 3
- 230000002152 alkylating effect Effects 0.000 description 3
- WQZGKKKJIJFFOK-PHYPRBDBSA-N alpha-D-galactose Chemical group OC[C@H]1O[C@H](O)[C@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-PHYPRBDBSA-N 0.000 description 3
- 125000003277 amino group Chemical group 0.000 description 3
- 229910021529 ammonia Inorganic materials 0.000 description 3
- 230000003078 antioxidant effect Effects 0.000 description 3
- 238000013459 approach Methods 0.000 description 3
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 3
- 238000004061 bleaching Methods 0.000 description 3
- 238000009835 boiling Methods 0.000 description 3
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 3
- 239000004327 boric acid Substances 0.000 description 3
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 3
- 239000000920 calcium hydroxide Substances 0.000 description 3
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 3
- 235000011116 calcium hydroxide Nutrition 0.000 description 3
- 159000000007 calcium salts Chemical class 0.000 description 3
- 239000004202 carbamide Substances 0.000 description 3
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 3
- 239000001768 carboxy methyl cellulose Substances 0.000 description 3
- 150000001860 citric acid derivatives Chemical class 0.000 description 3
- 238000009833 condensation Methods 0.000 description 3
- 230000005494 condensation Effects 0.000 description 3
- 235000005822 corn Nutrition 0.000 description 3
- 235000001671 coumarin Nutrition 0.000 description 3
- 229960000956 coumarin Drugs 0.000 description 3
- 238000006356 dehydrogenation reaction Methods 0.000 description 3
- XXJWXESWEXIICW-UHFFFAOYSA-N diethylene glycol monoethyl ether Chemical compound CCOCCOCCO XXJWXESWEXIICW-UHFFFAOYSA-N 0.000 description 3
- SNRUBQQJIBEYMU-UHFFFAOYSA-N dodecane Chemical compound CCCCCCCCCCCC SNRUBQQJIBEYMU-UHFFFAOYSA-N 0.000 description 3
- 229960001484 edetic acid Drugs 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000005187 foaming Methods 0.000 description 3
- 235000013305 food Nutrition 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 229930182830 galactose Chemical group 0.000 description 3
- 229940083124 ganglion-blocking antiadrenergic secondary and tertiary amines Drugs 0.000 description 3
- 125000005456 glyceride group Chemical group 0.000 description 3
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 3
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 3
- 230000001900 immune effect Effects 0.000 description 3
- 238000005342 ion exchange Methods 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 150000002576 ketones Chemical class 0.000 description 3
- 230000002366 lipolytic effect Effects 0.000 description 3
- 239000012669 liquid formulation Substances 0.000 description 3
- 229910052744 lithium Inorganic materials 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 125000001360 methionine group Chemical group N[C@@H](CCSC)C(=O)* 0.000 description 3
- OSWPMRLSEDHDFF-UHFFFAOYSA-N methyl salicylate Chemical compound COC(=O)C1=CC=CC=C1O OSWPMRLSEDHDFF-UHFFFAOYSA-N 0.000 description 3
- 235000010755 mineral Nutrition 0.000 description 3
- 239000011707 mineral Substances 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 235000019645 odor Nutrition 0.000 description 3
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 3
- 150000002894 organic compounds Chemical class 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 229920000573 polyethylene Polymers 0.000 description 3
- 235000018102 proteins Nutrition 0.000 description 3
- 102000004169 proteins and genes Human genes 0.000 description 3
- 108090000623 proteins and genes Proteins 0.000 description 3
- 230000000717 retained effect Effects 0.000 description 3
- 229920002545 silicone oil Polymers 0.000 description 3
- 241000894007 species Species 0.000 description 3
- 238000006467 substitution reaction Methods 0.000 description 3
- JDVPQXZIJDEHAN-UHFFFAOYSA-M succinamate Chemical compound NC(=O)CCC([O-])=O JDVPQXZIJDEHAN-UHFFFAOYSA-M 0.000 description 3
- KDYFGRWQOYBRFD-UHFFFAOYSA-L succinate(2-) Chemical compound [O-]C(=O)CCC([O-])=O KDYFGRWQOYBRFD-UHFFFAOYSA-L 0.000 description 3
- 150000008163 sugars Chemical class 0.000 description 3
- 239000006188 syrup Substances 0.000 description 3
- 235000020357 syrup Nutrition 0.000 description 3
- QEMXHQIAXOOASZ-UHFFFAOYSA-N tetramethylammonium Chemical compound C[N+](C)(C)C QEMXHQIAXOOASZ-UHFFFAOYSA-N 0.000 description 3
- AVWQQPYHYQKEIZ-UHFFFAOYSA-K trisodium;2-dodecylbenzenesulfonate;3-dodecylbenzenesulfonate;4-dodecylbenzenesulfonate Chemical compound [Na+].[Na+].[Na+].CCCCCCCCCCCCC1=CC=C(S([O-])(=O)=O)C=C1.CCCCCCCCCCCCC1=CC=CC(S([O-])(=O)=O)=C1.CCCCCCCCCCCCC1=CC=CC=C1S([O-])(=O)=O AVWQQPYHYQKEIZ-UHFFFAOYSA-K 0.000 description 3
- 235000013311 vegetables Nutrition 0.000 description 3
- 239000003039 volatile agent Substances 0.000 description 3
- 239000000341 volatile oil Substances 0.000 description 3
- DNIAPMSPPWPWGF-GSVOUGTGSA-N (R)-(-)-Propylene glycol Chemical compound C[C@@H](O)CO DNIAPMSPPWPWGF-GSVOUGTGSA-N 0.000 description 2
- CIOXZGOUEYHNBF-UHFFFAOYSA-N (carboxymethoxy)succinic acid Chemical compound OC(=O)COC(C(O)=O)CC(O)=O CIOXZGOUEYHNBF-UHFFFAOYSA-N 0.000 description 2
- KEQGZUUPPQEDPF-UHFFFAOYSA-N 1,3-dichloro-5,5-dimethylimidazolidine-2,4-dione Chemical compound CC1(C)N(Cl)C(=O)N(Cl)C1=O KEQGZUUPPQEDPF-UHFFFAOYSA-N 0.000 description 2
- LNFLHXZJCVGTSO-UHFFFAOYSA-N 1-(3-butoxypropoxy)propan-1-ol Chemical compound CCCCOCCCOC(O)CC LNFLHXZJCVGTSO-UHFFFAOYSA-N 0.000 description 2
- VQOXUMQBYILCKR-UHFFFAOYSA-N 1-Tridecene Chemical compound CCCCCCCCCCCC=C VQOXUMQBYILCKR-UHFFFAOYSA-N 0.000 description 2
- IDQBJILTOGBZCR-UHFFFAOYSA-N 1-butoxypropan-1-ol Chemical compound CCCCOC(O)CC IDQBJILTOGBZCR-UHFFFAOYSA-N 0.000 description 2
- AFFLGGQVNFXPEV-UHFFFAOYSA-N 1-decene Chemical compound CCCCCCCCC=C AFFLGGQVNFXPEV-UHFFFAOYSA-N 0.000 description 2
- CRSBERNSMYQZNG-UHFFFAOYSA-N 1-dodecene Chemical compound CCCCCCCCCCC=C CRSBERNSMYQZNG-UHFFFAOYSA-N 0.000 description 2
- DCTOHCCUXLBQMS-UHFFFAOYSA-N 1-undecene Chemical compound CCCCCCCCCC=C DCTOHCCUXLBQMS-UHFFFAOYSA-N 0.000 description 2
- OWEGMIWEEQEYGQ-UHFFFAOYSA-N 100676-05-9 Natural products OC1C(O)C(O)C(CO)OC1OCC1C(O)C(O)C(O)C(OC2C(OC(O)C(O)C2O)CO)O1 OWEGMIWEEQEYGQ-UHFFFAOYSA-N 0.000 description 2
- CFPOJWPDQWJEMO-UHFFFAOYSA-N 2-(1,2-dicarboxyethoxy)butanedioic acid Chemical compound OC(=O)CC(C(O)=O)OC(C(O)=O)CC(O)=O CFPOJWPDQWJEMO-UHFFFAOYSA-N 0.000 description 2
- GZMAAYIALGURDQ-UHFFFAOYSA-N 2-(2-hexoxyethoxy)ethanol Chemical compound CCCCCCOCCOCCO GZMAAYIALGURDQ-UHFFFAOYSA-N 0.000 description 2
- JKNCOURZONDCGV-UHFFFAOYSA-N 2-(dimethylamino)ethyl 2-methylprop-2-enoate Chemical compound CN(C)CCOC(=O)C(C)=C JKNCOURZONDCGV-UHFFFAOYSA-N 0.000 description 2
- XNWFRZJHXBZDAG-UHFFFAOYSA-N 2-METHOXYETHANOL Chemical compound COCCO XNWFRZJHXBZDAG-UHFFFAOYSA-N 0.000 description 2
- QQZOPKMRPOGIEB-UHFFFAOYSA-N 2-Oxohexane Chemical compound CCCCC(C)=O QQZOPKMRPOGIEB-UHFFFAOYSA-N 0.000 description 2
- COBPKKZHLDDMTB-UHFFFAOYSA-N 2-[2-(2-butoxyethoxy)ethoxy]ethanol Chemical compound CCCCOCCOCCOCCO COBPKKZHLDDMTB-UHFFFAOYSA-N 0.000 description 2
- WAEVWDZKMBQDEJ-UHFFFAOYSA-N 2-[2-(2-methoxypropoxy)propoxy]propan-1-ol Chemical compound COC(C)COC(C)COC(C)CO WAEVWDZKMBQDEJ-UHFFFAOYSA-N 0.000 description 2
- CIEZZGWIJBXOTE-UHFFFAOYSA-N 2-[bis(carboxymethyl)amino]propanoic acid Chemical compound OC(=O)C(C)N(CC(O)=O)CC(O)=O CIEZZGWIJBXOTE-UHFFFAOYSA-N 0.000 description 2
- XSAYZAUNJMRRIR-UHFFFAOYSA-N 2-acetylnaphthalene Chemical compound C1=CC=CC2=CC(C(=O)C)=CC=C21 XSAYZAUNJMRRIR-UHFFFAOYSA-N 0.000 description 2
- YLAXZGYLWOGCBF-UHFFFAOYSA-N 2-dodecylbutanedioic acid Chemical compound CCCCCCCCCCCCC(C(O)=O)CC(O)=O YLAXZGYLWOGCBF-UHFFFAOYSA-N 0.000 description 2
- HGECJFVPNUYRJZ-UHFFFAOYSA-N 2-methyl-2-(4-propan-2-ylphenyl)propanal Chemical compound CC(C)C1=CC=C(C(C)(C)C=O)C=C1 HGECJFVPNUYRJZ-UHFFFAOYSA-N 0.000 description 2
- QPRQEDXDYOZYLA-UHFFFAOYSA-N 2-methylbutan-1-ol Chemical compound CCC(C)CO QPRQEDXDYOZYLA-UHFFFAOYSA-N 0.000 description 2
- SGVYKUFIHHTIFL-UHFFFAOYSA-N 2-methylnonane Chemical compound CCCCCCCC(C)C SGVYKUFIHHTIFL-UHFFFAOYSA-N 0.000 description 2
- SVTBMSDMJJWYQN-UHFFFAOYSA-N 2-methylpentane-2,4-diol Chemical compound CC(O)CC(C)(C)O SVTBMSDMJJWYQN-UHFFFAOYSA-N 0.000 description 2
- ZPVFWPFBNIEHGJ-UHFFFAOYSA-N 2-octanone Chemical compound CCCCCCC(C)=O ZPVFWPFBNIEHGJ-UHFFFAOYSA-N 0.000 description 2
- BJLRAKFWOUAROE-UHFFFAOYSA-N 2500-83-6 Chemical compound C12C=CCC2C2CC(OC(=O)C)C1C2 BJLRAKFWOUAROE-UHFFFAOYSA-N 0.000 description 2
- 235000007173 Abies balsamea Nutrition 0.000 description 2
- RSWGJHLUYNHPMX-UHFFFAOYSA-N Abietic-Saeure Natural products C12CCC(C(C)C)=CC2=CCC2C1(C)CCCC2(C)C(O)=O RSWGJHLUYNHPMX-UHFFFAOYSA-N 0.000 description 2
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 2
- 239000005995 Aluminium silicate Substances 0.000 description 2
- 241000193744 Bacillus amyloliquefaciens Species 0.000 description 2
- 235000014469 Bacillus subtilis Nutrition 0.000 description 2
- 239000004857 Balsam Substances 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 2
- NLZUEZXRPGMBCV-UHFFFAOYSA-N Butylhydroxytoluene Chemical compound CC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 NLZUEZXRPGMBCV-UHFFFAOYSA-N 0.000 description 2
- 244000037364 Cinnamomum aromaticum Species 0.000 description 2
- 235000014489 Cinnamomum aromaticum Nutrition 0.000 description 2
- 235000013162 Cocos nucifera Nutrition 0.000 description 2
- 244000060011 Cocos nucifera Species 0.000 description 2
- 244000018436 Coriandrum sativum Species 0.000 description 2
- 235000002787 Coriandrum sativum Nutrition 0.000 description 2
- SRBFZHDQGSBBOR-IOVATXLUSA-N D-xylopyranose Chemical compound O[C@@H]1COC(O)[C@H](O)[C@H]1O SRBFZHDQGSBBOR-IOVATXLUSA-N 0.000 description 2
- 102000016559 DNA Primase Human genes 0.000 description 2
- 108010092681 DNA Primase Proteins 0.000 description 2
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 2
- ROSDSFDQCJNGOL-UHFFFAOYSA-N Dimethylamine Chemical group CNC ROSDSFDQCJNGOL-UHFFFAOYSA-N 0.000 description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 2
- 241001459693 Dipterocarpus zeylanicus Species 0.000 description 2
- 108010083608 Durazym Proteins 0.000 description 2
- ZFMSMUAANRJZFM-UHFFFAOYSA-N Estragole Chemical compound COC1=CC=C(CC=C)C=C1 ZFMSMUAANRJZFM-UHFFFAOYSA-N 0.000 description 2
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 2
- IMROMDMJAWUWLK-UHFFFAOYSA-N Ethenol Chemical compound OC=C IMROMDMJAWUWLK-UHFFFAOYSA-N 0.000 description 2
- 239000005977 Ethylene Substances 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-M Formate Chemical compound [O-]C=O BDAGIHXWWSANSR-UHFFFAOYSA-M 0.000 description 2
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 2
- 102000005744 Glycoside Hydrolases Human genes 0.000 description 2
- 108010031186 Glycoside Hydrolases Proteins 0.000 description 2
- 238000003747 Grignard reaction Methods 0.000 description 2
- 244000018716 Impatiens biflora Species 0.000 description 2
- SIKJAQJRHWYJAI-UHFFFAOYSA-N Indole Chemical compound C1=CC=C2NC=CC2=C1 SIKJAQJRHWYJAI-UHFFFAOYSA-N 0.000 description 2
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 2
- AYFVYJQAPQTCCC-GBXIJSLDSA-N L-threonine Chemical compound C[C@@H](O)[C@H](N)C(O)=O AYFVYJQAPQTCCC-GBXIJSLDSA-N 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-M Lactate Chemical compound CC(O)C([O-])=O JVTAAEKCZFNVCJ-UHFFFAOYSA-M 0.000 description 2
- 235000019501 Lemon oil Nutrition 0.000 description 2
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 2
- 235000019738 Limestone Nutrition 0.000 description 2
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 2
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 2
- GUBGYTABKSRVRQ-PICCSMPSSA-N Maltose Natural products O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@@H](CO)OC(O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-PICCSMPSSA-N 0.000 description 2
- QPCDCPDFJACHGM-UHFFFAOYSA-N N,N-bis{2-[bis(carboxymethyl)amino]ethyl}glycine Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(=O)O)CCN(CC(O)=O)CC(O)=O QPCDCPDFJACHGM-UHFFFAOYSA-N 0.000 description 2
- BCXBKOQDEOJNRH-UHFFFAOYSA-N NOP(O)=O Chemical class NOP(O)=O BCXBKOQDEOJNRH-UHFFFAOYSA-N 0.000 description 2
- 235000019502 Orange oil Nutrition 0.000 description 2
- 235000019482 Palm oil Nutrition 0.000 description 2
- ABLZXFCXXLZCGV-UHFFFAOYSA-N Phosphorous acid Chemical class OP(O)=O ABLZXFCXXLZCGV-UHFFFAOYSA-N 0.000 description 2
- 235000012550 Pimpinella anisum Nutrition 0.000 description 2
- 240000004760 Pimpinella anisum Species 0.000 description 2
- 229920000388 Polyphosphate Polymers 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- 241000220317 Rosa Species 0.000 description 2
- KHPCPRHQVVSZAH-HUOMCSJISA-N Rosin Natural products O(C/C=C/c1ccccc1)[C@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 KHPCPRHQVVSZAH-HUOMCSJISA-N 0.000 description 2
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 2
- 101001069700 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) Saccharolysin Proteins 0.000 description 2
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 2
- 239000004115 Sodium Silicate Substances 0.000 description 2
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 2
- 239000004473 Threonine Substances 0.000 description 2
- 229910052770 Uranium Inorganic materials 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 239000004480 active ingredient Substances 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 229910000288 alkali metal carbonate Inorganic materials 0.000 description 2
- 150000008041 alkali metal carbonates Chemical class 0.000 description 2
- 229910000272 alkali metal oxide Inorganic materials 0.000 description 2
- 229910000318 alkali metal phosphate Inorganic materials 0.000 description 2
- 150000001342 alkaline earth metals Chemical class 0.000 description 2
- 125000002877 alkyl aryl group Chemical group 0.000 description 2
- 125000005037 alkyl phenyl group Chemical group 0.000 description 2
- GUUHFMWKWLOQMM-NTCAYCPXSA-N alpha-hexylcinnamaldehyde Chemical compound CCCCCC\C(C=O)=C/C1=CC=CC=C1 GUUHFMWKWLOQMM-NTCAYCPXSA-N 0.000 description 2
- GUUHFMWKWLOQMM-UHFFFAOYSA-N alpha-n-hexylcinnamic aldehyde Natural products CCCCCCC(C=O)=CC1=CC=CC=C1 GUUHFMWKWLOQMM-UHFFFAOYSA-N 0.000 description 2
- 235000012211 aluminium silicate Nutrition 0.000 description 2
- 235000001014 amino acid Nutrition 0.000 description 2
- 230000000845 anti-microbial effect Effects 0.000 description 2
- 229940072107 ascorbate Drugs 0.000 description 2
- 235000010323 ascorbic acid Nutrition 0.000 description 2
- 239000011668 ascorbic acid Substances 0.000 description 2
- 235000003704 aspartic acid Nutrition 0.000 description 2
- 238000003556 assay Methods 0.000 description 2
- 229960000892 attapulgite Drugs 0.000 description 2
- LUAVFCBYZUMYCE-UHFFFAOYSA-N azanium;2-propan-2-ylbenzenesulfonate Chemical class [NH4+].CC(C)C1=CC=CC=C1S([O-])(=O)=O LUAVFCBYZUMYCE-UHFFFAOYSA-N 0.000 description 2
- 239000002585 base Substances 0.000 description 2
- QMKYBPDZANOJGF-UHFFFAOYSA-N benzene-1,3,5-tricarboxylic acid Chemical compound OC(=O)C1=CC(C(O)=O)=CC(C(O)=O)=C1 QMKYBPDZANOJGF-UHFFFAOYSA-N 0.000 description 2
- QUKGYYKBILRGFE-UHFFFAOYSA-N benzyl acetate Chemical compound CC(=O)OCC1=CC=CC=C1 QUKGYYKBILRGFE-UHFFFAOYSA-N 0.000 description 2
- 235000019445 benzyl alcohol Nutrition 0.000 description 2
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 2
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 2
- GUBGYTABKSRVRQ-QUYVBRFLSA-N beta-maltose Chemical compound OC[C@H]1O[C@H](O[C@H]2[C@H](O)[C@@H](O)[C@H](O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@@H]1O GUBGYTABKSRVRQ-QUYVBRFLSA-N 0.000 description 2
- 150000001642 boronic acid derivatives Chemical class 0.000 description 2
- 235000010354 butylated hydroxytoluene Nutrition 0.000 description 2
- 235000014633 carbohydrates Nutrition 0.000 description 2
- 229910001748 carbonate mineral Inorganic materials 0.000 description 2
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 2
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 2
- 229940105329 carboxymethylcellulose Drugs 0.000 description 2
- 229920003118 cationic copolymer Polymers 0.000 description 2
- SVURIXNDRWRAFU-OGMFBOKVSA-N cedrol Chemical compound C1[C@]23[C@H](C)CC[C@H]3C(C)(C)[C@@H]1[C@@](O)(C)CC2 SVURIXNDRWRAFU-OGMFBOKVSA-N 0.000 description 2
- 229940026455 cedrol Drugs 0.000 description 2
- PCROEXHGMUJCDB-UHFFFAOYSA-N cedrol Natural products CC1CCC2C(C)(C)C3CC(C)(O)CC12C3 PCROEXHGMUJCDB-UHFFFAOYSA-N 0.000 description 2
- HQKQRXZEXPXXIG-VJOHVRBBSA-N chembl2333940 Chemical compound C1[C@]23[C@H](C)CC[C@H]3C(C)(C)[C@H]1[C@@](OC(C)=O)(C)CC2 HQKQRXZEXPXXIG-VJOHVRBBSA-N 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- XTHPWXDJESJLNJ-UHFFFAOYSA-N chlorosulfonic acid Substances OS(Cl)(=O)=O XTHPWXDJESJLNJ-UHFFFAOYSA-N 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 229910052681 coesite Inorganic materials 0.000 description 2
- 229910052906 cristobalite Inorganic materials 0.000 description 2
- 230000009260 cross reactivity Effects 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- RWGFKTVRMDUZSP-UHFFFAOYSA-N cumene Chemical compound CC(C)C1=CC=CC=C1 RWGFKTVRMDUZSP-UHFFFAOYSA-N 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- BLBJUGKATXCWET-UHFFFAOYSA-N cyclaprop Chemical compound C12CC=CC2C2CC(OC(=O)CC)C1C2 BLBJUGKATXCWET-UHFFFAOYSA-N 0.000 description 2
- MWKFXSUHUHTGQN-UHFFFAOYSA-N decan-1-ol Chemical compound CCCCCCCCCCO MWKFXSUHUHTGQN-UHFFFAOYSA-N 0.000 description 2
- CRPOUZQWHJYTMS-UHFFFAOYSA-N dialuminum;magnesium;disilicate Chemical compound [Mg+2].[Al+3].[Al+3].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-] CRPOUZQWHJYTMS-UHFFFAOYSA-N 0.000 description 2
- FLKPEMZONWLCSK-UHFFFAOYSA-N diethyl phthalate Chemical compound CCOC(=O)C1=CC=CC=C1C(=O)OCC FLKPEMZONWLCSK-UHFFFAOYSA-N 0.000 description 2
- 150000002009 diols Chemical class 0.000 description 2
- LRCFXGAMWKDGLA-UHFFFAOYSA-N dioxosilane;hydrate Chemical compound O.O=[Si]=O LRCFXGAMWKDGLA-UHFFFAOYSA-N 0.000 description 2
- USIUVYZYUHIAEV-UHFFFAOYSA-N diphenyl ether Chemical compound C=1C=CC=CC=1OC1=CC=CC=C1 USIUVYZYUHIAEV-UHFFFAOYSA-N 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- HFJRKMMYBMWEAD-UHFFFAOYSA-N dodecanal Chemical compound CCCCCCCCCCCC=O HFJRKMMYBMWEAD-UHFFFAOYSA-N 0.000 description 2
- ILRSCQWREDREME-UHFFFAOYSA-N dodecanamide Chemical compound CCCCCCCCCCCC(N)=O ILRSCQWREDREME-UHFFFAOYSA-N 0.000 description 2
- 239000003995 emulsifying agent Substances 0.000 description 2
- 239000000686 essence Substances 0.000 description 2
- 238000007046 ethoxylation reaction Methods 0.000 description 2
- CBOQJANXLMLOSS-UHFFFAOYSA-N ethyl vanillin Chemical compound CCOC1=CC(C=O)=CC=C1O CBOQJANXLMLOSS-UHFFFAOYSA-N 0.000 description 2
- RRAFCDWBNXTKKO-UHFFFAOYSA-N eugenol Chemical compound COC1=CC(CC=C)=CC=C1O RRAFCDWBNXTKKO-UHFFFAOYSA-N 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 229940044170 formate Drugs 0.000 description 2
- 150000008195 galaktosides Chemical class 0.000 description 2
- 229930182478 glucoside Natural products 0.000 description 2
- 150000008131 glucosides Chemical class 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- CATSNJVOTSVZJV-UHFFFAOYSA-N heptan-2-one Chemical compound CCCCCC(C)=O CATSNJVOTSVZJV-UHFFFAOYSA-N 0.000 description 2
- HSEMFIZWXHQJAE-UHFFFAOYSA-N hexadecanamide Chemical compound CCCCCCCCCCCCCCCC(N)=O HSEMFIZWXHQJAE-UHFFFAOYSA-N 0.000 description 2
- 150000002402 hexoses Chemical class 0.000 description 2
- 230000003301 hydrolyzing effect Effects 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 2
- WPFVBOQKRVRMJB-UHFFFAOYSA-N hydroxycitronellal Chemical compound O=CCC(C)CCCC(C)(C)O WPFVBOQKRVRMJB-UHFFFAOYSA-N 0.000 description 2
- 239000005457 ice water Substances 0.000 description 2
- PQNFLJBBNBOBRQ-UHFFFAOYSA-N indane Chemical compound C1=CC=C2CCCC2=C1 PQNFLJBBNBOBRQ-UHFFFAOYSA-N 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 239000002563 ionic surfactant Substances 0.000 description 2
- 229930002839 ionone Natural products 0.000 description 2
- SUMDYPCJJOFFON-UHFFFAOYSA-N isethionic acid Chemical compound OCCS(O)(=O)=O SUMDYPCJJOFFON-UHFFFAOYSA-N 0.000 description 2
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 2
- 238000005304 joining Methods 0.000 description 2
- SVURIXNDRWRAFU-UHFFFAOYSA-N juniperanol Natural products C1C23C(C)CCC3C(C)(C)C1C(O)(C)CC2 SVURIXNDRWRAFU-UHFFFAOYSA-N 0.000 description 2
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 2
- 108010059345 keratinase Proteins 0.000 description 2
- 239000010501 lemon oil Substances 0.000 description 2
- SDQFDHOLCGWZPU-UHFFFAOYSA-N lilial Chemical compound O=CC(C)CC1=CC=C(C(C)(C)C)C=C1 SDQFDHOLCGWZPU-UHFFFAOYSA-N 0.000 description 2
- 239000006028 limestone Substances 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- CDOSHBSSFJOMGT-UHFFFAOYSA-N linalool Chemical compound CC(C)=CCCC(C)(O)C=C CDOSHBSSFJOMGT-UHFFFAOYSA-N 0.000 description 2
- UWKAYLJWKGQEPM-LBPRGKRZSA-N linalyl acetate Chemical compound CC(C)=CCC[C@](C)(C=C)OC(C)=O UWKAYLJWKGQEPM-LBPRGKRZSA-N 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 239000000391 magnesium silicate Substances 0.000 description 2
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 2
- YDSWCNNOKPMOTP-UHFFFAOYSA-N mellitic acid Chemical compound OC(=O)C1=C(C(O)=O)C(C(O)=O)=C(C(O)=O)C(C(O)=O)=C1C(O)=O YDSWCNNOKPMOTP-UHFFFAOYSA-N 0.000 description 2
- FQPSGWSUVKBHSU-UHFFFAOYSA-N methacrylamide Chemical compound CC(=C)C(N)=O FQPSGWSUVKBHSU-UHFFFAOYSA-N 0.000 description 2
- VAMXMNNIEUEQDV-UHFFFAOYSA-N methyl anthranilate Chemical compound COC(=O)C1=CC=CC=C1N VAMXMNNIEUEQDV-UHFFFAOYSA-N 0.000 description 2
- XJRBAMWJDBPFIM-UHFFFAOYSA-N methyl vinyl ether Chemical compound COC=C XJRBAMWJDBPFIM-UHFFFAOYSA-N 0.000 description 2
- 125000000325 methylidene group Chemical group [H]C([H])=* 0.000 description 2
- 108010020132 microbial serine proteinases Proteins 0.000 description 2
- 229910052901 montmorillonite Inorganic materials 0.000 description 2
- PSZYNBSKGUBXEH-UHFFFAOYSA-N naphthalene-1-sulfonic acid Chemical class C1=CC=C2C(S(=O)(=O)O)=CC=CC2=C1 PSZYNBSKGUBXEH-UHFFFAOYSA-N 0.000 description 2
- 150000002823 nitrates Chemical class 0.000 description 2
- MGFYIUFZLHCRTH-UHFFFAOYSA-N nitrilotriacetic acid Chemical compound OC(=O)CN(CC(O)=O)CC(O)=O MGFYIUFZLHCRTH-UHFFFAOYSA-N 0.000 description 2
- LYRFLYHAGKPMFH-UHFFFAOYSA-N octadecanamide Chemical compound CCCCCCCCCCCCCCCCCC(N)=O LYRFLYHAGKPMFH-UHFFFAOYSA-N 0.000 description 2
- 239000010502 orange oil Substances 0.000 description 2
- ZRSNZINYAWTAHE-UHFFFAOYSA-N p-methoxybenzaldehyde Chemical compound COC1=CC=C(C=O)C=C1 ZRSNZINYAWTAHE-UHFFFAOYSA-N 0.000 description 2
- 239000002540 palm oil Substances 0.000 description 2
- 125000000913 palmityl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 229910052625 palygorskite Inorganic materials 0.000 description 2
- 230000036961 partial effect Effects 0.000 description 2
- 150000002978 peroxides Chemical class 0.000 description 2
- WVDDGKGOMKODPV-ZQBYOMGUSA-N phenyl(114C)methanol Chemical compound O[14CH2]C1=CC=CC=C1 WVDDGKGOMKODPV-ZQBYOMGUSA-N 0.000 description 2
- DTUQWGWMVIHBKE-UHFFFAOYSA-N phenylacetaldehyde Chemical compound O=CCC1=CC=CC=C1 DTUQWGWMVIHBKE-UHFFFAOYSA-N 0.000 description 2
- HXITXNWTGFUOAU-UHFFFAOYSA-N phenylboronic acid Chemical compound OB(O)C1=CC=CC=C1 HXITXNWTGFUOAU-UHFFFAOYSA-N 0.000 description 2
- 229940067107 phenylethyl alcohol Drugs 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 2
- 239000010452 phosphate Substances 0.000 description 2
- 239000000049 pigment Substances 0.000 description 2
- SATCULPHIDQDRE-UHFFFAOYSA-N piperonal Chemical compound O=CC1=CC=C2OCOC2=C1 SATCULPHIDQDRE-UHFFFAOYSA-N 0.000 description 2
- 229920000233 poly(alkylene oxides) Polymers 0.000 description 2
- 108010064470 polyaspartate Proteins 0.000 description 2
- 229920005862 polyol Polymers 0.000 description 2
- 150000003077 polyols Chemical class 0.000 description 2
- 229920001184 polypeptide Polymers 0.000 description 2
- 239000001205 polyphosphate Substances 0.000 description 2
- 235000011176 polyphosphates Nutrition 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 150000003138 primary alcohols Chemical class 0.000 description 2
- 108090000765 processed proteins & peptides Proteins 0.000 description 2
- 102000004196 processed proteins & peptides Human genes 0.000 description 2
- ULWHHBHJGPPBCO-UHFFFAOYSA-N propane-1,1-diol Chemical compound CCC(O)O ULWHHBHJGPPBCO-UHFFFAOYSA-N 0.000 description 2
- 125000001453 quaternary ammonium group Chemical group 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000006268 reductive amination reaction Methods 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 239000010671 sandalwood oil Substances 0.000 description 2
- 229960004029 silicic acid Drugs 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- 238000002741 site-directed mutagenesis Methods 0.000 description 2
- 229940079842 sodium cumenesulfonate Drugs 0.000 description 2
- 229910000031 sodium sesquicarbonate Inorganic materials 0.000 description 2
- 235000018341 sodium sesquicarbonate Nutrition 0.000 description 2
- 229910052911 sodium silicate Inorganic materials 0.000 description 2
- 229910052938 sodium sulfate Inorganic materials 0.000 description 2
- 235000011152 sodium sulphate Nutrition 0.000 description 2
- QEKATQBVVAZOAY-UHFFFAOYSA-M sodium;4-propan-2-ylbenzenesulfonate Chemical compound [Na+].CC(C)C1=CC=C(S([O-])(=O)=O)C=C1 QEKATQBVVAZOAY-UHFFFAOYSA-M 0.000 description 2
- MWNQXXOSWHCCOZ-UHFFFAOYSA-L sodium;oxido carbonate Chemical compound [Na+].[O-]OC([O-])=O MWNQXXOSWHCCOZ-UHFFFAOYSA-L 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- 229910052682 stishovite Inorganic materials 0.000 description 2
- 239000011550 stock solution Substances 0.000 description 2
- 125000003107 substituted aryl group Chemical group 0.000 description 2
- 235000011044 succinic acid Nutrition 0.000 description 2
- 238000006277 sulfonation reaction Methods 0.000 description 2
- 125000001273 sulfonato group Chemical group [O-]S(*)(=O)=O 0.000 description 2
- 150000003462 sulfoxides Chemical class 0.000 description 2
- 229940095064 tartrate Drugs 0.000 description 2
- 229920001897 terpolymer Polymers 0.000 description 2
- 108010031354 thermitase Proteins 0.000 description 2
- DHCDFWKWKRSZHF-UHFFFAOYSA-L thiosulfate(2-) Chemical compound [O-]S([S-])(=O)=O DHCDFWKWKRSZHF-UHFFFAOYSA-L 0.000 description 2
- RUVINXPYWBROJD-ONEGZZNKSA-N trans-anethole Chemical compound COC1=CC=C(\C=C\C)C=C1 RUVINXPYWBROJD-ONEGZZNKSA-N 0.000 description 2
- KHPCPRHQVVSZAH-UHFFFAOYSA-N trans-cinnamyl beta-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OCC=CC1=CC=CC=C1 KHPCPRHQVVSZAH-UHFFFAOYSA-N 0.000 description 2
- IIYFAKIEWZDVMP-UHFFFAOYSA-N tridecane Chemical compound CCCCCCCCCCCCC IIYFAKIEWZDVMP-UHFFFAOYSA-N 0.000 description 2
- 229910052905 tridymite Inorganic materials 0.000 description 2
- UFTFJSFQGQCHQW-UHFFFAOYSA-N triformin Chemical compound O=COCC(OC=O)COC=O UFTFJSFQGQCHQW-UHFFFAOYSA-N 0.000 description 2
- GETQZCLCWQTVFV-UHFFFAOYSA-N trimethylamine Chemical compound CN(C)C GETQZCLCWQTVFV-UHFFFAOYSA-N 0.000 description 2
- WCTAGTRAWPDFQO-UHFFFAOYSA-K trisodium;hydrogen carbonate;carbonate Chemical compound [Na+].[Na+].[Na+].OC([O-])=O.[O-]C([O-])=O WCTAGTRAWPDFQO-UHFFFAOYSA-K 0.000 description 2
- MWOOGOJBHIARFG-UHFFFAOYSA-N vanillin Chemical compound COC1=CC(C=O)=CC=C1O MWOOGOJBHIARFG-UHFFFAOYSA-N 0.000 description 2
- GRWFGVWFFZKLTI-UHFFFAOYSA-N α-pinene Chemical compound CC1=CCC2C(C)(C)C1C2 GRWFGVWFFZKLTI-UHFFFAOYSA-N 0.000 description 2
- DNIAPMSPPWPWGF-VKHMYHEASA-N (+)-propylene glycol Chemical compound C[C@H](O)CO DNIAPMSPPWPWGF-VKHMYHEASA-N 0.000 description 1
- WTARULDDTDQWMU-RKDXNWHRSA-N (+)-β-pinene Chemical compound C1[C@H]2C(C)(C)[C@@H]1CCC2=C WTARULDDTDQWMU-RKDXNWHRSA-N 0.000 description 1
- NOOLISFMXDJSKH-KXUCPTDWSA-N (-)-Menthol Chemical class CC(C)[C@@H]1CC[C@@H](C)C[C@H]1O NOOLISFMXDJSKH-KXUCPTDWSA-N 0.000 description 1
- WTARULDDTDQWMU-IUCAKERBSA-N (-)-Nopinene Natural products C1[C@@H]2C(C)(C)[C@H]1CCC2=C WTARULDDTDQWMU-IUCAKERBSA-N 0.000 description 1
- CQUAYTJDLQBXCQ-NHYWBVRUSA-N (-)-isolongifolene Chemical compound C([C@@H](C1)C2(C)C)C[C@]31C2=CCCC3(C)C CQUAYTJDLQBXCQ-NHYWBVRUSA-N 0.000 description 1
- JNYAEWCLZODPBN-JGWLITMVSA-N (2r,3r,4s)-2-[(1r)-1,2-dihydroxyethyl]oxolane-3,4-diol Chemical compound OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O JNYAEWCLZODPBN-JGWLITMVSA-N 0.000 description 1
- VKZRWSNIWNFCIQ-WDSKDSINSA-N (2s)-2-[2-[[(1s)-1,2-dicarboxyethyl]amino]ethylamino]butanedioic acid Chemical compound OC(=O)C[C@@H](C(O)=O)NCCN[C@H](C(O)=O)CC(O)=O VKZRWSNIWNFCIQ-WDSKDSINSA-N 0.000 description 1
- JIRHAGAOHOYLNO-UHFFFAOYSA-N (3-cyclopentyloxy-4-methoxyphenyl)methanol Chemical class COC1=CC=C(CO)C=C1OC1CCCC1 JIRHAGAOHOYLNO-UHFFFAOYSA-N 0.000 description 1
