EP1141008A1 - Cytokinin klasse ii rezeptor-ähnliche proteine und für diese kodierende nukleinsäuren - Google Patents
Cytokinin klasse ii rezeptor-ähnliche proteine und für diese kodierende nukleinsäurenInfo
- Publication number
- EP1141008A1 EP1141008A1 EP99966738A EP99966738A EP1141008A1 EP 1141008 A1 EP1141008 A1 EP 1141008A1 EP 99966738 A EP99966738 A EP 99966738A EP 99966738 A EP99966738 A EP 99966738A EP 1141008 A1 EP1141008 A1 EP 1141008A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- polypeptide
- nucleic acid
- seq
- amino acid
- protein
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 150000007523 nucleic acids Chemical class 0.000 title claims abstract description 253
- 102000039446 nucleic acids Human genes 0.000 title claims abstract description 232
- 108020004707 nucleic acids Proteins 0.000 title claims abstract description 232
- 108090000623 proteins and genes Proteins 0.000 title description 363
- 102000004169 proteins and genes Human genes 0.000 title description 254
- 102000004127 Cytokines Human genes 0.000 title description 6
- 108090000695 Cytokines Proteins 0.000 title description 6
- 108090000765 processed proteins & peptides Proteins 0.000 claims abstract description 382
- 102000004196 processed proteins & peptides Human genes 0.000 claims abstract description 367
- 229920001184 polypeptide Polymers 0.000 claims abstract description 361
- 238000005400 testing for adjacent nuclei with gyration operator Methods 0.000 claims abstract description 147
- 238000000034 method Methods 0.000 claims description 142
- 230000000694 effects Effects 0.000 claims description 112
- 150000001875 compounds Chemical class 0.000 claims description 99
- 125000003729 nucleotide group Chemical group 0.000 claims description 94
- 150000001413 amino acids Chemical class 0.000 claims description 91
- 239000002773 nucleotide Substances 0.000 claims description 91
- 125000003275 alpha amino acid group Chemical group 0.000 claims description 84
- 239000002299 complementary DNA Substances 0.000 claims description 71
- 239000000523 sample Substances 0.000 claims description 68
- 238000012360 testing method Methods 0.000 claims description 55
- 241000282414 Homo sapiens Species 0.000 claims description 53
- 239000013598 vector Substances 0.000 claims description 50
- 238000003556 assay Methods 0.000 claims description 47
- 108020004999 messenger RNA Proteins 0.000 claims description 43
- 239000012634 fragment Substances 0.000 claims description 38
- 230000000295 complement effect Effects 0.000 claims description 32
- 238000001514 detection method Methods 0.000 claims description 22
- 239000013612 plasmid Substances 0.000 claims description 21
- 230000019491 signal transduction Effects 0.000 claims description 8
- 230000001404 mediated effect Effects 0.000 claims description 6
- 108020004711 Nucleic Acid Probes Proteins 0.000 claims description 5
- 238000004519 manufacturing process Methods 0.000 claims description 5
- 239000002853 nucleic acid probe Substances 0.000 claims description 5
- 238000012258 culturing Methods 0.000 claims description 4
- 238000000159 protein binding assay Methods 0.000 claims 1
- 239000003795 chemical substances by application Substances 0.000 abstract description 81
- 239000013604 expression vector Substances 0.000 abstract description 43
- 241001465754 Metazoa Species 0.000 abstract description 37
- 230000000692 anti-sense effect Effects 0.000 abstract description 36
- 230000001105 regulatory effect Effects 0.000 abstract description 30
- 239000000203 mixture Substances 0.000 abstract description 25
- 230000009261 transgenic effect Effects 0.000 abstract description 18
- 230000004927 fusion Effects 0.000 abstract description 14
- 238000012216 screening Methods 0.000 abstract description 12
- 102000035160 transmembrane proteins Human genes 0.000 abstract description 5
- 108091005703 transmembrane proteins Proteins 0.000 abstract description 5
- 230000000890 antigenic effect Effects 0.000 abstract description 4
- 238000002560 therapeutic procedure Methods 0.000 abstract description 4
- 230000033077 cellular process Effects 0.000 abstract description 3
- 102000042287 type II cytokine receptor family Human genes 0.000 abstract 1
- 108091052254 type II cytokine receptor family Proteins 0.000 abstract 1
- 235000018102 proteins Nutrition 0.000 description 245
- 101000837854 Homo sapiens Transport and Golgi organization protein 1 homolog Proteins 0.000 description 143
- 102100028569 Transport and Golgi organization protein 1 homolog Human genes 0.000 description 143
- 210000004027 cell Anatomy 0.000 description 132
- 230000014509 gene expression Effects 0.000 description 123
- 125000000539 amino acid group Chemical group 0.000 description 101
- 235000001014 amino acid Nutrition 0.000 description 97
- 229940024606 amino acid Drugs 0.000 description 93
- 108020004414 DNA Proteins 0.000 description 84
- 108010076504 Protein Sorting Signals Proteins 0.000 description 59
- 101000793115 Homo sapiens Aryl hydrocarbon receptor nuclear translocator Proteins 0.000 description 53
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 53
- 102000049150 human ARNT Human genes 0.000 description 53
- 102000016359 Fibronectins Human genes 0.000 description 44
- 108010067306 Fibronectins Proteins 0.000 description 44
- 230000035772 mutation Effects 0.000 description 44
- 241001529936 Murinae Species 0.000 description 40
- 210000001519 tissue Anatomy 0.000 description 40
- 208000035475 disorder Diseases 0.000 description 39
- 239000003814 drug Substances 0.000 description 39
- 229940079593 drug Drugs 0.000 description 31
- 238000009396 hybridization Methods 0.000 description 30
- 108091028043 Nucleic acid sequence Proteins 0.000 description 27
- 239000012472 biological sample Substances 0.000 description 26
- 102000037865 fusion proteins Human genes 0.000 description 24
- 108020001507 fusion proteins Proteins 0.000 description 24
- 239000013615 primer Substances 0.000 description 23
- DQLATGHUWYMOKM-UHFFFAOYSA-L cisplatin Chemical compound N[Pt](N)(Cl)Cl DQLATGHUWYMOKM-UHFFFAOYSA-L 0.000 description 21
- 108091034117 Oligonucleotide Proteins 0.000 description 20
- 108020003175 receptors Proteins 0.000 description 20
- 230000001225 therapeutic effect Effects 0.000 description 20
- 238000003752 polymerase chain reaction Methods 0.000 description 19
- 102000005962 receptors Human genes 0.000 description 19
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 18
- 102000004190 Enzymes Human genes 0.000 description 18
- 108090000790 Enzymes Proteins 0.000 description 18
- 230000004071 biological effect Effects 0.000 description 18
- 238000003776 cleavage reaction Methods 0.000 description 18
- 229940088598 enzyme Drugs 0.000 description 18
- 238000011282 treatment Methods 0.000 description 18
- 108700019146 Transgenes Proteins 0.000 description 17
- 230000000875 corresponding effect Effects 0.000 description 17
- 102000003675 cytokine receptors Human genes 0.000 description 17
- 108010057085 cytokine receptors Proteins 0.000 description 17
- 239000003446 ligand Substances 0.000 description 17
- 230000007017 scission Effects 0.000 description 17
- 210000000349 chromosome Anatomy 0.000 description 16