- 239000001490 (3R)-3,7-dimethylocta-1,6-dien-3-ol Substances 0.000 description 1
- YPZUZOLGGMJZJO-XRGAULLZSA-N (3as,5as,9as,9br)-3a,6,6,9a-tetramethyl-2,4,5,5a,7,8,9,9b-octahydro-1h-benzo[e][1]benzofuran Chemical compound CC([C@@H]1CC2)(C)CCC[C@]1(C)[C@@H]1[C@@]2(C)OCC1 YPZUZOLGGMJZJO-XRGAULLZSA-N 0.000 description 1
- QBLFZIBJXUQVRF-UHFFFAOYSA-N (4-bromophenyl)boronic acid Chemical compound OB(O)C1=CC=C(Br)C=C1 QBLFZIBJXUQVRF-UHFFFAOYSA-N 0.000 description 1
- 125000006274 (C1-C3)alkoxy group Chemical group 0.000 description 1
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 1
- 239000001124 (E)-prop-1-ene-1,2,3-tricarboxylic acid Substances 0.000 description 1
- CDOSHBSSFJOMGT-JTQLQIEISA-N (R)-linalool Natural products CC(C)=CCC[C@@](C)(O)C=C CDOSHBSSFJOMGT-JTQLQIEISA-N 0.000 description 1
- PUNFIBHMZSHFKF-KTKRTIGZSA-N (z)-henicos-12-ene-1,2,3-triol Chemical compound CCCCCCCC\C=C/CCCCCCCCC(O)C(O)CO PUNFIBHMZSHFKF-KTKRTIGZSA-N 0.000 description 1
- MRHPRDYMSACWSG-UHFFFAOYSA-N 1,3-diaminopropan-1-ol Chemical compound NCCC(N)O MRHPRDYMSACWSG-UHFFFAOYSA-N 0.000 description 1
- YPFDHNVEDLHUCE-UHFFFAOYSA-N 1,3-propanediol Substances OCCCO YPFDHNVEDLHUCE-UHFFFAOYSA-N 0.000 description 1
- 229940035437 1,3-propanediol Drugs 0.000 description 1
- WEEGYLXZBRQIMU-UHFFFAOYSA-N 1,8-cineole Natural products C1CC2CCC1(C)OC2(C)C WEEGYLXZBRQIMU-UHFFFAOYSA-N 0.000 description 1
- RIKYKLUZQHPPQI-UHFFFAOYSA-N 1-(1,6,10-trimethylcyclododeca-2,5,9-trien-1-yl)ethanone Chemical compound CC(=O)C1(C)CCC(C)=CCCC(C)=CCC=C1 RIKYKLUZQHPPQI-UHFFFAOYSA-N 0.000 description 1
- FVUGZKDGWGKCFE-UHFFFAOYSA-N 1-(2,3,8,8-tetramethyl-1,3,4,5,6,7-hexahydronaphthalen-2-yl)ethanone Chemical compound CC1(C)CCCC2=C1CC(C(C)=O)(C)C(C)C2 FVUGZKDGWGKCFE-UHFFFAOYSA-N 0.000 description 1
- ZNQOETZUGRUONW-UHFFFAOYSA-N 1-(2-butoxyethoxy)ethanol Chemical compound CCCCOCCOC(C)O ZNQOETZUGRUONW-UHFFFAOYSA-N 0.000 description 1
- BNHGVULTSGNVIX-UHFFFAOYSA-N 1-(2-ethoxyethoxy)ethanol Chemical compound CCOCCOC(C)O BNHGVULTSGNVIX-UHFFFAOYSA-N 0.000 description 1
- VCSBQGJNRXXVBT-UHFFFAOYSA-N 1-(2-methylbutoxy)ethanol Chemical compound CCC(C)COC(C)O VCSBQGJNRXXVBT-UHFFFAOYSA-N 0.000 description 1
- IMRYETFJNLKUHK-SJKOYZFVSA-N 1-[(2r,3r)-1,1,2,6-tetramethyl-3-propan-2-yl-2,3-dihydroinden-5-yl]ethanone Chemical compound CC1=C(C(C)=O)C=C2[C@H](C(C)C)[C@@H](C)C(C)(C)C2=C1 IMRYETFJNLKUHK-SJKOYZFVSA-N 0.000 description 1
- JKEHLQXXZMANPK-UHFFFAOYSA-N 1-[1-(1-propoxypropan-2-yloxy)propan-2-yloxy]propan-2-ol Chemical compound CCCOCC(C)OCC(C)OCC(C)O JKEHLQXXZMANPK-UHFFFAOYSA-N 0.000 description 1
- XDXXBFXNXAGXIA-UHFFFAOYSA-N 1-butan-2-yloxyethanol Chemical compound CCC(C)OC(C)O XDXXBFXNXAGXIA-UHFFFAOYSA-N 0.000 description 1
- QPKFVRWIISEVCW-UHFFFAOYSA-N 1-butane boronic acid Chemical compound CCCCB(O)O QPKFVRWIISEVCW-UHFFFAOYSA-N 0.000 description 1
- RWNUSVWFHDHRCJ-UHFFFAOYSA-N 1-butoxypropan-2-ol Chemical compound CCCCOCC(C)O RWNUSVWFHDHRCJ-UHFFFAOYSA-N 0.000 description 1
- TUPCNCXOMZKFDU-UHFFFAOYSA-N 1-methoxyoctadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCCC(O)OC TUPCNCXOMZKFDU-UHFFFAOYSA-N 0.000 description 1
- ARXJGSRGQADJSQ-UHFFFAOYSA-N 1-methoxypropan-2-ol Chemical compound COCC(C)O ARXJGSRGQADJSQ-UHFFFAOYSA-N 0.000 description 1
- AOPDRZXCEAKHHW-UHFFFAOYSA-N 1-pentoxypentane Chemical compound CCCCCOCCCCC AOPDRZXCEAKHHW-UHFFFAOYSA-N 0.000 description 1
- RECMXJOGNNTEBG-UHFFFAOYSA-N 1-phenylmethoxyethanol Chemical compound CC(O)OCC1=CC=CC=C1 RECMXJOGNNTEBG-UHFFFAOYSA-N 0.000 description 1
- JWDWROXBPTWEJO-UHFFFAOYSA-N 1-phenylmethoxypropan-1-ol Chemical compound CCC(O)OCC1=CC=CC=C1 JWDWROXBPTWEJO-UHFFFAOYSA-N 0.000 description 1
- GQCZPFJGIXHZMB-UHFFFAOYSA-N 1-tert-Butoxy-2-propanol Chemical compound CC(O)COC(C)(C)C GQCZPFJGIXHZMB-UHFFFAOYSA-N 0.000 description 1
- OFHHDSQXFXLTKC-UHFFFAOYSA-N 10-undecenal Chemical compound C=CCCCCCCCCC=O OFHHDSQXFXLTKC-UHFFFAOYSA-N 0.000 description 1
- GRWFGVWFFZKLTI-IUCAKERBSA-N 1S,5S-(-)-alpha-Pinene Natural products CC1=CC[C@@H]2C(C)(C)[C@H]1C2 GRWFGVWFFZKLTI-IUCAKERBSA-N 0.000 description 1
- MZQKADNPDLDGJD-UHFFFAOYSA-N 2,3,4,5-tetrapropylbenzenesulfonic acid Chemical compound CCCC1=CC(S(O)(=O)=O)=C(CCC)C(CCC)=C1CCC MZQKADNPDLDGJD-UHFFFAOYSA-N 0.000 description 1
- VJSWLXWONORKLD-UHFFFAOYSA-N 2,4,6-trihydroxybenzene-1,3,5-trisulfonic acid Chemical compound OC1=C(S(O)(=O)=O)C(O)=C(S(O)(=O)=O)C(O)=C1S(O)(=O)=O VJSWLXWONORKLD-UHFFFAOYSA-N 0.000 description 1
- MPJQXAIKMSKXBI-UHFFFAOYSA-N 2,7,9,14-tetraoxa-1,8-diazabicyclo[6.6.2]hexadecane-3,6,10,13-tetrone Chemical compound C1CN2OC(=O)CCC(=O)ON1OC(=O)CCC(=O)O2 MPJQXAIKMSKXBI-UHFFFAOYSA-N 0.000 description 1
- REMWXNDENMKZDS-UHFFFAOYSA-N 2-(2-hydroxypropoxy)propan-1-ol;propanoic acid Chemical compound CCC(O)=O.CC(O)COC(C)CO REMWXNDENMKZDS-UHFFFAOYSA-N 0.000 description 1
- SBASXUCJHJRPEV-UHFFFAOYSA-N 2-(2-methoxyethoxy)ethanol Chemical compound COCCOCCO SBASXUCJHJRPEV-UHFFFAOYSA-N 0.000 description 1
- PWTNRNHDJZLBCD-UHFFFAOYSA-N 2-(2-pentoxyethoxy)ethanol Chemical compound CCCCCOCCOCCO PWTNRNHDJZLBCD-UHFFFAOYSA-N 0.000 description 1
- FACFHHMQICTXFZ-UHFFFAOYSA-N 2-(2-phenylimidazo[1,2-a]pyridin-3-yl)ethanamine Chemical compound N1=C2C=CC=CN2C(CCN)=C1C1=CC=CC=C1 FACFHHMQICTXFZ-UHFFFAOYSA-N 0.000 description 1
- DJCYDDALXPHSHR-UHFFFAOYSA-N 2-(2-propoxyethoxy)ethanol Chemical compound CCCOCCOCCO DJCYDDALXPHSHR-UHFFFAOYSA-N 0.000 description 1
- JAHNSTQSQJOJLO-UHFFFAOYSA-N 2-(3-fluorophenyl)-1h-imidazole Chemical compound FC1=CC=CC(C=2NC=CN=2)=C1 JAHNSTQSQJOJLO-UHFFFAOYSA-N 0.000 description 1
- DNRJTBAOUJJKDY-UHFFFAOYSA-N 2-Acetyl-3,5,5,6,8,8-hexamethyl-5,6,7,8- tetrahydronaphthalene Chemical compound CC(=O)C1=C(C)C=C2C(C)(C)C(C)CC(C)(C)C2=C1 DNRJTBAOUJJKDY-UHFFFAOYSA-N 0.000 description 1
- RWLALWYNXFYRGW-UHFFFAOYSA-N 2-Ethyl-1,3-hexanediol Chemical compound CCCC(O)C(CC)CO RWLALWYNXFYRGW-UHFFFAOYSA-N 0.000 description 1
- LUZDYPLAQQGJEA-UHFFFAOYSA-N 2-Methoxynaphthalene Chemical compound C1=CC=CC2=CC(OC)=CC=C21 LUZDYPLAQQGJEA-UHFFFAOYSA-N 0.000 description 1
- LBLYYCQCTBFVLH-UHFFFAOYSA-N 2-Methylbenzenesulfonic acid Chemical class CC1=CC=CC=C1S(O)(=O)=O LBLYYCQCTBFVLH-UHFFFAOYSA-N 0.000 description 1
- QDCPNGVVOWVKJG-VAWYXSNFSA-N 2-[(e)-dodec-1-enyl]butanedioic acid Chemical compound CCCCCCCCCC\C=C\C(C(O)=O)CC(O)=O QDCPNGVVOWVKJG-VAWYXSNFSA-N 0.000 description 1
- WFSMVVDJSNMRAR-UHFFFAOYSA-N 2-[2-(2-ethoxyethoxy)ethoxy]ethanol Chemical compound CCOCCOCCOCCO WFSMVVDJSNMRAR-UHFFFAOYSA-N 0.000 description 1
- FMVOPJLFZGSYOS-UHFFFAOYSA-N 2-[2-(2-ethoxypropoxy)propoxy]propan-1-ol Chemical compound CCOC(C)COC(C)COC(C)CO FMVOPJLFZGSYOS-UHFFFAOYSA-N 0.000 description 1
- RGICCULPCWNRAB-UHFFFAOYSA-N 2-[2-(2-hexoxyethoxy)ethoxy]ethanol Chemical compound CCCCCCOCCOCCOCCO RGICCULPCWNRAB-UHFFFAOYSA-N 0.000 description 1
- ORUVRNUPHYNSLY-UHFFFAOYSA-N 2-[2-(2-hexoxypropoxy)propoxy]propan-1-ol Chemical compound CCCCCCOC(C)COC(C)COC(C)CO ORUVRNUPHYNSLY-UHFFFAOYSA-N 0.000 description 1
- LCZVSXRMYJUNFX-UHFFFAOYSA-N 2-[2-(2-hydroxypropoxy)propoxy]propan-1-ol Chemical compound CC(O)COC(C)COC(C)CO LCZVSXRMYJUNFX-UHFFFAOYSA-N 0.000 description 1
- PLLUGRGSPQYBKB-UHFFFAOYSA-N 2-[2-(2-pentoxyethoxy)ethoxy]ethanol Chemical compound CCCCCOCCOCCOCCO PLLUGRGSPQYBKB-UHFFFAOYSA-N 0.000 description 1
- RPIUXDISLQFSAP-UHFFFAOYSA-N 2-[2-(2-pentoxypropoxy)propoxy]propan-1-ol Chemical compound CCCCCOC(C)COC(C)COC(C)CO RPIUXDISLQFSAP-UHFFFAOYSA-N 0.000 description 1
- KCBPVRDDYVJQHA-UHFFFAOYSA-N 2-[2-(2-propoxyethoxy)ethoxy]ethanol Chemical compound CCCOCCOCCOCCO KCBPVRDDYVJQHA-UHFFFAOYSA-N 0.000 description 1
- MXVMODFDROLTFD-UHFFFAOYSA-N 2-[2-[2-(2-butoxyethoxy)ethoxy]ethoxy]ethanol Chemical compound CCCCOCCOCCOCCOCCO MXVMODFDROLTFD-UHFFFAOYSA-N 0.000 description 1
- DUODXKNUDRUVNU-UHFFFAOYSA-N 2-[bis(2-hydroxyethyl)amino]acetic acid Chemical compound OCCN(CCO)CC(O)=O.OCCN(CCO)CC(O)=O DUODXKNUDRUVNU-UHFFFAOYSA-N 0.000 description 1
- WGKZYJXRTIPTCV-UHFFFAOYSA-N 2-butoxypropan-1-ol Chemical compound CCCCOC(C)CO WGKZYJXRTIPTCV-UHFFFAOYSA-N 0.000 description 1
- QDCPNGVVOWVKJG-UHFFFAOYSA-N 2-dodec-1-enylbutanedioic acid Chemical compound CCCCCCCCCCC=CC(C(O)=O)CC(O)=O QDCPNGVVOWVKJG-UHFFFAOYSA-N 0.000 description 1
- TZYRSLHNPKPEFV-UHFFFAOYSA-N 2-ethyl-1-butanol Chemical compound CCC(CC)CO TZYRSLHNPKPEFV-UHFFFAOYSA-N 0.000 description 1
- KHQDWCKZXLWDNM-UHFFFAOYSA-N 2-ethyl-4-(2,2,3-trimethylcyclopent-3-en-1-yl)but-2-en-1-ol Chemical compound CCC(CO)=CCC1CC=C(C)C1(C)C KHQDWCKZXLWDNM-UHFFFAOYSA-N 0.000 description 1
- GCVQVCAAUXFNGJ-UHFFFAOYSA-N 2-hexadecylbutanedioic acid Chemical compound CCCCCCCCCCCCCCCCC(C(O)=O)CC(O)=O GCVQVCAAUXFNGJ-UHFFFAOYSA-N 0.000 description 1
- HXDLWJWIAHWIKI-UHFFFAOYSA-N 2-hydroxyethyl acetate Chemical compound CC(=O)OCCO HXDLWJWIAHWIKI-UHFFFAOYSA-N 0.000 description 1
- 125000000954 2-hydroxyethyl group Chemical group [H]C([*])([H])C([H])([H])O[H] 0.000 description 1
- JWAZRIHNYRIHIV-UHFFFAOYSA-N 2-naphthol Chemical compound C1=CC=CC2=CC(O)=CC=C21 JWAZRIHNYRIHIV-UHFFFAOYSA-N 0.000 description 1
- FZIPCQLKPTZZIM-UHFFFAOYSA-N 2-oxidanylpropane-1,2,3-tricarboxylic acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O.OC(=O)CC(O)(C(O)=O)CC(O)=O FZIPCQLKPTZZIM-UHFFFAOYSA-N 0.000 description 1
- DXPLEDYRQHTBDJ-UHFFFAOYSA-N 2-pentadec-1-enylbutanedioic acid Chemical compound CCCCCCCCCCCCCC=CC(C(O)=O)CC(O)=O DXPLEDYRQHTBDJ-UHFFFAOYSA-N 0.000 description 1
- QVQDALFNSIKMBH-UHFFFAOYSA-N 2-pentoxyethanol Chemical compound CCCCCOCCO QVQDALFNSIKMBH-UHFFFAOYSA-N 0.000 description 1
- YEYKMVJDLWJFOA-UHFFFAOYSA-N 2-propoxyethanol Chemical compound CCCOCCO YEYKMVJDLWJFOA-UHFFFAOYSA-N 0.000 description 1
- MWTDCUHMQIAYDT-UHFFFAOYSA-N 2-tetradecylbutanedioic acid Chemical compound CCCCCCCCCCCCCCC(C(O)=O)CC(O)=O MWTDCUHMQIAYDT-UHFFFAOYSA-N 0.000 description 1
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 1
- CJAZCKUGLFWINJ-UHFFFAOYSA-N 3,4-dihydroxybenzene-1,2-disulfonic acid Chemical class OC1=CC=C(S(O)(=O)=O)C(S(O)(=O)=O)=C1O CJAZCKUGLFWINJ-UHFFFAOYSA-N 0.000 description 1
- BWVZAZPLUTUBKD-HXLKAFCPSA-N 3-[(1r,4r)-2,2,3-trimethyl-5-bicyclo[2.2.1]heptanyl]cyclohexan-1-ol Chemical compound C([C@@]1(C[C@]2(C(C1(C)C)C)[H])[H])C2C1CCCC(O)C1 BWVZAZPLUTUBKD-HXLKAFCPSA-N 0.000 description 1
- QZPSOSOOLFHYRR-UHFFFAOYSA-N 3-hydroxypropyl prop-2-enoate Chemical compound OCCCOC(=O)C=C QZPSOSOOLFHYRR-UHFFFAOYSA-N 0.000 description 1
- NGYMOTOXXHCHOC-UHFFFAOYSA-N 3-methyl-5-(2,2,3-trimethylcyclopent-3-en-1-yl)pentan-2-ol Chemical compound CC(O)C(C)CCC1CC=C(C)C1(C)C NGYMOTOXXHCHOC-UHFFFAOYSA-N 0.000 description 1
- QMWGSOMVXSRXQX-UHFFFAOYSA-N 3-sulfobenzoic acid Chemical class OC(=O)C1=CC=CC(S(O)(=O)=O)=C1 QMWGSOMVXSRXQX-UHFFFAOYSA-N 0.000 description 1
- ZXVONLUNISGICL-UHFFFAOYSA-N 4,6-dinitro-o-cresol Chemical compound CC1=CC([N+]([O-])=O)=CC([N+]([O-])=O)=C1O ZXVONLUNISGICL-UHFFFAOYSA-N 0.000 description 1
- ORMHZBNNECIKOH-UHFFFAOYSA-N 4-(4-hydroxy-4-methylpentyl)cyclohex-3-ene-1-carbaldehyde Chemical compound CC(C)(O)CCCC1=CCC(C=O)CC1 ORMHZBNNECIKOH-UHFFFAOYSA-N 0.000 description 1
- CVLHGLWXLDOELD-UHFFFAOYSA-N 4-(Propan-2-yl)benzenesulfonic acid Chemical class CC(C)C1=CC=C(S(O)(=O)=O)C=C1 CVLHGLWXLDOELD-UHFFFAOYSA-N 0.000 description 1
- IKTHMQYJOWTSJO-UHFFFAOYSA-N 4-Acetyl-6-tert-butyl-1,1-dimethylindane Chemical compound CC(=O)C1=CC(C(C)(C)C)=CC2=C1CCC2(C)C IKTHMQYJOWTSJO-UHFFFAOYSA-N 0.000 description 1
- LWYAUHJRUCQFCX-UHFFFAOYSA-N 4-dodecoxy-4-oxobutanoic acid Chemical compound CCCCCCCCCCCCOC(=O)CCC(O)=O LWYAUHJRUCQFCX-UHFFFAOYSA-N 0.000 description 1
- XDJAHNALPHLVAX-UHFFFAOYSA-N 4-oxo-4-tetradec-2-enoxybutanoic acid Chemical compound CCCCCCCCCCCC=CCOC(=O)CCC(O)=O XDJAHNALPHLVAX-UHFFFAOYSA-N 0.000 description 1
- LSWKXNPXIJXDHU-UHFFFAOYSA-N 4-oxo-4-tetradecoxybutanoic acid Chemical compound CCCCCCCCCCCCCCOC(=O)CCC(O)=O LSWKXNPXIJXDHU-UHFFFAOYSA-N 0.000 description 1
- XSVSPKKXQGNHMD-UHFFFAOYSA-N 5-bromo-3-methyl-1,2-thiazole Chemical compound CC=1C=C(Br)SN=1 XSVSPKKXQGNHMD-UHFFFAOYSA-N 0.000 description 1
- WWJLCYHYLZZXBE-UHFFFAOYSA-N 5-chloro-1,3-dihydroindol-2-one Chemical compound ClC1=CC=C2NC(=O)CC2=C1 WWJLCYHYLZZXBE-UHFFFAOYSA-N 0.000 description 1
- UBPIXMRNQVOZNL-UHFFFAOYSA-N 5-methylundecan-5-ol Chemical compound CCCCCCC(C)(O)CCCC UBPIXMRNQVOZNL-UHFFFAOYSA-N 0.000 description 1
- WZSBYAZGSDMUAR-UHFFFAOYSA-N 6-methyldodecan-6-ol Chemical compound CCCCCCC(C)(O)CCCCC WZSBYAZGSDMUAR-UHFFFAOYSA-N 0.000 description 1
- XUOGBGWENVRPAJ-UHFFFAOYSA-N 7-methyltridecan-7-ol Chemical compound CCCCCCC(C)(O)CCCCCC XUOGBGWENVRPAJ-UHFFFAOYSA-N 0.000 description 1
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 1
- 241000251468 Actinopterygii Species 0.000 description 1
- 241000607534 Aeromonas Species 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- 240000008791 Antiaris toxicaria Species 0.000 description 1
- 240000006439 Aspergillus oryzae Species 0.000 description 1
- 235000002247 Aspergillus oryzae Nutrition 0.000 description 1
- 241000750142 Auricula Species 0.000 description 1
- 244000063299 Bacillus subtilis Species 0.000 description 1
- 108700038091 Beta-glucanases Proteins 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 1
- DTGKSKDOIYIVQL-UHFFFAOYSA-N Borneol Chemical compound C1CC2(C)C(O)CC1C2(C)C DTGKSKDOIYIVQL-UHFFFAOYSA-N 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 241000717739 Boswellia sacra Species 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 1
- 125000002853 C1-C4 hydroxyalkyl group Chemical group 0.000 description 1
- RGGZDOBBQJYSRB-UHFFFAOYSA-N CCCCCCCCCCC=CC(C(O)=O)CC(O)=O.CCCCCCCCCCCCCCCCOC(=O)CCC(O)=O Chemical compound CCCCCCCCCCC=CC(C(O)=O)CC(O)=O.CCCCCCCCCCCCCCCCOC(=O)CCC(O)=O RGGZDOBBQJYSRB-UHFFFAOYSA-N 0.000 description 1
- GAWIXWVDTYZWAW-UHFFFAOYSA-N C[CH]O Chemical group C[CH]O GAWIXWVDTYZWAW-UHFFFAOYSA-N 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- CBOCVOKPQGJKKJ-UHFFFAOYSA-L Calcium formate Chemical compound [Ca+2].[O-]C=O.[O-]C=O CBOCVOKPQGJKKJ-UHFFFAOYSA-L 0.000 description 1
- 235000008499 Canella winterana Nutrition 0.000 description 1
- 244000080208 Canella winterana Species 0.000 description 1
- 240000004160 Capsicum annuum Species 0.000 description 1
- 235000008534 Capsicum annuum var annuum Nutrition 0.000 description 1
- KXDHJXZQYSOELW-UHFFFAOYSA-M Carbamate Chemical compound NC([O-])=O KXDHJXZQYSOELW-UHFFFAOYSA-M 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- 241000218645 Cedrus Species 0.000 description 1
- NPBVQXIMTZKSBA-UHFFFAOYSA-N Chavibetol Natural products COC1=CC=C(CC=C)C=C1O NPBVQXIMTZKSBA-UHFFFAOYSA-N 0.000 description 1
- RKWGIWYCVPQPMF-UHFFFAOYSA-N Chloropropamide Chemical compound CCCNC(=O)NS(=O)(=O)C1=CC=C(Cl)C=C1 RKWGIWYCVPQPMF-UHFFFAOYSA-N 0.000 description 1
- XXAXVMUWHZHZMJ-UHFFFAOYSA-N Chymopapain Chemical compound OC1=CC(S(O)(=O)=O)=CC(S(O)(=O)=O)=C1O XXAXVMUWHZHZMJ-UHFFFAOYSA-N 0.000 description 1
- 108090000317 Chymotrypsin Proteins 0.000 description 1
- 244000223760 Cinnamomum zeylanicum Species 0.000 description 1
- 235000005241 Cistus ladanifer Nutrition 0.000 description 1
- 240000008772 Cistus ladanifer Species 0.000 description 1
- 244000107602 Corymbia citriodora Species 0.000 description 1
- YYLLIJHXUHJATK-UHFFFAOYSA-N Cyclohexyl acetate Chemical compound CC(=O)OC1CCCCC1 YYLLIJHXUHJATK-UHFFFAOYSA-N 0.000 description 1
- WQZGKKKJIJFFOK-QTVWNMPRSA-N D-mannopyranose Chemical compound OC[C@H]1OC(O)[C@@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-QTVWNMPRSA-N 0.000 description 1
- RPNUMPOLZDHAAY-UHFFFAOYSA-N Diethylenetriamine Chemical compound NCCNCCN RPNUMPOLZDHAAY-UHFFFAOYSA-N 0.000 description 1
- LCGLNKUTAGEVQW-UHFFFAOYSA-N Dimethyl ether Chemical compound COC LCGLNKUTAGEVQW-UHFFFAOYSA-N 0.000 description 1
- 241000668724 Dipterocarpus turbinatus Species 0.000 description 1
- 241000237379 Dolabella Species 0.000 description 1
- 229920005682 EO-PO block copolymer Polymers 0.000 description 1
- 240000002943 Elettaria cardamomum Species 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 241000402754 Erythranthe moschata Species 0.000 description 1
- DBVJJBKOTRCVKF-UHFFFAOYSA-N Etidronic acid Chemical compound OP(=O)(O)C(O)(C)P(O)(O)=O DBVJJBKOTRCVKF-UHFFFAOYSA-N 0.000 description 1
- WEEGYLXZBRQIMU-WAAGHKOSSA-N Eucalyptol Chemical compound C1C[C@H]2CC[C@]1(C)OC2(C)C WEEGYLXZBRQIMU-WAAGHKOSSA-N 0.000 description 1
- 235000004722 Eucalyptus citriodora Nutrition 0.000 description 1
- 244000061408 Eugenia caryophyllata Species 0.000 description 1
- 239000005770 Eugenol Substances 0.000 description 1
- 239000004863 Frankincense Substances 0.000 description 1
- 229930091371 Fructose Natural products 0.000 description 1
- 239000005715 Fructose Substances 0.000 description 1
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 235000007297 Gaultheria procumbens Nutrition 0.000 description 1
- 240000001238 Gaultheria procumbens Species 0.000 description 1
- 241000193385 Geobacillus stearothermophilus Species 0.000 description 1
- 239000005792 Geraniol Substances 0.000 description 1
- GLZPCOQZEFWAFX-YFHOEESVSA-N Geraniol Natural products CC(C)=CCC\C(C)=C/CO GLZPCOQZEFWAFX-YFHOEESVSA-N 0.000 description 1
- 102100022624 Glucoamylase Human genes 0.000 description 1
- 108050008938 Glucoamylases Proteins 0.000 description 1
- 102000004366 Glucosidases Human genes 0.000 description 1
- 108010056771 Glucosidases Proteins 0.000 description 1
- AEMRFAOFKBGASW-UHFFFAOYSA-M Glycolate Chemical compound OCC([O-])=O AEMRFAOFKBGASW-UHFFFAOYSA-M 0.000 description 1
- 241000223198 Humicola Species 0.000 description 1
- 241001480714 Humicola insolens Species 0.000 description 1
- 239000004354 Hydroxyethyl cellulose Substances 0.000 description 1
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 description 1
- 229920001479 Hydroxyethyl methyl cellulose Polymers 0.000 description 1
- IMQLKJBTEOYOSI-GPIVLXJGSA-N Inositol-hexakisphosphate Chemical compound OP(O)(=O)O[C@H]1[C@H](OP(O)(O)=O)[C@@H](OP(O)(O)=O)[C@H](OP(O)(O)=O)[C@H](OP(O)(O)=O)[C@@H]1OP(O)(O)=O IMQLKJBTEOYOSI-GPIVLXJGSA-N 0.000 description 1
- KGEKLUUHTZCSIP-UHFFFAOYSA-N Isobornyl acetate Natural products C1CC2(C)C(OC(=O)C)CC1C2(C)C KGEKLUUHTZCSIP-UHFFFAOYSA-N 0.000 description 1
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 1
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 1
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 1
- 239000004869 Labdanum Substances 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- 244000165082 Lavanda vera Species 0.000 description 1
- 235000010663 Lavandula angustifolia Nutrition 0.000 description 1
- 235000010658 Lavandula latifolia Nutrition 0.000 description 1
- 244000178860 Lavandula latifolia Species 0.000 description 1
- 108090000128 Lipoxygenases Proteins 0.000 description 1
- 102000003820 Lipoxygenases Human genes 0.000 description 1
- 235000015511 Liquidambar orientalis Nutrition 0.000 description 1
- PDSNLYSELAIEBU-UHFFFAOYSA-N Longifolene Chemical compound C1CCC(C)(C)C2C3CCC2C1(C)C3=C PDSNLYSELAIEBU-UHFFFAOYSA-N 0.000 description 1
- ZPUKHRHPJKNORC-UHFFFAOYSA-N Longifolene Natural products CC1(C)CCCC2(C)C3CCC1(C3)C2=C ZPUKHRHPJKNORC-UHFFFAOYSA-N 0.000 description 1
- 239000004472 Lysine Substances 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- 229920003091 Methocel™ Polymers 0.000 description 1
- 241000237852 Mollusca Species 0.000 description 1
- SUAUILGSCPYJCS-UHFFFAOYSA-N Musk ambrette Chemical compound COC1=C([N+]([O-])=O)C(C)=C([N+]([O-])=O)C=C1C(C)(C)C SUAUILGSCPYJCS-UHFFFAOYSA-N 0.000 description 1
- 235000009421 Myristica fragrans Nutrition 0.000 description 1
- 244000270834 Myristica fragrans Species 0.000 description 1
- 235000014150 Myroxylon pereirae Nutrition 0.000 description 1
- 244000302151 Myroxylon pereirae Species 0.000 description 1
- LFTLOKWAGJYHHR-UHFFFAOYSA-N N-methylmorpholine N-oxide Chemical compound CN1(=O)CCOCC1 LFTLOKWAGJYHHR-UHFFFAOYSA-N 0.000 description 1
- 150000001204 N-oxides Chemical class 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- KKCBUQHMOMHUOY-UHFFFAOYSA-N Na2O Inorganic materials [O-2].[Na+].[Na+] KKCBUQHMOMHUOY-UHFFFAOYSA-N 0.000 description 1
- GLZPCOQZEFWAFX-JXMROGBWSA-N Nerol Natural products CC(C)=CCC\C(C)=C\CO GLZPCOQZEFWAFX-JXMROGBWSA-N 0.000 description 1
- 101100110261 Neurospora crassa (strain ATCC 24698 / 74-OR23-1A / CBS 708.71 / DSM 1257 / FGSC 987) apg-10 gene Proteins 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- TTZMPOZCBFTTPR-UHFFFAOYSA-N O=P1OCO1 Chemical compound O=P1OCO1 TTZMPOZCBFTTPR-UHFFFAOYSA-N 0.000 description 1
- 239000005642 Oleic acid Substances 0.000 description 1
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- IMQLKJBTEOYOSI-UHFFFAOYSA-N Phytic acid Natural products OP(O)(=O)OC1C(OP(O)(O)=O)C(OP(O)(O)=O)C(OP(O)(O)=O)C(OP(O)(O)=O)C1OP(O)(O)=O IMQLKJBTEOYOSI-UHFFFAOYSA-N 0.000 description 1
- 229920005372 Plexiglas® Polymers 0.000 description 1
- 235000011751 Pogostemon cablin Nutrition 0.000 description 1
- 240000002505 Pogostemon cablin Species 0.000 description 1
- 108010059820 Polygalacturonase Proteins 0.000 description 1
- 108010020346 Polyglutamic Acid Proteins 0.000 description 1
- 235000006894 Primula auricula Nutrition 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-N Propionic acid Chemical class CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 1
- 101710194948 Protein phosphatase PhpP Proteins 0.000 description 1
- UVMRYBDEERADNV-UHFFFAOYSA-N Pseudoeugenol Natural products COC1=CC(C(C)=C)=CC=C1O UVMRYBDEERADNV-UHFFFAOYSA-N 0.000 description 1
- 241000589516 Pseudomonas Species 0.000 description 1
- 241000589540 Pseudomonas fluorescens Species 0.000 description 1
- 241000145542 Pseudomonas marginata Species 0.000 description 1
- 101000968491 Pseudomonas sp. (strain 109) Triacylglycerol lipase Proteins 0.000 description 1
- 241000589614 Pseudomonas stutzeri Species 0.000 description 1
- WTARULDDTDQWMU-UHFFFAOYSA-N Pseudopinene Natural products C1C2C(C)(C)C1CCC2=C WTARULDDTDQWMU-UHFFFAOYSA-N 0.000 description 1
- 108091007187 Reductases Proteins 0.000 description 1
- 235000002911 Salvia sclarea Nutrition 0.000 description 1
- 244000182022 Salvia sclarea Species 0.000 description 1
- 108010022999 Serine Proteases Proteins 0.000 description 1
- 102000012479 Serine Proteases Human genes 0.000 description 1
- UIIMBOGNXHQVGW-DEQYMQKBSA-M Sodium bicarbonate-14C Chemical compound [Na+].O[14C]([O-])=O UIIMBOGNXHQVGW-DEQYMQKBSA-M 0.000 description 1
- DWAQJAXMDSEUJJ-UHFFFAOYSA-M Sodium bisulfite Chemical compound [Na+].OS([O-])=O DWAQJAXMDSEUJJ-UHFFFAOYSA-M 0.000 description 1
- 239000004870 Styrax Substances 0.000 description 1
- 244000028419 Styrax benzoin Species 0.000 description 1
- 235000000126 Styrax benzoin Nutrition 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-N Sulfurous acid Chemical compound OS(O)=O LSNNMFCWUKXFEE-UHFFFAOYSA-N 0.000 description 1
- UZMAPBJVXOGOFT-UHFFFAOYSA-N Syringetin Natural products COC1=C(O)C(OC)=CC(C2=C(C(=O)C3=C(O)C=C(O)C=C3O2)O)=C1 UZMAPBJVXOGOFT-UHFFFAOYSA-N 0.000 description 1
- 235000016639 Syzygium aromaticum Nutrition 0.000 description 1
- 235000012308 Tagetes Nutrition 0.000 description 1
- 241000736851 Tagetes Species 0.000 description 1
- BGRWYDHXPHLNKA-UHFFFAOYSA-N Tetraacetylethylenediamine Chemical compound CC(=O)N(C(C)=O)CCN(C(C)=O)C(C)=O BGRWYDHXPHLNKA-UHFFFAOYSA-N 0.000 description 1
- 229920002359 Tetronic® Polymers 0.000 description 1
- 239000007997 Tricine buffer Substances 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- 229920004890 Triton X-100 Polymers 0.000 description 1
- 229920004892 Triton X-102 Polymers 0.000 description 1
- 229920004929 Triton X-114 Polymers 0.000 description 1
- 229920004897 Triton X-45 Polymers 0.000 description 1
- 241001625808 Trona Species 0.000 description 1
- 108090000631 Trypsin Proteins 0.000 description 1
- 102000004142 Trypsin Human genes 0.000 description 1
- 102000003425 Tyrosinase Human genes 0.000 description 1
- 108060008724 Tyrosinase Proteins 0.000 description 1
- 239000001940 [(1R,4S,6R)-1,7,7-trimethyl-6-bicyclo[2.2.1]heptanyl] acetate Substances 0.000 description 1
- CHBBKFAHPLPHBY-KHPPLWFESA-N [(z)-octadec-9-enyl] 2-(methylamino)acetate Chemical compound CCCCCCCC\C=C/CCCCCCCCOC(=O)CNC CHBBKFAHPLPHBY-KHPPLWFESA-N 0.000 description 1
- ZUBJEHHGZYTRPH-KTKRTIGZSA-N [(z)-octadec-9-enyl] hydrogen sulfate Chemical compound CCCCCCCC\C=C/CCCCCCCCOS(O)(=O)=O ZUBJEHHGZYTRPH-KTKRTIGZSA-N 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000000895 acaricidal effect Effects 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 1
- 230000006518 acidic stress Effects 0.000 description 1
- 229940091181 aconitic acid Drugs 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 230000007059 acute toxicity Effects 0.000 description 1
- 231100000403 acute toxicity Toxicity 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 102000011759 adducin Human genes 0.000 description 1
- 108010076723 adducin Proteins 0.000 description 1
- 235000011037 adipic acid Nutrition 0.000 description 1
- 150000001279 adipic acids Chemical class 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 235000004279 alanine Nutrition 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- 230000005791 algae growth Effects 0.000 description 1
- 150000001334 alicyclic compounds Chemical class 0.000 description 1
- 150000001335 aliphatic alkanes Chemical class 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910052910 alkali metal silicate Inorganic materials 0.000 description 1
- 125000006177 alkyl benzyl group Chemical group 0.000 description 1
- 125000005211 alkyl trimethyl ammonium group Chemical group 0.000 description 1
- HMKKIXGYKWDQSV-KAMYIIQDSA-N alpha-Amylcinnamaldehyde Chemical compound CCCCC\C(C=O)=C\C1=CC=CC=C1 HMKKIXGYKWDQSV-KAMYIIQDSA-N 0.000 description 1
- XCPQUQHBVVXMRQ-UHFFFAOYSA-N alpha-Fenchene Natural products C1CC2C(=C)CC1C2(C)C XCPQUQHBVVXMRQ-UHFFFAOYSA-N 0.000 description 1
- 108010084650 alpha-N-arabinofuranosidase Proteins 0.000 description 1
- MVNCAPSFBDBCGF-UHFFFAOYSA-N alpha-pinene Natural products CC1=CCC23C1CC2C3(C)C MVNCAPSFBDBCGF-UHFFFAOYSA-N 0.000 description 1
- JYIBXUUINYLWLR-UHFFFAOYSA-N aluminum;calcium;potassium;silicon;sodium;trihydrate Chemical compound O.O.O.[Na].[Al].[Si].[K].[Ca] JYIBXUUINYLWLR-UHFFFAOYSA-N 0.000 description 1
- 230000009435 amidation Effects 0.000 description 1
- 238000007112 amidation reaction Methods 0.000 description 1
- CBTVGIZVANVGBH-UHFFFAOYSA-N aminomethyl propanol Chemical compound CC(C)(N)CO CBTVGIZVANVGBH-UHFFFAOYSA-N 0.000 description 1
- 229940047662 ammonium xylenesulfonate Drugs 0.000 description 1
- 230000003625 amylolytic effect Effects 0.000 description 1
- 229940011037 anethole Drugs 0.000 description 1
- 150000008064 anhydrides Chemical group 0.000 description 1
- 229960004543 anhydrous citric acid Drugs 0.000 description 1
- 230000000843 anti-fungal effect Effects 0.000 description 1
- 239000008365 aqueous carrier Substances 0.000 description 1
- 239000007900 aqueous suspension Substances 0.000 description 1
- PYMYPHUHKUWMLA-UHFFFAOYSA-N arabinose Natural products OCC(O)C(O)C(O)C=O PYMYPHUHKUWMLA-UHFFFAOYSA-N 0.000 description 1
- 125000003710 aryl alkyl group Chemical group 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- IHRIVUSMZMVANI-UHFFFAOYSA-N azane;2-methylbenzenesulfonic acid Chemical compound [NH4+].CC1=CC=CC=C1S([O-])(=O)=O IHRIVUSMZMVANI-UHFFFAOYSA-N 0.000 description 1
- JXLHNMVSKXFWAO-UHFFFAOYSA-N azane;7-fluoro-2,1,3-benzoxadiazole-4-sulfonic acid Chemical compound N.OS(=O)(=O)C1=CC=C(F)C2=NON=C12 JXLHNMVSKXFWAO-UHFFFAOYSA-N 0.000 description 1
- IMKUHVCLLRFQBS-UHFFFAOYSA-N azane;phenylmethanesulfonic acid Chemical class [NH4+].[O-]S(=O)(=O)CC1=CC=CC=C1 IMKUHVCLLRFQBS-UHFFFAOYSA-N 0.000 description 1
- 235000001053 badasse Nutrition 0.000 description 1
- 239000010619 basil oil Substances 0.000 description 1
- 229940018006 basil oil Drugs 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- SRSXLGNVWSONIS-UHFFFAOYSA-N benzenesulfonic acid Chemical class OS(=O)(=O)C1=CC=CC=C1 SRSXLGNVWSONIS-UHFFFAOYSA-N 0.000 description 1
- 229940050390 benzoate Drugs 0.000 description 1
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 1
- ISAOCJYIOMOJEB-UHFFFAOYSA-N benzoin Chemical compound C=1C=CC=CC=1C(O)C(=O)C1=CC=CC=C1 ISAOCJYIOMOJEB-UHFFFAOYSA-N 0.000 description 1
- RWCCWEUUXYIKHB-UHFFFAOYSA-N benzophenone Chemical compound C=1C=CC=CC=1C(=O)C1=CC=CC=C1 RWCCWEUUXYIKHB-UHFFFAOYSA-N 0.000 description 1
- 239000012965 benzophenone Substances 0.000 description 1
- 229940007550 benzyl acetate Drugs 0.000 description 1
- SRBFZHDQGSBBOR-UHFFFAOYSA-N beta-D-Pyranose-Lyxose Natural products OC1COC(O)C(O)C1O SRBFZHDQGSBBOR-UHFFFAOYSA-N 0.000 description 1
- 229930006722 beta-pinene Natural products 0.000 description 1
- 239000003876 biosurfactant Substances 0.000 description 1
- 230000001851 biosynthetic effect Effects 0.000 description 1
- 229910021538 borax Inorganic materials 0.000 description 1
- 125000005619 boric acid group Chemical class 0.000 description 1
- 150000001638 boron Chemical class 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- ZADPBFCGQRWHPN-UHFFFAOYSA-N boronic acid Chemical compound OBO ZADPBFCGQRWHPN-UHFFFAOYSA-N 0.000 description 1