- 239000002158 endotoxin Substances 0.000 description 16
- 230000002209 hydrophobic effect Effects 0.000 description 16
- 238000003199 nucleic acid amplification method Methods 0.000 description 16
- 108091035707 Consensus sequence Proteins 0.000 description 15
- -1 LFN-α Proteins 0.000 description 15
- 230000003321 amplification Effects 0.000 description 15
- 238000007423 screening assay Methods 0.000 description 15
- 201000010099 disease Diseases 0.000 description 14
- 238000005516 engineering process Methods 0.000 description 14
- 239000012528 membrane Substances 0.000 description 14
- 238000003259 recombinant expression Methods 0.000 description 14
- 238000004458 analytical method Methods 0.000 description 13
- 230000006870 function Effects 0.000 description 13
- 230000002068 genetic effect Effects 0.000 description 13
- 239000000463 material Substances 0.000 description 13
- 238000002360 preparation method Methods 0.000 description 13
- 108060003951 Immunoglobulin Proteins 0.000 description 12
- 241000699666 Mus <mouse, genus> Species 0.000 description 12
- 239000003153 chemical reaction reagent Substances 0.000 description 12
- 102000018358 immunoglobulin Human genes 0.000 description 12
- 230000002974 pharmacogenomic effect Effects 0.000 description 12
- 102000053602 DNA Human genes 0.000 description 11
- 108700026244 Open Reading Frames Proteins 0.000 description 11
- 210000004556 brain Anatomy 0.000 description 11
- 239000000047 product Substances 0.000 description 11
- 239000000126 substance Substances 0.000 description 11
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 10
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 10
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 10
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 description 10
- 206010028980 Neoplasm Diseases 0.000 description 10
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 description 10
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 description 10
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 10
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Natural products CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 description 10
- 239000000427 antigen Substances 0.000 description 10
- 108091007433 antigens Proteins 0.000 description 10
- 102000036639 antigens Human genes 0.000 description 10
- 230000001086 cytosolic effect Effects 0.000 description 10
- 210000004072 lung Anatomy 0.000 description 10
- 230000004048 modification Effects 0.000 description 10
- 238000012986 modification Methods 0.000 description 10
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 description 10
- 235000008729 phenylalanine Nutrition 0.000 description 10
- 238000013518 transcription Methods 0.000 description 10
- 230000035897 transcription Effects 0.000 description 10
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 10
- 235000002374 tyrosine Nutrition 0.000 description 10
- 239000004474 valine Substances 0.000 description 10
- 108090000994 Catalytic RNA Proteins 0.000 description 9
- 102000053642 Catalytic RNA Human genes 0.000 description 9
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 9
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 9
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 9
- 235000004279 alanine Nutrition 0.000 description 9
- 230000004075 alteration Effects 0.000 description 9
- 230000001413 cellular effect Effects 0.000 description 9
- 238000002744 homologous recombination Methods 0.000 description 9
- 230000006801 homologous recombination Effects 0.000 description 9
- 125000001165 hydrophobic group Chemical group 0.000 description 9
- 238000000338 in vitro Methods 0.000 description 9
- 235000005772 leucine Nutrition 0.000 description 9
- 238000013507 mapping Methods 0.000 description 9
- 239000008194 pharmaceutical composition Substances 0.000 description 9
- 108091092562 ribozyme Proteins 0.000 description 9
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 8
- 108091026890 Coding region Proteins 0.000 description 8
- 108010070675 Glutathione transferase Proteins 0.000 description 8
- 102000005720 Glutathione transferase Human genes 0.000 description 8
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 8
- 239000005557 antagonist Substances 0.000 description 8
- 230000002759 chromosomal effect Effects 0.000 description 8
- 210000004408 hybridoma Anatomy 0.000 description 8
- 238000006467 substitution reaction Methods 0.000 description 8
- 241000588724 Escherichia coli Species 0.000 description 7
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 7
- 230000001594 aberrant effect Effects 0.000 description 7
- 239000000556 agonist Substances 0.000 description 7
- 239000003937 drug carrier Substances 0.000 description 7
- 230000002255 enzymatic effect Effects 0.000 description 7
- 230000003993 interaction Effects 0.000 description 7
- 230000003902 lesion Effects 0.000 description 7
- 239000003550 marker Substances 0.000 description 7
- 239000011159 matrix material Substances 0.000 description 7
- 230000036961 partial effect Effects 0.000 description 7
- 230000000069 prophylactic effect Effects 0.000 description 7
- 150000003384 small molecules Chemical class 0.000 description 7
- 239000000243 solution Substances 0.000 description 7
- 241000894007 species Species 0.000 description 7
- 238000010561 standard procedure Methods 0.000 description 7
- 108091033380 Coding strand Proteins 0.000 description 6
- 206010061218 Inflammation Diseases 0.000 description 6
- 102000003814 Interleukin-10 Human genes 0.000 description 6
- 108090000174 Interleukin-10 Proteins 0.000 description 6
- 102000004551 Interleukin-10 Receptors Human genes 0.000 description 6
- 108010017550 Interleukin-10 Receptors Proteins 0.000 description 6
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 6
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 6
- 238000007792 addition Methods 0.000 description 6
- 230000004663 cell proliferation Effects 0.000 description 6
- 210000003238 esophagus Anatomy 0.000 description 6
- 210000002216 heart Anatomy 0.000 description 6
- 238000001727 in vivo Methods 0.000 description 6
- 230000004054 inflammatory process Effects 0.000 description 6
- 230000002401 inhibitory effect Effects 0.000 description 6
- 229940076144 interleukin-10 Drugs 0.000 description 6
- 230000003834 intracellular effect Effects 0.000 description 6
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 description 6
- 229960000310 isoleucine Drugs 0.000 description 6
- 238000012544 monitoring process Methods 0.000 description 6
- 238000002703 mutagenesis Methods 0.000 description 6
- 231100000350 mutagenesis Toxicity 0.000 description 6
- 230000002062 proliferating effect Effects 0.000 description 6
- 230000003248 secreting effect Effects 0.000 description 6
- 238000012163 sequencing technique Methods 0.000 description 6
- 239000002904 solvent Substances 0.000 description 6
- 238000003786 synthesis reaction Methods 0.000 description 6
- 230000003612 virological effect Effects 0.000 description 6
- 108700028369 Alleles Proteins 0.000 description 5
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 5