- 239000008366 buffered solution Substances 0.000 description 1
- GHWVXCQZPNWFRO-UHFFFAOYSA-N butane-2,3-diamine Chemical compound CC(N)C(C)N GHWVXCQZPNWFRO-UHFFFAOYSA-N 0.000 description 1
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 1
- CMFFZBGFNICZIS-UHFFFAOYSA-N butanedioic acid;2,3-dihydroxybutanedioic acid Chemical compound OC(=O)CCC(O)=O.OC(=O)CCC(O)=O.OC(=O)C(O)C(O)C(O)=O CMFFZBGFNICZIS-UHFFFAOYSA-N 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- VSGNNIFQASZAOI-UHFFFAOYSA-L calcium acetate Chemical compound [Ca+2].CC([O-])=O.CC([O-])=O VSGNNIFQASZAOI-UHFFFAOYSA-L 0.000 description 1
- 239000001639 calcium acetate Substances 0.000 description 1
- 235000011092 calcium acetate Nutrition 0.000 description 1
- 229960005147 calcium acetate Drugs 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 229960002713 calcium chloride Drugs 0.000 description 1
- 235000011148 calcium chloride Nutrition 0.000 description 1
- 235000019255 calcium formate Nutrition 0.000 description 1
- 239000004281 calcium formate Substances 0.000 description 1
- 229940044172 calcium formate Drugs 0.000 description 1
- 229940095643 calcium hydroxide Drugs 0.000 description 1
- OLOZVPHKXALCRI-UHFFFAOYSA-L calcium malate Chemical compound [Ca+2].[O-]C(=O)C(O)CC([O-])=O OLOZVPHKXALCRI-UHFFFAOYSA-L 0.000 description 1
- 239000001362 calcium malate Substances 0.000 description 1
- 229940016114 calcium malate Drugs 0.000 description 1
- 235000011038 calcium malates Nutrition 0.000 description 1
- HDRTWMBOUSPQON-ODZAUARKSA-L calcium;(z)-but-2-enedioate Chemical compound [Ca+2].[O-]C(=O)\C=C/C([O-])=O HDRTWMBOUSPQON-ODZAUARKSA-L 0.000 description 1
- RCPKXZJUDJSTTM-UHFFFAOYSA-L calcium;2,2,2-trifluoroacetate Chemical compound [Ca+2].[O-]C(=O)C(F)(F)F.[O-]C(=O)C(F)(F)F RCPKXZJUDJSTTM-UHFFFAOYSA-L 0.000 description 1
- DSSYKIVIOFKYAU-UHFFFAOYSA-N camphor Chemical compound C1CC2(C)C(=O)CC1C2(C)C DSSYKIVIOFKYAU-UHFFFAOYSA-N 0.000 description 1
- 239000010624 camphor oil Substances 0.000 description 1
- 229960000411 camphor oil Drugs 0.000 description 1
- 239000001772 cananga odorata hook. f. and thomas. oil Substances 0.000 description 1
- 108010089934 carbohydrase Proteins 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 235000005300 cardamomo Nutrition 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 150000001767 cationic compounds Chemical class 0.000 description 1
- 239000010627 cedar oil Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000013522 chelant Substances 0.000 description 1
- 229960002376 chymotrypsin Drugs 0.000 description 1
- 229960005233 cineole Drugs 0.000 description 1
- 235000017803 cinnamon Nutrition 0.000 description 1
- 229940017545 cinnamon bark Drugs 0.000 description 1
- GTZCVFVGUGFEME-IWQZZHSRSA-N cis-aconitic acid Chemical compound OC(=O)C\C(C(O)=O)=C\C(O)=O GTZCVFVGUGFEME-IWQZZHSRSA-N 0.000 description 1
- HNEGQIOMVPPMNR-IHWYPQMZSA-N citraconic acid Chemical compound OC(=O)C(/C)=C\C(O)=O HNEGQIOMVPPMNR-IHWYPQMZSA-N 0.000 description 1
- 229940018557 citraconic acid Drugs 0.000 description 1
- 229940001468 citrate Drugs 0.000 description 1
- 239000010632 citronella oil Substances 0.000 description 1
- 239000001279 citrus aurantifolia swingle expressed oil Substances 0.000 description 1
- 239000002734 clay mineral Substances 0.000 description 1
- 229910001603 clinoptilolite Inorganic materials 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000010411 cooking Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000012864 cross contamination Methods 0.000 description 1
- 230000037029 cross reaction Effects 0.000 description 1
- 229940019836 cyclamen aldehyde Drugs 0.000 description 1
- 150000001923 cyclic compounds Chemical class 0.000 description 1
- SSJXIUAHEKJCMH-UHFFFAOYSA-N cyclohexane-1,2-diamine Chemical compound NC1CCCCC1N SSJXIUAHEKJCMH-UHFFFAOYSA-N 0.000 description 1
- GEQHKFFSPGPGLN-UHFFFAOYSA-N cyclohexane-1,3-diamine Chemical compound NC1CCCC(N)C1 GEQHKFFSPGPGLN-UHFFFAOYSA-N 0.000 description 1
- KVFDZFBHBWTVID-UHFFFAOYSA-N cyclohexane-carboxaldehyde Natural products O=CC1CCCCC1 KVFDZFBHBWTVID-UHFFFAOYSA-N 0.000 description 1
- 239000001941 cymbopogon citratus dc and cymbopogon flexuosus oil Substances 0.000 description 1
- TUTWLYPCGCUWQI-UHFFFAOYSA-N decanamide Chemical compound CCCCCCCCCC(N)=O TUTWLYPCGCUWQI-UHFFFAOYSA-N 0.000 description 1
- 125000002704 decyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 230000006735 deficit Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000001877 deodorizing effect Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 239000008121 dextrose Substances 0.000 description 1
- VNWKDIUSXQCPGN-UHFFFAOYSA-J dicalcium tetrachloride Chemical compound [Cl-].[Cl-].[Cl-].[Cl-].[Ca+2].[Ca+2] VNWKDIUSXQCPGN-UHFFFAOYSA-J 0.000 description 1
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 1
- 229940028356 diethylene glycol monobutyl ether Drugs 0.000 description 1
- 229940075557 diethylene glycol monoethyl ether Drugs 0.000 description 1
- 150000004683 dihydrates Chemical class 0.000 description 1
- KCFYHBSOLOXZIF-UHFFFAOYSA-N dihydrochrysin Natural products COC1=C(O)C(OC)=CC(C2OC3=CC(O)=CC(O)=C3C(=O)C2)=C1 KCFYHBSOLOXZIF-UHFFFAOYSA-N 0.000 description 1
- KZNICNPSHKQLFF-UHFFFAOYSA-N dihydromaleimide Natural products O=C1CCC(=O)N1 KZNICNPSHKQLFF-UHFFFAOYSA-N 0.000 description 1
- OJJLEPPNZOMRPF-UHFFFAOYSA-J dimagnesium;tetrachloride Chemical compound Cl[Mg]Cl.Cl[Mg]Cl OJJLEPPNZOMRPF-UHFFFAOYSA-J 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 235000011180 diphosphates Nutrition 0.000 description 1
- POLCUAVZOMRGSN-UHFFFAOYSA-N dipropyl ether Chemical compound CCCOCCC POLCUAVZOMRGSN-UHFFFAOYSA-N 0.000 description 1
- SZXQTJUDPRGNJN-UHFFFAOYSA-N dipropylene glycol Chemical compound OCCCOCCCO SZXQTJUDPRGNJN-UHFFFAOYSA-N 0.000 description 1
- PXEDJBXQKAGXNJ-QTNFYWBSSA-L disodium L-glutamate Chemical compound [Na+].[Na+].[O-]C(=O)[C@@H](N)CCC([O-])=O PXEDJBXQKAGXNJ-QTNFYWBSSA-L 0.000 description 1
- 229940069096 dodecene Drugs 0.000 description 1
- QKHKGSULBQVNMO-UHFFFAOYSA-N dodecyl(dimethyl)azanium;hexanoate Chemical compound CCCCCC([O-])=O.CCCCCCCCCCCC[NH+](C)C QKHKGSULBQVNMO-UHFFFAOYSA-N 0.000 description 1
- DUYCTCQXNHFCSJ-UHFFFAOYSA-N dtpmp Chemical compound OP(=O)(O)CN(CP(O)(O)=O)CCN(CP(O)(=O)O)CCN(CP(O)(O)=O)CP(O)(O)=O DUYCTCQXNHFCSJ-UHFFFAOYSA-N 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000009144 enzymatic modification Effects 0.000 description 1
- OCLXJTCGWSSVOE-UHFFFAOYSA-N ethanol etoh Chemical compound CCO.CCO OCLXJTCGWSSVOE-UHFFFAOYSA-N 0.000 description 1
- 125000001033 ether group Chemical group 0.000 description 1
- UZABCLFSICXBCM-UHFFFAOYSA-N ethoxy hydrogen sulfate Chemical class CCOOS(O)(=O)=O UZABCLFSICXBCM-UHFFFAOYSA-N 0.000 description 1
- 229940073505 ethyl vanillin Drugs 0.000 description 1
- 229940093476 ethylene glycol Drugs 0.000 description 1
- 125000000816 ethylene group Chemical group [H]C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 229940071087 ethylenediamine disuccinate Drugs 0.000 description 1
- 239000010642 eucalyptus oil Substances 0.000 description 1
- 229940044949 eucalyptus oil Drugs 0.000 description 1
- 239000001902 eugenia caryophyllata l. bud oil Substances 0.000 description 1
- 229960002217 eugenol Drugs 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 108010093305 exopolygalacturonase Proteins 0.000 description 1
- 239000002979 fabric softener Substances 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000010643 fennel seed oil Substances 0.000 description 1
- 229910001657 ferrierite group Inorganic materials 0.000 description 1
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical compound FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 125000002485 formyl group Chemical group [H]C(*)=O 0.000 description 1
- 150000002232 fructoses Chemical class 0.000 description 1
- 229930182479 fructoside Natural products 0.000 description 1
- 150000008132 fructosides Chemical class 0.000 description 1
- 239000001530 fumaric acid Substances 0.000 description 1
- 125000002519 galactosyl group Chemical group C1([C@H](O)[C@@H](O)[C@@H](O)[C@H](O1)CO)* 0.000 description 1
- 150000002256 galaktoses Chemical class 0.000 description 1
- LCWMKIHBLJLORW-UHFFFAOYSA-N gamma-carene Natural products C1CC(=C)CC2C(C)(C)C21 LCWMKIHBLJLORW-UHFFFAOYSA-N 0.000 description 1
- IFYYFLINQYPWGJ-UHFFFAOYSA-N gamma-decalactone Chemical compound CCCCCCC1CCC(=O)O1 IFYYFLINQYPWGJ-UHFFFAOYSA-N 0.000 description 1
- 229920000370 gamma-poly(glutamate) polymer Polymers 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000005227 gel permeation chromatography Methods 0.000 description 1
- 229940113087 geraniol Drugs 0.000 description 1
- 239000010648 geranium oil Substances 0.000 description 1
- 235000019717 geranium oil Nutrition 0.000 description 1
- 230000002070 germicidal effect Effects 0.000 description 1
- 239000010649 ginger oil Substances 0.000 description 1
- 239000011491 glass wool Substances 0.000 description 1
- 150000002304 glucoses Chemical class 0.000 description 1
- 125000002791 glucosyl group Chemical group C1([C@H](O)[C@@H](O)[C@H](O)[C@H](O1)CO)* 0.000 description 1
- 150000002311 glutaric acids Chemical class 0.000 description 1
- 229960005150 glycerol Drugs 0.000 description 1
- 239000010651 grapefruit oil Substances 0.000 description 1
- 230000009036 growth inhibition Effects 0.000 description 1
- 239000001927 guaiacum sanctum l. gum oil Substances 0.000 description 1
- 239000003722 gum benzoin Substances 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 150000005826 halohydrocarbons Chemical class 0.000 description 1
- 239000008233 hard water Substances 0.000 description 1
- 108010002430 hemicellulase Proteins 0.000 description 1
- 210000000514 hepatopancreas Anatomy 0.000 description 1
- 125000005842 heteroatom Chemical group 0.000 description 1
- 125000000623 heterocyclic group Chemical group 0.000 description 1
- 229940051250 hexylene glycol Drugs 0.000 description 1
- 235000019534 high fructose corn syrup Nutrition 0.000 description 1
- 150000004677 hydrates Chemical class 0.000 description 1
- 230000036571 hydration Effects 0.000 description 1
- 238000006703 hydration reaction Methods 0.000 description 1
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 1
- 238000005984 hydrogenation reaction Methods 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-M hydrogensulfate Chemical compound OS([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-M 0.000 description 1
- 230000003165 hydrotropic effect Effects 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 229940071826 hydroxyethyl cellulose Drugs 0.000 description 1
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 description 1
- 230000000415 inactivating effect Effects 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 150000002499 ionone derivatives Chemical class 0.000 description 1
- 239000002085 irritant Substances 0.000 description 1
- 231100000021 irritant Toxicity 0.000 description 1
- 229940045996 isethionic acid Drugs 0.000 description 1
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 1
- 239000001851 juniperus communis l. berry oil Substances 0.000 description 1
- 229940001447 lactate Drugs 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 238000004900 laundering Methods 0.000 description 1
- 229940116335 lauramide Drugs 0.000 description 1
- 244000056931 lavandin Species 0.000 description 1
- 235000009606 lavandin Nutrition 0.000 description 1
- 239000000171 lavandula angustifolia l. flower oil Substances 0.000 description 1
- 239000001102 lavandula vera Substances 0.000 description 1
- 235000018219 lavender Nutrition 0.000 description 1
- 125000001909 leucine group Chemical group [H]N(*)C(C(*)=O)C([H])([H])C(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 108010062085 ligninase Proteins 0.000 description 1
- 229930007744 linalool Natural products 0.000 description 1
- UWKAYLJWKGQEPM-UHFFFAOYSA-N linalool acetate Natural products CC(C)=CCCC(C)(C=C)OC(C)=O UWKAYLJWKGQEPM-UHFFFAOYSA-N 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 229910003002 lithium salt Inorganic materials 0.000 description 1
- 159000000002 lithium salts Chemical class 0.000 description 1
- 239000001289 litsea cubeba fruit oil Substances 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 1
- 239000001095 magnesium carbonate Substances 0.000 description 1
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 1
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 1
- 239000000347 magnesium hydroxide Substances 0.000 description 1
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 1
- HCWCAKKEBCNQJP-UHFFFAOYSA-N magnesium orthosilicate Chemical compound [Mg+2].[Mg+2].[O-][Si]([O-])([O-])[O-] HCWCAKKEBCNQJP-UHFFFAOYSA-N 0.000 description 1
- 235000019792 magnesium silicate Nutrition 0.000 description 1
- 229910052919 magnesium silicate Inorganic materials 0.000 description 1
- 235000012243 magnesium silicates Nutrition 0.000 description 1
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 1
- 235000019341 magnesium sulphate Nutrition 0.000 description 1
- LZFCBBSYZJPPIV-UHFFFAOYSA-M magnesium;hexane;bromide Chemical compound [Mg+2].[Br-].CCCCC[CH2-] LZFCBBSYZJPPIV-UHFFFAOYSA-M 0.000 description 1
- 229940049920 malate Drugs 0.000 description 1
- BJEPYKJPYRNKOW-UHFFFAOYSA-N malic acid Chemical compound OC(=O)C(O)CC(O)=O BJEPYKJPYRNKOW-UHFFFAOYSA-N 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 125000002960 margaryl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 239000001525 mentha piperita l. herb oil Substances 0.000 description 1
- 239000001683 mentha spicata herb oil Substances 0.000 description 1
- NNCAWEWCFVZOGF-UHFFFAOYSA-N mepiquat Chemical compound C[N+]1(C)CCCCC1 NNCAWEWCFVZOGF-UHFFFAOYSA-N 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- HNEGQIOMVPPMNR-NSCUHMNNSA-N mesaconic acid Chemical compound OC(=O)C(/C)=C/C(O)=O HNEGQIOMVPPMNR-NSCUHMNNSA-N 0.000 description 1
- 108010003855 mesentericopeptidase Proteins 0.000 description 1
- 125000005341 metaphosphate group Chemical group 0.000 description 1
- 238000005649 metathesis reaction Methods 0.000 description 1
- 229930182817 methionine Natural products 0.000 description 1
- 229940102398 methyl anthranilate Drugs 0.000 description 1
- 229960001047 methyl salicylate Drugs 0.000 description 1
- LVHBHZANLOWSRM-UHFFFAOYSA-N methylenebutanedioic acid Natural products OC(=O)CC(=C)C(O)=O LVHBHZANLOWSRM-UHFFFAOYSA-N 0.000 description 1
- HNEGQIOMVPPMNR-UHFFFAOYSA-N methylfumaric acid Natural products OC(=O)C(C)=CC(O)=O HNEGQIOMVPPMNR-UHFFFAOYSA-N 0.000 description 1
- 239000012229 microporous material Substances 0.000 description 1
- 125000000896 monocarboxylic acid group Chemical group 0.000 description 1
- 150000002763 monocarboxylic acids Chemical class 0.000 description 1
- CQDGTJPVBWZJAZ-UHFFFAOYSA-N monoethyl carbonate Chemical class CCOC(O)=O CQDGTJPVBWZJAZ-UHFFFAOYSA-N 0.000 description 1
- 150000002772 monosaccharides Chemical class 0.000 description 1
- 229940067137 musk ketone Drugs 0.000 description 1
- XMWRWTSZNLOZFN-UHFFFAOYSA-N musk xylene Chemical compound CC1=C(N(=O)=O)C(C)=C(N(=O)=O)C(C(C)(C)C)=C1N(=O)=O XMWRWTSZNLOZFN-UHFFFAOYSA-N 0.000 description 1
- QEALYLRSRQDCRA-UHFFFAOYSA-N myristamide Chemical compound CCCCCCCCCCCCCC(N)=O QEALYLRSRQDCRA-UHFFFAOYSA-N 0.000 description 1
- 239000001627 myristica fragrans houtt. fruit oil Substances 0.000 description 1
- 125000001421 myristyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000001157 myroxylon pereirae klotzsch resin Substances 0.000 description 1
- HESSGHHCXGBPAJ-UHFFFAOYSA-N n-[3,5,6-trihydroxy-1-oxo-4-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyhexan-2-yl]acetamide Chemical compound CC(=O)NC(C=O)C(O)C(C(O)CO)OC1OC(CO)C(O)C(O)C1O HESSGHHCXGBPAJ-UHFFFAOYSA-N 0.000 description 1
- 229940094933 n-dodecane Drugs 0.000 description 1
- DVEKCXOJTLDBFE-UHFFFAOYSA-N n-dodecyl-n,n-dimethylglycinate Chemical compound CCCCCCCCCCCC[N+](C)(C)CC([O-])=O DVEKCXOJTLDBFE-UHFFFAOYSA-N 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- VXAPDXVBDZRZKP-UHFFFAOYSA-N nitric acid phosphoric acid Chemical compound O[N+]([O-])=O.OP(O)(O)=O VXAPDXVBDZRZKP-UHFFFAOYSA-N 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- 229910017464 nitrogen compound Inorganic materials 0.000 description 1
- 150000002830 nitrogen compounds Chemical class 0.000 description 1
- 125000001400 nonyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000001702 nutmeg Substances 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- UHGIMQLJWRAPLT-UHFFFAOYSA-N octadecyl dihydrogen phosphate Chemical compound CCCCCCCCCCCCCCCCCCOP(O)(O)=O UHGIMQLJWRAPLT-UHFFFAOYSA-N 0.000 description 1
- 125000002347 octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000004533 oil dispersion Substances 0.000 description 1
- FATBGEAMYMYZAF-KTKRTIGZSA-N oleamide Chemical compound CCCCCCCC\C=C/CCCCCCCC(N)=O FATBGEAMYMYZAF-KTKRTIGZSA-N 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- FATBGEAMYMYZAF-UHFFFAOYSA-N oleicacidamide-heptaglycolether Natural products CCCCCCCCC=CCCCCCCCC(N)=O FATBGEAMYMYZAF-UHFFFAOYSA-N 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- MPQXHAGKBWFSNV-UHFFFAOYSA-N oxidophosphanium Chemical class [PH3]=O MPQXHAGKBWFSNV-UHFFFAOYSA-N 0.000 description 1
- JCGNDDUYTRNOFT-UHFFFAOYSA-N oxolane-2,4-dione Chemical compound O=C1COC(=O)C1 JCGNDDUYTRNOFT-UHFFFAOYSA-N 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- RUVINXPYWBROJD-UHFFFAOYSA-N para-methoxyphenyl Natural products COC1=CC=C(C=CC)C=C1 RUVINXPYWBROJD-UHFFFAOYSA-N 0.000 description 1
- 125000002958 pentadecyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- HWGNBUXHKFFFIH-UHFFFAOYSA-I pentasodium;[oxido(phosphonatooxy)phosphoryl] phosphate Chemical compound [Na+].[Na+].[Na+].[Na+].[Na+].[O-]P([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O HWGNBUXHKFFFIH-UHFFFAOYSA-I 0.000 description 1
- 229960003330 pentetic acid Drugs 0.000 description 1
- 235000019477 peppermint oil Nutrition 0.000 description 1
- 238000001935 peptisation Methods 0.000 description 1
- 229940100595 phenylacetaldehyde Drugs 0.000 description 1
- 125000000843 phenylene group Chemical group C1(=C(C=CC=C1)*)* 0.000 description 1
- UEZVMMHDMIWARA-UHFFFAOYSA-M phosphonate Chemical compound [O-]P(=O)=O UEZVMMHDMIWARA-UHFFFAOYSA-M 0.000 description 1
- PTMHPRAIXMAOOB-UHFFFAOYSA-N phosphoramidic acid Chemical class NP(O)(O)=O PTMHPRAIXMAOOB-UHFFFAOYSA-N 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 150000003014 phosphoric acid esters Chemical class 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229940068041 phytic acid Drugs 0.000 description 1
- 235000002949 phytic acid Nutrition 0.000 description 1
- 239000000467 phytic acid Substances 0.000 description 1
- 239000001622 pimenta officinalis fruit oil Substances 0.000 description 1
- 239000010665 pine oil Substances 0.000 description 1
- 239000001631 piper nigrum l. fruit oil black Substances 0.000 description 1
- 239000001894 piper nigrum l. oleoresin black Substances 0.000 description 1
- 229920001983 poloxamer Polymers 0.000 description 1
- 239000004584 polyacrylic acid Substances 0.000 description 1
- 229920001748 polybutylene Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000151 polyglycol Polymers 0.000 description 1
- 239000010695 polyglycol Substances 0.000 description 1
- 229920001444 polymaleic acid Polymers 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 150000004804 polysaccharides Polymers 0.000 description 1
- 229920000166 polytrimethylene carbonate Polymers 0.000 description 1
- XAEFZNCEHLXOMS-UHFFFAOYSA-M potassium benzoate Chemical group [K+].[O-]C(=O)C1=CC=CC=C1 XAEFZNCEHLXOMS-UHFFFAOYSA-M 0.000 description 1
- 159000000001 potassium salts Chemical class 0.000 description 1
- 238000003918 potentiometric titration Methods 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 235000019419 proteases Nutrition 0.000 description 1
- 150000003856 quaternary ammonium compounds Chemical class 0.000 description 1
- 150000004023 quaternary phosphonium compounds Chemical class 0.000 description 1
- 239000002516 radical scavenger Substances 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 238000006479 redox reaction Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000006722 reduction reaction Methods 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000010670 sage oil Substances 0.000 description 1
- YGSDEFSMJLZEOE-UHFFFAOYSA-M salicylate Chemical compound OC1=CC=CC=C1C([O-])=O YGSDEFSMJLZEOE-UHFFFAOYSA-M 0.000 description 1
- 229960001860 salicylate Drugs 0.000 description 1
- 239000011833 salt mixture Substances 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 239000010672 sassafras oil Substances 0.000 description 1
- 230000002000 scavenging effect Effects 0.000 description 1
- 238000009991 scouring Methods 0.000 description 1
- 150000003335 secondary amines Chemical class 0.000 description 1
- 229940071207 sesquicarbonate Drugs 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 description 1
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 description 1
- FQENQNTWSFEDLI-UHFFFAOYSA-J sodium diphosphate Chemical compound [Na+].[Na+].[Na+].[Na+].[O-]P([O-])(=O)OP([O-])([O-])=O FQENQNTWSFEDLI-UHFFFAOYSA-J 0.000 description 1
- LNDCCSBWZAQAAW-UHFFFAOYSA-M sodium hydrogen sulfate sulfuric acid Chemical compound [Na+].OS(O)(=O)=O.OS([O-])(=O)=O LNDCCSBWZAQAAW-UHFFFAOYSA-M 0.000 description 1
- 235000010267 sodium hydrogen sulphite Nutrition 0.000 description 1
- 239000012418 sodium perborate tetrahydrate Substances 0.000 description 1
- 235000019830 sodium polyphosphate Nutrition 0.000 description 1
- 229940048086 sodium pyrophosphate Drugs 0.000 description 1
- 239000004328 sodium tetraborate Substances 0.000 description 1
- 235000010339 sodium tetraborate Nutrition 0.000 description 1
- 229940048842 sodium xylenesulfonate Drugs 0.000 description 1
- IBDSNZLUHYKHQP-UHFFFAOYSA-N sodium;3-oxidodioxaborirane;tetrahydrate Chemical compound O.O.O.O.[Na+].[O-]B1OO1 IBDSNZLUHYKHQP-UHFFFAOYSA-N 0.000 description 1
- KVCGISUBCHHTDD-UHFFFAOYSA-M sodium;4-methylbenzenesulfonate Chemical compound [Na+].CC1=CC=C(S([O-])(=O)=O)C=C1 KVCGISUBCHHTDD-UHFFFAOYSA-M 0.000 description 1
- WGRULTCAYDOGQK-UHFFFAOYSA-M sodium;sodium;hydroxide Chemical compound [OH-].[Na].[Na+] WGRULTCAYDOGQK-UHFFFAOYSA-M 0.000 description 1
- 239000008234 soft water Substances 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 230000003381 solubilizing effect Effects 0.000 description 1
- 235000012424 soybean oil Nutrition 0.000 description 1
- 239000003549 soybean oil Substances 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 235000019721 spearmint oil Nutrition 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 229940037312 stearamide Drugs 0.000 description 1
- 125000004079 stearyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000001384 succinic acid Substances 0.000 description 1
- 150000003444 succinic acids Chemical class 0.000 description 1
- 229960002317 succinimide Drugs 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 230000001180 sulfating effect Effects 0.000 description 1
- DIORMHZUUKOISG-UHFFFAOYSA-N sulfoformic acid Chemical compound OC(=O)S(O)(=O)=O DIORMHZUUKOISG-UHFFFAOYSA-N 0.000 description 1
- 150000008054 sulfonate salts Chemical class 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 230000000153 supplemental effect Effects 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 239000000375 suspending agent Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 239000000271 synthetic detergent Substances 0.000 description 1
- 239000003784 tall oil Substances 0.000 description 1
- 108010038851 tannase Proteins 0.000 description 1
- 239000010677 tea tree oil Substances 0.000 description 1
- 229940111630 tea tree oil Drugs 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 150000003509 tertiary alcohols Chemical class 0.000 description 1
- 150000003512 tertiary amines Chemical class 0.000 description 1
- 150000004026 tertiary sulfonium compounds Chemical class 0.000 description 1
- FAGUFWYHJQFNRV-UHFFFAOYSA-N tetraethylenepentamine Chemical group NCCNCCNCCNCCN FAGUFWYHJQFNRV-UHFFFAOYSA-N 0.000 description 1
- 235000019818 tetrasodium diphosphate Nutrition 0.000 description 1
- 239000001577 tetrasodium phosphonato phosphate Substances 0.000 description 1
- 239000004753 textile Substances 0.000 description 1
- 230000009974 thixotropic effect Effects 0.000 description 1
- LBLYYCQCTBFVLH-UHFFFAOYSA-M toluenesulfonate group Chemical class C=1(C(=CC=CC1)S(=O)(=O)[O-])C LBLYYCQCTBFVLH-UHFFFAOYSA-M 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- GTZCVFVGUGFEME-UHFFFAOYSA-N trans-aconitic acid Natural products OC(=O)CC(C(O)=O)=CC(O)=O GTZCVFVGUGFEME-UHFFFAOYSA-N 0.000 description 1
- 125000002889 tridecyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 150000005691 triesters Chemical class 0.000 description 1
- ZIBGPFATKBEMQZ-UHFFFAOYSA-N triethylene glycol Chemical compound OCCOCCOCCO ZIBGPFATKBEMQZ-UHFFFAOYSA-N 0.000 description 1
- JLGLQAWTXXGVEM-UHFFFAOYSA-N triethylene glycol monomethyl ether Chemical compound COCCOCCOCCO JLGLQAWTXXGVEM-UHFFFAOYSA-N 0.000 description 1
- NTKBNCABAMQDIG-UHFFFAOYSA-N trimethylene glycol-monobutyl ether Natural products CCCCOCCCO NTKBNCABAMQDIG-UHFFFAOYSA-N 0.000 description 1
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 1
- JXVGWAIUCIHLLC-UHFFFAOYSA-K trisodium 2-hydroxypropane-1,2,3-tricarboxylate 2-hydroxypropane-1,2,3-tricarboxylic acid dihydrate Chemical compound O.O.[Na+].[Na+].[Na+].OC(=O)CC(O)(CC(O)=O)C(O)=O.OC(CC([O-])=O)(CC([O-])=O)C([O-])=O JXVGWAIUCIHLLC-UHFFFAOYSA-K 0.000 description 1
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 description 1
- 239000012588 trypsin Substances 0.000 description 1
- RSJKGSCJYJTIGS-UHFFFAOYSA-N undecane Chemical compound CCCCCCCCCCC RSJKGSCJYJTIGS-UHFFFAOYSA-N 0.000 description 1
- 150000004670 unsaturated fatty acids Chemical class 0.000 description 1
- 235000021122 unsaturated fatty acids Nutrition 0.000 description 1
- 235000012141 vanillin Nutrition 0.000 description 1
- FGQOOHJZONJGDT-UHFFFAOYSA-N vanillin Natural products COC1=CC(O)=CC(C=O)=C1 FGQOOHJZONJGDT-UHFFFAOYSA-N 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
- 230000035899 viability Effects 0.000 description 1
- 230000002087 whitening effect Effects 0.000 description 1
- 229910009112 xH2O Inorganic materials 0.000 description 1
- ZFNVDHOSLNRHNN-UHFFFAOYSA-N xi-3-(4-Isopropylphenyl)-2-methylpropanal Chemical compound O=CC(C)CC1=CC=C(C(C)C)C=C1 ZFNVDHOSLNRHNN-UHFFFAOYSA-N 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- 239000001432 zingiber officinale rosc. oleoresin Substances 0.000 description 1
- FUQAYSQLAOJBBC-PAPYEOQZSA-N β-caryophyllene alcohol Chemical compound C1C[C@](C2)(C)CCC[C@]2(O)[C@H]2CC(C)(C)[C@@H]21 FUQAYSQLAOJBBC-PAPYEOQZSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/0005—Other compounding ingredients characterised by their effect
- C11D3/0084—Antioxidants; Free-radical scavengers
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D1/00—Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
- C11D1/02—Anionic compounds
- C11D1/12—Sulfonic acids or sulfuric acid esters; Salts thereof
- C11D1/22—Sulfonic acids or sulfuric acid esters; Salts thereof derived from aromatic compounds
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/02—Inorganic compounds ; Elemental compounds
- C11D3/04—Water-soluble compounds
- C11D3/044—Hydroxides or bases
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/02—Inorganic compounds ; Elemental compounds
- C11D3/04—Water-soluble compounds
- C11D3/046—Salts
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/16—Organic compounds
- C11D3/26—Organic compounds containing nitrogen
- C11D3/30—Amines; Substituted amines ; Quaternized amines
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/16—Organic compounds
- C11D3/38—Products with no well-defined composition, e.g. natural products
- C11D3/386—Preparations containing enzymes, e.g. protease or amylase
- C11D3/38618—Protease or amylase in liquid compositions only
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/16—Organic compounds
- C11D3/38—Products with no well-defined composition, e.g. natural products
- C11D3/386—Preparations containing enzymes, e.g. protease or amylase
- C11D3/38627—Preparations containing enzymes, e.g. protease or amylase containing lipase
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D1/00—Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
- C11D1/66—Non-ionic compounds
- C11D1/75—Amino oxides
Definitions
- the present invention relates to dishwashing compositions comprising a alkylarylsulfonate surfactant system containing a mixture of isomers of crystallinity- disrupted, preferably branched, alkylarylsulfonate surfactants and optionally one or more noncrystallinity-disrupted alkylarylsulfonate surfactants.
- Typical commercial hand dishwashing compositions incorporate divalent ions (Mg, Ca) to ensure adequate grease performance in soft water.
- divalent ions Mg, Ca
- anionic, nonionic, or additional surfactants e.g., amine oxide, alkyl ethoxylate, LAS, alkanoyl glucose amide, alkyl betaines
- LAS alkanoyl glucose amide
- alkyl betaines additional surfactants
- alkylbenzenesulfonate surfactants has recently been reviewed. See Vol. 56 in “Surfactant Science” series, Marcel Dekker, New York, 1996, including in particular Chapter 2 entitled “Alkylarylsulfonates: History, Manufacture, Analysis and Environmental Properties", pages 39-108 which includes 297 literature references. Documents referenced herein are incorporated in their entirety.
- an alkylarylsulfonate surfactant system includes two or more isomers of crystallinity-disrupted alkylarylsulfonate surfactants, optionally containing also one or more noncrystallinity-disrupted alkylarylsulfonate surfactants, there is a surprising increase in performance over alkylarylsulfonate surfactant system which do not include the crystallinity-disrupted alkylarylsulfonate surfactant isomers.
- the present invention has numerous advantages beyond one or more of the aspects identified hereinabove, including but not limited to: superior cold-water solubility, for example for cold water cleaning; superior hardness tolerance; and excellent detergency. Further, the invention is expected to provide improved removal of lipid or greasy soils.
- the development offers substantial expected improvements in ease of manufacture of relatively high 2-phenyl sulfonate compositions, improvements also in the ease of making and quality of the resulting formulations; and attractive economic advantages.
- the present invention is based on an unexpected discovery that there exist, in the middle ground between the old, highly branched, nonbiodegradable alkylbenzenesulfonates and the new linear types, certain alkylbenzenesulfonates which are both more highly performing than the latter and more biodegradable than the former.
- the new alkylbenzenesulfonates are readily accessible by several of the many of known alkylbenzenesulfonate manufacturing processes. For example, the use of certain dealuminized mordenites permits their convenient manufacture.
- a novel hand dishwashing composition comprises a) about 0.1% to about 99.9% by weight of said composition of an alkylarylsulfonate surfactant system comprising from about 10% to about 100% by weight of said surfactant system of two or more crystallinity- disrupted alkylarylsulfonate surfactants of formula
- (B-Ar-D)a(Mq+)b wherein D is SO3-, M is a cation or cation mixture, q is the valence of said cation, a and b are numbers selected such that said composition is electroneutral;
- Ar is selected from benzene, toluene, and combinations thereof; and B comprises the sum of at least one primary hydrocarbyl moiety containing from 5 to 20 carbon atoms, preferably 7 to 16, more preferably 9-15, most preferably 10-14 carbon atoms and one or more crystallinity-disrupting moieties wherein said crystallinity-disrupting moieties interrupt or branch from said hydrocarbyl moiety; and wherein said alkylarylsulfonate surfactant system has crystallinity disruption to the extent that its Sodium Critical Solubility Temperature, as measured by the CST Test, is no more than about 40°C and wherein further said alkylarylsulfonate surfactant system has at least one of the
- the composition will preferably contain at least about 0.1%, more preferably at least about 0.5%, even more preferably, still at least about 1% by weight of said composition of the surfactant system.
- the cleaning composition will also preferably contain no more than about 80%, more preferably no more than about 60%, even more preferably, still no more than about 40% by weight of said composition of the surfactant system.
- the surfactant system will preferably contain at least about 15%, more preferably at least about 30%, even more preferably, still at least about 40% by weight of said surfactant system of two or more crystallinity disrupted alkyarylsulfonate surfactants.
- the surfactant system will also preferably contain no more than about 100%, more preferably no more than about 90%, even more preferably, still no more than about 80% by weight of said surfactant system of two or more crystallinity disrupted alkyarylsulfonate surfactants.
- Component (a) contains from about 0.1% to about 99.9% by weight of said composition of an alkylarylsulfonate surfactant system comprising from about 10% to about 100% by weight of said surfactant system of two or more crystallinity-disrupted alkylarylsulfonate surfactants of formula
- M is a cation or cation mixture.
- M is an alkali metal, an alkaline earth metal, ammonium, substituted ammonium or mixtures thereof, more preferably sodium, potassium, magnesium, calcium or mixtures thereof.
- the valence of said cation, q is preferably 1 or 2.
- the numbers selected such that said composition is electroneutral, a and b, are preferably 1 or 2 and 1 respectively.
- Ar preferably is selected from benzene, toluene, and combinations thereof, and most preferably benzene.
- B comprises the sum of at least one primary hydrocarbyl moiety containing from 5 to 20 carbon atoms and one or more crystallinity-disrupting moieties wherein said crystallinity-disrupting moieties interrupt or branch from said hydrocarbyl moiety.
- B includes both odd and even chain length of the hydrocarbyl moiety. That is, it is preferred that B is not limited to being all odd or all even chain length of the hydrocarbyl moiety.
- the primary hydrocarbyl moiety of B has from 5 to 20, preferably 7 to 16 carbon atoms.
- crystallinity-disrupting moieties There may be from one to three crystallinity-disrupting moieties.
- the crystallinity-disrupting moieties interrupt or branch from said hydrocarbyl moiety.
- the crystallinity-disrupting moieties are branches they are, preferably C1-C3 alkyl, C1-C3 alkoxy, hydroxy and mixtures thereof, more preferably C1-C3 alkyl, most preferably C1-C2 alkyl, more preferably still methyl.
- the crystallinity-disrupting moieties interrupt the hydrocarbyl moiety they are, preferably ether, sulfone, silicone and mixtures thereof, more preferably ether.
- crystallinity-disrupted alkylarylsulfonate surfactants include two or more homologs.
- "Homologs” vary in the number of carbon atoms contained in B.
- “Isomers”, which are described herein after in more detail, include especially those compounds having different positions of attachment of the crystallinity-disrupting moieties to B.
- crystallinity-disrupted alkylarylsulfonate surfactants include at least two "isomers” selected from i) ortho-, meta- and para- isomers based on positions of attachment of substituents to Ar, when Ar is a substituted or unsubstituted benzene.
- B can be ortho-, meta- and para- to D
- B can be ortho-, meta- and para- to a substituent on Ar other than D
- D can be ortho-, meta- and para- to a substituent on Ar other than B, or any other possible alternative
- iii) stereoisomers based on chiral carbon atoms in B It is more preferred that the crystallinity-disrupted alkylarylsulfonate surfactants will include at least two isomers of type ii), most preferably at least four isomers of type ii).
- At least about 60% by weight of said surfactant system of said crystallinity-disrupted alkylarylsulfonate surfactants is in the form of isomers wherein Ar is attached to B at the first, second or third carbon atom in said primary hydrocarbyl moiety thereof, more preferably about 70% or more, most preferably about 80% or more.
- An optional component of the present invention compositions is from about 0% to about 85%, by weight of the surfactant system, of one or more noncrystallinity- disrupted alkylarylsulfonate surfactants of formula
- L is a linear primary hydrocarbyl moiety containing from 5 to 20 carbon atoms.
- L is a linear hydrocarbyl moiety having from 7 to 16 carbon atoms.
- the alkylarylsulfonate surfactant system has crystallinity disruption to the extent that its Sodium Critical Solubility Temperature, as measured by the CST Test, which is defined hereinafter, is no more than about 40°C, preferably no more than about 20°C, most preferably no more than about 5°C. It is also preferable that its Calcium Critical Solubility Temperature, as measured by the CST Test, is below about 80°C, preferably no more than about 40°C, more preferably no more than about 20°C.
- the alkylarylsulfonate surfactant system also has at least one of the following properties: a) percentage biodegradation, as measured by the modified SCAS test (described herein after), that exceeds tetra propylene benzene sulphonate; or b) a weight ratio of nonquaternary to quaternary carbon atoms in B of at least about 5:1.
- the weight ratio of nonquaternary to quaternary carbon atoms in B is at least about 10:1, more preferably at least about 20:1, and most preferably at least about 100:1.
- percentage biodegradation in absolute terms is preferably at least about 60%, more preferably at least 70%, still more preferably at least 80% and most preferably at least 90%, as measured by the modified SCAS test.
- the hand dishwashing compositions of the present invention also comprise (b) from about 0.00001% to about 99.9% by weight of said composition of a conventional hand dishwashing adjunct; and (c) from about 0.01% to about 7% by weight of composition of a divalent ion selected from the group consisting of magnesium, calcium and mixtures thereof.
- compositions of their use such as a method contacting soiled tableware in need of cleaning with either a neat or an aqueous solution of the composition of the invention.
- Such methods may optionally include the step of diluting the composition with water.
- the composition may be applied, either neat or as an aqueous solution, directly to the tableware or surface to be cleaned or directly to a cleaning implement, such as a sponge or a wash cloth.
- a cleaning implement such as a sponge or a wash cloth.
- a surfactant that is being referred to is one containing a hydrophobic moiety selected to result in a surfactant which packs less efficiently into a crystal lattice than does a reference surfactant in which the hydrophobe is a pure linear hydrocarbon chain of formula CH3(CH2)n- having length or range of chain lengths comparable to that of the surfactant being described.
- Crystallinity disruption can, in general, flow from any of several modifications of the surfactant at the molecular level.
- a linear hydrophobe such as
- CH3(CH2)11- which itself is “noncrystallinity disrupted” can be modified to form a crystallinity-disrupted structure in accordance with the invention by inserting various moieties such as ether moieties, silicone or sulfones into the chain as in:
- crystallinity disruption herein takes place when one or more branchings from B are added to the structure, as in:
- the crystallinity- disrupted hydrophobe B comprises a primary moiety which consists of (i) all components in B other than the crystallinity-disrupting moieties; and (ii) the crystallinity-disrupting moieties.
- B has (i) a moiety having from 7 to 16 carbon atoms and (ii) a crystallinity-disrupting moiety selected from (a) branches (or “side-chains") attached to B which may in general vary but which preferably are selected from C1-C3 alkyl, hydroxy and mixtures thereof, more preferably C1-C3 alkyl, most preferably Cl- C2 alkyl, more preferably still methyl; (b) moieties which interrupt the structure of B, selected from ether, sulfone, silicone; and (c) mixtures thereof.
- Other crystallinity- disrupting moieties include olefin. Alkylarylsulfonate Surfactant System
- An essential component of the hand dishwashing composition of the present invention is an alkylarylsulfonate surfactant system.
- the alkylarylsulfonate surfactant system comprises an essential crystallinity disrupting component.
- the present invention relates to cleaning compositions comprising at least two or more such crystallinity-disrupted alkylarylsulfonate surfactants, and optionally, one or more noncrystallinity-disrupted alkylarylsulfonate surfactants. These two components are described as follows: (1) Crvstallinity-Disrupted alkylarylsulfonate surfactants:
- the present invention hand dishwashing compositions comprise an alkylarylsulfonate surfactant system which contains at least two or more crystallinity- disrupted alkylarylsulfonate surfactants having the formula
- Structures (a) to (o) are only illustrative of some possible crystallinity-disrupted alkylarylsulfonate surfactants and are not intended to be limiting in the scope of the invention.
- crystallinity-disrupted alkylarylsulfonate surfactants include at least two isomers selected from i) ortho-, meta- and para- isomers based on positions of attachment of substituents to Ar, when Ar is a substituted or unsubstituted benzene.
- B can be ortho-, meta- and para- to D
- B can be ortho-, meta- and para- to a substituent on Ar other than D
- D can be ortho-, meta- and para- to a substituent on Ar other than B, or any other possible alternative
- iii) stereoisomers based on chiral carbon atoms in B An example of two type (ii) isomers are structures are (a) and (c). The difference is that the methyl in (a) is attached at the 5 position, but in (c) the methyl is attached to the 7 position.
- An example of two type (i) isomers are structures are (1) and (n). The difference is that the sulfonate group in (1) is meta- to the hydrocarbyl moiety, but in (n) the sulfonate is ortho- to the hydrocarbyl moiety.
- the present inventive hand dishwashing compositions may further optionally comprise an alkylarylsulfonate surfactant system which can contain one or more noncrystallinity-disrupted alkylarylsulfonate surfactants having the formula (L-Ar-D)a(Mq+)b wherein D, M, L, q, a, b, Ar, are as hereinbefore defined.
- Possible noncrystallinity- disrupted alkylarylsulfonate surfactants include standard linear alkylbenzene sulfonates, such as those which are commercially available, e.g., the so-called high 2-phenyl linear alkyl benzene sulfonates, better known as DETAL or conventional LAS available from Huntsman or Vista. These linear alkylaryl sulfonates can be added to the crystallinity- disrupted alkylarylsulfonate surfactants to provide the alkylarylsulfonate surfactant system used in the cleaning composition of the present invention.
- noncrystallinity-disrupted alkylarylsulfonate surfactants and the crystallinity-disrupted alkylarylsulfonate surfactants are produced in the same reaction, possibly due to isomerization either before, during or after the reaction.
- the ratio of noncrystallinity- disrupted alkylarylsulfonate to crystallinity-disrupted alkylarylsulfonate depends on the catalyst used.
- the surfactant system must have a Sodium Critical Solubility Temperature of no more than about 40°C and either percentage biodegradation, as measured by the modified SCAS Test, that exceeds tetrapropylenebenzene sulfonate, preferably greater than 60%, more preferably greater than 80% or a weight ratio of nonquaternary to quaternary carbon atoms in B of at least about 5:1.
- EXAMPLE 1 Crystallinity disrupted surfactant system prepared via skeletally isomerized linear olefm Step (a): At least partially reducing the linearity of an olefm (by skeletal isomerization of olefm preformed to chainlengths suitable for cleaning product detergency) A mixture of 1-decene, 1-undecene, 1-dodecene and 1-tridecene (for example available from Chevron) at a weight ratio of 1 :2:2:1 is passed over a Pt-SAPO catalyst at 220oC and any suitable LHSV, for example 1.0. The catalyst is prepared in the manner of Example 1 of US 5,082,956.
- the product is a skeletally isomerized lightly branched olefm having a range of chainlengths suitable for making alkylbenezenesulfonate surfactant for consumer cleaning composition incorporation.
- the temperature in this step can be from about 200 oC to about 400 oC , preferably from about 230oC to about 320 oC.
- the pressure is typically from about 15 psig to about 2000 psig, preferably from about 15 psig to about 1000 psig, more preferably from about 15 psig to about 600 psig. Hydrogen is a useful pressurizing gas.
- the space velocity (LHSV or WHSV) is suitably from about 0.05 to about 20.
- Low pressure and low hourly space velocity provide improved selectivity, more isomerization and less cracking. Distill to remove any volatiles boiling at up to 40 oC/ 10 mmHg.
- a glass autoclave liner is added 1 mole equivalent of the lightly branched olefm mixture produced in step (a), 20 mole equivalents of benzene and 20 wt.% based on the olefm mixture of a shape selective zeolite catalyst (acidic mordenite catalyst ZeocatTM FM-8/25H).
- the glass liner is sealed inside a stainless steel rocking autoclave.
- the autoclave is purged twice with 250 psig N2, and then charged to 1000 psig N2. With mixing, the mixture is heated to 170-190oC for 14-15 hours at which time it is then cooled and removed from the autoclave.
- reaction mixture is filtered to remove catalyst and is concentrated by distilling off unreacted starting-materials and/or impurities (e.g., benzene, olefm, paraffin, trace materials, with useful materials being recycled if desired) to obtain a clear near-colorless liquid product.
- the product can then be formed into a desirable crystallinity-disrupted surfactant system which can, as an option, be shipped to a remote manufacturing facility where the additional steps of sulfonation and incorporation into consumer cleaning compositions can be accomplished.
- step (b) The product of step (b) is sulfonated with an equivalent of chlorosulfonic acid using methylene chloride as solvent. The methylene chloride is distilled away. Step (d : Neutralizing the product of step (c )
- step (c ) The product of step (c ) is neutralized with sodium methoxide in methanol and the methanol evaporated to give a crystallinity-disrupted surfactant system.
- Example 1 The procedure of Example 1 is repeated with the exception that the sulfonating step, (c ), uses sulfur trioxide (without methylene chloride solvent) as sulfonating agent. Details of sulfonation using a suitable air/sulfur trioxide mixture are provided in US 3,427,342, Chemithon. Moreover, step (d) uses sodium hydroxide in place of sodium methoxide for neutralization.
- a lightly branched olefm mixture is prepared by passing a mixture of CI 1, C12 and C13 mono olefms in the weight ratio of 1 :3:1 over H-ferrierite catalyst at 430oC.
- the method and catalyst of US 5,510,306 can be used for this step. Distil to remove any volatiles boiling at up to 40 oC/ 10 mmHg.
- a glass autoclave liner is added 1 mole equivalent of the lightly branched olefm mixture of step (a), 20 mole equivalents of benzene and 20 wt.% ,based on the olefm mixture, of a shape selective zeolite catalyst (acidic mordenite catalyst ZeocatTM FM- 8/25H).
- the glass liner is sealed inside a stainless steel, rocking autoclave.
- the autoclave is purged twice with 250 psig N2, and then charged to 1000 psig N2 . With mixing, the mixture is heated to 170-190oC overnight for 14-15 hours at which time it is then cooled and removed from the autoclave.
- the reaction mixture is filtered to remove catalyst. Benzene is distilled and recycled, volatile impurities also being removed. A clear colorless or nearly colorless liquid product is obtained.
- step (b) The product of step (b) is sulfonated with an equivalent of chlorosulfonic acid using methylene chloride as solvent. The methylene chloride is distilled away. Step (d): Neutralizing the product of step (c )
- step (c ) The product of step (c ) is neutralized with sodium methoxide in methanol and the methanol evaporated to give a crystallinity-disrupted surfactant system, sodium salt mixture.
- SAPO-11 for a conversion better than 90% at a temperature of about 300-340°C, at 1000 psig under hydrogen gas, with a weight hourly space velocity in the range 2-3 and 30 moles H2/ mole hydrocarbon. More detail of such an isomerization is given by S.J.
- linear starting paraffin mixture can be the same as used in conventional LAB manufacture.
- paraffin of step (a i) can be dehydrogenated using conventional methods. See, for example, US 5,012,021, 4/30/91 or US 3,562,797, 2/9/71.
- Suitable dehydrogenation catalyst is any of the catalysts disclosed in US 3,274,287; 3,315,007; 3,315,008;
- dehydrogenation is in accordance with US 3,562,797.
- the catalyst is zeolite A.
- the dehydrogenation is conducted in the vapor phase in presence of oxygen (paraffin : dioxygen 1 :1 molar).
- the temperature is in range 450 deg. C - 550 deg. C.
- Ratio of grams of catalyst to moles of total feed per hour is 3.9.
- step (a) To a glass autoclave liner is added 1 mole equivalent of the mixture of step (a), 5 mole equivalents of benzene and 20 wt.%, based on the olefm mixture, of a shape selective zeolite catalyst (acidic mordenite catalyst ZeocatTM FM-8/25H).
- a shape selective zeolite catalyst acidic mordenite catalyst ZeocatTM FM-8/25H.
- the glass liner is sealed inside a stainless steel, rocking autoclave.
- the autoclave is purged twice with 250 psig
- step (b) The product of step (b) is sulfonated with sulfur trioxide/air using no solvent. See US
- step (c ) The product of step (c ) is neutralized with a slight excess of sodium hydroxide to give a crystallinity-disrupted surfactant system.
- a mixture of 5-methyl-5-undecanol, 6-methyl-6-dodecanol and 7-methyl-7- tridecanol is prepared via the following Grignard reaction.
- a mixture of 28g of 2- hexanone, 28g of 2-heptanone, 14g of 2-octanone and lOOg of di ethyl ether are added to an addition funnel.
- the ketone mixture is then added dropwise over a period of 1.75 hours to a nitrogen blanketed stirred three neck round bottom flask, fitted with a reflux condenser and containing 350 mL of 2.0 M hexylmagnesium bromide in diethyl ether and an additional 100 mL of diethyl ether.
- reaction mixture is stirred an additional 1 hour at 20oC.
- the reaction mixture is then added to 600g of a mixture of ice and water with stirring.
- 228.6g of 30% sulfuric acid solution To this mixture is added 228.6g of 30% sulfuric acid solution.
- the resulting two liquid phases are added to a separatory funnel.
- the aqueous layer is drained and the remaining ether layer is washed twice with 600 mL of water.
- the ether layer is then evaporated under vacuum to yield 115.45g of the desired alcohol mixture.
- a lOOg sample of the light yellow alcohol mixture is added to a glass autoclave liner along with 300 mL of benzene and 20g of a shape selective zeolite catalyst (acidic mordenite catalyst ZeocatTM FM-8/25H).
- the glass liner is sealed inside a stainless steel, rocking autoclave.
- the autoclave is purged twice with 250 psig N2, and then charged to 1000 psig N2. With mixing, the mixture is heated to 170oC overnight for 14-15 hours at which time it is then cooled and removed from the autoclave.
- the reaction mixture is filtered to remove catalyst and concentrated by distilling off the benzene which is dried and recycled. A clear colorless or nearly colorless lightly branched olefm mixture is obtained.
- the lightly branched olefm mixture provided by dehydrating the Grignard alcohol mixture as above is added to a glass autoclave liner along with 150 mL of benzene and 10 g of a shape selective zeolite catalyst (acidic mordenite catalyst ZeocatTM FM-8/25H).
- the glass liner is sealed inside a stainless steel, rocking autoclave.
- the autoclave is purged twice with 250 psig N2, and then charged to 1000 psig N2. With mixing, the mixture is heated to 195oC overnight for 14-15 hours at which time it is then cooled and removed from the autoclave.
- the reaction mixture is filtered to remove catalyst and concentrated by distilling off the benzene which is dried and recycled. A clear colorless or nearly colorless liquid product is obtained.
- the product is distilled under vacuum (1-5 mm of Hg) and the fraction from 95°C - 135°C is retained.
- the Critical Solubility Temperature Test is a measure of the Critical Solubility Temperature of a surfactant system.
- the Critical Solubility Temperature simply stated, is a measure of the temperature a surfactant system at which solubility suddenly and dramatically increases. This temperature is becoming more and more significant with today's trends towards lower and lower wash temperatures. It has been surprisingly found that Critical Solubility Temperature of the alkylarylsulfonate surfactant system of the present invention can be lowered by the number and type of crystallinity-disrupted alkylarylsulfonate surfactants present in the alkylarylsulfonate surfactant system.
- the Critical Solubility Temperature is measured in the following manner:
- A) Sodium Critical Solubility Temperature An amount of 99 g of de-ionized water is weighed into a clean, dry beaker equipped with a magnetic stirrer. The beaker is then placed in an ice- water bath until the de-ionized water has been cooled to 0°C. A 1.0 g sample of the solid sodium salt of the surfactant or surfactant mixture for which the Sodium Critical Solubility Temperature is to be measured is then added. The resulting heterogeneous solution is stirred for one hour. If the surfactant sample dissolves within one hour and without any heating to give a clear homogenous solution, the Sodium Critical Solubility Temperature is recorded as ⁇ 0°C.
- the heterogeneous solution is slowly heated with stirring at a rate of 0.1 °C per minute.
- the temperature at which the surfactant sample dissolves to give a clear homogenous solution is recorded as the Sodium Critical Solubility Temperature.
- B) Calcium Critical Solubility Temperature An amount of 99 g of de ionized water is weighed into a clean, dry beaker equipped with a magnetic stirrer. The beaker is then placed in an ice-water bath until the de ionized water has been cooled to 0°C. A 1.0 g sample of the solid calcium salt of the surfactant or surfactant mixture for which the Calcium Critical Solubility Temperature is to be measured is then added. The resulting heterogeneous solution is stirred for one hour. If the surfactant sample dissolves within one hour and without any heating to give a clear homogenous solution, the Calcium Critical Solubility Temperature is recorded as ⁇ 0°C.
- the heterogeneous solution is slowly heated with stirring at a rate of 0.1 °C per minute.
- the temperature at which the surfactant sample dissolves to give a clear homogenous solution is recorded as the Calcium Critical Solubility Temperature.
- Sodium salts of surfactant mixtures here-in are the most common form in which the surfactant mixtures are used. Conversion to calcium salts by simple metathesis e.g., in dilute solution or assisted by a suitable organic solvent, is well known. Modified SCAS Test
- This method is an adaptation of the Soap and Detergent Association semi- continuous activated sludge (SCAS) procedure for assessing the primary biodegradation of alkylbenzene sulphonate.
- SCAS Soap and Detergent Association semi- continuous activated sludge
- the method involves exposure of the chemical to relatively high concentrations of micro-organisms over a long time period (possibly several months). The viability of the micro-organisms is maintained over this period by daily addition of a settled sewage feed.
- This modified test is also the standard OECD test for inherent biodegradability or 302A. This test was adopted by the OECD on May 12 1981.
- the aeration units used are identical to those disclosed in the "unmodified" SCAS test. That is, a Plexiglas tubing 83 mm (3 1/4 in.) ID. (internal diameter) Taper the lower end 30° from the vertical to a 13 mm (1/2 in.) hemisphere at the bottom. 25.4 mm (1 in.) above the joint of the vertical and tapered wall, locate the bottom of a 25.4 mm (1 in.) diameter opening for insertion of the air delivery tube.
- the total length of the aeration chamber should be at least 600 mm (24 in.).
- An optional draining hole may be located at the 500 ml level to facilitate sampling. Units are left open to the atmosphere.
- the air supplied to the aeration units from a small laboratory scale air compressor.
- the air is filtered through glass wool or any other suitable medium to remove contamination, oil, etc.
- the air is also presaturated with water to reduce evaporation losses from the unit.
- the air is delivered at a rate of 500 ml/minute (1 ft3/hour).
- the air is delivered via an 8 mm O.D. (outside diameter), 2 mm ID. capillary tube.
- the end of the capillary tube is located 7 mm (1/4 in.) from the bottom of the aeration chamber.
- Modified SCAS Test- The aeration units are cleaned and fixed in a suitable support. This procedure is conducted at 25°+3°C. Stock solutions of the test surfactant or surfactant system are prepared: the concentration normally required is 400 mg/litre as organic carbon normally gives a test surfactant or surfactant system concentration of 20 mg/litre carbon at the start of each biodegradation cycle if no biodegradation is occurring.
- a sample of mixed liquor from an activated sludge plant treating predominantly domestic sewage is obtained.
- Each aeration unit is filled with 150 ml of mixed liquor and the aeration is started. After 23 hours, aeration is stopped, and the sludge is allowed to settle for 45 minutes. 100 ml of the supernatant liquor is withdrawn.
- a sample of the settled domestic sewage is obtained immediately before use, and 100 ml are added to the sludge remaining in each aeration unit. Aeration is started anew. At this stage no test materials are added, and the units are fed daily with domestic sewage only until a clear supernatant liquor is obtained on settling.
- the dissolve organic carbon in the supernatant liquors is determined daily, although less frequent analysis is permissible. Before analysis the liquors are filtered through washed 0.45 micron membrane filters and centrifuged. Temperature of the sample must not exceed 40°C while it is in the centrifuge.
- OT concentration of test surfactant or surfactant system as organic carbon added to the settled sewage at the start of the aeration period.
- OI concentration of dissolved organic carbon found in the supernatant liquor of the test aeration units at the end of the aeration period.