- ONIBWKKTOPOVIA-BYPYZUCNSA-N L-Proline Chemical compound OC(=O)[C@@H]1CCCN1 ONIBWKKTOPOVIA-BYPYZUCNSA-N 0.000 description 5
- 241000124008 Mammalia Species 0.000 description 5
- ONIBWKKTOPOVIA-UHFFFAOYSA-N Proline Natural products OC(=O)C1CCCN1 ONIBWKKTOPOVIA-UHFFFAOYSA-N 0.000 description 5
- 108020004511 Recombinant DNA Proteins 0.000 description 5
- 108010091086 Recombinases Proteins 0.000 description 5
- 102000018120 Recombinases Human genes 0.000 description 5
- 239000003242 anti bacterial agent Substances 0.000 description 5
- 238000013459 approach Methods 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 201000011510 cancer Diseases 0.000 description 5
- 230000024245 cell differentiation Effects 0.000 description 5
- 239000012707 chemical precursor Substances 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 238000012217 deletion Methods 0.000 description 5
- 230000037430 deletion Effects 0.000 description 5
- 230000005714 functional activity Effects 0.000 description 5
- 238000001415 gene therapy Methods 0.000 description 5
- 238000002169 hydrotherapy Methods 0.000 description 5
- 230000001965 increasing effect Effects 0.000 description 5
- 210000002540 macrophage Anatomy 0.000 description 5
- 210000004962 mammalian cell Anatomy 0.000 description 5
- 238000011275 oncology therapy Methods 0.000 description 5
- 239000000816 peptidomimetic Substances 0.000 description 5
- 238000000746 purification Methods 0.000 description 5
- 230000010076 replication Effects 0.000 description 5
- 230000004044 response Effects 0.000 description 5
- 108091008146 restriction endonucleases Proteins 0.000 description 5
- 238000013519 translation Methods 0.000 description 5
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 4
- 208000023275 Autoimmune disease Diseases 0.000 description 4
- 241000894006 Bacteria Species 0.000 description 4
- 108010001237 Cytochrome P-450 CYP2D6 Proteins 0.000 description 4
- AOJJSUZBOXZQNB-TZSSRYMLSA-N Doxorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 AOJJSUZBOXZQNB-TZSSRYMLSA-N 0.000 description 4
- 238000002965 ELISA Methods 0.000 description 4
- 101001033233 Homo sapiens Interleukin-10 Proteins 0.000 description 4
- 108090000467 Interferon-beta Proteins 0.000 description 4
- 102000014150 Interferons Human genes 0.000 description 4
- 108010050904 Interferons Proteins 0.000 description 4
- 239000000232 Lipid Bilayer Substances 0.000 description 4
- 101710163270 Nuclease Proteins 0.000 description 4
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 4
- 235000014680 Saccharomyces cerevisiae Nutrition 0.000 description 4
- 108010090804 Streptavidin Proteins 0.000 description 4
- RJURFGZVJUQBHK-UHFFFAOYSA-N actinomycin D Natural products CC1OC(=O)C(C(C)C)N(C)C(=O)CN(C)C(=O)C2CCCN2C(=O)C(C(C)C)NC(=O)C1NC(=O)C1=C(N)C(=O)C(C)=C2OC(C(C)=CC=C3C(=O)NC4C(=O)NC(C(N5CCCC5C(=O)N(C)CC(=O)N(C)C(C(C)C)C(=O)OC4C)=O)C(C)C)=C3N=C21 RJURFGZVJUQBHK-UHFFFAOYSA-N 0.000 description 4
- 230000009471 action Effects 0.000 description 4
- 230000033115 angiogenesis Effects 0.000 description 4
- 210000003719 b-lymphocyte Anatomy 0.000 description 4
- 230000001580 bacterial effect Effects 0.000 description 4
- 239000011324 bead Substances 0.000 description 4
- 108010079452 beta Adrenergic Receptors Proteins 0.000 description 4
- 229960002685 biotin Drugs 0.000 description 4
- 235000020958 biotin Nutrition 0.000 description 4
- 239000011616 biotin Substances 0.000 description 4
- 210000004369 blood Anatomy 0.000 description 4
- 239000008280 blood Substances 0.000 description 4
- 239000013068 control sample Substances 0.000 description 4
- 230000008878 coupling Effects 0.000 description 4
- 238000010168 coupling process Methods 0.000 description 4
- 238000005859 coupling reaction Methods 0.000 description 4
- 231100000599 cytotoxic agent Toxicity 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 230000003247 decreasing effect Effects 0.000 description 4
- 239000006185 dispersion Substances 0.000 description 4
- 210000001671 embryonic stem cell Anatomy 0.000 description 4
- 239000003623 enhancer Substances 0.000 description 4
- 210000003527 eukaryotic cell Anatomy 0.000 description 4
- 239000012530 fluid Substances 0.000 description 4
- RWSXRVCMGQZWBV-WDSKDSINSA-N glutathione Chemical compound OC(=O)[C@@H](N)CCC(=O)N[C@@H](CS)C(=O)NCC(O)=O RWSXRVCMGQZWBV-WDSKDSINSA-N 0.000 description 4
- 102000052620 human IL10 Human genes 0.000 description 4
- 210000002865 immune cell Anatomy 0.000 description 4
- 230000002163 immunogen Effects 0.000 description 4
- 238000007901 in situ hybridization Methods 0.000 description 4
- 230000006698 induction Effects 0.000 description 4
- 239000004615 ingredient Substances 0.000 description 4
- 238000002372 labelling Methods 0.000 description 4
- 210000004185 liver Anatomy 0.000 description 4
- 210000001161 mammalian embryo Anatomy 0.000 description 4
- 239000002609 medium Substances 0.000 description 4
- 244000005700 microbiome Species 0.000 description 4
- 238000002823 phage display Methods 0.000 description 4
- 229940012957 plasmin Drugs 0.000 description 4
- 102000040430 polynucleotide Human genes 0.000 description 4
- 108091033319 polynucleotide Proteins 0.000 description 4
- 239000002157 polynucleotide Substances 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 230000004952 protein activity Effects 0.000 description 4
- 108020001580 protein domains Proteins 0.000 description 4
- 238000012552 review Methods 0.000 description 4
- 210000000952 spleen Anatomy 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- 210000001550 testis Anatomy 0.000 description 4
- 210000001541 thymus gland Anatomy 0.000 description 4
- 238000001890 transfection Methods 0.000 description 4
- 230000001960 triggered effect Effects 0.000 description 4
- 241000701447 unidentified baculovirus Species 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- GOJUJUVQIVIZAV-UHFFFAOYSA-N 2-amino-4,6-dichloropyrimidine-5-carbaldehyde Chemical group NC1=NC(Cl)=C(C=O)C(Cl)=N1 GOJUJUVQIVIZAV-UHFFFAOYSA-N 0.000 description 3
- STQGQHZAVUOBTE-UHFFFAOYSA-N 7-Cyan-hept-2t-en-4,6-diinsaeure Natural products C1=2C(O)=C3C(=O)C=4C(OC)=CC=CC=4C(=O)C3=C(O)C=2CC(O)(C(C)=O)CC1OC1CC(N)C(O)C(C)O1 STQGQHZAVUOBTE-UHFFFAOYSA-N 0.000 description 3
- 108020005544 Antisense RNA Proteins 0.000 description 3
- 208000035143 Bacterial infection Diseases 0.000 description 3
- WVDDGKGOMKODPV-UHFFFAOYSA-N Benzyl alcohol Chemical compound OCC1=CC=CC=C1 WVDDGKGOMKODPV-UHFFFAOYSA-N 0.000 description 3
- 102100021704 Cytochrome P450 2D6 Human genes 0.000 description 3
- 239000003155 DNA primer Substances 0.000 description 3
- 108010092160 Dactinomycin Proteins 0.000 description 3
- 208000019505 Deglutition disease Diseases 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- 241000238631 Hexapoda Species 0.000 description 3
- 102100026720 Interferon beta Human genes 0.000 description 3
- 102100037850 Interferon gamma Human genes 0.000 description 3
- 102000006992 Interferon-alpha Human genes 0.000 description 3
- 108010047761 Interferon-alpha Proteins 0.000 description 3
- 108010074328 Interferon-gamma Proteins 0.000 description 3
- 102000000589 Interleukin-1 Human genes 0.000 description 3