- Oc concentration of dissolved organic carbon found in the supernatant liquor of the control aeration units.
- the level of biodegradation is therefore the percentage elimination of organic carbon.
- the hand dishwashing composition which comprises at least about 0.1%, preferably no more than about 10%, more preferably no more than about 5%, more preferably still, no more than about 1%, of a commercial highly branched alkylbenzene sulfonate surfactant, (e.g., TPBS or tetrapropylbenzene sulfonate);
- a commercial highly branched alkylbenzene sulfonate surfactant e.g., TPBS or tetrapropylbenzene sulfonate
- the hand dishwashing composition which comprises a nonionic surfactant at a level of from about 0.5% to about 25% by weight of said detergent composition, and wherein said nonionic surfactant is a polyalkoxylated alcohol in capped or non-capped form having: - a hydrophobic group selected from linear C ⁇ )-C 16 alkyl, mid-chain CpC 3 branched C ⁇ o-C ⁇ 6 alkyl, guerbet branched C ⁇ 0 -C ⁇ 6 alkyl, and mixtures thereof and - a hydrophilic group selected from 1-15 ethoxylates, 1- 15 propoxylates 1-15 butoxylates and mixtures thereof, in capped or uncapped form, (when uncapped, there is also present a terminal primary -OH moiety and when capped, there is also present a terminal moiety of the form -OR wherein R is a C ⁇ -C 6 hydrocarbyl moiety, optionally comprising a primary or, preferably when present, a secondary alcohol.);
- the hand dishwashing composition which comprises an alkyl sulfate surfactant at a level of from about 0.5% to about 25% by weight of said detergent composition, wherein said alkyl sulfate surfactant has a hydrophobic group selected from linear C ⁇ o-C 18 alkyl, mid-chain C ⁇ -C 3 branched C 10 -C 18 alkyl, guerbet branched C ⁇ o-C ⁇ 8 alkyl, and mixtures thereof and a cation selected from Na, K and mixtures thereof;
- the hand dishwashing composition which comprises an alkyl(polyalkoxy)sulfate surfactant at a level of from about 0.5% to about 25% by weight of said detergent composition, wherein said alkyl(polyalkoxy)sulfate surfactant has - a hydrophobic group selected from linear C ⁇ o-C 16 alkyl, mid-chain C ⁇ -C 3 branched C ⁇ o-C ⁇ 6 alkyl, guerbet branched C 10 -C 16 alkyl, and mixtures thereof and - a (polyalkoxy)sulfate hydrophilic group selected from 1-15 polyethoxysulfate, 1-15 polypropoxysulfate, 1-15 polybutoxysulfate, 1-15 mixed poly(ethoxy/propoxy/butoxy)sulfates, and mixtures thereof, in capped or uncapped form; and - a cation selected from Na, K and mixtures thereof;
- the hand dishwashing composition comprises an alkyl(polyalkoxy)sulfate surfactant which has a hydrophobic group selected from linear C ⁇ o-C ⁇ 6 alkyl, mid-chain Cj-C 3 branched C ⁇ 0 -C ⁇ 6 alkyl, guerbet branched C ⁇ o-C ⁇ 6 alkyl, and mixtures thereof; and a (polyalkoxy)sulfate hydrophilic group selected from 1-15 polyethoxysulfate, 1-15 polypropoxysulfate, 1-15 polybutoxysulfate, 1-15 mixed poly(ethoxy/propoxy/butoxy)sulfates, and mixtures thereof, in capped or uncapped form; and a cation selected from Na, K and mixtures thereof.
- an alkyl(polyalkoxy)sulfate surfactant which has a hydrophobic group selected from linear C ⁇ o-C ⁇ 6 alkyl, mid-chain Cj-C 3 branched C ⁇ 0 -C
- the hand dishwashing composition comprises a nonionic surfactant
- it is a polyalkoxylated alcohol in capped or non-capped form has a hydrophobic group selected from linear C ⁇ o-C ⁇ 6 alkyl, mid-chain C ⁇ -C 3 branched C 10 -C ⁇ 6 alkyl, guerbet branched C ⁇ o-C 16 alkyl, and mixtures thereof; and a hydrophilic group selected from 1-15 ethoxylates, 1-15 propoxylates 1-15 butoxylates and mixtures thereof, in capped or uncapped form.
- terminal primary - OH moiety When uncapped, there is also present a terminal primary - OH moiety and when capped, there is also present a terminal moiety of the form -OR wherein R is a CpC 6 hydrocarbyl moiety, optionally comprising a primary or, preferably when present, a secondary alcohol.
- the hand dishwashing composition comprises an alkyl sulfate surfactant which has a hydrophobic group selected from linear C ⁇ o-C 16 alkyl, mid- chain C ⁇ -C 3 branched C ⁇ 0 -C. 8 alkyl, guerbet branched C ⁇ o-C 16 alkyl, and mixtures thereof and a cation selected from Na, K and mixtures thereof
- the hand dishwashing compositions of the present invention can be used or applied by hand and/or can be applied in unitary or freely alterable dosage, or by automatic dispensing means, They can be used in aqueous or non-aqueous cleaning systems. They can have a wide range of pH, for example from about 2 to about 12 or higher, though alkaline detergent compositions having a pH of from about 8 to about 11 are among the preferred embodiments, and they can have a wide range of alkalinity reserve. Both high-foaming and low-foaming types are encompassed, as well as types for use in all known aqueous and non aqueous consumer product cleaning processes.
- the hand dishwashing compositions can be in any conventional form, namely, in the form of a liquid, powder, agglomerate, paste, tablet, bar, gel, liqui-gel microemulsion, liquid crystal, or granule.
- Levels of conventional hand dishwashing adjuncts are from about 0.00001% to about 99.9%, by weight of the composition.
- Use levels of the overall compositions can vary widely depending on the intended application, ranging for example from a few ppm in solution to so-called “direct application” of the neat cleaning composition to the surface to be cleaned.
- the conventional hand dishwashing adjunct is selected from the group consisting of builders, detersive enzymes, surfactants other than the crystallinity- disrupted alkylarylsulfonate surfactants, typically selected from anionic, cationic, amphoteric, zwitterionic, nonionic and mixtures thereof, at least partially water-soluble or water dispersible polymers, abrasives, bactericides, tarnish inhibitors, dyes, solvents, hydrotropes, perfumes, thickeners, antioxidants, processing aids, suds boosters, suds suppressors, buffers, anti-fungal agents, mildew control agents, insect repellents, anti- corrosive aids, chelants and mixtures thereof.
- the conventional cleaning adjunct comprises one or more of: Consumer product cleaning compositions are described in the "Surfactant Science Series", Marcel Dekker, New York, Volumes 1-67 and higher. Liquid compositions in particular are described in detail in the Volume 67, “Liquid Detergents”, Ed. Kuo-Yann Lai, 1997, ISBN 0-8247-9391-9 incorporated herein by reference. More classical formulations, especially granular types, are described in “Detergent Manufacture including Zeolite Builders and Other New Materials", Ed. M. Sittig, Noyes Data Corporation, 1979 incorporated by reference. See also Kirk Othmer's Encyclopedia of Chemical Technology.
- a conventional hand dishwashing adjuncts is any material required to transform a composition containing only the minimum essential ingredients (herein the essential crystallinity-disrupted alkylarylsulfonate surfactants) into a composition useful for hand dishwashing.
- conventional hand dishwashing adjuncts are easily recognizable to those of skill in the art as being absolutely characteristic of cleaning products.
- adjuncts herein can include suds boosters, suds suppressors (antifoams) and the like, diverse active ingredients or specialized materials such as dispersant polymers (e.g., from BASF Corp. or Rohm & Haas), color speckles, silvercare, anti-tarnish and/or anti-corrosion agents, dyes, fillers, germicides, alkalinity sources, hydrotropes, anti-oxidants, enzyme stabilizing agents, pro-perfumes, perfumes, solubilizing agents, carriers, processing aids, pigments, and, for liquid formulations, solvents, as described in detail hereinafter.
- dispersant polymers e.g., from BASF Corp. or Rohm & Haas
- color speckles e.g., from BASF Corp. or Rohm & Haas
- silvercare e.g., from BASF Corp. or Rohm & Haas
- anti-tarnish and/or anti-corrosion agents e.g., from
- compositions herein may require several adjuncts, though certain simply formulated products may require only, one adjunct.
- a comprehensive list of suitable laundry or cleaning adjunct materials and methods can be found in US Provisional Patent application No. 60/053,318 filed July 21, 1997 and assigned to Procter & Gamble.
- the crystallinity-disrupted alkylarylsulfonate surfactants of the present invention can be used in a wide range of hand dishwashing formulations.
- This novel surfactant system can be used as a total or partial replacement of conventional LAS in existing hand dishwashing compositions.
- Detersive surfactants - The instant compositions desirably include a detersive surfactant used as a co-surfactant with the essential surfactant mixtures. Since the present invention is surfactant-related, in the descriptions of the preferred embodiments of the detergent compositions of the invention, surfactant materials are described and accounted for separately from nonsurfactant adjuncts. Detersive surfactants are extensively illustrated in U.S. 3,929,678, Dec. 30, 1975 Laughlin, et al, and U.S. 4,259,217, March 31, 1981, Murphy; in the series “Surfactant Science", Marcel Dekker, Inc., New York and Basel; in "Handbook of Surfactants", M.R.
- the detersive surfactant herein includes anionic, nonionic, cationic, zwitterionic or amphoteric types of surfactant known for use as cleaning agents, but does not include completely foam-free or completely insoluble surfactants (though these may be used as optional adjuncts).
- detersive surfactants useful herein suitably include: (1) conventional alkylbenzene sulfonates, including the hard (ABS, TPBS) or linear types and made by known processe such as various HF or solid HF e.g., DETAL® (UOP) process, or made by using other Lewis Acid catalysts e.g., A1C1 3 , or made using acidic silica alumina or made from chlorinated hydrocarbons; (2) olefm sulfonates, including ⁇ - olefm sulfonates and sulfonates derived from fatty acids and fatty esters; (3) alkyl or alkenyl sulfosuccinates, including the diester and half-ester types as well as sulfosuccinamates and other sulfonate/ carboxylate surfactant types such as the sulfosuccinates derived from ethoxylated alcohols and alkanolamides
- more unusual surfactant types are included, such as: (50) alkylamidoamine oxides, carboxylates and quaternary salts; (51) sugar- derived surfactants modeled after any of the hereinabove-referenced more conventional nonsugar types; (52) fluorosurfactants; (53) biosurfactants; (54) organosilicon or fluorocarbon surfactants; (55) gemini surfactants, other than the above-referenced diphenyl oxide disulfonates, including those derived from glucose; (56) polymeric surfactants including amphopolycarboxyglycinates; and (57) bolaform surfactants; in short any surfactant known for aqueous or nonaqueous cleaning.
- hydrophobe chain length is typically in the general range C8-C20 . with chain lengths in the range C8-C18 often being preferred, especially when laundering is to be conducted in cool water. Selection of chainlengths and degree of alkoxylation for conventional purposes are taught in the standard texts.
- the detersive surfactant is a salt, any compatible cation may be present, including H (that is, the acid or partly acid form of a potentially acidic surfactant may be used), Na, K, Mg, ammonium or alkanolammonium, or combinations of cations.
- detersive surfactants having different charges are commonly preferred, especially anionic/cationic, anionic / nonionic, anionic / nonionic / cationic, anionic / nonionic / amphoteric, nonionic / cationic and nonionic / amphoteric mixtures.
- any single detersive surfactant may be substituted, often with desirable results for cool water washing, by mixtures of otherwise similar detersive surfactants having differing chainlengths, degree of unsaturation or branching, degree of alkoxylation (especially ethoxylation), insertion of substituents such as ether oxygen atoms in the hydrophobes, or any combinations thereof.
- detersive surfactants are: acid, sodium and ammonium C9-C20 linear alkylbenzene sulfonates, particularly sodium linear secondary alkyl C10-C15 benzenesulfonates though in some regions ABS may be used (1); olefmsulfonate salts, (2), that is, material made by reacting olefms, particularly C10-C20 -olefms, with sulfur trioxide and then neutralizing and hydrolyzing the reaction product; sodium and ammonium C7-C12 dialkyl sulfosuccinates, (3); alkane monosulfonates, (4), such as those derived by reacting C8-C2O ⁇ -olefms with sodium bisulfite and those derived by reacting paraffins with SO2 and CI2 and then hydrolyzing with a base to form a random sulfonate; ⁇ -Sulfo fatty acid salts or esters, (10
- Such compounds when branched can be random or regular.
- they When secondary, they preferably have formula CH3(CH2) x (CHOSO3 ⁇ M ) CH3 or CH3(CH 2 )y(CHOSO3 " M + ) CH 2 CH 3 where x and (y + 1) are integers of at least 7, preferably at least 9 and M is a water-soluble cation, preferably sodium.
- alkyl or alkenyl ether sulfates such as oleyl sulfate
- ethoxy sulphates having about 0.5 moles or higher of ethoxylation, preferably from 0.5-8
- the alkylethercarboxylates (19), especially the EO 1- 5 ethoxycarboxylates
- soaps or fatty acids 21), preferably the more water-soluble types
- phosphate esters (26); alkyl or alkylphenol ethoxylates, propoxylates and butoxylates, (30), especially the ethoxylates "AE", including the so
- Cationic surfactants suitable for use in the present invention include those having a long-chain hydrocarbyl group.
- cationic co-surfactants include the ammonium co-surfactants such as alkyldimethylammonium halogenides, and those co- surfactants having the formula:
- R ⁇ is an alkyl or alkyl benzyl group having from 8 to 18 carbon atoms in the alkyl chain, each R ⁇ is selected from the group consisting of -CH2CH2-, CH 2 CH(CH 3 )-, -CH 2 CH(CH 2 OH)-, -CH 2 CH 2 CH 2 -, and mixtures thereof; each R 4 is selected from the group consisting of C1-C4 alkyl, C1-C4 hydroxyalkyl, benzyl ring structures formed by joining the two R 4 groups, -CH2CHOH- CHOHCOR CHOHCH2OH wherein R ⁇ is any hexose or hexose polymer having a molecular weight less than about 1000, and hydrogen when y is not 0; R ⁇ is the same as R4 or is an alkyl chain wherein the total number of carbon atoms of R ⁇ plus R ⁇
- Suitable cationic surfactants are those corresponding to the general formula:
- R1 , R2, R3, and R4 are independently selected from an aliphatic group of from 1 to about 22 carbon atoms or an aromatic, alkoxy, polyoxyalkylene, alkylamido, hydroxyalkyl, aryl or alkylaryl group having up to about 22 carbon atoms; and X is a salt- forming anion such as those selected from halogen, (e.g. chloride, bromide), acetate, citrate, lactate, glycolate, phosphate nitrate, sulfate, and alkylsulfate radicals.
- the aliphatic groups can contain, in addition to carbon and hydrogen atoms, ether linkages, and other groups such as amino groups.
- the longer chain aliphatic groups e.g., those of about 12 carbons, or higher, can be saturated or unsaturated.
- R1 , R2, R3, and R4 are independently selected from CI to about C22 alkyl.
- cationic materials containing two long alkyl chains and two short alkyl chains or those containing one long alkyl chain and three short alkyl chains.
- the long alkyl chains in the compounds described in the previous sentence have from about 12 to about 22 carbon atoms, preferably from about 16 to about 22 carbon atoms, and the short alkyl chains in the compounds described in the previous sentence have from 1 to about 3 carbon atoms, preferably from 1 to about 2 carbon atoms.
- Suitable levels of cationic detersive surfactant herein are from about 0.1% to about 20%, preferably from about 1% to about 15%, although much higher levels, e.g., up to about 30% or more, may be useful especially in nonionic: cationic (i.e., limited or anionic-free) formulations.
- cationic surfactants is as grease release agents.
- Cationic surfactants can be on their own or in combination with solvents and or solublizing agents. See US Patent 5552089.
- dianionics are surfactants which have at least two anionic groups present on the surfactant molecule.
- dianionic surfactants are further described in copending U.S. Serial No. 60/020,503 (Docket No. 6160P), 60/020,772 (Docket No. 6161P), 60/020,928 (Docket No. 6158P), 60/020,832 (Docket No. 6159P) and 60/020,773 (Docket No. 6162P) all filed on June 28, 1996, and 60/023,539 (Docket No. 6192P), 60/023493 (Docket No. 6194P), 60/023,540 (Docket No. 6193P) and 60/023,527 (Docket No. 6195P) filed on August 8th, 1996, the disclosures of which are incorporated herein by reference.
- the surfactant may be a midchain branched alkyl sulfate, midchain branched alkyl alkoxylate, or midchain branched alkyl alkoxylate sulfate.
- These surfactants are further described in No. 60/061,971, Attorney docket No 6881P October 14, 1997, No. 60/061,975, Attorney docket No 6882P October 14, 1997, No. 60/062,086, Attorney docket No 6883P October 14, 1997, No. 60/061,916, Attorney docket No 6884P October 14, 1997, No. 60/061,970, Attorney docket No 6885P October 14, 1997, No.
- 60/062,407 Attorney docket No 6886P October 14, 1997,.
- Other suitable mid-chain branched surfactants can be found in U.S. Patent applications Serial Nos. 60/032,035 (Docket No. 6401P), 60/031,845 (Docket No. 6402P), 60/031,916 (Docket No. 6403P), 60/031,917 (Docket No. 6404P), 60/031,761 (Docket No. 6405P), 60/031,762 (Docket No. 6406P) and 60/031,844 (Docket No. 6409P). Mixtures of these branched surfactants with conventional linear surfactants are also suitable for use in the present compositions.
- Rl is a Cn alkyl group
- R2 is H or is a Cm alkyl group, with n+m being a number from 11-14;
- modified alkylbenzene sulfonate surfactant is with a monoalkyl succinamate, more preferably with from about 0.5 to about 6% by weight of a Cio to d 8 monoalkyl succinamate, wherein the alkyl group may be ethoxylated with up to 8 moles of ethylene oxide, the monoalkyl succinamate has the structure:
- R is an aliphatic radical, of from 10 to 18 carbon atoms
- M is a cation, selected from the group consisting of sodium, potassium, ammonium and alkanolamine.
- Suitable levels of anionic detersive surfactants herein are in the range from about
- Suitable levels of nonionic detersive surfactant herein are from about 1% to about 40%, preferably from about 2% to about 30%, more preferably from about 5% to about 20%.
- Desirable weight ratios of anionic : nonionic surfactants in combination include from 1.0:9.0 to 1.0:0.25, preferably 1.0:1.5 to 1.0:0.4.
- Desirable weight ratios of anionic : cationic surfactants in combination include from 50:1 to 5:1, more preferably 35:1 to 15:1.
- Suitable levels of cationic detersive surfactant herein are from about 0.1% to about 20%, preferably from about 1% to about 15%, although much higher levels, e.g., up to about 30% or more, may be useful especially in nonionic : cationic (i.e., limited or anionic-free) formulations.
- Amphoteric or zwitterionic detersive surfactants when present are usually useful at levels in the range from about 0.1% to about 20% by weight of the detergent composition. Often levels will be limited to about 5% or less, especially when the amphoteric is costly.
- the composition will preferably contain at least about 0.01%, more preferably at least about 0.1%, even more preferably still, at least about 0.2%, even more preferably still, at least about 0.5% by weight of said composition of surfactant.
- the composition will also preferably contain no more than about 90%, more preferably no more than about 70%, even more preferably, no more than about 60%, even more preferably, no more than about 35% by weight of said composition of surfactant.
- the anionic surfactants useful in the present invention are preferably selected from the group consisting of, linear alkylbenzene sulfonate, alpha olefm sulfonate, paraffin sulfonates, alkyl ester sulfonates, alkyl sulfates, alkyl alkoxy sulfate, alkyl sulfonates, alkyl alkoxy carboxylate, alkyl alkoxylated sulfates, sarcosinates, taurinates, and mixtures thereof.
- anionic surfactant When present, anionic surfactant will be present typically in an effective amount. More preferably, the composition may contain at least about 0.5%, more preferably at least about 5%, even more preferably still, at least about 10% by weight of said composition of anionic surfactant. The composition will also preferably contain no more than about 90%, more preferably no more than about 50%, even more preferably, no more than about 30% by weight of said composition of anionic surfactant.
- Alkyl sulfate surfactants are another type of anionic surfactant of importance for use herein.
- dissolution of alkyl sulfates can be obtained, as well as improved formulability in liquid detergent formulations are water soluble salts or acids of the formula ROSO3M wherein R preferably is a C10-C24 hydrocarbyl, preferably an alkyl or hydroxyalkyl having a C10-C20 alkyl component, more preferably a C12-C18 alkyl or hydroxyalkyl, and M is H or a cation, e.g., an alkali (Group LA) metal cation (e.g., sodium, potassium, lithium), substituted or unsubstituted ammonium cations such as methyl-, dimethyl-, and trimethyl ammonium and qua
- ROSO3M water soluble salts or acids of the formula ROSO3M wherein R preferably is a C10-C24 hydrocarbyl, preferably an alkyl or
- Alkyl alkoxylated sulfate surfactants are another category of useful anionic surfactant. These surfactants are water soluble salts or acids typically of the formula RO(A)mSO3M wherein R is an unsubstituted C10-C24 alkyl or hydroxyalkyl group having a C10-C24 alkyl component, preferably a C12-C20 alkyl or hydroxyalkyl, more preferably C12-C18 alkyl or hydroxyalkyl, A is an ethoxy or propoxy unit, m is greater than zero, typically between about 0.5 and about 6, more preferably between about 0.5 and about 3, and M is H or a cation which can be, for example, a metal cation (e.g., sodium, potassium, lithium, etc.), ammonium or substituted-ammonium cation.
- R is an unsubstituted C10-C24 alkyl or hydroxyalkyl group having a C10-C24 alkyl component
- Alkyl ethoxylated sulfates as well as alkyl propoxylated sulfates are contemplated herein.
- Specific examples of substituted ammonium cations include methyl-, dimethyl-, trimethyl-ammonium and quaternary ammonium cations, such as tetramethyl- ammonium, dimethyl piperidinium and cations derived from alkanolamines, e.g. monoethanolamine, diethanolamine, and triethanolamine, and mixtures thereof.
- Exemplary surfactants are C12-C18 alkyl polyethoxylate (1.0) sulfate, C12-C18 alkyl polyethoxylate (2.25) sulfate, C12-C18 alkyl polyethoxylate (3.0) sulfate, and C12-C18 alkyl polyethoxylate (4.0) sulfate wherein M is conveniently selected from sodium and potassium.
- Surfactants for use herein can be made from natural or synthetic alcohol feedstocks. Chain lengths represent average hydrocarbon distributions, including branching.
- the anionic surfactant component may comprise alkyl sulfates and alkyl ether sulfates derived from conventional alcohol sources, e.g., natural alcohols, synthetic alcohols such as those sold under the trade name of NEODOLTM, ALFOLTM, LIALTM, LUTENSOLTM and the like.
- Alkyl ether sulfates are also known as alkyl polyethoxylate sulfates.
- Suitable anionic surfactants are given in "Surface Active Agents and Detergents" (Vol. I and II by Schwartz, Perry and Berch). A variety of such surfactants are also generally disclosed in U.S. Patent 3,929,678, issued December 30, 1975 to Laughlin, et al. at Column 23, line 58 through Column 29, line 23.
- alkyl ester sulfonates are desirable because they can be made with renewable, non-petroleum resources.
- Preparation of the alkyl ester sulfonate surfactant component can be effected according to known methods disclosed in the technical literature. For instance, linear esters of C8-C20 carboxylic acids can be sulfonated with gaseous SO3 according to "The Journal of the American Oil Chemists Society," 52 (1975), pp. 323-329. Suitable starting materials would include natural fatty substances as derived from tallow, palm, and coconut oils, etc.
- the preferred alkyl ester sulfonate surfactant especially for laundry applications, comprises alkyl ester sulfonate surfactants of the structural formula:
- R3 is a C8-C20 hydrocarbyl, preferably an alkyl, or combination thereof
- R4 is a C1-C6 hydrocarbyl, preferably an alkyl, or combination thereof
- M is a soluble salt- forming cation.
- Suitable salts include metal salts such as sodium, potassium, and lithium salts, and substituted or unsubstituted ammonium salts, such as methyl-, dimethyl, - trimethyl, and quaternary ammonium cations, e.g. tetramethyl-ammonium and dimethyl piperdinium, and cations derived from alkanolamines, e.g. monoethanol-amine, diethanolamine, and triethanolamine.
- R3 is C10-C16 alkyl
- R4 is methyl, ethyl or isopropyl.
- methyl ester sulfonates wherein R3 is C14-C16 alkyl.
- anionic surfactants useful for detersive purposes can also be included in the compositions hereof. These can include salts (including, for example, sodium, potassium, ammonium, and substituted ammonium salts such as mono-, di- and triethanolamine salts) of soap, C9-C20 linear alkylbenzenesulphonates, C8-C22 primary or secondary alkanesulphonates, C8-C24 olefmsulphonates, sulphonated polycarboxylic acids prepared by sulphonation of the pyrolyzed product of alkaline earth metal citrates, e.g., as described in British patent specification No.
- salts including, for example, sodium, potassium, ammonium, and substituted ammonium salts such as mono-, di- and triethanolamine salts
- C9-C20 linear alkylbenzenesulphonates C8-C22 primary or secondary alkanesulphonates
- C8-C24 olefmsulphonates C8
- alkyl glycerol sulfonates 1,082,179, alkyl glycerol sulfonates, fatty acyl glycerol sulfonates, fatty oleyl glycerol sulfates, alkyl phenol ethylene oxide ether sulfates, paraffin sulfonates, alkyl phosphates, isothionates such as the acyl isothionates, N-acyl taurates, fatty acid amides of methyl tauride, alkyl succinamates and sulfosuccinates, monoesters of sulfosuccinate (especially saturated and unsaturated C12- C18 monoesters) diesters of sulfosuccinate (especially saturated and unsaturated C6-C14 diesters), N-acyl sarcosinates, sulfates of alkylpolysaccharides such as the sulfates of alkylpol
- Resin acids and hydrogenated resin acids are also suitable, such as rosin, hydrogenated rosin, and resin acids and hydrogenated resin acids present in or derived from tall oil. Further examples are given in "Surface Active Agents and Detergents" (Vol. I and II by Schwartz, Perry and Berch). A variety of such surfactants are also generally disclosed in U.S. Patent 3,929,678, issued December 30, 1975 to Laughlin, et al. at Column 23, line 58 through Column 29, line 23. Nonionic Detergent Surfactants - Suitable nonionic detergent surfactants are generally disclosed in U.S. Patent 3,929,678, Laughlin et al., issued December 30, 1975, at column 13, line 14 through column 16, line 6, incorporated herein by reference.
- Exemplary, non- limiting classes of useful nonionic surfactants include: alkyl ethoxylate, alkanoyl glucose amide, C12 -C18 alkyl ethoxylates ("AE") including the so-called narrow peaked alkyl ethoxylates and C6-C12 alkyl phenol alkoxylates (especially ethoxylates and mixed ethoxy/propoxy), and mixtures thereof.
- AE alkyl ethoxylate
- alkanoyl glucose amide C12 -C18 alkyl ethoxylates
- C6-C12 alkyl phenol alkoxylates especially ethoxylates and mixed ethoxy/propoxy
- nonionic surfactant When present, nonionic surfactant will be present typically in an effective amount. More preferably, the composition may contain at least about 0.1%, more preferably at least about 0.2%, even more preferably still, at least about 0.5% by weight of said composition of nonionic surfactant. The composition will also preferably contain no more than about 20%, more preferably no more than about 15%, even more preferably, no more than about 10% by weight of said composition of nonionic surfactant.
- the polyethylene, polypropylene, and polybutylene oxide condensates of alkyl phenols are preferred. These compounds include the condensation products of alkyl phenols having an alkyl group containing from about 6 to about 12 carbon atoms in either a straight chain or branched chain configuration with the alkylene oxide.
- the ethylene oxide is present in an amount equal to from about 5 to about 25 moles of ethylene oxide per mole of alkyl phenol.
- nonionic surfactants of this type include Igepal® CO-630, marketed by the GAF Corporation; and Triton® X-45, X-114, X-100, and X-102, all marketed by the Rohm & Haas Company. These compounds are commonly referred to as alkyl phenol alkoxylates, (e.g., alkyl phenol ethoxylates).
- the condensation products of aliphatic alcohols with from about 1 to about 25 moles of ethylene oxide can either be straight or branched, primary or secondary, and generally contains from about 8 to about 22 carbon atoms. Particularly preferred are the condensation products of alcohols having an alkyl group containing from about 10 to about 20 carbon atoms with from about 2 to about 18 moles of ethylene oxide per mole of alcohol.
- nonionic surfactants of this type include Tergitol® 15-S-9 (the condensation product of C11-C15 linear secondary alcohol with 9 moles ethylene oxide), Tergitol® 24-L-6 NMW (the condensation product of C12-C14 primary alcohol with 6 moles ethylene oxide with a narrow molecular weight distribution), both marketed by Union Carbide Corporation; Neodol® 45-9 (the condensation product of C14-C15 linear alcohol with 9 moles of ethylene oxide), Neodol® 23-6.5 (the condensation product of C12-C13 linear alcohol with 6.5 moles of ethylene oxide), Neodol® 45-7 (the condensation product of C14-C15 linear alcohol with 7 moles of ethylene oxide), Neodol® 45-4 (the condensation product of C14-C15 linear alcohol with 4 moles of ethylene oxide), marketed by Shell Chemical Company, and Kyro® EOB (the condensation product of C13-C15 alcohol with 9 moles ethylene oxide), marketed by The Procter & Gamble Company.
- nonionic surfactants include Dobanol 91-8® marketed by Shell Chemical Co. and Genapol UD-080® marketed by Hoechst. This category of nonionic surfactant is referred to generally as "alkyl ethoxylates.”
- the hydrophobic portion of these compounds preferably has a molecular weight of from about 1500 to about 1800 and exhibits water insolubility.
- the addition of polyoxyethylene moieties to this hydrophobic portion tends to increase the water solubility of the molecule as a whole, and the liquid character of the product is retained up to the point where the polyoxyethylene content is about 50% of the total weight of the condensation product, which corresponds to condensation with up to about 40 moles of ethylene oxide.
- Examples of compounds of this type include certain of the commercially-available Pluronic® surfactants, marketed by BASF.
- the condensation products of ethylene oxide with the product resulting from the reaction of propylene oxide and ethylenediamine consist of the reaction product of ethylenediamine and excess propylene oxide, and generally has a molecular weight of from about 2500 to about 3000.
- This hydrophobic moiety is condensed with ethylene oxide to the extent that the condensation product contains from about 40% to about 80% by weight of polyoxyethylene and has a molecular weight of from about 5,000 to about 11,000.
- this type of nonionic surfactant include certain of the commercially available Tetronic® compounds, marketed by BASF.
- R2O(CnH2nO)t(glycosyl)x wherein R2 is selected from the group consisting of alkyl, alkyl-phenyl, hydroxyalkyl, hydroxyalkylphenyl, and mixtures thereof in which the alkyl groups contain from about 10 to about 18, preferably from about 12 to about 14, carbon atoms; n is 2 or 3, preferably 2; t is from 0 to about 10, preferably 0; and x is from about 1.3 to about 10, preferably from about 1.3 to about 3, most preferably from about 1.3 to about 2.7.
- the glycosyl is preferably derived from glucose.
- the alcohol or alkylpolyethoxy alcohol is formed first and then reacted with glucose, or a source of glucose, to form the glucoside (attachment at the 1 -position).
- the additional glycosyl units can then be attached between their 1 -position and the preceding glycosyl units 2-, 3- , 4- and/or 6-position, preferably predominantly the 2-position.
- Any reducing saccharide containing 5 or 6 carbon atoms can be used, e.g., glucose, galactose and galactosyl moieties can be substituted for the glucosyl moieties.
- the hydrophobic group is attached at the 2-, 3-, 4-, etc. positions thus giving a glucose or galactose as opposed to a glucoside or galactoside.
- the intersaccharide bonds can be, e.g., between the one position of the additional saccharide units and the 2-, 3-, 4-, and/or 6- positions on the preceding saccharide units.
- a polyalkylene-oxide chain joining the hydrophobic moiety and the polysaccharide moiety.
- the preferred alkyleneoxide is ethylene oxide.
- Typical hydrophobic groups include alkyl groups, either saturated or unsaturated, branched or unbranched containing from about 8 to about 18, preferably from about 10 to about 16, carbon atoms.
- the alkyl group is a straight chain saturated alkyl group.
- the alkyl group can contain up to about 3 hydroxy groups and/or the polyalkyleneoxide chain can contain up to about 10, preferably less than 5, alkyleneoxide moieties.
- Suitable alkyl polysaccharides are octyl, nonyl, decyl, undecyldodecyl, tridecyl, tetradecyl, pentadecyl, hexadecyl, heptadecyl, and octadecyl, di-, tri-, tetra-, penta-, and hexaglucosides, galactosides, lactosides, glucoses, fructosides, fructoses and/or galactoses.
- Suitable mixtures include coconut alkyl, di-, tri-, tetra-, and pentaglucosides and tallow alkyl tetra-, penta-, and hexa-glucosides.
- ethoxylated glycerol type compound a mixture of a fully esterified ethoxylated polyhydric alcohol, a partially esterified ethoxylated polyhydric alcohol and a nonesterified ethoxylated polyhydric alcohol, wherein the preferred polyhydric alcohol is glycerol, and the compound is
- B is selected from the group consisting of hydrogen or a group represented by:
- R is selected from the group consisting of alkyl group having 6 to 22 carbon atoms, more preferably 11 to 15 carbon atoms and alkenyl groups having 6 to 22 carbon atoms, more preferably 11 to 15 carbon atoms, wherein a hydrogenated tallow alkyl chain or a coco alkyl chain is most preferred, wherein at least one of the B groups is represented by said
- O // C-R' and R' is selected from the group consisting of hydrogen and methyl groups; x, y and z have a value between 0 and 60, more preferably 0 to 40, provided that (x+y+z) equals 2 to 100, preferably 4 to 24 and most preferably 4 to 19, wherein in Formula (I) the wt. ratio of monoester/diester/triester is 45 to 90/5 to 40/1 to 20, more preferably 50 to 90/9 to 32/1 to 12, wherein the wt. ratio of Formula (I) to Formula (II) is a value between 3 to
- the ethoxylated glycerol type compound which may be used in the in the instant composition are manufactured by the Kao Corporation and sold under the trade name
- Levenol such as Levenol F-200 which has an average EO of 6 and a molar ratio of coco fatty acid to glycerol of 0.55 or Levenol V501/2 which has an average EO of 17 and a molar ratio of tallow fatty acid to glycerol of 1.0. It is preferred that the molar ratio of the fatty acid to glycerol is less than 1.7, more preferably less than 1.5 and most preferably less than 1.0.
- the ethoxylated glycerol type compound has a molecular weight of 400 to
- the Levenol compounds are substantially non irritant to human skin and have a primary biodegradabillity higher than
- Levenol V-501/2 which has 17 ethoxylated groups and is derived from tallow fatty acid with a fatty acid to glycerol ratio of 1.0 and a molecular weight of 1465
- Levenol F-200 has 6 ethoxylated groups and is derived from coco fatty acid with a fatty acid to glycerol ratio of 0.55.
- Both Levenol F-200 and Levenol V-501/2 are composed of a mixture of Formula (I) and Formula (II).
- the Levenol compounds has ecoxicity values of algae growth inhibition >100 mg/liter; acute toxicity for Daphniae
- the Levenol compounds have a ready biodegradability higher than 60% which is the minimum required value according to OECD 301B measurement to be acceptably biodegradable.
- Polyesterified nonionic compounds also useful in the instant compositions are Crovol PK-40 and Crovol PK-70 manufactured by Croda GMBH of the Netherlands.
- Crovol PK-40 is a polyoxyethylene (12) Palm Kernel Glyceride which has 12 EO groups.
- Crovol PK-70 which is preferred is a polyoxyethylene (45) Palm Kernel Glyceride have 45 EO groups. More information on these nonionic surfactants can be found in US Patents No 5719114,
- Suitable nonionic surfactant comprises the polyhydroxy fatty acid amides. These materials are more fully described in Pan/Gosselink; U.S Patent 5,332,528; Issued July 26, 1994, which is incorporated herein by reference. These polyhydroxy fatty acid amides have a general structure of the formula:
- Rl is H, C1-C4 hydrocarbyl, 2-hydroxy ethyl, 2-hydroxy propyl, or a mixture thereof, preferably C1-C4 alkyl, more preferably CI or C2 alkyl, most preferably CI alkyl (i.e., methyl); and R2 is a C5-C31 hydrocarbyl, preferably straight chain C7-C19 alkyl or alkenyl, more preferably straight chain C9-C17 alkyl or alkenyl, most preferably straight chain C11-C15 alkyl or alkenyl, or mixtures thereof; and Z is a polyhydroxyhydrocarbyl having a linear hydrocarbyl chain with at least 3 hydroxyls directly connected to the chain, or an alkoxylated derivative (preferably ethoxylated or propoxylated) thereof.
- Z preferably will be derived from a reducing sugar in a reductive amination reaction; more preferably Z will be a glycityl.
- Suitable reducing sugars include glucose, fructose, maltose, lactose, galactose, mannose, and xylose.
- high dextrose corn syrup, high fructose corn syrup, and high maltose corn syrup can be utilized as well as the individual sugars listed above. These corn syrups may yield a mix of sugar components for Z. It should be understood that it is by no means intended to exclude other suitable raw materials.
- Z preferably will be selected from the group consisting of -CH2-(CHOH)n-CH2OH, -CH(CH2OH)-(CHOH)n-l- CH2OH, -CH2-(CHOH)2(CHOR')(CHOH)-CH2OH, and alkoxylated derivatives thereof, where n is an integer from 3 to 5, inclusive, and R' is H or a cyclic or aliphatic monosaccharide. Most preferred are glycityls wherein n is 4, particularly -CH2- (CHOH)4-CH2OH.
- R' can be, for example, N-methyl, N-ethyl, N-propyl, N-isopropyl, N-butyl, N-2- hydroxy ethyl, or N-2-hydroxy propyl.
- R2-CO-N ⁇ can be, for example, cocamide, stearamide, oleamide, lauramide, myristamide, capricamide, palmitamide, tallowamide, etc.
- Z can be 1-deoxyglucityl, 2-deoxyfructityl, 1-deoxymaltityl, 1-deoxylactityl, 1- deoxygalactityl, 1-deoxymannityl, 1-deoxymaltotriotityl, etc.
- polyhydroxy fatty acid amides are known in the art. In general, they can be made by reacting an alkyl amine with a reducing sugar in a reductive amination reaction to form a corresponding N-alkyl polyhydroxyamine, and then reacting the N-alkyl polyhydroxyamine with a fatty aliphatic ester or triglyceride in a condensation/amidation step to form the N-alkyl, N-polyhydroxy fatty acid amide product.
- Processes for making compositions containing polyhydroxy fatty acid amides are disclosed, for example, in G.B. Patent Specification 809,060, published February 18, 1959, by Thomas Hedley & Co., Ltd., U.S.
- surfactants include the C10-C18 N-methyl, or N-hydroxypropyl, glucamides.
- the N-propyl through N-hexyl C12-C16 glucamides can be used for lower sudsing performance.
- Preferred amides are C8-C20 ammonia amides, monoethanolamides, diethanolamides, and isopropanolamides.
- alkanol amide surfactants including the ammonia, monoethanol, and diethanol amides of fatty acids having an acyl moiety containing from about 8 to about 18 carbon atoms. These materials are represented by the formula:
- Rl is a saturated or unsaturated, hydroxy-free aliphatic hydrocarbon group having from about 7 to 21, preferably from about 11 to 17 carbon atoms;
- R2 represents a methylene or ethylene group; and
- m is 1, 2, or 3, preferably 1.
- Specific examples of such amides are monoethanol amine coconut fatty acid amide and diethanolamine dodecyl fatty acid amide.
- These acyl moieties may be derived from naturally occurring glycerides, e.g., coconut oil, palm oil, soybean oil, and tallow, but can be derived synthetically, e.g., by the oxidation of petroleum or by hydrogenation of carbon monoxide by the Fischer-Tropsch process.
- the monoethanolamides and diethanolamides of C 12- 14 fatty acids are preferred.
- Amphoteric Surfactants may optionally be incorporated into the detergent compositions hereof. These surfactants can be broadly described as aliphatic derivatives of secondary or tertiary amines, or aliphatic derivatives of heterocyclic secondary and tertiary amines in which the aliphatic radical can be straight chain or branched.
- One of the aliphatic substituents contains at least about 8 carbon atoms, typically from about 8 to about 18 carbon atoms, and at least one contains an anionic water-solubilizing group, e.g., carboxy, sulfonate, sulfate. See U.S. Patent No.
- amphoteric include C12-C18 betaines and sulfobetaines ("sultaines"), C10-C18 amine oxides, and mixtures thereof.
- amphoteric surfactant When present, amphoteric surfactant will be present typically in an effective amount. More preferably, the composition may contain at least about 0.1%, more preferably at least about 0.2%, even more preferably still, at least about 0.5% by weight of said composition of amphoteric surfactant. The composition will also preferably contain no more than about 20%, more preferably no more than about 15%, even more preferably, no more than about 10% by weight of said composition of amphoteric surfactant.
- Amine oxides are amphoteric surfactants and include water-soluble amine oxides containing one alkyl moiety of from about 10 to about 18 carbon atoms and 2 moieties selected from the group consisting of alkyl groups and hydroxyalkyl groups containing from about 1 to about 3 carbon atoms; water-soluble phosphine oxides containing one alkyl moiety of from about 10 to about 18 carbon atoms and 2 moieties selected from the group consisting of alkyl groups and hydroxyalkyl groups containing from about 1 to about 3 carbon atoms; and water-soluble sulfoxides containing one alkyl moiety of from about 10 to about 18 carbon atoms and a moiety selected from the group consisting of alkyl and hydroxyalkyl moieties of from about 1 to about 3 carbon atoms.
- Preferred amine oxide surfactants have the formula
- R3 is an alkyl, hydroxyalkyl, or alkyl phenyl group or mixtures thereof containing from about 8 to about 22 carbon atoms
- R4 is an alkylene or hydroxyalkylene group containing from about 2 to about 3 carbon atoms or mixtures thereof
- x is from 0 to about 3
- each R5 is an alkyl or hydroxyalkyl group containing from about 1 to about 3 carbon atoms or a polyethylene oxide group containing from about 1 to about 3 ethylene oxide groups.
- the R5 groups can be attached to each other, e.g., through an oxygen or nitrogen atom, to form a ring structure.
- amine oxide surfactants in particular include C10-C18 alkyl dimethyl amine oxides and C8-C12 alkoxy ethyl dihydroxy ethyl amine oxides.
- amine oxide surfactant When present, amine oxide surfactant will be present typically in an effective amount. More preferably, the composition may contain at least about 0.1%, more preferably at least about 0.2%, even more preferably still, at least about 0.5% by weight of said composition of amine oxide surfactant. The composition will also preferably contain no more than about 20%, more preferably no more than about 15%, even more preferably, no more than about 10% by weight of said composition of amine oxide surfactant.
- amine oxide surfactants examples include "Surface Active Agents and Detergents” (Vol. I and II by Schwartz, Perry and Berch).
- Suitable betaine surfactants include those of the general formula:
- R is a hydrophobic group selected from alkyl groups containing from about 10 to about 22 carbon atoms, preferably from about 12 to about 18 carbon atoms, alkyl aryl and aryl alkyl groups containing a similar number of carbon atoms with a benzene ring being treated as equivalent to about 2 carbon atoms, and similar structures interrupted by amino or ether linkages; each Rl is an alkyl group containing from 1 to about 3 carbon atoms; and R2 is an alkylene group containing from 1 to about 6 carbon atoms.
- betaines dodecyl dimethyl betaine, cetyl dimethyl betaine, dodecyl amidopropyldimethyl betaine, tetradecyldimethyl betaine, tetradecylamidopropyldimethyl betaine, and dodecyldimethylammonium hexanoate.
- Other suitable amidoalkylbetaines are disclosed in U.S. Patent Nos. 3,950,417; 4,137,191; and 4,375,421; and British Patent GB No. 2,103,236, all of which are incorporated herein by reference.
- Zwitterionic Surfactants - Zwitterionic surfactants can also be incorporated into the detergent compositions hereof. These surfactants can be broadly described as derivatives of secondary and tertiary amines, derivatives of heterocyclic secondary and tertiary amines, or derivatives of quaternary ammonium, quaternary phosphonium or tertiary sulfonium compounds. See U.S. Patent No. 3,929,678 to Laughlin et al., issued December 30, 1975 at column 19, line 38 through column 22, line 48 for examples of zwitterionic surfactants. Ampholytic and zwitterionic surfactants are generally used in combination with one or more anionic and/or nonionic surfactants.
- Detersive Enzymes - Enzymes are preferably included in the present detergent compositions for a variety of purposes, including removal of protein-based, carbohydrate-based, or triglyceride-based stains from substrates.
- Recent enzyme disclosures in detergents useful herein include chondriotinase ( EP 747,469 A); protease variants ( WO 96/28566 A; WO 96/28557 A; WO 96/28556 A; WO 96/25489 A); xylanase ( EP 709,452 A); keratinase (EP 747,470 A); lipase ( GB 2,297,979 A; WO 96/16153 A; WO 96/12004 A; EP 698,659 A; WO 96/16154 A); cellulase (GB 2,294,269 A; WO 96/27649 A; GB 2,303,147 A); thermitase (WO 96/28558 A).
- suitable enzymes include cellulases, hemicellulases, proteases, gluco- amylases, amylases, lipases, cutinases, pectinases, xylanases, keratinases, reductases, oxidases, phenoloxidases, lipoxygenases, ligninases, pullulanases, tannases, chondriotinases, thermitases, pentosanases, malanases, ⁇ -glucanases, arabinosidases or mixtures thereof of any suitable origin, such as vegetable, animal, bacterial, fungal and yeast origin.
- Preferred selections are influenced by factors such as pH-activity and/or stability optima, thermostability, and stability to active detergents, builders and the like.
- bacterial or fungal enzymes are preferred, such as bacterial amylases and proteases, and fungal cellulases.
- a preferred combination is a detergent composition having a cocktail of conventional applicable enzymes like protease, amylase, lipase, cutinase and/or cellulase. Suitable enzymes are also described in US Patent Nos.
- the composition will preferably contain at least about 0.0001%, more preferably at least about 0.0005%, even more preferably still, at least about 0.001% by weight of the composition of enzyme.
- the cleaning composition will also preferably contain no more than about 5%, more preferably no more than about 2%, even more preferably, no more than about 1% by weight of the composition of enzyme.
- Detersive enzyme means any enzyme having a cleaning, stain removing or otherwise beneficial effect in cleaning compositions.
- Preferred detersive enzymes are hydrolases such as proteases, amylases and Upases. Highly preferred are amylases and or proteases, including both current commercially available types and improved types.
- Enzymes are normally incorporated into detergent or detergent additive compositions at levels sufficient to provide a "cleaning-effective amount".
- cleaning effective amount refers to any amount capable of producing a cleaning, stain removal, soil removal, whitening, deodorizing, or freshness improving effect on substrates such as fabrics, dishware and the like. In practical terms for current commercial preparations, typical amounts are up to about 5 mg by weight, more typically 0.01 mg to 3 mg, of active enzyme per gram of the detergent composition. Stated otherwise, the compositions herein will typically comprise from 0.001% to 5%, preferably 0.01%-1% by weight of a commercial enzyme preparation.
- Protease enzymes are usually present in such commercial preparations at levels sufficient to provide from 0.005 to 0.1 Anson units (AU) of activity per gram of composition. For certain detergents it may be desirable to increase the active enzyme content of the commercial preparation in order to minimize the total amount of non-catalytically active materials and thereby improve spotting/filming or other end-results. Higher active levels may also be desirable in highly concentrated detergent formulations.
- Proteolytic Enzyme The proteolytic enzyme can be of animal, vegetable or microorganism (preferred) origin.
- the proteases for use in the detergent compositions herein include (but are not limited to) trypsin, subtilisin, chymotrypsin and elastase-type proteases. Preferred for use herein are subtilisin-type proteolytic enzymes. Particularly preferred is bacterial serine proteolytic enzyme obtained from Bacillus subtilis and/or Bacillus licheniformis.
- Suitable proteolytic enzymes include Novo Industri A/S Alcalase® (preferred), Esperase®' Savinase® (Copenhagen, Denmark), Gist-brocades' Maxatase®, Maxacal® and Maxapem 15® (protein engineered Maxacal®) (Delft, Netherlands), and subtilisin BPN and BPN'(preferred), which are commercially available.
- Preferred proteolytic enzymes are also modified bacterial serine proteases, such as those made by Genencor International, Inc. (San Francisco, California) which are described in European Patent 251,446B, granted December 28, 1994 (particularly pages 17, 24 and 98) and which are also called herein "Protease B".
- Protease A a modified bacterial serine proteolytic enzyme
- BPN' modified bacterial serine proteolytic enzyme
- Preferred proteolytic enzymes are selected from the group consisting of Alcalase ® (Novo Industri A/S), BPN', Protease A and Protease B (Genencor), and mixtures thereof. Protease B is most preferred.
- proteases described in our co-pending application USSN 08/136,797 can be included in the detergent composition of the invention.
- protease D is a carbonyl hydrolase variant having an amino acid sequence not found in nature, which is derived from a precursor carbonyl hydrolase by substituting a different amino acid for a plurality of amino acid residues at a position in said carbonyl hydrolase equivalent to position +76, preferably also in combination with one or more amino acid residue positions equivalent to those selected from the group consisting of +99, +101, +103, +104, +107, +123, +27, +105, +109, +126, +128, +135, +156, +166, +195, +197, +204, +206, +210, +216, +217, +218, +222, +260, +265, and/or +274 according to the numbering of Bacillus amyloliquefaciens subtilisin, as described in WO 95/10615 published April 20, 1995 by Genencor International (A. Baeck et al. entitled "Protease-Containing Cleaning Composition
- proteases are also described in PCT publications: WO 95/30010 published November 9, 1995 by The Procter & Gamble Company; WO 95/30011 published November 9, 1995 by The Procter & Gamble Company; WO 95/29979 published November 9, 1995 by The Procter & Gamble Company.
- Protease enzyme may be incorporated into the compositions in accordance with the invention at a level of from 0.0001% to 2% active enzyme by weight of the composition.
- the composition will preferably contain at least about 0.0001%, more preferably at least about 0.0002%, more preferably at least about 0.0005%, even more preferably still, at least about 0.001% of active enzyme by weight of the composition of protease enzyme.
- the composition will also preferably contain no more than about 2%, more preferably no more than about 0.5%, more preferably no more than about 0.1%, even more preferably, no more than about 0.05% of active enzyme by weight of the composition of protease enzyme.
- Amylase - Amylases ( ⁇ and/or ⁇ ) can be included for removal of carbohydrate-based stains.
- Suitable amylases are Termamyl® (Novo Nordisk), Fungamyl® and BAN® (Novo Nordisk).
- the enzymes may be of any suitable origin, such as vegetable, animal, bacterial, fungal and yeast origin.
- the composition will preferably contain at least about 0.0001%, more preferably at least about 0.0002%, more preferably at least about 0.0005%, even more preferably still, at least about 0.001% of active enzyme by weight of the composition of amylase enzyme.
- the composition will also preferably contain no more than about 2%, more preferably no more than about 0.5%, more preferably no more than about 0.1%, even more preferably, no more than about 0.05% of active enzyme by weight of the composition of amylase enzyme.
- Amylase enzymes also include those described in WO95/26397 and in co- pending application by Novo Nordisk PCT/DK96/00056. Other specific amylase enzymes for use in the detergent compositions of the present invention therefore include :
- ⁇ -amylases characterised by having a specific activity at least 25% higher than the specific activity of Termamyl® at a temperature range of 25°C to 55°C and at a pH value in the range of 8 to 10, measured by the Phadebas® ⁇ -amylase activity assay.
- Phadebas® ⁇ -amylase activity assay is described at pages 9-10, WO95/26397.
- ⁇ -amylases according (a) comprising the amino sequence shown in the SEQ ID listings in the above cited reference, or an ⁇ -amylase being at least 80% homologous with the amino acid sequence shown in the SEQ ID listing.
- ⁇ -amylases according (a) obtained from an alkalophihc Bacillus species, comprising the following amino sequence in the N-terminal : His-His-Asn-Gly-Thr-Asn-Gly-Thr- Met-Met-Gln-Tyr-Phe-Glu-Trp-Tyr-Leu-Pro-Asn-Asp.
- a polypeptide is considered to be X% homologous to the parent amylase if a comparison of the respective amino acid sequences, performed via algorithms, such as the one described by Lipman and Pearson in Science 227, 1985, p. 1435, reveals an identity of X%
- ⁇ -amylases according (a-c) wherein the ⁇ -amylase is obtainable from an alkalophihc Bacillus species; and in particular, from any of the strains NCIB 12289, NCIB 12512, NCIB 12513 and DSM 935.
- the term "obtainable from” is intended not only to indicate an amylase produced by a Bacillus strain but also an amylase encoded by a DNA sequence isolated from such a Bacillus strain and produced in an host organism transformed with said DNA sequence.
- Variants of the following parent ⁇ -amylases which (i) have one of the amino acid sequences shown in corresponding respectively to those ⁇ -amylases in (a-e), or (ii) displays at least 80% homology with one or more of said amino acid sequences, and/or displays immunological cross-reactivity with an antibody raised against an ⁇ -amylase having one of said amino acid sequences, and/or is encoded by a DNA sequence which hybridizes with the same probe as a DNA sequence encoding an ⁇ -amylase having one of said amino acid sequence; in which variants :
- At least one amino acid residue of said parent ⁇ -amylase has been replaced by a different amino acid residue
- At least one amino acid residue has been inserted relative to said parent ⁇ - amylase; said variant having an ⁇ -amylase activity and exhibiting at least one of the following properties relative to said parent ⁇ -amylase : increased thermostability, increased stability towards oxidation, reduced Ca ion dependency, increased stability and/or ⁇ -amylolytic activity at neutral to relatively high pH values, increased ⁇ -amylolytic activity at relatively high temperature and increase or decrease of the isoelectric point (pi) so as to better match the pi value for ⁇ - amylase variant to the pH of the medium.
- amylases suitable herein include, for example, ⁇ -amylases described in GB 1,296,839 to Novo; RAPID ASE®, International Bio-Synthetics, Inc. and TERMAMYL®, Novo. FUNGAMYL® from Novo is especially useful.
- Engineering of enzymes for improved stability, e.g., oxidative stability, is known. See, for example J. Biological Chem., Vol. 260, No. 11, June 1985, pp. 6518-6521.
- Certain preferred embodiments of the present compositions can make use of amylases having improved stability in detergents such as automatic dishwashing types, especially improved oxidative stability as measured against a reference-point of TERMAMYL® in commercial use in 1993.
- These preferred amylases herein share the characteristic of being "stability-enhanced" amylases, characterized, at a minimum, by a measurable improvement in one or more of: oxidative stability, e.g., to hydrogen peroxide/tetraacetylethylenediamine in buffered solution at pH 9-10; thermal stability, e.g., at common wash temperatures such as about 60°C; or alkaline stability, e.g., at a pH from about 8 to about 11, measured versus the above-identified reference-point amylase.
- oxidative stability e.g., to hydrogen peroxide/tetraacetylethylenediamine in buffered solution at pH 9-10
- thermal stability e.g., at common
- Stability can be measured using any of the art-disclosed technical tests. See, for example, references disclosed in WO 9402597. Stability-enhanced amylases can be obtained from Novo or from Genencor International. One class of highly preferred amylases herein have the commonality of being derived using site-directed mutagenesis from one or more of the Bacillus amylases, especially the Bacillus ⁇ -amylases, regardless of whether one, two or multiple amylase strains are the immediate precursors. Oxidative stability- enhanced amylases vs. the above-identified reference amylase are preferred for use, especially in bleaching, more preferably oxygen bleaching, as distinct from chlorine bleaching, detergent compositions herein.
- Such preferred amylases include (a) an amylase according to the hereinbefore incorporated WO 9402597, Novo, Feb. 3, 1994, as further illustrated by a mutant in which substitution is made, using alanine or threonine, preferably threonine, of the methionine residue located in position 197 of the B. licheniformis alpha-amylase, known as TERMAMYL®, or the homologous position variation of a similar parent amylase, such as B. amyloliquefaciens, B. subtilis, or B.
- amylase Stability was measured in CASCADE® and SUNLIGHT®;
- particularly preferred amylases herein include amylase variants having additional modification in the immediate parent as described in WO 9510603 A and are available from the assignee,
- oxidative stability enhanced amylase include those described in WO 9418314 to Genencor International and WO 9402597 to Novo. Any other oxidative stability-enhanced amylase can be used, for example as derived by site-directed mutagenesis from known chimeric, hybrid or simple mutant parent forms of available amylases. Other preferred enzyme modifications are accessible. See WO 9509909 A to Novo.
- Cellulases usable herein include both bacterial and fungal types, preferably having a pH optimum between 5 and 9.5.
- U.S. 4,435,307, Barbesgoard et al, March 6, 1984 discloses suitable fungal cellulases from Humicola insolens or Humicola strain DSM1800 or a cellulase 212-producing fungus belonging to the genus Aeromonas, and cellulase extracted from the hepatopancreas of a marine mollusk, Dolabella Auricula Solander.
- Suitable cellulases are also disclosed in GB-A-2.075.028; GB-A-2.095.275 and DE-OS-2.247.832.
- CAREZYME® and CELLUZYME®(Novo) are especially useful. See also WO 9117243 to Novo.
- the composition will preferably contain at least about 0.0001%, more preferably at least about 0.0002%, more preferably at least about 0.0005%, even more preferably still, at least about 0.001% of active enzyme by weight of the composition of cellulases and/or peroxidases enzyme.
- the composition will also preferably contain no more than about 2%, more preferably no more than about 0.5%, more preferably no more than about 0.1%, even more preferably, no more than about 0.05% of active enzyme by weight of the composition of cellulases and/or peroxidases enzyme.
- cutinases [EC 3.1.1.50] which can be considered as a special kind of lipase, namely lipases which do not require interfacial activation. Addition of cutinases to detergent compositions have been described in e.g. WO-A-88/09367 (Genencor).
- Lipase - Suitable lipase enzymes include those produced by microorganisms of the Pseudomonas group, such as Pseudomonas stutzeri ATCC 19.154, as disclosed in British Patent 1,372,034. Suitable lipases include those which show a positive immunological cross-reaction with the antibody of the lipase, produced by the microorganism Pseudomonas fluorescens IAM 1057. This lipase is available from Amano Pharmaceutical Co. Ltd., Nagoya, Japan, under the trade name Lipase P "Amano,” hereinafter referred to as "Amano-P".
- lipases such as Ml Lipase® and Lipomax® (Gist-Brocades).
- Other suitable commercial lipases include Amano-CES, lipases ex Chromobacter viscosum, e.g. Chromobacter viscosum var. lipolyticum NR-RLB 3673 from Toyo Jozo Co., Tagata, Japan; Chromobacter viscosum lipases from U.S. Biochemical Corp., U.S.A. and Disoynth Co., The Netherlands, and lipases ex Pseudomonas gladioli.
- Highly preferred lipases are the D96L lipolytic enzyme variant of the native lipase derived from Humicola lanuginosa as described in US Serial No. 08/341,826.
- D native lipase ex Humicola lanuginosa aspartic acid
- L Leucine
- the substitution of aspartic acid to Leucine in position 96 is shown as : D96L.
- the Humicola lanuginosa strain DSM 4106 is used.
- the lipase variant (D96L) may be added in an amount corresponding to 0.001-100- mg (5-500,000 LU/liter) lipase variant per liter of wash liquor.
- the composition will preferably contain at least about 0.0001%, more preferably at least about 0.0002%, more preferably at least about 0.0005%, even more preferably still, at least about 0.001% of active enzyme by weight of the composition of lipase enzyme.
- the composition will also preferably contain no more than about 2%, more preferably no more than about 0.5%, more preferably no more than about 0.1%, even more preferably, no more than about 0.05% of active enzyme by weight of the composition of lipase enzyme.
- Various carbohydrase enzymes which impart antimicrobial activity may also be included in the present invention. Such enzymes include endoglycosidase, Type II endoglycosidase and glucosidase as disclosed in U.S. Patent Nos.
- a range of enzyme materials and means for their incorporation into synthetic detergent compositions is also disclosed in WO 9307263 A and WO 9307260 A to Genencor International, WO 8908694 A to Novo, and U.S. 3,553,139, January 5, 1971 to McCarty et al. Enzymes are further disclosed in U.S. 4,101,457, Place et al, July 18, 1978, and in U.S. 4,507,219, Hughes, March 26, 1985. Enzyme materials useful for liquid detergent formulations, and their incorporation into such formulations, are disclosed in U.S. 4,261,868, Hora et al, April 14, 1981. Enzymes for use in detergents can be stabilized by various techniques.
- Enzyme stabilization techniques are disclosed and exemplified in U.S. 3,600,319, August 17, 1971, Gedge et al, EP 199,405 and EP 200,586, October 29, 1986, Venegas. Enzyme stabilization systems are also described, for example, in U.S. 3,519,570. A useful Bacillus, sp. AC13 giving proteases, xylanases and cellulases, is described in WO 9401532 A to Novo.
- Enzyme Stabilizing System -_The preferred compositions herein may additionally comprise from about 0.001% to about 10%, preferably from about 0.005% to about 8%, most preferably from about 0.01% to about 6%, by weight of an enzyme stabilizing system.
- the enzyme stabilizing system can be any stabilizing system which is compatible with the protease or other enzymes used in the compositions herein.
- Such stabilizing systems can comprise calcium ion, boric acid, propylene glycol, short chain carboxylic acid, boronic acid, polyhydroxyl compounds and mixtures thereof such as are described in U.S.
- the composition will preferably contain at least about 0.001%, more preferably at least about 0.005%, even more preferably still, at least about 0.01% by weight of the composition of enzyme stabilizing system.
- the composition will also preferably contain no more than about 10%, more preferably no more than about 8%, no more than about 6% of active enzyme by weight of the composition of enzyme stabilizing system.
- One stabilizing approach is the use of water-soluble sources of calcium and/or magnesium ions in the finished compositions which provide such ions to the enzymes.
- Calcium ions are generally more effective than magnesium ions and are preferred herein if only one type of cation is being used.
- Typical detergent compositions, especially liquids will comprise from about 1 to about 30, preferably from about 2 to about 20, more preferably from about 8 to about 12 millimoles of calcium ion per liter of finished detergent composition, though variation is possible depending on factors including the multiplicity, type and levels of enzymes incorporated.
- Preferably water-soluble calcium or magnesium salts are employed, including for example calcium chloride, calcium hydroxide, calcium formate, calcium malate, calcium maleate, calcium hydroxide and calcium acetate; more generally, calcium sulfate or magnesium salts corresponding to the exemplified calcium salts may be used. Further increased levels of Calcium and/or Magnesium may of course be useful, for example for promoting the grease-cutting action of certain types of surfactant. However, it is especially preferred that the composition contain no added calcium ions, and even more preferred that the composition be free of calcium ions.
- Borate stabilizers when used, may be at levels of up to 10% or more of the composition though more typically, levels of up to about 3% by weight of boric acid or other borate compounds such as borax or orthoborate are suitable for liquid detergent use.
- Substituted boric acids such as phenylboronic acid, butaneboronic acid, p- bromophenylboronic acid or the like can be used in place of boric acid and reduced levels of total boron in detergent compositions may be possible though the use of such substituted boron derivatives.
- chlorine bleach or oxygen bleach scavengers can be added to compositions of the present invention to prevent chlorine bleach species present in many water supplies from attacking and inactivating the enzymes, especially under alkaline conditions. While chlorine levels in water may be small, typically in the range from about 0.5 ppm to about 1.75 ppm, the available chlorine in the total volume of water that comes in contact with the enzyme during dishwashing is usually large; accordingly, enzyme stability in-use can be problematic.
- Suitable chlorine scavenger anions are salts containing ammonium cations. These can be selected from the group consisting of reducing materials like sulfite, bisulfite, thiosulfite, thiosulfate, iodide, etc., antioxidants like carbonate, ascorbate, etc., organic amines such as ethylenediaminetetracetic acid (EDTA) or alkali metal salt thereof and monoethanolamine (MEA), and mixtures thereof.
- reducing materials like sulfite, bisulfite, thiosulfite, thiosulfate, iodide, etc.
- antioxidants like carbonate, ascorbate, etc.
- organic amines such as ethylenediaminetetracetic acid (EDTA) or alkali metal salt thereof and monoethanolamine (MEA), and mixtures thereof.
- EDTA ethylenediaminetetracetic acid
- MEA monoethanolamine
- Builders - Detergent builders are optionally included in the compositions herein. In solid formulations, builders sometimes serve as absorbents for surfactants. Alternately, certain compositions can be formulated with completely water-soluble builders, whether organic or inorganic, depending on the intended use.
- Suitable silicate builders include water-soluble and hydrous solid types and including those having chain-, layer-, or three-dimensional- structure as well as amorphous-solid silicates or other types, for example especially adapted for use in non- structured-liquid detergents.
- alkali metal silicates particularly those liquids and solids having a Si ⁇ 2:Na2 ⁇ ratio in the range 1.6:1 to 3.2:1, including solid hydrous 2-ratio silicates marketed by PQ Corp. under the tradename BRITESIL®, e.g., BRITESIL H2O; and layered silicates, e.g., those described in U.S. 4,664,839, May 12, 1987, H. P. Rieck.
- NaSKS-6 is a crystalline layered aluminum- free ⁇ -Na2Si ⁇ 5 morphology silicate marketed by Hoechst and is preferred especially in granular compositions. See preparative methods in German DE-A-3,417,649 and DE-A- 3,742,043.
- Other layered silicates such as those having the general formula NaMSi x ⁇ 2 ⁇ +l-yH2 ⁇ wherein M is sodium or hydrogen, x is a number from 1.9 to 4, preferably 2, and y is a number from 0 to 20, preferably 0, can also or alternately be used herein.
- Layered silicates from Hoechst also include NaSKS-5, NaSKS-7 and NaSKS-11, as the ⁇ , ⁇ and ⁇ layer-silicate forms.
- Other silicates may also be useful, such as magnesium silicate, which can serve as a crispening agent in granules, and as a component of suds control systems.
- crystalline ion exchange materials or hydrates thereof having chain structure and a composition represented by the following general formula in an anhydride form: xM2 ⁇ ySi ⁇ 2.zM'O wherein M is Na and/or K, M' is Ca and or Mg; y/x is 0.5 to 2.0 and z/x is 0.005 to 1.0 as taught in U.S. 5,427,711, Sakaguchi et al, June 27, 1995.
- Aluminosilicate builders such as zeolites, are especially useful in granular detergents, but can also be incorporated in liquids, pastes or gels. Suitable for the present purposes are those having empirical formula: [M z (Al ⁇ 2) z (Si ⁇ 2) v ]'xH2 ⁇ wherein z and v are integers of at least 6, M is an alkali metal, preferably Na and/or K, the molar ratio of z to v is in the range from 1.0 to 0.5, and x is an integer from 15 to 264.
- Aluminosilicates can be crystalline or amorphous, naturally-occurring or synthetically derived. An aluminosilicate production method is in U.S.
- the aluminosilicate has a particle size of 0.1-10 microns in diameter.
- Detergent builders in place of or in addition to the silicates and aluminosilicates described hereinbefore can optionally be included in the compositions herein, for example to assist in controlling mineral, especially Ca and/or Mg, hardness in wash water or to assist in the removal of particulate soils from surfaces.
- Builders can operate via a variety of mechanisms including forming soluble or insoluble complexes with hardness ions, by ion exchange, and by offering a surface more favorable to the precipitation of hardness ions than are the surfaces of articles to be cleaned.
- Builder level can vary widely depending upon end use and physical form of the composition.
- Built detergents typically comprise at least about 1% builder.
- Liquid formulations typically comprise about 5% to about 50%, more typically 5% to 35% of builder.
- Granular formulations typically comprise from about 10% to about 80%, more typically 15% to 50% builder by weight of the detergent composition. Lower or higher levels of builders are not excluded. For example, certain formulations can be unbuilt, that is the compositions contain no builder such as in some hand dishwashing compositions.
- Suitable builders herein can be selected from the group consisting of phosphates and polyphosphates, especially the sodium salts; carbonates, bicarbonates, sesquicarbonates and carbonate minerals other than sodium carbonate or sesquicarbonate; organic mono-, di-, tri-, and tetracarboxylates especially water-soluble nonsurfactant carboxylates in acid, sodium, potassium or alkanolammonium salt form, as well as oligomeric or water-soluble low molecular weight polymer carboxylates including aliphatic and aromatic types; and phytic acid.
- phosphates and polyphosphates especially the sodium salts
- carbonates, bicarbonates, sesquicarbonates and carbonate minerals other than sodium carbonate or sesquicarbonate organic mono-, di-, tri-, and tetracarboxylates especially water-soluble nonsurfactant carboxylates in acid, sodium, potassium or alkanolammonium salt form, as well as oligomeric or water-soluble low molecular weight polymer carboxy
- borates e.g., for pH-buffering purposes
- sulfates especially sodium sulfate and any other fillers or carriers which may be important to the engineering of stable surfactant and/or builder-containing detergent compositions.
- Builder mixtures sometimes termed “builder systems” can be used and typically comprise two or more conventional builders, optionally complemented by chelants, pH- buffers or fillers, though these latter materials are generally accounted for separately when describing quantities of materials herein.
- preferred builder systems are typically formulated at a weight ratio of surfactant to builder of from about 60:1 to about 1:80.
- Certain preferred laundry detergents have said ratio in the range 0.90:1.0 to 4.0:1.0, more preferably from 0.95:1.0 to 3.0:1.0.
- P-containing detergent builders often preferred where permitted by legislation include, but are not limited to, the alkali metal, ammonium and alkanolammonium salts of polyphosphates exemplified by the tripolyphosphates, pyrophosphates, glassy polymeric meta-phosphates; and phosphonates.
- Suitable carbonate builders include alkaline earth and alkali metal carbonates as disclosed in German Patent Application No.