- 108010002352 Interleukin-1 Proteins 0.000 description 3
- 108060001084 Luciferase Proteins 0.000 description 3
- 239000005089 Luciferase Substances 0.000 description 3
- 241000699660 Mus musculus Species 0.000 description 3
- NWIBSHFKIJFRCO-WUDYKRTCSA-N Mytomycin Chemical compound C1N2C(C(C(C)=C(N)C3=O)=O)=C3[C@@H](COC(N)=O)[C@@]2(OC)[C@@H]2[C@H]1N2 NWIBSHFKIJFRCO-WUDYKRTCSA-N 0.000 description 3
- 238000012408 PCR amplification Methods 0.000 description 3
- 201000004681 Psoriasis Diseases 0.000 description 3
- 102000006382 Ribonucleases Human genes 0.000 description 3
- 108010083644 Ribonucleases Proteins 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 210000001744 T-lymphocyte Anatomy 0.000 description 3
- 239000002671 adjuvant Substances 0.000 description 3
- 125000003295 alanine group Chemical group N[C@@H](C)C(=O)* 0.000 description 3
- 230000000844 anti-bacterial effect Effects 0.000 description 3
- 125000000637 arginyl group Chemical group N[C@@H](CCCNC(N)=N)C(=O)* 0.000 description 3
- 208000022362 bacterial infectious disease Diseases 0.000 description 3
- 102000012740 beta Adrenergic Receptors Human genes 0.000 description 3
- 239000000969 carrier Substances 0.000 description 3
- 230000003197 catalytic effect Effects 0.000 description 3
- 210000000170 cell membrane Anatomy 0.000 description 3
- 210000001638 cerebellum Anatomy 0.000 description 3
- 238000010367 cloning Methods 0.000 description 3
- 239000003184 complementary RNA Substances 0.000 description 3
- STQGQHZAVUOBTE-VGBVRHCVSA-N daunorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(C)=O)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 STQGQHZAVUOBTE-VGBVRHCVSA-N 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 239000002612 dispersion medium Substances 0.000 description 3
- 238000012377 drug delivery Methods 0.000 description 3
- 230000001747 exhibiting effect Effects 0.000 description 3
- 238000009472 formulation Methods 0.000 description 3
- 239000000499 gel Substances 0.000 description 3
- 238000001476 gene delivery Methods 0.000 description 3
- 239000001963 growth medium Substances 0.000 description 3
- 210000003630 histaminocyte Anatomy 0.000 description 3
- 230000002519 immonomodulatory effect Effects 0.000 description 3
- 230000003053 immunization Effects 0.000 description 3
- 230000001939 inductive effect Effects 0.000 description 3
- 230000028709 inflammatory response Effects 0.000 description 3
- 229940047124 interferons Drugs 0.000 description 3
- 210000003734 kidney Anatomy 0.000 description 3
- 230000000670 limiting effect Effects 0.000 description 3
- 210000000287 oocyte Anatomy 0.000 description 3
- 210000000963 osteoblast Anatomy 0.000 description 3
- 210000000496 pancreas Anatomy 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 239000002987 primer (paints) Substances 0.000 description 3
- 238000011321 prophylaxis Methods 0.000 description 3
- 230000028327 secretion Effects 0.000 description 3
- 210000002966 serum Anatomy 0.000 description 3
- 239000011780 sodium chloride Substances 0.000 description 3
- 230000004936 stimulating effect Effects 0.000 description 3
- 239000003826 tablet Substances 0.000 description 3
- 229940124597 therapeutic agent Drugs 0.000 description 3
- 238000011830 transgenic mouse model Methods 0.000 description 3
- 125000000430 tryptophan group Chemical group [H]N([H])C(C(=O)O*)C([H])([H])C1=C([H])N([H])C2=C([H])C([H])=C([H])C([H])=C12 0.000 description 3
- 238000011144 upstream manufacturing Methods 0.000 description 3
- 125000002987 valine group Chemical group [H]N([H])C([H])(C(*)=O)C([H])(C([H])([H])[H])C([H])([H])[H] 0.000 description 3
- 210000005253 yeast cell Anatomy 0.000 description 3
- MJWYCUZCRGLCBD-BGZMIMFDSA-N (4s)-4-amino-5-[[(2s)-1-[[(2s)-1-[[(2s,3s)-1-[[(1s)-1-carboxy-2-hydroxyethyl]amino]-3-methyl-1-oxopentan-2-yl]amino]-3-methyl-1-oxobutan-2-yl]amino]-4-methyl-1-oxopentan-2-yl]amino]-5-oxopentanoic acid Chemical compound OC[C@@H](C(O)=O)NC(=O)[C@H]([C@@H](C)CC)NC(=O)[C@H](C(C)C)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](N)CCC(O)=O MJWYCUZCRGLCBD-BGZMIMFDSA-N 0.000 description 2
- RFLVMTUMFYRZCB-UHFFFAOYSA-N 1-methylguanine Chemical compound O=C1N(C)C(N)=NC2=C1N=CN2 RFLVMTUMFYRZCB-UHFFFAOYSA-N 0.000 description 2
- YSAJFXWTVFGPAX-UHFFFAOYSA-N 2-[(2,4-dioxo-1h-pyrimidin-5-yl)oxy]acetic acid Chemical compound OC(=O)COC1=CNC(=O)NC1=O YSAJFXWTVFGPAX-UHFFFAOYSA-N 0.000 description 2
- FZWGECJQACGGTI-UHFFFAOYSA-N 2-amino-7-methyl-1,7-dihydro-6H-purin-6-one Chemical compound NC1=NC(O)=C2N(C)C=NC2=N1 FZWGECJQACGGTI-UHFFFAOYSA-N 0.000 description 2
- OVONXEQGWXGFJD-UHFFFAOYSA-N 4-sulfanylidene-1h-pyrimidin-2-one Chemical compound SC=1C=CNC(=O)N=1 OVONXEQGWXGFJD-UHFFFAOYSA-N 0.000 description 2
- OIVLITBTBDPEFK-UHFFFAOYSA-N 5,6-dihydrouracil Chemical compound O=C1CCNC(=O)N1 OIVLITBTBDPEFK-UHFFFAOYSA-N 0.000 description 2
- ZLAQATDNGLKIEV-UHFFFAOYSA-N 5-methyl-2-sulfanylidene-1h-pyrimidin-4-one Chemical compound CC1=CNC(=S)NC1=O ZLAQATDNGLKIEV-UHFFFAOYSA-N 0.000 description 2
- LRFVTYWOQMYALW-UHFFFAOYSA-N 9H-xanthine Chemical compound O=C1NC(=O)NC2=C1NC=N2 LRFVTYWOQMYALW-UHFFFAOYSA-N 0.000 description 2
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 2
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 2
- 108010006654 Bleomycin Proteins 0.000 description 2
- 241000282472 Canis lupus familiaris Species 0.000 description 2
- 241000283707 Capra Species 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 102000014914 Carrier Proteins Human genes 0.000 description 2
- 108020004635 Complementary DNA Proteins 0.000 description 2
- 108010026925 Cytochrome P-450 CYP2C19 Proteins 0.000 description 2
- 102100029363 Cytochrome P450 2C19 Human genes 0.000 description 2
- 101710112752 Cytotoxin Proteins 0.000 description 2
- 239000003298 DNA probe Substances 0.000 description 2
- 102000004163 DNA-directed RNA polymerases Human genes 0.000 description 2
- 108091029865 Exogenous DNA Proteins 0.000 description 2
- GHASVSINZRGABV-UHFFFAOYSA-N Fluorouracil Chemical compound FC1=CNC(=O)NC1=O GHASVSINZRGABV-UHFFFAOYSA-N 0.000 description 2
- 208000025499 G6PD deficiency Diseases 0.000 description 2
- 108010010803 Gelatin Proteins 0.000 description 2
- 206010018444 Glucose-6-phosphate dehydrogenase deficiency Diseases 0.000 description 2
- 108010024636 Glutathione Proteins 0.000 description 2
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 2
- 102100039620 Granulocyte-macrophage colony-stimulating factor Human genes 0.000 description 2
- 108091027305 Heteroduplex Proteins 0.000 description 2
- 108010001336 Horseradish Peroxidase Proteins 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 102000001617 Interferon Receptors Human genes 0.000 description 2
- 108010054267 Interferon Receptors Proteins 0.000 description 2
- 102100036718 Interferon alpha/beta receptor 2 Human genes 0.000 description 2
- 101710158620 Interferon alpha/beta receptor 2 Proteins 0.000 description 2
- 102000000588 Interleukin-2 Human genes 0.000 description 2
- 108010002350 Interleukin-2 Proteins 0.000 description 2
- 102000015617 Janus Kinases Human genes 0.000 description 2
- 108010024121 Janus Kinases Proteins 0.000 description 2