- Suitable "organic detergent builders”, as described herein for use in the cleaning compositions include polycarboxylate compounds, including water-soluble nonsurfactant dicarboxylates and tricarboxylates. More typically builder polycarboxylates have a plurality of carboxylate groups, preferably at least 3 carboxylates.
- Carboxylate builders can be formulated in acid, partially neutral, neutral or overbased form. When in salt form, alkali metals, such as sodium, potassium, and lithium, or alkanolammonium salts are preferred.
- Polycarboxylate builders include the ether polycarboxylates, such as oxydisuccinate, see Berg, U.S. 3,128,287, April 7, 1964, and Lamberti et al, U.S.
- organic detergent builders are the ether hydroxypolycarboxylates, copolymers of maleic anhydride with ethylene or vinyl methyl ether; 1, 3, 5-trihydroxy benzene-2, 4, 6-trisulphonic acid; carboxymethyloxysuccinic acid; the various alkali metal, ammonium and substituted ammonium salts of polyacetic acids such as ethylenediamine tetraacetic acid and nitrilotriacetic acid; as well as mellitic acid, succinic acid, polymaleic acid, benzene 1,3,5-tricarboxylic acid, carboxymethyloxysuccinic acid, and soluble salts thereof.
- Citrates e.g., citric acid and soluble salts thereof are important carboxylate builders e.g., for light duty liquid detergents, due to availability from renewable resources and biodegradability. Citrates can also be used in granular compositions, especially in combination with zeolite and/or layered silicates. Oxydisuccinates are also especially useful in such compositions and combinations.
- alkali metal phosphates such as sodium tripolyphosphates, sodium pyrophosphate and sodium orthophosphate can be used.
- Phosphonate builders such as ethane- 1-hydroxy- 1,1- diphosphonate and other known phosphonates, e.g., those of U.S. 3,159,581; 3,213,030; 3,422,021; 3,400,148 and 3,422,137 can also be used and may have desirable antiscaling properties.
- detersive surfactants or their short-chain homologues also have a builder action. For unambiguous formula accounting purposes, when they have surfactant capability, these materials are summed up as detersive surfactants.
- Preferred types for builder functionality are illustrated by: 3,3-dicarboxy-4-oxa-l,6-hexanedioates and the related compounds disclosed in U.S. 4,566,984, Bush, January 28, 1986.
- Succinic acid builders include the C5-C20 alkyl and alkenyl succinic acids and salts thereof.
- Succinate builders also include: laurylsuccinate, myristylsuccinate, palmitylsuccinate, 2- dodecenylsuccinate (preferred), 2-pentadecenylsuccinate, and the like.
- Lauryl-succinates are described in European Patent Application 86200690.5/0,200,263, published November 5, 1986.
- Fatty acids e.g., C12-C18 monocarboxylic acids, can also be incorporated into the compositions as surfactant/builder materials alone or in combination with the aforementioned builders, especially citrate and/or the succinate builders, to provide additional builder activity.
- Other suitable polycarboxylates are disclosed in U.S. 4,144,226, Crutchfield et al, March 13, 1979 and in U.S. 3,308,067, Diehl, March 7, 1967. See also Diehl, U.S. 3,723,322.
- Mineral Builders examples of these builders, their use and preparation can be found in US Patent 5,707,959.
- Suitable polycarboxylates builders for use herein include maleic acid, citric acid, preferably in the form of a water-soluble salt, derivatives of succinic acid of the formula R-CH(COOH)CH2(COOH) wherein R is ClO-20 alkyl or alkenyl, preferably C12-16, or wherein R can be substituted with hydroxyl, sulfo sulfoxyl or sulfone substituents.
- R-CH(COOH)CH2(COOH) wherein R is ClO-20 alkyl or alkenyl, preferably C12-16, or wherein R can be substituted with hydroxyl, sulfo sulfoxyl or sulfone substituents.
- Mixtures of these suitable polycarboxylates builders is also envisioned, such as a mixture of maleic acid and citric acid.
- lauryl succinate examples include lauryl succinate, myristyl succinate, palmityl succinate 2-dodecenylsuccinate, 2-tetradecenyl succinate.
- Succinate builders are preferably used in the form of their water-soluble salts, including sodium, potassium, ammonium and alkanolammonium salts.
- polycarboxylates are oxodisuccinates and mixtures of tartrate monosuccinic and tartrate disuccinic acid such as described in US 4,663,071.
- suitable fatty acid builders for use herein are saturated or unsaturated CIO- 18 fatty acids, as well as the corresponding soaps.
- Preferred saturated species have from 12 to 16 carbon atoms in the alkyl chain.
- the preferred unsaturated fatty acid is oleic acid.
- Other preferred builder system for liquid compositions is based on dodecenyl succinic acid and citric acid.
- the composition will preferably contain at least about 0.2%, more preferably at least about 0.5%, more preferably at least about 3%, even more preferably still, at least about 5% by weight of the composition of builder.
- the cleaning composition will also preferably contain no more than about 50%, more preferably no more than about 40%, more preferably no more than about 30%, even more preferably, no more than about 25% by weight of the composition of builder.
- Magnesium Ions - The presence of magnesium (divalent) ions improves the cleaning of greasy soils for various compositions, i.e., compositions containing alkyl ethoxy sulfates and or polyhydroxy fatty acid amides. This is especially true when the compositions are used in softened water that contains few divalent ions. It is believed, while not wanting to be limited by theory, that, magnesium ions increase the packing of the surfactants at the oil/water interface, thereby reducing interfacial tension and improving grease cleaning. Compositions of the invention herein containing magnesium ions exhibit good grease removal, manifest mildness to the skin, and provide good storage stability.
- the composition will preferably contain at least about 0.01%, more preferably at least about 0.015%, more preferably at least about 0.02%, even more preferably still, at least about 0.025% by weight of said composition of magnesium ions.
- the cleaning composition will also preferably contain no more than about 5%, more preferably no more than about 2.5%, more preferably no more than about 1%, even more preferably, no more than about 0.05% by weight of said composition of magnesium ions. In any event the amount of magnesium ions present will always be equimolar or less than the amount of diamine present in the composition.
- the magnesium ions are added as a hydroxide, chloride, acetate, formate, oxide or nitrate salt to the compositions of the present invention.
- divalent ion-containing compositions in alkaline pH matrices may be difficult due to the incompatibility of the divalent ions, particularly magnesium, with hydroxide ions.
- divalent ions and alkaline pH are combined with the surfactant mixture of this invention, grease cleaning is achieved that is superior to that obtained by either alkaline pH or divalent ions alone.
- the stability of these compositions becomes poor due to the formation of hydroxide precipitates. Therefore, chelating agents discussed hereinafter may also be necessary.
- the diamines are over 95% pure, i.e., preferably 97%, more preferably 99%, still more preferably 99.5%, free of impurities.
- impurities which may be present in commercially supplied diamines include 2-Methyl-l,3-diaminobutane and alkylhydropyrmiidine.
- the diamines should be free of oxidation reactants to avoid diamine degradation and ammonia formation. Additionally, if amine oxide and/or other surfactants are present, the amine oxide or surfactant should be hydrogen peroxide-free.
- the preferred level of hydrogen peroxide in the amine oxide or surfactant paste of amine oxide is 0-40 ppm, more preferably 0-15 ppm. Amine impurities in amine oxide and betaines, if present, should be minimized to the levels referred above for hydrogen peroxide.
- compositions free of hydrogen peroxide is important when the compositions contain an enzyme.
- the peroxide can react with the enzyme and destroy any performance benefits the enzyme adds to the composition. Even small amounts of hydrogen peroxide can cause problems with enzyme containing formulations.
- the diamine can react with any peroxide present and act as an enzyme stabilizer and prevent the hydrogen peroxide from reacting with the enzyme. The only draw back of this stabilization of the enzymes by the diamine is that the nitrogen compounds produced are believed to cause the malodors which can be present in diamine containing compositions. Having the diamine act as an enzyme stabilizer also prevents the diamine from providing the benefits to the composition for which it was originally put in to perform, namely, grease cleaning, sudsing, dissolution and low temperature stability.
- compositions of the present invention be "malodor" free. That is, that the odor of the headspace does not generate a negative olfactory response from the consumer.
- This can be achieved in many ways, including the use of perfumes to mask any undesirable odors, the use of stabilizers, such as antioxidants, chelants etc., and/or the use of diamines which are substantially free of impurities. It is believed, without wanting to being limited by theory, that it is the impurities present in the diamines that are the cause of most of the malodors in the compositions of the present invention. These impurities can form during the preparation and storage of the diamines. They can also form during the preparation and storage of the inventive composition.
- stabilizers such as antioxidants and chelants inhibit and/or prevent the formation of these impurities in the composition from the time of preparation to ultimate use by the consumer and beyond. Hence, it is most preferred to remove, suppress and/or prevent the formation of these malodors by the addition of perfumes, stabilizers and/or the use of diamines which are substantially free from impurities.
- One type of preferred organic diamines are those in which pKl and pK2 are in the range of about 8.0 to about 11.5, preferably in the range of about 8.4 to about 11, even more preferably from about 8.6 to about 10.75.
- Other preferred materials are the primary/primary diamines with alkylene spacers ranging from C4 to C8. In general, it is believed that primary diamines are preferred over secondary and tertiary diamines.
- pKal and pKa2 are quantities of a type collectively known to those skilled in the art as “pKa” pKa is used herein in the same manner as is commonly known to people skilled in the art of chemistry. Values referenced herein can be obtained from literature, such as from “Critical Stability Constants: Volume 2, Amines” by Smith and Martel, Plenum Press, NY and London, 1975. Additional information on pKa's can be obtained from relevant company literature, such as information supplied by Dupont, a supplier of diamines.
- the pKa of the diamines is specified in an all- aqueous solution at 25oC and for an ionic strength between 0.1 to 0.5 M.
- the pKa is an equilibrium constant which can change with temperature and ionic strength; thus, values reported in the literature are sometimes not in agreement depending on the measurement method and conditions.
- the relevant conditions and/or references used for pKa's of this invention are as defined herein or in "Critical Stability Constants: Volume 2, Amines”.
- diamines useful herein can be defined by the following structure: ,C ⁇ . Cv
- R2 -N- "A' N ' R 5 wherein R2-5 are independently selected from H, methyl, -CH3CH2, and ethylene oxides; Cx and Cv are independently selected from methylene groups or branched alkyl groups where x+y is from about 3 to about 6; and A is optionally present and is selected from electron donating or withdrawing moieties chosen to adjust the diamine pKa's to the desired range. If A is present, then x and y must both be 1 or greater.
- the diamines can be those organic diamines with a molecular weight less than or equal to 400 g/mol. It is preferred that these diamines have the formula:
- R7 is C2-C4 linear or branched alkylene, and mixtures thereof;
- R8 is hydrogen, C1-C4 alkyl, and mixtures thereof;
- m is from 1 to about 10;
- X is a unit selected from: i) C3-C10 linear alkylene, C3-C10 branched alkylene, C3-C10 cyclic alkylene, C3-C10 branched cyclic alkylene, an alkyl eneoxyalkylene having the formula: wherein R7 and m are the same as defined herein above; ii) C3-C10 linear, C3-C10 branched linear, C3-C10 cyclic, C3-C10 branched cyclic alkylene, C6-C10 arylene, wherein said unit comprises one or more electron donating or electron withdrawing moieties which provide said diamine with a pKa greater than about 8; and iii) mixtures of (i) and (ii) mixture
- diamines examples include the following: dimethyl aminopropyl amine, 1,6-hexane diamine, 1,3 propane diamine, 2-methyl 1,5 pentane diamine, 1,3-Pentanediamine (available under the tradename Dytek EP), 1,3- diaminobutane, l,2-bis(2-aminoethoxy)ethane, (available under the tradename Jeffamine EDR 148), Isophorone diamine, l,3-bis(methylamine)-cyclohexane, and mixtures thereof.
- compositions of the present invention may optionally contain a polymeric suds stabilizer.
- These polymeric suds stabilizers provide extended suds volume and suds duration without sacrificing the grease cutting ability of the liquid detergent compositions.
- These polymeric suds stabilizers are preferably selected from: i) homopolymers of (N,N-dialkylamino)alkyl acrylate esters having the formula:
- each R is independently hydrogen, Cj-Cs alkyl, and mixtures thereof, R 1 is hydrogen, C ⁇ -Cg alkyl, and mixtures thereof, n is from 2 to about 6; and ii) copolymers of (i) and
- R 1 is hydrogen, C1-C6 alkyl, and mixtures thereof, provided that the ratio of (ii) to (i) is from about 2 to 1 to about 1 to 2;
- the molecular weight of the polymeric suds boosters, determined via conventional gel permeation chromatography, is from about 1,000 to about 2,000,000, preferably from about 5,000 to about 1,000,000, more preferably from about 10,000 to about 750,000, more preferably from about 20,000 to about 500,000, even more preferably from about 35,000 to about 200,000.
- the polymeric suds stabilizer can optionally be present in the form of a salt, either an inorganic or organic salt, for example the citrate, sulfate, or nitrate salt of (N,N- dimethylamino)alkyl acrylate ester.
- a salt either an inorganic or organic salt, for example the citrate, sulfate, or nitrate salt of (N,N- dimethylamino)alkyl acrylate ester.
- One preferred polymeric suds stabilizer is (N,N-dimethylamino)alkyl acrylate esters, namely
- the composition will preferably contain at least about 0.01%, more preferably at least about 0.05%, even more preferably still, at least about 0.1% by weight of the composition of polymeric suds booster.
- the cleaning composition will also preferably contain no more than about 15%, more preferably no more than about 10%, even more preferably, no more than about 5% by weight of the composition of polymeric suds booster.
- suds stabilizers are the cationic copolymer stabilizers, which contain approximately by weight, more than 50% of units derived from acrylamide, methacrylamide or a mixture thereof, 0.5 to 2% of pendant quaternary nitrogen, and 0.1 to 10% of pendant C. sub.8-24 hydrophobic groups, preferably the copolymer contains, approximately by weight, 55 to 95% of units derived from acrylamide, methacrylamide or a mixture thereof, 4 to 30% of hydrophilically functional units having the molecular configuration of units derived from at least one monoethylenically unsaturated, quaternary ammonium group-containing monomer, and 1 to 15% of units derived from at least one monoethylenically unsaturated, C.
- the quaternary ammonium group-containing monomer has the formula wherein Ri is H or CH 3 , R 2 and R 3 are independently C ⁇ - 4 alkyls, 1 ⁇ is C ⁇ - 4 alkyl, C - 3 hydroxyalkyl, or benzyl R 2 , R 3 and together contain less than 9 carbon atoms, Z is a water-solubilizing salt- forming anion, and M may be --CO--X--, then X is --O-- or — NR 5 --, R 5 is H or C ⁇ - 4 alkyl and x is 1-6, or M may be phenylene then x is 1 ; and . that the hydrophobic group-containing monomer has the formula wherein Ri is H or CH 3 , R 2 and R 3 are independently C ⁇ - 4 alkyls, 1 ⁇ is C ⁇ - 4 alkyl, C - 3 hydroxyalkyl, or benzyl R 2 , R 3 and together contain less than 9 carbon atoms, Z is a water
- Thickener - The dishwashing detergent compositions herein can also contain from about 0.2% to 5% of a thickening agent. More preferably, such a thickener will comprise from about 0.5% to 2.5% of the compositions herein.
- Thickeners are typically selected from the class of cellulose derivatives. Suitable thickeners include hydroxy ethyl cellulose, hydroxyethyl methyl cellulose, carboxy methyl cellulose, Quatrisoft LM200, and the like.
- a preferred thickening agent is hydroxypropyl methylcellulose.
- the composition may preferably contain at least about 0.1%, more preferably at least about 0.2%, even more preferably still, at least about 5% by weight of the composition of thickener.
- the composition will also preferably contain no more than about 5%, more preferably no more than about 3%, even more preferably, no more than about 2.5% by weight of the composition of thickener.
- the hydroxypropyl methylcellulose polymer has a number average molecular weight of about 50,000 to 125,000 and a viscosity of a 2 wt.% aqueous solution at 25°C. (ADTMD2363) of about 50,000 to about 100,000 cps.
- An especially preferred hydroxypropyl cellulose polymer is Methocel® J75MS-N wherein a 2.0 wt.% aqueous solution at 25°C. has a viscosity of about 75,000 cps.
- Especially preferred hydroxypropyl cellulose polymers are surface treated such that the hydroxypropyl cellulose polymer will ready disperse at 25°C. into an aqueous solution having a pH of at least about 8.5.
- the hydroxypropyl methylcellulose polymer When formulated into the dishwashing detergent compositions of the present invention, the hydroxypropyl methylcellulose polymer should impart to the detergent composition a Brookfield viscosity of from about 500 to 3500 cps at 25°C. More preferably, the hydroxypropyl methylcellulose material will impart a viscosity of from about 1000 to 3000 cps at 25°C. For purposes of this invention, viscosity is measured with a Brookfield LVTDV-11 viscometer apparatus using an RV #2 spindle at 12 rpm.
- the clay thickeners are also suitable for use as thickeners.
- One suitable clay thickener is Laponite.
- the Laponite clay when used, is present in the instant composition at a concentration of about 0.25% to about 2.0 wt. %, more preferably about 0.5 to about 1.75 wt. % is a synthetic colored clay optionally having at least about 5.0 wt. % of tetrapotassium pyrrophosphate peptizer which is Laponite RDS.
- Laponite RDS which is manufactured by Laponite Inorganics of Great Britain has a particle size of ⁇ 2% greater than 250 microns a bulk density of about 1000 Kg/m.sup.3, and a surface area of about 330 m.sup.3 lg.
- Laponite RD does not have a peptizer and has a particle size of ⁇ 2% greater than 250 microns, a surface area of about 370 m.sup.2 /g and a bulk density of about 1000 Kg/m.sup.3.
- the dishwashing composition may also contain a colloid-foaming, expandable clay which functions both as a thickening agent for the formula and as a suspending agent for the abrasive.
- expandable clays are those classified geologically as smectites and attapulgites. Suitable smectite clays are the montmorillonite clays which are primarily hydrated aluminosilicates and the hectorites which are primarily hydrated magnesium silicates. It should be understood that the proportion of water of hydration in the smectite clays varies with the manner in which the clay has been processed.
- the amount of water present is not significant because the expandable characteristics of the hydrated smectite clays are dictated by the silicate lattice structure. Additionally, deficit charges in smectite are compensated by cations such as sodium, calcium, potassium, etc., which are sorbed between the three layer (two tetrahedral and one octahedral) clay mineral sandwiches.
- the smectite clays used in the liquid compositions are commercially available under various trade names such as Thixogel No. 1 and Gelwhite GP from Georgia Kaolin Company (both montmorillonites) and Veegum Pro and Veegum F from R. T. Vanderbilt (both hectorites).
- a preferred clay is Gelwhite GP which is a colloidal montmorillonite clay of a high viscosity sold by Georgia Kaolin company.
- This clay contains about 6% to 10% by weight of water and is a mixture of the following oxides: 59% SIO.sub.2, 21% Al.sub.3 O.sub.3, 1% Fe.sub.2 O.sub.3, 2.4% CaO, 3.8% MgO, 4.1% Na.sub.2 O and 0.4% K.sub.2 O. 100% by weight of the clay passes through a 200 mesh screen. It disperses readily in water, but requires maximum swelling in water before use. This swelling of the clay is important to eliminate liquid layering. During this swelling process, the clay/water mix builds substantial viscosity.
- 350 dynes/cm. sub.2 has been judged to be a preferred yield point for a clay/water mix of Gelwhite GP because at this point the other physical properties of the final composition, e.g., pourability, dispersibility, suspending ability and liquid layering, are acceptable.
- layering refers to the amount—in millimeters — of clear liquid visible on the surface of the finished formula after aging at 49.degree. C. for one week and for ten weeks.
- a clay/water mix having a yield point of 350 dynes/cm.sup.2 is acceptable regardless of Gelwhite GP concentration.
- Another expandable clay material suitable for use in the liquid compositions is classified geologically as attapulgite, a magnesium rich clay.
- a typical attapulgite analysis yields 55.02% SiO.sub.2 ; 10.24% Al.sub.2 O.sub.3 ; 3.53% Fe.sub.2 O.sub.3 ; 10.49% MgO; 0.47% K.sub.2 O; 9.73% H.sub.2 O removed at 150.degree. C. and 10.13% H.sub.2 O removed at higher temperatures.
- Attapulgite clays are commercially available under various trade names such as Attagel 40, Attagel 50 and Attagel 150 from Engelhard Minerals & Chemicals Corporation. Of course, mixtures of smectite clays and attapulgite clays are suitable, too, to provide combinative properties which are not obtained from either class of clay above.
- a suspension of clay in water is subjected to high-shear mixing for a sufficient time to substantially fully hydrate the clay before its introduction into the organic portion of the formulation. For example, the desired swelling can be accomplished by high speed shearing of an 8% aqueous clay dispersion for 25 minutes.
- the viscosity of the aqueous suspension increases dramatically and, thus, the swelling process permits the use of lower concentrations of clay.
- concentrations of clay as low as 1% to 1.55% and up to a maximum of 3%, preferably 1.2% to 2%, by weight are effective to stabilize the inventive abrasive composition without adversely affecting its dispersibility in water.
- the clay/water mix used in the described composition preferably has a yield point of about 350 dynes/ cm , but satisfactory abrasive compositions can be prepared with aqueousclay dispersions having a yield point as low as 300 dynes/ cm 2 and as high as 450 dynes/cm 2 .
- the foregoing water-insoluble, low-density, abrasives are suspended in the dishwashing liquid composition and their concentration ranges from 3% to 15%, preferably from 5% to 15%, by weight. If desired, small amounts, e.g., 1% to 25% by weight (based upon the total weight of abrasive in the composition), of crystalline abrasives having a Mohs hardness of 2 to 7 such as silica or calcium carbonate may be substituted for part of the low density abrasive provided that a substantially stable liquid dishwashing composition results.
- the instant cleaning compositions may optionally contain from about 0 to about 20 wt. %, more preferably about 0.5 to about 10 wt. % of an abrasive.
- the abrasive is preferably of selected from the group consisting of amorphous hydrated silica, calcite which is a limestone calcium carbonate, and polyethylene powder particles and mixtures thereof.
- a suitable amorphous silica (oral grade) to enhance the scouring ability of the composition is provided by Zeoffin.
- the mean particle size of Zeoffin silica is 8 up to 10 mm. Its apparent density is 0.32 to 0.37 g/ml.
- Another silica is Tixosil 103 made by Rhone-Poulenc.
- One polyethylene powder suitable for use in the instant invention has a particle size of about 200 to about 500 microns and a density of about 0.91 to about 0.99 g/liter, more preferably about 0.94 to about 0.96.
- Another preferred abrasive is calcite used at a concentration of about 0% to 20 wt. %, more preferably 1 wt. % to 10 wt. % and is manufactured by J. M. Huber Corporation of Illinois.
- Calcite is a limestone consisting primarily of calcium carbonate and 1% to 5% of magnesium carbonate which has a mean particle size of 5 microns and oil absorption (rubout) of about 10 and a hardness of about 3.0 Mohs.
- Solvents A variety of water-miscible liquids such as lower alkanols, diols, other polyols, ethers, amines, and the like may be used Particularly preferred are the C1-C4 alkanols. Such solvents can be present in the compositions herein to the extent of from about 1% to 8%.
- the composition will preferably contain at least about 0.01%, more preferably at least about 0.5%, even more preferably still, at least about 1% by weight of the composition of solvent.
- the composition will also preferably contain no more than about 20%, more preferably no more than about 10%, even more preferably, no more than about 8% by weight of the composition of solvent.
- solvents may be used in conjunction with an aqueous liquid carrier, such as water, or they may be used without any aqueous liquid carrier being present.
- Solvents are broadly defined as compounds that are liquid at temperatures of 20°C-25°C and which are not considered to be surfactants. One of the distinguishing features is that solvents tend to exist as discrete entities rather than as broad mixtures of compounds. Examples of suitable solvents for the present invention include, methanol, ethanol, propanol, isopropanol, 2-methyl pyrrolidinone, benzyl alcohol and morpholine n-oxide. Preferred among these solvents are methanol and isopropanol.
- Suitable solvents for use herein include ethers and diethers having from 4 to 14 carbon atoms, preferably from 6 to 12 carbon atoms, and more preferably from 8 to 10 carbon atoms.
- suitable solvents are glycols or alkoxylated glycols, alkoxylated aromatic alcohols, aromatic alcohols, aliphatic branched alcohols, alkoxylated aliphatic branched alcohols, alkoxylated linear C1-C5 alcohols, linear C1-C5 alcohols, C8-C14 alkyl and cycloalkyl hydrocarbons and halohydrocarbons, C6-C16 glycol ethers and mixtures thereof.
- Suitable glycols which can be used herein are according to the formula HO- CR1R2-OH wherein RI and R2 are independently H or a C2-C10 saturated or unsaturated aliphatic hydrocarbon chain and/or cyclic.
- Suitable glycols to be used herein are dodecaneglycol and/or propanediol.
- polypropylene glycols such as those with a molecular weigh in the range of about 100 to 1000.
- One suitable polypropylene glycol ha a molecular weight of about 2700.
- Suitable alkoxylated glycols which can be used herein are according to the formula R-(A)n-Rl-OH wherein R is H, OH, a linear saturated or unsaturated alkyl of from 1 to 20 carbon atoms, preferably from 2 to 15 and more preferably from 2 to 10, wherein RI is H or a linear saturated or unsaturated alkyl of from 1 to 20 carbon atoms, preferably from 2 to 15 and more preferably from 2 to 10, and A is an alkoxy group preferably ethoxy, methoxy, and/or propoxy and n is from 1 to 5, preferably 1 to 2.
- Suitable alkoxylated glycols to be used herein are methoxy octadecanol and/or ethoxyethoxyethanol.
- Suitable alkoxylated aromatic alcohols which can be used herein are according to the formula R (A) n -OH wherein R is an alkyl substituted or non-alkyl substituted aryl group of from 1 to 20 carbon atoms, preferably from 2 to 15 and more preferably from 2 to 10, wherein A is an alkoxy group preferably butoxy, propoxy and/or ethoxy, and n is an integer of from 1 to 5, preferably 1 to 2.
- Suitable alkoxylated aromatic alcohols are benzoxyethanol and/or benzoxypropanol.
- Suitable aromatic alcohols which can be used herein are according to the formula R-OH wherein R is an alkyl substituted or non-alkyl substituted aryl group of from 1 to 20 carbon atoms, preferably from 1 to 15 and more preferably from 1 to 10.
- R is an alkyl substituted or non-alkyl substituted aryl group of from 1 to 20 carbon atoms, preferably from 1 to 15 and more preferably from 1 to 10.
- a suitable aromatic alcohol to be used herein is benzyl alcohol.
- Suitable aliphatic branched alcohols which can be used herein are according to the formula R-OH wherein R is a branched saturated or unsaturated alkyl group of from 1 to 20 carbon atoms, preferably from 2 to 15 and more preferably from 5 to 12.
- Particularly suitable aliphatic branched alcohols to be used herein include 2-ethylbutanol and or 2-methylbutanol.
- Suitable alkoxylated aliphatic branched alcohols which can be used herein are according to the formula R (A) n -OH wherein R is a branched saturated or unsaturated alkyl group of from 1 to 20 carbon atoms, preferably from 2 to 15 and more preferably from 5 to 12, wherein A is an alkoxy group preferably butoxy, propoxy and/or ethoxy, and n is an integer of from 1 to 5, preferably 1 to 2.
- Suitable alkoxylated aliphatic branched alcohols include 1-methylpropoxyethanol and/or 2-methylbutoxyethanol.
- Suitable alkoxylated linear C1-C5 alcohols which can be used herein are according to the formula R (A) n -OH wherein R is a linear saturated or unsaturated alkyl group of from 1 to 5 carbon atoms, preferably from 2 to 4, wherein A is an alkoxy group preferably butoxy, propoxy and/or ethoxy, and n is an integer of from 1 to 5, preferably 1 to 2.
- Suitable alkoxylated aliphatic linear C1-C5 alcohols are butoxy propoxy propanol (n-BPP), butoxyethanol, butoxypropanol, ethoxyethanol or mixtures thereof. Butoxy propoxy propanol is commercially available under the trade name n-BPP® from Dow chemical.
- Suitable linear C1-C5 alcohols which can be used herein are according to the formula R-OH wherein R is a linear saturated or unsaturated alkyl group of from 1 to 5 carbon atoms, preferably from 2 to 4.
- Suitable linear C1-C5 alcohols are methanol, ethanol, propanol or mixtures thereof.
- Suitable solvents include, but are not limited to, butyl diglycol ether (BDGE), butyltriglycol ether, ter amilic alcohol and the like. Particularly preferred solvents which can be used herein are butoxy propoxy propanol, butyl diglycol ether, benzyl alcohol, butoxypropanol, ethanol, methanol, isopropanol and mixtures thereof.
- BDGE butyl diglycol ether
- benzyl alcohol butoxypropanol
- ethanol ethanol
- methanol isopropanol and mixtures thereof.
- Suitable solvents for use herein include propylene glycol derivatives such as n-butoxypropanol or n- butoxypropoxypropanol, water-soluble CARBITOL solvents or water-soluble CELLOSOLVE R solvents; water-soluble CARBITOL R solvents are compounds of the 2-(2-alkoxyethoxy)ethanol class wherein the alkoxy group is derived from ethyl, propyl or butyl; a preferred water-soluble carbitol is 2-(2- butoxyethoxy)ethanol also known as butyl carbitol.
- Water-soluble CELLOSOLVE R solvents are compounds of the 2-alkoxyethoxy ethanol class, with 2-butoxyethoxyethanol being preferred.
- solvents include benzyl alcohol, and diols such as 2- ethyl-1, 3-hexanediol and 2,2,4-trimethyl-l,3-pentanediol and mixtures thereof.
- Some preferred solvents for use herein are n-butoxypropoxypropanol, BUTYL CARBITOL ® and mixtures thereof.
- the solvents can also be selected from the group of compounds comprising ether derivatives of mono-, di- and tri-ethylene glycol, propylene glycol, butylene glycol ethers, and mixtures thereof.
- the molecular weights of these solvents are preferably less than 350, more preferably between 100 and 300, even more preferably between 115 and 250.
- Examples of preferred solvents include, for example, mono-ethylene glycol n-hexyl ether, mono-propylene glycol n-butyl ether, and tri-propylene glycol methyl ether.
- Ethylene glycol and propylene glycol ethers are commercially available from the Dow Chemical Company under the tradename "Dowanol” and from the Arco Chemical Company under the tradename "Arcosolv”.
- Solubilizing agent - The instant compositions may optionally contain about 0 wt. % to about 12 wt. %, more preferably about 1 wt. % to about 10 wt. %, of at least one solubilizing agent which can be a hydrotrope such as sodium xylene sulfonate, or sodium cumene sulfonate, a C 2 . 3 mono or dihydroxy alkanols such as ethanol, isopropanol and propylene glycol and mixtures thereof.
- the solubilizing agents are included in order to control low temperature cloud clear properties.
- Urea can be optionally employed in the instant composition as a supplemental solubilizing agent at a concentration of 0 to about 10 wt. %, more preferably about 0.5 wt. % to about 8 wt. %.
- suitable solubilizing agents are glycerol, water-soluble polyethylene glycols having a molecular weight of 300 to 600, polypropylene glycol of the formula HO(CH 3 CHCH 2 O) n H wherein n is a number from 2 to 18, mixtures of polyethylene glycol and polypropylene glycol (Synalox) and mono Ci -C 6 alkyl ethers and esters of ethylene glycol and propylene glycol having the structural formulas R(X) n OH and R ⁇ (X) n OH wherein R is d -C 6 alkyl group, Rj is C - C 4 acyl group, X is (OCH 2 CH 2 ) or (OCH 2 (CH 3 )CH) and n
- Representative members of the polypropylene glycol include dipropylene glycol and polypropylene glycol having a molecular weight of 200 to 1000, e.g., polypropylene glycol 400.
- Other satisfactory glycol ethers are ethylene glycol monobutyl ether (butyl cellosolve), diethylene glycol monobutyl ether (butyl carbitol), triethylene glycol monobutyl ether, mono, di, tri propylene glycol monobutyl ether, tetraethylene glycol monobutyl ether, mono, di, tripropylene glycol monomethyl ether, propylene glycol monomethyl ether, ethylene glycol monohexyl ether, diethylene glycol monohexyl ether, propylene glycol tertiary butyl ether, ethylene glycol monoethyl ether, ethylene glycol monomethyl ether, ethylene glycol monopropyl ether, ethylene glycol monopentyl ether, diethylene glycol mono
- compositions according to the present invention may optionally comprise one or more soil release agents.
- Polymeric soil release agents are characterized by having both hydrophilic segments, to hydrophilize the surface of hydrophobic fibers, such as polyester and nylon, and hydrophobic segments, to deposit upon hydrophobic fibers and remain adhered thereto through completion of the laundry cycle and , thus, serve as an anchor for the hydrophilic segments. This can enable stains occurring subsequent to treatment with the soil release agent to be more easily cleaned in later washing procedures.
- soil release agents will generally comprise from about 0.01% to about 10% preferably from about 0.1% to about 5%, more preferably from about 0.2% to about 3% by weight, of the composition.
- compositions of the present invention can also optionally contain polymeric grease release agents.
- Sutable polymer grese release agents include those of the formula:
- Ri is selected from the group consisting of methyl or hydrogen
- R is a Ci to C ⁇ , linear or branched chained alkyl group and R 3 is a C to d 6 , linear or branched chained alkyl group and y is of such value as to provide a molecular weight about 5,000 to about 15,000.
- compositions of the present invention can also optionally contain water-soluble ethoxylated amines having clay soil removal and antiredeposition properties.
- Granular detergent compositions which contain these compounds typically contain from about 0.01% to about 10.0% by weight of the water- soluble ethoxylated amines; liquid detergent compositions typically contain about 0.01% to about 5%.
- a preferred soil release and anti-redeposition agent is ethoxylated tetraethylene pentamine. Exemplary ethoxylated amines are further described in U.S. Patent 4,597,898, VanderMeer, issued July 1, 1986.
- Another group of preferred clay soil removal-antiredeposition agents are the cationic compounds disclosed in European Patent Application 111,965, Oh and Gosselink, published June 27, 1984.
- Other clay soil removal/antiredeposition agents which can be used include the ethoxylated amine polymers disclosed in European Patent Application 111,984, Gosselink, published June 27, 1984; the zwitterionic polymers disclosed in European Patent Application 112,592, Gosselink, published July 4, 1984; and the amine oxides disclosed in U.S.
- Patent 4,548,744, Connor issued October 22, 1985.
- Other clay soil removal and/or anti redeposition agents known in the art can also be utilized in the compositions herein. See U.S. Patent 4,891,160, VanderMeer, issued January 2, 1990 and WO 95/32272, published November 30, 1995.
- Another type of preferred antiredeposition agent includes the carboxy methyl cellulose (CMC) materials. These materials are well known in the art.
- Polymeric Dispersing Agents can advantageously be utilized at levels from about 0.1% to about 7%, by weight, in the compositions herein, especially in the presence of zeolite and/or layered silicate builders.
- Suitable polymeric dispersing agents include polymeric polycarboxylates and polyethylene glycols, although others known in the art can also be used. It is believed, though it is not intended to be limited by theory, that polymeric dispersing agents enhance overall detergent builder performance, when used in combination with other builders (including lower molecular weight polycarboxylates) by crystal growth inhibition, particulate soil release, peptization, and anti-redeposition.