- HNDVDQJCIGZPNO-YFKPBYRVSA-N L-histidine Chemical compound OC(=O)[C@@H](N)CC1=CN=CN1 HNDVDQJCIGZPNO-YFKPBYRVSA-N 0.000 description 2
- FBOZXECLQNJBKD-ZDUSSCGKSA-N L-methotrexate Chemical compound C=1N=C2N=C(N)N=C(N)C2=NC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FBOZXECLQNJBKD-ZDUSSCGKSA-N 0.000 description 2
- AYFVYJQAPQTCCC-GBXIJSLDSA-N L-threonine Chemical compound C[C@@H](O)[C@H](N)C(O)=O AYFVYJQAPQTCCC-GBXIJSLDSA-N 0.000 description 2
- 102000003960 Ligases Human genes 0.000 description 2
- 108090000364 Ligases Proteins 0.000 description 2
- GQYIWUVLTXOXAJ-UHFFFAOYSA-N Lomustine Chemical compound ClCCN(N=O)C(=O)NC1CCCCC1 GQYIWUVLTXOXAJ-UHFFFAOYSA-N 0.000 description 2
- 241000699670 Mus sp. Species 0.000 description 2
- HYVABZIGRDEKCD-UHFFFAOYSA-N N(6)-dimethylallyladenine Chemical compound CC(C)=CCNC1=NC=NC2=C1N=CN2 HYVABZIGRDEKCD-UHFFFAOYSA-N 0.000 description 2
- 230000004988 N-glycosylation Effects 0.000 description 2
- 108091093037 Peptide nucleic acid Proteins 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- NQRYJNQNLNOLGT-UHFFFAOYSA-N Piperidine Chemical compound C1CCNCC1 NQRYJNQNLNOLGT-UHFFFAOYSA-N 0.000 description 2
- 206010040047 Sepsis Diseases 0.000 description 2
- 238000002105 Southern blotting Methods 0.000 description 2
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 2
- 239000004473 Threonine Substances 0.000 description 2
- IQFYYKKMVGJFEH-XLPZGREQSA-N Thymidine Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](CO)[C@@H](O)C1 IQFYYKKMVGJFEH-XLPZGREQSA-N 0.000 description 2
- VGQOVCHZGQWAOI-UHFFFAOYSA-N UNPD55612 Natural products N1C(O)C2CC(C=CC(N)=O)=CN2C(=O)C2=CC=C(C)C(O)=C12 VGQOVCHZGQWAOI-UHFFFAOYSA-N 0.000 description 2
- ISAKRJDGNUQOIC-UHFFFAOYSA-N Uracil Chemical compound O=C1C=CNC(=O)N1 ISAKRJDGNUQOIC-UHFFFAOYSA-N 0.000 description 2
- 208000024248 Vascular System injury Diseases 0.000 description 2
- 208000012339 Vascular injury Diseases 0.000 description 2
- JXLYSJRDGCGARV-WWYNWVTFSA-N Vinblastine Natural products O=C(O[C@H]1[C@](O)(C(=O)OC)[C@@H]2N(C)c3c(cc(c(OC)c3)[C@]3(C(=O)OC)c4[nH]c5c(c4CCN4C[C@](O)(CC)C[C@H](C3)C4)cccc5)[C@@]32[C@H]2[C@@]1(CC)C=CCN2CC3)C JXLYSJRDGCGARV-WWYNWVTFSA-N 0.000 description 2
- 108020000999 Viral RNA Proteins 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- RJURFGZVJUQBHK-IIXSONLDSA-N actinomycin D Chemical compound C[C@H]1OC(=O)[C@H](C(C)C)N(C)C(=O)CN(C)C(=O)[C@@H]2CCCN2C(=O)[C@@H](C(C)C)NC(=O)[C@H]1NC(=O)C1=C(N)C(=O)C(C)=C2OC(C(C)=CC=C3C(=O)N[C@@H]4C(=O)N[C@@H](C(N5CCC[C@H]5C(=O)N(C)CC(=O)N(C)[C@@H](C(C)C)C(=O)O[C@@H]4C)=O)C(C)C)=C3N=C21 RJURFGZVJUQBHK-IIXSONLDSA-N 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 239000013543 active substance Substances 0.000 description 2
- 238000001042 affinity chromatography Methods 0.000 description 2
- VGQOVCHZGQWAOI-HYUHUPJXSA-N anthramycin Chemical compound N1[C@@H](O)[C@@H]2CC(\C=C\C(N)=O)=CN2C(=O)C2=CC=C(C)C(O)=C12 VGQOVCHZGQWAOI-HYUHUPJXSA-N 0.000 description 2
- 230000003466 anti-cipated effect Effects 0.000 description 2
- 230000001028 anti-proliverative effect Effects 0.000 description 2
- 230000000840 anti-viral effect Effects 0.000 description 2
- 229940088710 antibiotic agent Drugs 0.000 description 2
- 229940121375 antifungal agent Drugs 0.000 description 2
- 239000003429 antifungal agent Substances 0.000 description 2
- 239000002246 antineoplastic agent Substances 0.000 description 2
- 229940041181 antineoplastic drug Drugs 0.000 description 2
- 239000000074 antisense oligonucleotide Substances 0.000 description 2
- 238000012230 antisense oligonucleotides Methods 0.000 description 2
- 235000010323 ascorbic acid Nutrition 0.000 description 2
- 229960005070 ascorbic acid Drugs 0.000 description 2
- 239000011668 ascorbic acid Substances 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 108091008324 binding proteins Proteins 0.000 description 2
- 239000013060 biological fluid Substances 0.000 description 2
- 229960001561 bleomycin Drugs 0.000 description 2
- OYVAGSVQBOHSSS-UAPAGMARSA-O bleomycin A2 Chemical compound N([C@H](C(=O)N[C@H](C)[C@@H](O)[C@H](C)C(=O)N[C@@H]([C@H](O)C)C(=O)NCCC=1SC=C(N=1)C=1SC=C(N=1)C(=O)NCCC[S+](C)C)[C@@H](O[C@H]1[C@H]([C@@H](O)[C@H](O)[C@H](CO)O1)O[C@@H]1[C@H]([C@@H](OC(N)=O)[C@H](O)[C@@H](CO)O1)O)C=1N=CNC=1)C(=O)C1=NC([C@H](CC(N)=O)NC[C@H](N)C(N)=O)=NC(N)=C1C OYVAGSVQBOHSSS-UAPAGMARSA-O 0.000 description 2
- 230000023555 blood coagulation Effects 0.000 description 2
- 239000002775 capsule Substances 0.000 description 2
- 238000000423 cell based assay Methods 0.000 description 2
- 230000005754 cellular signaling Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000012512 characterization method Methods 0.000 description 2
- 230000035605 chemotaxis Effects 0.000 description 2
- OSASVXMJTNOKOY-UHFFFAOYSA-N chlorobutanol Chemical compound CC(C)(O)C(Cl)(Cl)Cl OSASVXMJTNOKOY-UHFFFAOYSA-N 0.000 description 2
- 238000003200 chromosome mapping Methods 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- OROGSEYTTFOCAN-DNJOTXNNSA-N codeine Chemical compound C([C@H]1[C@H](N(CC[C@@]112)C)C3)=C[C@H](O)[C@@H]1OC1=C2C3=CC=C1OC OROGSEYTTFOCAN-DNJOTXNNSA-N 0.000 description 2
- 230000009918 complex formation Effects 0.000 description 2
- 230000021615 conjugation Effects 0.000 description 2
- 230000016396 cytokine production Effects 0.000 description 2
- 229940127089 cytotoxic agent Drugs 0.000 description 2
- 239000002254 cytotoxic agent Substances 0.000 description 2
- 239000002619 cytotoxin Substances 0.000 description 2
- 229960000640 dactinomycin Drugs 0.000 description 2
- 229960000975 daunorubicin Drugs 0.000 description 2
- 238000003935 denaturing gradient gel electrophoresis Methods 0.000 description 2
- 210000001947 dentate gyrus Anatomy 0.000 description 2
- CFCUWKMKBJTWLW-UHFFFAOYSA-N deoliosyl-3C-alpha-L-digitoxosyl-MTM Natural products CC=1C(O)=C2C(O)=C3C(=O)C(OC4OC(C)C(O)C(OC5OC(C)C(O)C(OC6OC(C)C(O)C(C)(O)C6)C5)C4)C(C(OC)C(=O)C(O)C(C)O)CC3=CC2=CC=1OC(OC(C)C1O)CC1OC1CC(O)C(O)C(C)O1 CFCUWKMKBJTWLW-UHFFFAOYSA-N 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 239000003599 detergent Substances 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 230000004069 differentiation Effects 0.000 description 2
- 239000003085 diluting agent Substances 0.000 description 2
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 2
- 229960004679 doxorubicin Drugs 0.000 description 2
- 229940000406 drug candidate Drugs 0.000 description 2
- 238000004520 electroporation Methods 0.000 description 2
- GNBHRKFJIUUOQI-UHFFFAOYSA-N fluorescein Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 GNBHRKFJIUUOQI-UHFFFAOYSA-N 0.000 description 2
- 229960002949 fluorouracil Drugs 0.000 description 2
- 239000008273 gelatin Substances 0.000 description 2
- 229920000159 gelatin Polymers 0.000 description 2
- 235000019322 gelatine Nutrition 0.000 description 2
- 235000011852 gelatine desserts Nutrition 0.000 description 2
- 210000004602 germ cell Anatomy 0.000 description 2
- 208000008605 glucosephosphate dehydrogenase deficiency Diseases 0.000 description 2
- 108010008118 glutamyl-leucyl-valyl-isoleucyl-serine Proteins 0.000 description 2
- 229960003180 glutathione Drugs 0.000 description 2
- 235000011187 glycerol Nutrition 0.000 description 2
- 210000004565 granule cell Anatomy 0.000 description 2
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 2
- 210000003917 human chromosome Anatomy 0.000 description 2
- 210000004754 hybrid cell Anatomy 0.000 description 2
- FDGQSTZJBFJUBT-UHFFFAOYSA-N hypoxanthine Chemical compound O=C1NC=NC2=C1NC=N2 FDGQSTZJBFJUBT-UHFFFAOYSA-N 0.000 description 2
- 238000001114 immunoprecipitation Methods 0.000 description 2
- 238000011065 in-situ storage Methods 0.000 description 2
- 230000005764 inhibitory process Effects 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 208000014674 injury Diseases 0.000 description 2
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 2
- 238000001990 intravenous administration Methods 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 210000000265 leukocyte Anatomy 0.000 description 2
- 230000029226 lipidation Effects 0.000 description 2
- 239000002502 liposome Substances 0.000 description 2
- 210000001165 lymph node Anatomy 0.000 description 2
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 2
- GLVAUDGFNGKCSF-UHFFFAOYSA-N mercaptopurine Chemical compound S=C1NC=NC2=C1NC=N2 GLVAUDGFNGKCSF-UHFFFAOYSA-N 0.000 description 2
- 230000004060 metabolic process Effects 0.000 description 2
- 239000002207 metabolite Substances 0.000 description 2
- 229960000485 methotrexate Drugs 0.000 description 2
- OSWPMRLSEDHDFF-UHFFFAOYSA-N methyl salicylate Chemical compound COC(=O)C1=CC=CC=C1O OSWPMRLSEDHDFF-UHFFFAOYSA-N 0.000 description 2
- 238000000520 microinjection Methods 0.000 description 2
- 230000033607 mismatch repair Effects 0.000 description 2
- CFCUWKMKBJTWLW-BKHRDMLASA-N mithramycin Chemical compound O([C@@H]1C[C@@H](O[C@H](C)[C@H]1O)OC=1C=C2C=C3C[C@H]([C@@H](C(=O)C3=C(O)C2=C(O)C=1C)O[C@@H]1O[C@H](C)[C@@H](O)[C@H](O[C@@H]2O[C@H](C)[C@H](O)[C@H](O[C@@H]3O[C@H](C)[C@@H](O)[C@@](C)(O)C3)C2)C1)[C@H](OC)C(=O)[C@@H](O)[C@@H](C)O)[C@H]1C[C@@H](O)[C@H](O)[C@@H](C)O1 CFCUWKMKBJTWLW-BKHRDMLASA-N 0.000 description 2
- 229960004857 mitomycin Drugs 0.000 description 2
- OHDXDNUPVVYWOV-UHFFFAOYSA-N n-methyl-1-(2-naphthalen-1-ylsulfanylphenyl)methanamine Chemical compound CNCC1=CC=CC=C1SC1=CC=CC2=CC=CC=C12 OHDXDNUPVVYWOV-UHFFFAOYSA-N 0.000 description 2
- 210000000822 natural killer cell Anatomy 0.000 description 2
- 239000002674 ointment Substances 0.000 description 2
- 210000000056 organ Anatomy 0.000 description 2
- 230000037361 pathway Effects 0.000 description 2
- 238000010647 peptide synthesis reaction Methods 0.000 description 2
- 210000005259 peripheral blood Anatomy 0.000 description 2
- 239000011886 peripheral blood Substances 0.000 description 2
- 239000000546 pharmaceutical excipient Substances 0.000 description 2
- 239000000825 pharmaceutical preparation Substances 0.000 description 2
- 239000002953 phosphate buffered saline Substances 0.000 description 2
- 230000004962 physiological condition Effects 0.000 description 2
- 229960003171 plicamycin Drugs 0.000 description 2
- 229920002401 polyacrylamide Polymers 0.000 description 2
- 230000008488 polyadenylation Effects 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 102000054765 polymorphisms of proteins Human genes 0.000 description 2
- 230000004481 post-translational protein modification Effects 0.000 description 2
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 2
- 210000001236 prokaryotic cell Anatomy 0.000 description 2
- 230000001737 promoting effect Effects 0.000 description 2
- AQHHHDLHHXJYJD-UHFFFAOYSA-N propranolol Chemical compound C1=CC=C2C(OCC(O)CNC(C)C)=CC=CC2=C1 AQHHHDLHHXJYJD-UHFFFAOYSA-N 0.000 description 2
- RXWNCPJZOCPEPQ-NVWDDTSBSA-N puromycin Chemical compound C1=CC(OC)=CC=C1C[C@H](N)C(=O)N[C@H]1[C@@H](O)[C@H](N2C3=NC=NC(=C3N=C2)N(C)C)O[C@@H]1CO RXWNCPJZOCPEPQ-NVWDDTSBSA-N 0.000 description 2
- 230000002285 radioactive effect Effects 0.000 description 2
- 239000012857 radioactive material Substances 0.000 description 2
- 238000010188 recombinant method Methods 0.000 description 2
- 230000004043 responsiveness Effects 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 230000011664 signaling Effects 0.000 description 2
- 210000002027 skeletal muscle Anatomy 0.000 description 2
- 210000000813 small intestine Anatomy 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000007790 solid phase Substances 0.000 description 2
- 210000002784 stomach Anatomy 0.000 description 2
- 238000007920 subcutaneous administration Methods 0.000 description 2
- 235000000346 sugar Nutrition 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 208000024891 symptom Diseases 0.000 description 2
- 238000007910 systemic administration Methods 0.000 description 2
- 230000008685 targeting Effects 0.000 description 2
- RWQNBRDOKXIBIV-UHFFFAOYSA-N thymine Chemical compound CC1=CNC(=O)NC1=O RWQNBRDOKXIBIV-UHFFFAOYSA-N 0.000 description 2
- WYWHKKSPHMUBEB-UHFFFAOYSA-N tioguanine Chemical compound N1C(N)=NC(=S)C2=C1N=CN2 WYWHKKSPHMUBEB-UHFFFAOYSA-N 0.000 description 2
- 239000003053 toxin Substances 0.000 description 2
- 231100000765 toxin Toxicity 0.000 description 2
- 108700012359 toxins Proteins 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 230000001131 transforming effect Effects 0.000 description 2
- 230000032258 transport Effects 0.000 description 2
- 210000005166 vasculature Anatomy 0.000 description 2
- 239000003981 vehicle Substances 0.000 description 2
- 229960003048 vinblastine Drugs 0.000 description 2
- JXLYSJRDGCGARV-XQKSVPLYSA-N vincaleukoblastine Chemical compound C([C@@H](C[C@]1(C(=O)OC)C=2C(=CC3=C([C@]45[C@H]([C@@]([C@H](OC(C)=O)[C@]6(CC)C=CCN([C@H]56)CC4)(O)C(=O)OC)N3C)C=2)OC)C[C@@](C2)(O)CC)N2CCC2=C1NC1=CC=CC=C21 JXLYSJRDGCGARV-XQKSVPLYSA-N 0.000 description 2
- OGWKCGZFUXNPDA-XQKSVPLYSA-N vincristine Chemical compound C([N@]1C[C@@H](C[C@]2(C(=O)OC)C=3C(=CC4=C([C@]56[C@H]([C@@]([C@H](OC(C)=O)[C@]7(CC)C=CCN([C@H]67)CC5)(O)C(=O)OC)N4C=O)C=3)OC)C[C@@](C1)(O)CC)CC1=C2NC2=CC=CC=C12 OGWKCGZFUXNPDA-XQKSVPLYSA-N 0.000 description 2
- 229960004528 vincristine Drugs 0.000 description 2
- OGWKCGZFUXNPDA-UHFFFAOYSA-N vincristine Natural products C1C(CC)(O)CC(CC2(C(=O)OC)C=3C(=CC4=C(C56C(C(C(OC(C)=O)C7(CC)C=CCN(C67)CC5)(O)C(=O)OC)N4C=O)C=3)OC)CN1CCC1=C2NC2=CC=CC=C12 OGWKCGZFUXNPDA-UHFFFAOYSA-N 0.000 description 2
- 239000013603 viral vector Substances 0.000 description 2
- 230000029663 wound healing Effects 0.000 description 2
- YMXHPSHLTSZXKH-RVBZMBCESA-N (2,5-dioxopyrrolidin-1-yl) 5-[(3as,4s,6ar)-2-oxo-1,3,3a,4,6,6a-hexahydrothieno[3,4-d]imidazol-4-yl]pentanoate Chemical compound C([C@H]1[C@H]2NC(=O)N[C@H]2CS1)CCCC(=O)ON1C(=O)CCC1=O YMXHPSHLTSZXKH-RVBZMBCESA-N 0.000 description 1
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 description 1
- FDKXTQMXEQVLRF-ZHACJKMWSA-N (E)-dacarbazine Chemical compound CN(C)\N=N\c1[nH]cnc1C(N)=O FDKXTQMXEQVLRF-ZHACJKMWSA-N 0.000 description 1
- IAKHMKGGTNLKSZ-INIZCTEOSA-N (S)-colchicine Chemical compound C1([C@@H](NC(C)=O)CC2)=CC(=O)C(OC)=CC=C1C1=C2C=C(OC)C(OC)=C1OC IAKHMKGGTNLKSZ-INIZCTEOSA-N 0.000 description 1
- WJNGQIYEQLPJMN-IOSLPCCCSA-N 1-methylinosine Chemical compound C1=NC=2C(=O)N(C)C=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O WJNGQIYEQLPJMN-IOSLPCCCSA-N 0.000 description 1
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 description 1