- Polymeric polycarboxylate materials can be prepared by polymerizing or copolymerizing suitable unsaturated monomers, preferably in their acid form.
- Unsaturated monomeric acids that can be polymerized to form suitable polymeric polycarboxylates include acrylic acid, maleic acid (or maleic anhydride), fumaric acid, itaconic acid, aconitic acid, mesaconic acid, citraconic acid and me hylenemalonic acid.
- the presence in the polymeric polycarboxylates herein or monomeric segments, containing no carboxylate radicals such as vinylmethyl ether, styrene, ethylene, etc. is suitable provided that such segments do not constitute more than about 40%) by weight.
- Particularly suitable polymeric polycarboxylates can be derived from acrylic acid.
- acrylic acid-based polymers which are useful herein are the water-soluble salts of polymerized acrylic acid.
- the average molecular weight of such polymers in the acid form preferably ranges from about 2,000 to 10,000, more preferably from about 4,000 to 7,000 and most preferably from about 4,000 to 5,000.
- Water-soluble salts of such acrylic acid polymers can include, for example, the alkali metal, ammonium and substituted ammonium salts. Soluble polymers of this type are known materials. Use of polyacrylates of this type in detergent compositions has been disclosed, for example, in Diehl, U.S. Patent 3,308,067, issued March 7, 1967.
- Acrylic/maleic-based copolymers may also be used as a preferred component of the dispersing/anti-redeposition agent.
- Such materials include the water-soluble salts of copolymers of acrylic acid and maleic acid.
- the average molecular weight of such copolymers in the acid form preferably ranges from about 2,000 to 100,000, more preferably from about 5,000 to 75,000, most preferably from about 7,000 to 65,000.
- the ratio of acrylate to maleate segments in such copolymers will generally range from about 30:1 to about 1:1, more preferably from about 10:1 to 2:1.
- Water-soluble salts of such acrylic acid/maleic acid copolymers can include, for example, the alkali metal, ammonium and substituted ammonium salts.
- Soluble acrylate/maleate copolymers of this type are known materials which are described in European Patent Application No. 66915, published December 15, 1982, as well as in EP 193,360, published September 3, 1986, which also describes such polymers comprising hydroxypropylacrylate.
- Still other useful dispersing agents include the maleic/acrylic/vinyl alcohol terpolymers.
- Such materials are also disclosed in EP 193,360, including, for example, the 45/45/10 terpolymer of acrylic/maleic/vinyl alcohol.
- PEG polyethylene glycol
- PEG can exhibit dispersing agent performance as well as act as a clay soil removal- antiredeposition agent.
- Typical molecular weight ranges for these purposes range from about 500 to about 100,000, preferably from about 1,000 to about 50,000, more preferably from about 1,500 to about 10,000.
- Polyaspartate and polyglutamate dispersing agents may also be used, especially in conjunction with zeolite builders.
- Dispersing agents such as polyaspartate preferably have a molecular weight (avg.) of about 10,000.
- Other polymer types which may be more desirable for biodegradability, improved bleach stability, or cleaning piuposes include various te ⁇ olymers and hydrophobically modified copolymers, including those marketed by Rohm & Haas, BASF Co ⁇ ., Nippon Shokubai and others for all manner of water-treatment, textile treatment, or detergent applications.
- compositions herein may also optionally contain one or chelating agents, particularly chelating agents for adventitious transition metals.
- chelating agents particularly chelating agents for adventitious transition metals.
- Those commonly found in wash water include iron and/or manganese in water-soluble, colloidal or particulate form, and may be associated as oxides or hydroxides, or found in association with soils such as humic substances.
- Preferred chelants are those which effectively control such transition metals, especially including controlling deposition of such transition-metals or their compounds on fabrics and/or controlling undesired redox reactions in the wash medium and/or at fabric or hard surface interfaces.
- Such chelating agents include those having low molecular weights as well as polymeric types, typically having at least one, preferably two or more donor heteroatoms such as O or N, capable of co-ordination to a transition-metal.
- Common chelating agents can be selected from the group consisting of aminocarboxylates, aminophosphonates, polyfunctionally-substituted aromatic chelating agents and mixtures thereof.
- Amino carboxylates useful as optional chelating agents include ethylenediaminetetrace-tates, N-hydroxyethylethylenediaminetriacetates, nitrilo-tri- acetates, ethylenediamine tetrapro-prionates, triethylenetetraaminehexacetates, diethylenetriaminepentaacetates, and ethanoldi-glycines, alkali metal, ammonium, and substituted ammonium salts therein and mixtures therein.
- Amino phosphonates are also suitable for use as chelating agents in the compositions of the invention when at lease low levels of total phosphorus are permitted in detergent compositions, and include ethylenediaminetetrakis (methylenephosphonates) as DEQUEST. Preferred, these amino phosphonates to not contain alkyl or alkenyl groups with more than about 6 carbon atoms.
- Polyfunctionally-substituted aromatic chelating agents are also useful in the compositions herein. See U.S. Patent 3,812,044, issued May 21, 1974, to Connor et al.
- Preferred compounds of this type in acid form are dihydroxydisulfobenzenes such as 1,2- dihydroxy-3 ,5-disulfobenzene.
- EDDS ethylenediamine disuccinate
- [S,S] isomer as described in U.S. Patent 4,704,233, November 3, 1987, to Hartman and Perkins.
- compositions herein may also contain water-soluble methyl glycine diacetic acid (MGDA) salts (or acid form) as a chelant or co-builder.
- MGDA water-soluble methyl glycine diacetic acid
- so called "weak” builders such as citrate can also be used as chelating agents.
- chelating agents will generally comprise from about 0.001% to about 15% by weight of the detergent compositions herein. More preferably, if utilized, chelating agents will comprise from about 0.01% to about 3.0% by weight of such compositions.
- Suds Suppressors - Compounds for reducing or suppressing the formation of suds can be inco ⁇ orated into the compositions of the present invention when required by the intended use, especially washing of laundry in washing appliances.
- Other compositions, such as those designed for hand-washing, may desirably be high-sudsing and may omit such ingredients Suds suppression can be of particular importance in the so-called "high concentration cleaning process" as described in U.S. 4,489,455 and 4,489,574 and in front-loading European-style washing machines.
- suds suppressors A wide variety of materials may be used as suds suppressors and are well known in the art. See, for example, Kirk Othmer Encyclopedia of Chemical Technology, Third Edition, Volume 7, pages 430-447 (Wiley, 1979).
- compositions herein will generally comprise from 0% to about 10% of suds suppressor.
- monocarboxylic fatty acids, and salts thereof When utilized as suds suppressors, monocarboxylic fatty acids, and salts thereof, will be present typically in amounts up to about 5%, preferably 0.5% - 3% by weight, of the detergent composition, although higher amounts may be used.
- Preferably from about 0.01% to about 1% of silicone suds suppressor is used, more preferably from about 0.25% to about 0.5%>.
- These weight percentage values include any silica that may be utilized in combination with polyorganosiloxane, as well as any suds suppressor adjunct materials that may be utilized.
- Monostearyl phosphate suds suppressors are generally utilized in amounts ranging from about 0.1% to about 2%, by weight, of the composition.
- Hydrocarbon suds suppressors are typically utilized in amounts ranging from about 0.01% to about 5.0%, although higher levels can be used.
- the alcohol suds suppressors are typically used at 0.2%-3% by weight of the finished compositions.
- Alkoxylated Polycarboxylates - Alkoxylated polycarboxylates such as those prepared from polyacrylates are useful herein to provide additional grease removal performance. Such materials are described in WO 91/08281 and PCT 90/01815 at p. 4 et seq., inco ⁇ orated herein by reference. Chemically, these materials comprise polyacrylates having one ethoxy side-chain per every 7-8 acrylate units.
- the side-chains are of the formula -(CH2CH2 ⁇ ) m (CH2) n CH3 wherein m is 2-3 and n is 6-12.
- the side-chains are ester-linked to the polyacrylate "backbone” to provide a "comb" polymer type structure.
- the molecular weight can vary, but is typically in the range of about 2000 to about 50,000.
- Such alkoxylated polycarboxylates can comprise from about 0.05% to about 10%, by weight, of the compositions herein.
- Perfumes - Perfumes and perfumery ingredients useful in the present compositions and processes comprise a wide variety of natural and synthetic chemical ingredients, including, but not limited to, aldehydes, ketones, esters, and the like. Also included are various natural extracts and essences which can comprise complex mixtures of ingredients, such as orange oil, lemon oil, rose extract, lavender, musk, patchouli, balsamic essence, sandalwood oil, pine oil, cedar, and the like. Finished perfumes can comprise extremely complex mixtures of such ingredients. Finished perfumes typically comprise from about 0.01% to about 2%, by weight, of the detergent compositions herein, and individual perfumery ingredients can comprise from about 0.0001% to about 90% of a finished perfume composition.
- Non-limiting examples of perfume ingredients useful herein include: 7-acetyl- l,2,3,4,5,6,7,8-octahydro-l,l,6,7-tetramethyl naphthalene; ionone methyl; ionone gamma methyl; methyl cedrylone; methyl dihydrojasmonate; methyl 1,6,10-trimethyl- 2,5,9-cyclododecatrien-l-yl ketone; 7-acetyl-l,l,3,4,4,6-hexamethyl tetralin; 4-acetyl-6- tert-butyl- 1,1 -dimethyl indane; para-hydroxy-phenyl-butanone; benzophenone; methyl beta-naphthyl ketone; 6-acetyl-l,l,2,3,3,5-hexamethyl indane; 5-acetyl-3-isopropyl- 1,1,2,6-tetramethyl indane; 1-
- perfume materials are those that provide the largest odor improvements in finished product compositions containing cellulases.
- These perfumes include but are not limited to: hexyl cinnamic aldehyde; 2-methyl-3-(para-tert- butylphenyl)-propionaldehyde; 7-acetyl- 1 ,2,3 ,4,5,6,7,8-octahydro- 1 , 1 ,6,7-tetramethyl naphthalene; benzyl salicylate; 7-acetyl- 1,1, 3, 4,4,6-hexamethyl tetralin; para-tert-butyl cyclohexyl acetate; methyl dihydro jasmonate; beta-napthol methyl ether; methyl beta- naphthyl ketone; 2-methyl-2-(para-iso-propylphenyl)-propionaldehyde; 1,3,4,6,7,8- hexahydro-4,6,6,7,
- perfume materials include essential oils, resinoids, and resins from a variety of sources including, but not limited to: Peru balsam, Olibanum resinoid, styrax, labdanum resin, nutmeg, cassia oil, benzoin resin, coriander and lavandin.
- Still other perfume chemicals include phenyl ethyl alcohol, te ⁇ ineol, linalool, linalyl acetate, geraniol, nerol, 2-(l,l-dimethylethyl)-cyclohexanol acetate, benzyl acetate, and eugenol.
- Carriers such as diethylphthalate can be used in the finished perfume compositions.
- compositions can employ an essential oil or a water insoluble organic compound such as a water insoluble hydrocarbon having 6 to 18 carbon such as a paraffin or isoparaffm such as isoparH, isodecane, alpha-pinene, beta-pinene, decanol and te ⁇ ineol.
- a water insoluble organic compound such as a water insoluble hydrocarbon having 6 to 18 carbon such as a paraffin or isoparaffm such as isoparH, isodecane, alpha-pinene, beta-pinene, decanol and te ⁇ ineol.
- Suitable essential oils are selected from the group consisting of: Anethole 20/21 natural, Aniseed oil china star, Aniseed oil globe brand, Balsam (Peru), Basil oil (India), Black pepper oil, Black pepper oleoresin 40/20, Bois de Rose (Brazil) FOB, Borneol Flakes (China), Camphor oil, White, Camphor powder synthetic technical, Cananga oil (Java), Cardamom oil, Cassia oil (China), Cedarwood oil (China) BP, Cinnamon bark oil, Cinnamon leaf oil, Citronella oil, Clove bud oil, Clove leaf, Coriander (Russia), Coumarin 69. degree. C.
- composition pH - Dishwashing compositions of the invention will be subjected to acidic stresses created by food soils when put to use, i.e., diluted and applied to soiled dishes.
- a composition with a pH greater than 7 it may optionally contain a buffering agent capable of providing a generally more alkaline pH in the composition and in dilute solutions, i.e., about 0.1%) to 0.4% by weight aqueous solution, of the composition.
- the pKa value of this buffering agent should be about 0.5 to 1.0 pH units below the desired pH value of the composition (determined as described above).
- the pKa of the buffering agent should be from about 7 to about 10. Under these conditions the buffering agent most effectively controls the pH while using the least amount thereof.
- compositions of the present invention has a pH (as measured as 10% aqueous solution) from about 2.0 to about 12.5, more preferably from about to about , even more preferably from about to about .
- the buffering agent may be an active detergent in its own right, or it may be a low molecular weight, organic or inorganic material that is used in this composition solely for maintaining an alkaline pH.
- Preferred buffering agents for compositions of this invention are nitrogen-containing materials. Some examples are amino acids such as lysine or lower alcohol amines like mono-, di-, and tri-ethanolamine.
- Tri(hydroxymethyl)amino methane (HOCH2)3CNH3 TriS
- 2-amino-2-ethyl-l,3-propanediol 2-amino-2-methyl-propanol
- 2-amino-2-methyl-l,3-propanol disodium glutamate
- N-methyl diethanolamide 1,3- diamino-propanol N,N'-tetra-methyl- 1 ,3-diamino-2 -propanol
- Mixtures of any of the above are also acceptable.
- Useful inorganic buffers/alkalinity sources include the alkali metal carbonates and alkali metal phosphates, e.g., sodium carbonate, sodium polyphosphate.
- alkali metal carbonates and alkali metal phosphates e.g., sodium carbonate, sodium polyphosphate.
- alkali metal carbonates and alkali metal phosphates e.g., sodium carbonate, sodium polyphosphate.
- McCutcheon's EMULSIFIERS AND DETERGENTS North American Edition, 1997, McCutcheon Division, MC Publishing Company Kirk and WO 95/07971 both of which are inco ⁇ orated herein by reference.
- the composition will preferably contain at least about 0.1 %, more preferably at least about 1%, even more preferably still, at least about 2% by weight of the composition of buffering agent.
- the composition will also preferably contain no more than about 15%, more preferably no more than about 10%, even more preferably, no more than about 8% by weight of the composition of buffering agent.
- Hydrotropes -
- the aqueous liquid carrier may comprise one or more materials which are hydrotropes.
- Hydrotropes suitable for use in the compositions herein include the C1-C3 alkyl aryl sulfonates, C6-C12 alkanols, Ci-Cg carboxylic sulfates and sulfonates, urea, Cj-Cg hydrocarboxylates, C1-C4 carboxylates, C2-C4 organic diacids and mixtures of these hydrotrope materials.
- the liquid detergent composition of the present invention preferably comprises from about 0.5% to 8%, by weight of the liquid detergent composition of a hydrotrope selected from alkali metal and calcium xylene and toluene sulfonates.
- Suitable C1-C3 alkyl aryl sulfonates include sodium, potassium, calcium and ammonium xylene sulfonates; sodium, potassium, calcium and ammonium toluene sulfonates; sodium, potassium, calcium and ammonium cumene sulfonates; and sodium, potassium, calcium and ammonium substituted or unsubstituted naphthalene sulfonates and mixtures thereof.
- Suitable C1 -C8 carboxylic sulfate or sulfonate salts are any water soluble salts or organic compounds comprising 1 to 8 carbon atoms (exclusive of substituent groups), which are substituted with sulfate or sulfonate and have at least one carboxylic group.
- the substituted organic compound may be cyclic, acylic or aromatic, i.e. benzene derivatives.
- Preferred alkyl compounds have from 1 to 4 carbon atoms substituted with sulfate or sulfonate and have from 1 to 2 carboxylic groups.
- hydrotrope examples include sulfosuccinate salts, sulfophthalic salts, sulfoacetic salts, m- sulfobenzoic acid salts and diester sulfosuccinates, preferably the sodium or potassium salts as disclosed in U.S. 3,915,903.
- Suitable C1-C4 hydrocarboxylates and C1-C4 carboxylates for use herein include acetates and propionates and citrates.
- Suitable C2-C4 diacids for use herein include succinic, glutaric and adipic acids.
- hydrotrope compounds which deliver hydrotropic effects suitable for use herein as a hydrotrope include Cg-C ⁇ alkanols and urea.
- Preferred hydrotropes for use herein are sodium, potassium, calcium and ammonium cumene sulfonate; sodium, potassium, calcium and ammonium xylene sulfonate; sodium, potassium, calcium and ammonium toluene sulfonate and mixtures thereof. Most preferred are sodium cumene sulfonate and calcium xylene sulfonate and mixtures thereof. These preferred hydrotrope materials can be present in the composition to the extent of from about 0.5% to 8% by weight.
- the composition will preferably contain at least about 0.1%, more preferably at least about 0.2%, even more preferably still, at least about 0.5% by weight of the composition of hydrotrope.
- the composition will also preferably contain no more than about 15%), more preferably no more than about 10%, even more preferably, no more than about 8% by weight of the composition of hydrotrope.
- the detergent compositions may further preferably comprise one or more detersive adjuncts selected from the following: soil release polymers, polymeric dispersants, polysaccharides, abrasives, bactericides, tarnish inhibitors, color stabilizers, dyes, electrolytes( such as NaCl etc), antifungal or mildew control agents, insect repellents, acaricidal agents hydrotropes, processing aids, suds boosters, brighteners, anti- corrosive aids and stabilizers antioxidants.
- soil release polymers polymeric dispersants, polysaccharides, abrasives, bactericides, tarnish inhibitors, color stabilizers, dyes, electrolytes( such as NaCl etc), antifungal or mildew control agents, insect repellents, acaricidal agents hydrotropes, processing aids, suds boosters, brighteners, anti- corrosive aids and stabilizers antioxidants.
- compositions herein A wide variety of other ingredients useful in detergent compositions can be included in the compositions herein, including other active ingredients, carriers, antioxidants, processing aids, dyes or pigments, solvents for liquid formulations, solid fillers for bar compositions, etc.
- suds boosters such as the C10-C16 alkanolamides can be inco ⁇ orated into the compositions, typically at 1%-10% levels.
- the C10-C14 monoethanol and diethanol amides illustrate a typical class of such suds boosters.
- Use of such suds boosters with high sudsing adjunct surfactants such as the amine oxides, betaines and sultaines noted above is also advantageous.
- An antioxidant can be optionally added to the detergent compositions of the present invention. They can be any conventional antioxidant used in detergent compositions, such as 2,6-di-tert-butyl-4-methylphenol (BHT), carbamate, ascorbate, thiosulfate, monoethanolamine(MEA), diethanolamine, triethanolamine, etc. It is preferred that the antioxidant, when present, be present in the composition from about 0.001% to about 5% by weight.
- BHT 2,6-di-tert-butyl-4-methylphenol
- MEA monoethanolamine
- MEA diethanolamine
- triethanolamine triethanolamine
- detersive ingredients employed in the present compositions optionally can be further stabilized by absorbing said ingredients onto a porous hydrophobic substrate, then coating said substrate with a hydrophobic coating.
- the detersive ingredient is admixed with a surfactant before being absorbed into the porous substrate.
- the detersive ingredient is released from the substrate into the aqueous washing liquor, where it performs its intended detersive function.
- a porous hydrophobic silica (trademark SIPERNAT D10, DeGussa) is admixed with a proteolytic enzyme solution containing 3%-5% of C 3_i5 ethoxylated alcohol (EO 7) nonionic surfactant.
- the enzyme/surfactant solution is 2.5 X the weight of silica.
- the resulting powder is dispersed with stirring in silicone oil (various silicone oil viscosities in the range of 500- 12,500 can be used).
- silicone oil various silicone oil viscosities in the range of 500- 12,500 can be used.
- the resulting silicone oil dispersion is emulsified or otherwise added to the final detergent matrix.
- ingredients such as the aforementioned enzymes, bleaches, bleach activators, bleach catalysts, photoactivators, dyes, fluorescers, fabric conditioners and hydrolyzable surfactants can be "protected” for use in detergents, including liquid laundry detergent compositions.
- compositions herein can be in any of the conventional forms for hand dishwashing compositions, such as, paste, liquid, granule, powder, gel, liqui-gel, microemulsion liquid crystal and mixtures thereof. Highly preferred embodiments are in liquid or gel form.
- the liquid compositions can be either aqueous or nonaqueous. When the composition is a aqueous liquid the composition will preferably further contain an aqueous liquid carrier in which the other essential and optional compositions components are dissolved, dispersed or suspended.
- composition When the composition is an aqueous liquid the composition will preferably contain at least about 5%, more preferably at least about 10%, even more preferably still, at least about 30%> by weight of the composition of aqueous liquid carrier.
- the composition will also preferably contain no more than about 95%, more preferably no more than about 60%, even more preferably, no more than about 50% by weight of the composition of aqueous liquid carrier.
- the aqueous liquid carrier may contain other materials which are liquid, or which dissolve in the liquid carrier, at room temperature and which may also serve some other function besides that of a simple filler.
- Such materials can include, for example, hydrotropes and solvents.
- Low molecular weight primary or secondary alcohols exemplified by methanol, ethanol, propanol, and isopropanol are suitable.
- Monohydric alcohols are preferred for solubilizing surfactant, but polyols such as those containing from 2 to about 6 carbon atoms and from 2 to about 6 hydroxy groups (e.g., 1,3- propanediol, ethylene glycol, glycerine, and 1 ,2-propanediol) can also be used.
- polyols such as those containing from 2 to about 6 carbon atoms and from 2 to about 6 hydroxy groups (e.g., 1,3- propanediol, ethylene glycol, glycerine, and 1 ,2-propanediol) can also be used.
- An example of the procedure for making granules of the detergent compositions herein is as follows: - the modified aklylbenzenesulfonate, citric acid, sodium silicate, sodium sulfate perfume, diamine and water are added to, heated and mixed via a crutcher. The resulting slurry is spray dried into a granular form.
- liquid detergent compositions which comprise a non-aqueous carrier medium can be prepared according to the disclosures of U.S. Patents 4,753,570; 4,767,558; 4,772,413; 4,889,652; 4,892,673; GB-A-2,158,838; GB-A-2,195,125; GB-A- 2,195,649; U.S. 4,988,462; U.S. 5,266,233; EP-A-225,654 (6/16/87); EP-A-510,762 (10/28/92); EP-A-540,089 (5/5/93); EP-A-540,090 (5/5/93); U.S.
- compositions can contain various particulate detersive ingredients stably suspended therein.
- non-aqueous compositions thus comprise a LIQUID PHASE and, optionally but preferably, a SOLID PHASE, all as described in more detail hereinafter and in the cited references.
- compositions of this invention can be used to form aqueous washing solutions for use hand dishwashing.
- an effective amount of such compositions is added to water to form such aqueous cleaning or soaking solutions.
- the aqueous solution so formed is then contacted with the dishware, tableware, and cooking utensils.
- An effective amount of the detergent compositions herein added to water to form aqueous cleaning solutions can comprise amounts sufficient to form from about 500 to 20,000 ppm of composition in aqueous solution. More preferably, from about 800 to 5,000 ppm of the detergent compositions herein will be provided in aqueous cleaning liquor.
- R2 is a C ⁇ o- ⁇ 8 alkyl
- n is 2 or 3
- t is from 0 to about 10, preferably 0
- x is from about 1.3 to about 2.7.
- the glycosyl is preferably derived from glucose.
- the amylase is selected from: Fungamyl®; Duramyl®; BAN®; and ⁇ amylase enzymes described in WO95/26397 and in co-pending application by Novo Nordisk PCT/DK96/00056.
- DEA diethanolamine Diamine Alkyl diamine e.g., 1,3 propanediamine, Dytek EP,
- Dytek A (Dupont) or selected from: dimethyl aminopropyl amine; 1,6-hexane diamine; 1,3 propane diamine; 2-methyl 1,5 pentane diamine; 1,3- pentanediamine; 1-methyl-diaminopropane; 1,3 cyclohexane diamine; 1,2 cyclohexane diamine; 1,3- bis(methylamine)-cyclohexane
- EtOH Ethanol Hydrotrope selected from sodium, potassium, Magnesium,
- LAS Linear Alkylbenzene Sulfonate e.g., CI 1.8, Na or K salt
- Lipase Lipolytic enzyme lOOkLU/g, NOVO, Lipolase®.
- the lipase is selected from: Amano-P;
- MBAyS Mid-chain branched primary alkyl sulfate, Na salt
- Magnesium Salt Magnesium chloride, Magnesium sulfate, magnesium hydroxide, and mixtures thereof
- the protease is selected from: Maxatase®; Maxacal®; Maxapem 15®; subtilisin BPN and BPN'; Protease B; Protease A; Protease D; Primase®; Durazym®; Opticlean®;and Optimase®; and Alcalase ®-
- Silicate Sodium Silicate, amo ⁇ hous SiO2:Na2O; 2.0 ratio
- Typical ingredients often referred to as “minors” can include perfumes, dyes, pH trims etc.
- Viscosity (cps 150 330 650 330
- Viscosity (cps 330 330
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Biochemistry (AREA)
- Detergent Compositions (AREA)
Abstract
Cette invention se rapporte à une composition de détergent pour le lavage de la vaisselle à la main, qui comprend: a) environ 0,1 à environ 99,9 %, en poids de la composition, d'un système de tensioactif alkylarylsulfonate contenant environ 10 à environ 100 %, en poids de ce système de tensioactif, d'au moins deux tensioactifs alkylarylsulfonate à rupture de cristallinité, représentés par la formule (B-Ar-D)a(Mq+)b, où D représente SO3-, M représente un cation ou un mélange de cations, q est égal à la valence de ce cation, a et b sont des nombres choisis pour que cette composition soit électroneutre; Ar est choisi parmi le benzène, le toluène et des combinaisons de ceux-ci; et B représente la somme d'au moins une fraction hydrocarbyle primaire contenant 5 à 20 atomes de carbone et d'une ou de plusieurs fractions à rupture de cristallinité, lesquelles interrompent cette fraction hydrocarbyle ou se ramifient à elle; et où ce système de tensioactif alkylarylsulfonate présente une rupture de cristallinité telle que sa température de solubilité critique au sodium, mesurée par le test CST, ne dépasse pas 40 °C environ; ce système de tensioactif alkylarylsulfonate possédant en outre au moins l'une des propriétés suivantes: biodégradation en pourcentage, mesurée par le test SCAS modifié, qui dépasse celle du sulfonate de benzène de tétrapropylène; et rapport en poids entre les atomes de carbone non quaternaires et quaternaires en B égal ou supérieur à 5/1 environ; et b) environ 0,00001 à environ 99,9 %, en poids de cette composition, d'un adjuvant classique pour détergent de lavage de la vaisselle à la main; c) et environ 0,01 à environ 7 %, en poids de la composition, d'un ion divalent choisi dans le groupe du magnésium, du calcium et de mélanges de ceux-ci.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11651599P | 1999-01-20 | 1999-01-20 | |
US116515P | 1999-01-20 | ||
PCT/US1999/029776 WO2000043476A2 (fr) | 1999-01-20 | 1999-12-15 | Compositions de detergents vaisselle contenant des melanges de tensioactifs a rupture de cristallinite |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1144573A2 true EP1144573A2 (fr) | 2001-10-17 |
Family
ID=22367635
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP99968483A Withdrawn EP1144573A2 (fr) | 1999-01-20 | 1999-12-15 | Compositions de detergents vaisselle contenant des melanges de tensioactifs a rupture de cristallinite |
Country Status (6)
Country | Link |
---|---|
EP (1) | EP1144573A2 (fr) |
JP (1) | JP2002535441A (fr) |
CN (1) | CN1361815A (fr) |
BR (1) | BR9916941A (fr) |
CZ (1) | CZ20012575A3 (fr) |
WO (1) | WO2000043476A2 (fr) |
Families Citing this family (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BR0112778A (pt) | 2000-07-28 | 2003-07-01 | Henkel Kommanditgellschaft Auf | Enzima amilolìtica de bacillus sp. a 7-7 (dsm 12368) bem como detergente e agente de limpeza com esta enzima amilolìtica |
US8093200B2 (en) | 2007-02-15 | 2012-01-10 | Ecolab Usa Inc. | Fast dissolving solid detergent |
EP2264138B2 (fr) † | 2009-06-19 | 2023-03-08 | The Procter & Gamble Company | Composition de détergent liquide pour lavage de la vaisselle à la main |
CN101864402B (zh) * | 2010-03-16 | 2013-01-09 | 苏州市玮琪生物科技有限公司 | 一种稳定的过氧化物酶组合物 |
CA2793499C (fr) | 2010-04-16 | 2014-12-30 | Board Of Regents, The University Of Texas System | Tensioactifs alcoxylate d'alcool de guerbet et leur utilisation dans le cadre d'applications de recuperation d'huile ameliorees |
JP5957198B2 (ja) * | 2011-10-12 | 2016-07-27 | 花王株式会社 | 手洗い用食器洗浄剤組成物 |
CN105473697B (zh) | 2013-08-29 | 2019-02-15 | 高露洁-棕榄公司 | 含水液体组合物 |
EP2940115B1 (fr) * | 2014-04-30 | 2018-10-17 | The Procter and Gamble Company | Composition de nettoyage |
JP6188236B2 (ja) * | 2014-05-15 | 2017-08-30 | ライオン株式会社 | 液体洗浄剤及びその製造方法 |
US9890350B2 (en) | 2015-10-28 | 2018-02-13 | Ecolab Usa Inc. | Methods of using a soil release polymer in a neutral or low alkaline prewash |
EP3162881B1 (fr) * | 2015-10-29 | 2019-01-16 | The Procter and Gamble Company | Produit de nettoyage |
US10626350B2 (en) | 2015-12-08 | 2020-04-21 | Ecolab Usa Inc. | Pressed manual dish detergent |
EP3387097A1 (fr) * | 2015-12-11 | 2018-10-17 | Werner & Mertz GmbH | Composition détergente pour lavage de vaisselle |
ES2790148T3 (es) | 2016-08-17 | 2020-10-27 | Procter & Gamble | Composición limpiadora que comprende enzimas |
DE102016221849A1 (de) * | 2016-11-08 | 2018-05-09 | Henkel Ag & Co. Kgaa | Tensidzusammensetzung enthaltend eine Amylase |
JP6996731B2 (ja) * | 2017-05-29 | 2022-01-17 | 株式会社ニイタカ | 循環型自動洗浄機用洗浄剤組成物 |
CN107913489A (zh) * | 2017-12-06 | 2018-04-17 | 甘肃黑马石化工程有限公司 | 地沟油除臭降解处理剂组合物及其制备方法 |
CN110372284A (zh) * | 2019-06-12 | 2019-10-25 | 毛军华 | 一种瓷砖粘胶泥 |
BR112022013880A2 (pt) | 2020-01-29 | 2022-09-13 | Procter & Gamble | Uma composição de limpeza |
CN111893001A (zh) * | 2020-06-15 | 2020-11-06 | 安徽共盈日化有限公司 | 一种柠檬香型洗洁精及其包装容器 |
EP4089159B1 (fr) * | 2021-05-10 | 2024-09-18 | The Procter & Gamble Company | Composition de détergent liquide pour lavage de la vaisselle à la main |
BR112023024562A2 (pt) | 2021-05-25 | 2024-02-15 | Unilever Ip Holdings B V | Composição detergente para lavagem de louças, método de formação de uma composição detergente líquida para lavagem de louças e método de formação de um líquido para lavagem de louças |
EP4541876A1 (fr) * | 2023-10-19 | 2025-04-23 | Dalli-Werke GmbH & Co. KG | Composition détergente liquide sans conservateur |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1993017084A1 (fr) * | 1992-02-19 | 1993-09-02 | The Procter & Gamble Company | Compositions detersives aqueuses contenant des ions calcium pour surfaces dures |
TR200000882T2 (tr) * | 1997-07-21 | 2000-09-21 | The Procter & Gamble Company | Alkilbenzensülfonat yapmak için geliştirilmiş işlem ve bunları içeren ürünler. |
CN1211474C (zh) * | 1997-07-21 | 2005-07-20 | 普罗格特-甘布尔公司 | 含有破坏结晶度的表面活性剂混合物的洗涤剂组合物 |
-
1999
- 1999-12-15 JP JP2000594885A patent/JP2002535441A/ja not_active Abandoned
- 1999-12-15 CN CN 99816501 patent/CN1361815A/zh active Pending
- 1999-12-15 EP EP99968483A patent/EP1144573A2/fr not_active Withdrawn
- 1999-12-15 BR BR9916941-0A patent/BR9916941A/pt not_active IP Right Cessation
- 1999-12-15 CZ CZ20012575A patent/CZ20012575A3/cs unknown
- 1999-12-15 WO PCT/US1999/029776 patent/WO2000043476A2/fr not_active Application Discontinuation
Non-Patent Citations (1)
Title |
---|
See references of WO0043476A3 * |
Also Published As
Publication number | Publication date |
---|---|
JP2002535441A (ja) | 2002-10-22 |
CZ20012575A3 (cs) | 2002-07-17 |
CN1361815A (zh) | 2002-07-31 |
BR9916941A (pt) | 2001-12-04 |
WO2000043476A2 (fr) | 2000-07-27 |
WO2000043476A3 (fr) | 2000-11-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6774099B1 (en) | Dishwashing detergent compositions containing mixtures or crystallinity-disrupted surfactants | |
US6498134B1 (en) | Dishwashing compositions containing alkylbenzenesulfonate surfactants | |
US6506717B1 (en) | Dishwashing compositions comprising modified alkybenzene sulfonates | |
US20030100464A1 (en) | Dishwashing compositions containing alkylbenzenesulfonate surfactants | |
WO2000043476A2 (fr) | Compositions de detergents vaisselle contenant des melanges de tensioactifs a rupture de cristallinite | |
EP1144575A1 (fr) | Compositions de lavage de la vaisselle contenant des tensioactifs a l'alkylbenzenesulfonate | |
US6274540B1 (en) | Detergent compositions containing mixtures of crystallinity-disrupted surfactants | |
US6521577B1 (en) | Hand washing detergent compositions | |
US6306817B1 (en) | Alkylbenzenesulfonate surfactants | |
US6593285B1 (en) | Alkylbenzenesulfonate surfactants | |
WO1999063034A1 (fr) | Compositions detergentes pour la vaisselle contenant des diamines organiques | |
EP1144568A2 (fr) | Compositions de lavage de la vaisselle comprenant un alkylbenzene modifie | |
CA2591833A1 (fr) | Composition detergente pour vaisselle | |
US20010041665A1 (en) | Pathogen-reducing systems, compositions, articles and methods employing ozone | |
EP1111031A1 (fr) | Composition nettoyante | |
MXPA01007345A (en) | Dishwashing detergent compositions containing mixtures of crystallinity-disrupted surfactants | |
MXPA01007348A (en) | Dishwashing compositions comprising modified alkylbenzene sulfonates | |
MXPA01007343A (en) | Dishwashing compositions comprising modified alkylbenzene |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20010727 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
XX | Miscellaneous |
Free format text: DERZEIT SIND DIE WIPO-PUBLIKATIONSDATEN A3 NICHT VERFUEGBAR. |
|
17Q | First examination report despatched |
Effective date: 20050316 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20050727 |