- OWEGMIWEEQEYGQ-UHFFFAOYSA-N 100676-05-9 Natural products OC1C(O)C(O)C(CO)OC1OCC1C(O)C(O)C(O)C(OC2C(OC(O)C(O)C2O)CO)O1 OWEGMIWEEQEYGQ-UHFFFAOYSA-N 0.000 description 1
- GGYMDMAXRQASFI-UHFFFAOYSA-N 2-(1-methoxy-2,4-dioxopyrimidin-5-yl)acetic acid Chemical compound CON1C(=O)NC(=O)C(=C1)CC(=O)O GGYMDMAXRQASFI-UHFFFAOYSA-N 0.000 description 1
- HLYBTPMYFWWNJN-UHFFFAOYSA-N 2-(2,4-dioxo-1h-pyrimidin-5-yl)-2-hydroxyacetic acid Chemical compound OC(=O)C(O)C1=CNC(=O)NC1=O HLYBTPMYFWWNJN-UHFFFAOYSA-N 0.000 description 1
- SGAKLDIYNFXTCK-UHFFFAOYSA-N 2-[(2,4-dioxo-1h-pyrimidin-5-yl)methylamino]acetic acid Chemical compound OC(=O)CNCC1=CNC(=O)NC1=O SGAKLDIYNFXTCK-UHFFFAOYSA-N 0.000 description 1
- XMSMHKMPBNTBOD-UHFFFAOYSA-N 2-dimethylamino-6-hydroxypurine Chemical compound N1C(N(C)C)=NC(=O)C2=C1N=CN2 XMSMHKMPBNTBOD-UHFFFAOYSA-N 0.000 description 1
- SMADWRYCYBUIKH-UHFFFAOYSA-N 2-methyl-7h-purin-6-amine Chemical compound CC1=NC(N)=C2NC=NC2=N1 SMADWRYCYBUIKH-UHFFFAOYSA-N 0.000 description 1
- FUBFWTUFPGFHOJ-UHFFFAOYSA-N 2-nitrofuran Chemical class [O-][N+](=O)C1=CC=CO1 FUBFWTUFPGFHOJ-UHFFFAOYSA-N 0.000 description 1
- GYJNVSAUBGJVLV-UHFFFAOYSA-N 3-(dimethylazaniumyl)propane-1-sulfonate Chemical compound CN(C)CCCS(O)(=O)=O GYJNVSAUBGJVLV-UHFFFAOYSA-N 0.000 description 1
- KOLPWZCZXAMXKS-UHFFFAOYSA-N 3-methylcytosine Chemical compound CN1C(N)=CC=NC1=O KOLPWZCZXAMXKS-UHFFFAOYSA-N 0.000 description 1
- GJAKJCICANKRFD-UHFFFAOYSA-N 4-acetyl-4-amino-1,3-dihydropyrimidin-2-one Chemical compound CC(=O)C1(N)NC(=O)NC=C1 GJAKJCICANKRFD-UHFFFAOYSA-N 0.000 description 1
- MQJSSLBGAQJNER-UHFFFAOYSA-N 5-(methylaminomethyl)-1h-pyrimidine-2,4-dione Chemical compound CNCC1=CNC(=O)NC1=O MQJSSLBGAQJNER-UHFFFAOYSA-N 0.000 description 1
- WPYRHVXCOQLYLY-UHFFFAOYSA-N 5-[(methoxyamino)methyl]-2-sulfanylidene-1h-pyrimidin-4-one Chemical compound CONCC1=CNC(=S)NC1=O WPYRHVXCOQLYLY-UHFFFAOYSA-N 0.000 description 1
- LQLQRFGHAALLLE-UHFFFAOYSA-N 5-bromouracil Chemical compound BrC1=CNC(=O)NC1=O LQLQRFGHAALLLE-UHFFFAOYSA-N 0.000 description 1
- VKLFQTYNHLDMDP-PNHWDRBUSA-N 5-carboxymethylaminomethyl-2-thiouridine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C(=S)NC(=O)C(CNCC(O)=O)=C1 VKLFQTYNHLDMDP-PNHWDRBUSA-N 0.000 description 1
- ZFTBZKVVGZNMJR-UHFFFAOYSA-N 5-chlorouracil Chemical compound ClC1=CNC(=O)NC1=O ZFTBZKVVGZNMJR-UHFFFAOYSA-N 0.000 description 1
- KSNXJLQDQOIRIP-UHFFFAOYSA-N 5-iodouracil Chemical compound IC1=CNC(=O)NC1=O KSNXJLQDQOIRIP-UHFFFAOYSA-N 0.000 description 1
- KELXHQACBIUYSE-UHFFFAOYSA-N 5-methoxy-1h-pyrimidine-2,4-dione Chemical compound COC1=CNC(=O)NC1=O KELXHQACBIUYSE-UHFFFAOYSA-N 0.000 description 1
- LRSASMSXMSNRBT-UHFFFAOYSA-N 5-methylcytosine Chemical compound CC1=CNC(=O)N=C1N LRSASMSXMSNRBT-UHFFFAOYSA-N 0.000 description 1
- DCPSTSVLRXOYGS-UHFFFAOYSA-N 6-amino-1h-pyrimidine-2-thione Chemical compound NC1=CC=NC(S)=N1 DCPSTSVLRXOYGS-UHFFFAOYSA-N 0.000 description 1
- CJIJXIFQYOPWTF-UHFFFAOYSA-N 7-hydroxycoumarin Natural products O1C(=O)C=CC2=CC(O)=CC=C21 CJIJXIFQYOPWTF-UHFFFAOYSA-N 0.000 description 1
- MSSXOMSJDRHRMC-UHFFFAOYSA-N 9H-purine-2,6-diamine Chemical compound NC1=NC(N)=C2NC=NC2=N1 MSSXOMSJDRHRMC-UHFFFAOYSA-N 0.000 description 1
- 208000030507 AIDS Diseases 0.000 description 1
- 108010066676 Abrin Proteins 0.000 description 1
- 108010022752 Acetylcholinesterase Proteins 0.000 description 1
- 102000012440 Acetylcholinesterase Human genes 0.000 description 1
- 206010069754 Acquired gene mutation Diseases 0.000 description 1
- 208000017612 Acute Hemorrhagic Pancreatitis Diseases 0.000 description 1
- 208000003200 Adenoma Diseases 0.000 description 1
- 206010067484 Adverse reaction Diseases 0.000 description 1
- 108010000239 Aequorin Proteins 0.000 description 1
- 108010088751 Albumins Proteins 0.000 description 1
- 102000009027 Albumins Human genes 0.000 description 1
- 102100024321 Alkaline phosphatase, placental type Human genes 0.000 description 1
- 206010059313 Anogenital warts Diseases 0.000 description 1
- 239000004475 Arginine Substances 0.000 description 1
- 108020005224 Arylamine N-acetyltransferase Proteins 0.000 description 1
- 102100038110 Arylamine N-acetyltransferase 2 Human genes 0.000 description 1
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 description 1
- 241000416162 Astragalus gummifer Species 0.000 description 1
- 108090001008 Avidin Proteins 0.000 description 1
- 208000032791 BCR-ABL1 positive chronic myelogenous leukemia Diseases 0.000 description 1
- 206010061000 Benign pancreatic neoplasm Diseases 0.000 description 1
- DWRXFEITVBNRMK-UHFFFAOYSA-N Beta-D-1-Arabinofuranosylthymine Natural products O=C1NC(=O)C(C)=CN1C1C(O)C(O)C(CO)O1 DWRXFEITVBNRMK-UHFFFAOYSA-N 0.000 description 1
- 102100026189 Beta-galactosidase Human genes 0.000 description 1
- 102100023995 Beta-nerve growth factor Human genes 0.000 description 1
- 208000006386 Bone Resorption Diseases 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- 206010006126 Brain herniation Diseases 0.000 description 1
- 206010048962 Brain oedema Diseases 0.000 description 1
- COVZYZSDYWQREU-UHFFFAOYSA-N Busulfan Chemical compound CS(=O)(=O)OCCCCOS(C)(=O)=O COVZYZSDYWQREU-UHFFFAOYSA-N 0.000 description 1
- 101150010738 CYP2D6 gene Proteins 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- 240000001432 Calendula officinalis Species 0.000 description 1
- 235000005881 Calendula officinalis Nutrition 0.000 description 1
- 208000005623 Carcinogenesis Diseases 0.000 description 1
- DLGOEMSEDOSKAD-UHFFFAOYSA-N Carmustine Chemical compound ClCCNC(=O)N(N=O)CCCl DLGOEMSEDOSKAD-UHFFFAOYSA-N 0.000 description 1
- 102000000844 Cell Surface Receptors Human genes 0.000 description 1
- 108010001857 Cell Surface Receptors Proteins 0.000 description 1
- 206010057854 Cerebral Toxoplasmosis Diseases 0.000 description 1
- 208000000419 Chronic Hepatitis B Diseases 0.000 description 1
- 208000000668 Chronic Pancreatitis Diseases 0.000 description 1
- 208000006154 Chronic hepatitis C Diseases 0.000 description 1
- 208000010833 Chronic myeloid leukaemia Diseases 0.000 description 1
- 108020004705 Codon Proteins 0.000 description 1
- 206010009900 Colitis ulcerative Diseases 0.000 description 1
- 102000008186 Collagen Human genes 0.000 description 1
- 108010035532 Collagen Proteins 0.000 description 1
- 108010071942 Colony-Stimulating Factors Proteins 0.000 description 1
- 108020004394 Complementary RNA Proteins 0.000 description 1
- 206010062328 Congenital cyst Diseases 0.000 description 1
- 229920002261 Corn starch Polymers 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- 108010051219 Cre recombinase Proteins 0.000 description 1
- UHDGCWIWMRVCDJ-CCXZUQQUSA-N Cytarabine Chemical compound O=C1N=C(N)C=CN1[C@H]1[C@@H](O)[C@H](O)[C@@H](CO)O1 UHDGCWIWMRVCDJ-CCXZUQQUSA-N 0.000 description 1
- 102100025621 Cytochrome b-245 heavy chain Human genes 0.000 description 1
- 241000701022 Cytomegalovirus Species 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- IGXWBGJHJZYPQS-SSDOTTSWSA-N D-Luciferin Chemical compound OC(=O)[C@H]1CSC(C=2SC3=CC=C(O)C=C3N=2)=N1 IGXWBGJHJZYPQS-SSDOTTSWSA-N 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- 108020001738 DNA Glycosylase Proteins 0.000 description 1
- 108020003215 DNA Probes Proteins 0.000 description 1
- 230000004544 DNA amplification Effects 0.000 description 1
- 102000028381 DNA glycosylase Human genes 0.000 description 1
- 101710177611 DNA polymerase II large subunit Proteins 0.000 description 1
- 101710184669 DNA polymerase II small subunit Proteins 0.000 description 1
- 230000004543 DNA replication Effects 0.000 description 1
- 230000006820 DNA synthesis Effects 0.000 description 1
- 108010014303 DNA-directed DNA polymerase Proteins 0.000 description 1
- 102000016928 DNA-directed DNA polymerase Human genes 0.000 description 1
- 108090000626 DNA-directed RNA polymerases Proteins 0.000 description 1
- XPDXVDYUQZHFPV-UHFFFAOYSA-N Dansyl Chloride Chemical compound C1=CC=C2C(N(C)C)=CC=CC2=C1S(Cl)(=O)=O XPDXVDYUQZHFPV-UHFFFAOYSA-N 0.000 description 1
- WEAHRLBPCANXCN-UHFFFAOYSA-N Daunomycin Natural products CCC1(O)CC(OC2CC(N)C(O)C(C)O2)c3cc4C(=O)c5c(OC)cccc5C(=O)c4c(O)c3C1 WEAHRLBPCANXCN-UHFFFAOYSA-N 0.000 description 1
- CYCGRDQQIOGCKX-UHFFFAOYSA-N Dehydro-luciferin Natural products OC(=O)C1=CSC(C=2SC3=CC(O)=CC=C3N=2)=N1 CYCGRDQQIOGCKX-UHFFFAOYSA-N 0.000 description 1
- 241000702421 Dependoparvovirus Species 0.000 description 1
- 229920002307 Dextran Polymers 0.000 description 1
- 238000009007 Diagnostic Kit Methods 0.000 description 1
- 208000005872 Diffuse Esophageal Spasm Diseases 0.000 description 1
- 102000016607 Diphtheria Toxin Human genes 0.000 description 1
- 108010053187 Diphtheria Toxin Proteins 0.000 description 1
- 206010013924 Dyskinesia oesophageal Diseases 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- 238000012286 ELISA Assay Methods 0.000 description 1
- MBYXEBXZARTUSS-QLWBXOBMSA-N Emetamine Natural products O(C)c1c(OC)cc2c(c(C[C@@H]3[C@H](CC)CN4[C@H](c5c(cc(OC)c(OC)c5)CC4)C3)ncc2)c1 MBYXEBXZARTUSS-QLWBXOBMSA-N 0.000 description 1
- 102100027723 Endogenous retrovirus group K member 6 Rec protein Human genes 0.000 description 1
- 241000792859 Enema Species 0.000 description 1
- 108010013369 Enteropeptidase Proteins 0.000 description 1
- 102100029727 Enteropeptidase Human genes 0.000 description 1
- 101710091045 Envelope protein Proteins 0.000 description 1
- YQYJSBFKSSDGFO-UHFFFAOYSA-N Epihygromycin Natural products OC1C(O)C(C(=O)C)OC1OC(C(=C1)O)=CC=C1C=C(C)C(=O)NC1C(O)C(O)C2OCOC2C1O YQYJSBFKSSDGFO-UHFFFAOYSA-N 0.000 description 1
- 208000000289 Esophageal Achalasia Diseases 0.000 description 1
- 208000030644 Esophageal Motility disease Diseases 0.000 description 1
- 108010046276 FLP recombinase Proteins 0.000 description 1
- 108010074860 Factor Xa Proteins 0.000 description 1
- BJGNCJDXODQBOB-UHFFFAOYSA-N Fivefly Luciferin Natural products OC(=O)C1CSC(C=2SC3=CC(O)=CC=C3N=2)=N1 BJGNCJDXODQBOB-UHFFFAOYSA-N 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 241000287828 Gallus gallus Species 0.000 description 1
- 206010071602 Genetic polymorphism Diseases 0.000 description 1
- 206010018338 Glioma Diseases 0.000 description 1
- 206010018404 Glucagonoma Diseases 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 208000002705 Glucose Intolerance Diseases 0.000 description 1
- 102100035172 Glucose-6-phosphate 1-dehydrogenase Human genes 0.000 description 1
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- 108010026389 Gramicidin Proteins 0.000 description 1
- 102000004269 Granulocyte Colony-Stimulating Factor Human genes 0.000 description 1
- 108010017080 Granulocyte Colony-Stimulating Factor Proteins 0.000 description 1
- 108010017213 Granulocyte-Macrophage Colony-Stimulating Factor Proteins 0.000 description 1
- 241000288105 Grus Species 0.000 description 1
- 206010018910 Haemolysis Diseases 0.000 description 1
- 206010018985 Haemorrhage intracranial Diseases 0.000 description 1
- 208000005176 Hepatitis C Diseases 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 101000884399 Homo sapiens Arylamine N-acetyltransferase 2 Proteins 0.000 description 1
- 102000003839 Human Proteins Human genes 0.000 description 1
- 108090000144 Human Proteins Proteins 0.000 description 1
- 241000701109 Human adenovirus 2 Species 0.000 description 1
- AVXURJPOCDRRFD-UHFFFAOYSA-N Hydroxylamine Chemical compound ON AVXURJPOCDRRFD-UHFFFAOYSA-N 0.000 description 1
- 101000829171 Hypocrea virens (strain Gv29-8 / FGSC 10586) Effector TSP1 Proteins 0.000 description 1
- UGQMRVRMYYASKQ-UHFFFAOYSA-N Hypoxanthine nucleoside Natural products OC1C(O)C(CO)OC1N1C(NC=NC2=O)=C2N=C1 UGQMRVRMYYASKQ-UHFFFAOYSA-N 0.000 description 1
- 206010021143 Hypoxia Diseases 0.000 description 1
- 208000019468 Iatrogenic Disease Diseases 0.000 description 1
- 208000026350 Inborn Genetic disease Diseases 0.000 description 1
- 206010061216 Infarction Diseases 0.000 description 1
- 229930010555 Inosine Natural products 0.000 description 1
- UGQMRVRMYYASKQ-KQYNXXCUSA-N Inosine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C2=NC=NC(O)=C2N=C1 UGQMRVRMYYASKQ-KQYNXXCUSA-N 0.000 description 1
- 102000004877 Insulin Human genes 0.000 description 1
- 108090001061 Insulin Proteins 0.000 description 1
- 102000003996 Interferon-beta Human genes 0.000 description 1
- 102000004889 Interleukin-6 Human genes 0.000 description 1
- 108090001005 Interleukin-6 Proteins 0.000 description 1
- 208000008574 Intracranial Hemorrhages Diseases 0.000 description 1
- 208000009164 Islet Cell Adenoma Diseases 0.000 description 1
- 208000007766 Kaposi sarcoma Diseases 0.000 description 1
- 206010023421 Kidney fibrosis Diseases 0.000 description 1
- XUJNEKJLAYXESH-REOHCLBHSA-N L-Cysteine Chemical compound SC[C@H](N)C(O)=O XUJNEKJLAYXESH-REOHCLBHSA-N 0.000 description 1
- ODKSFYDXXFIFQN-BYPYZUCNSA-P L-argininium(2+) Chemical compound NC(=[NH2+])NCCC[C@H]([NH3+])C(O)=O ODKSFYDXXFIFQN-BYPYZUCNSA-P 0.000 description 1
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 1
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 1
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 1
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 1
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 description 1
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- NNJVILVZKWQKPM-UHFFFAOYSA-N Lidocaine Chemical compound CCN(CC)CC(=O)NC1=C(C)C=CC=C1C NNJVILVZKWQKPM-UHFFFAOYSA-N 0.000 description 1
- DDWFXDSYGUXRAY-UHFFFAOYSA-N Luciferin Natural products CCc1c(C)c(CC2NC(=O)C(=C2C=C)C)[nH]c1Cc3[nH]c4C(=C5/NC(CC(=O)O)C(C)C5CC(=O)O)CC(=O)c4c3C DDWFXDSYGUXRAY-UHFFFAOYSA-N 0.000 description 1
- 108010074338 Lymphokines Proteins 0.000 description 1
- 102000008072 Lymphokines Human genes 0.000 description 1
- 206010025323 Lymphomas Diseases 0.000 description 1
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 1
- 239000004472 Lysine Substances 0.000 description 1
- 102000043136 MAP kinase family Human genes 0.000 description 1
- 108091054455 MAP kinase family Proteins 0.000 description 1
- 241000829100 Macaca mulatta polyomavirus 1 Species 0.000 description 1
- 101710141347 Major envelope glycoprotein Proteins 0.000 description 1
- GUBGYTABKSRVRQ-PICCSMPSSA-N Maltose Natural products O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@@H](CO)OC(O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-PICCSMPSSA-N 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- 208000000172 Medulloblastoma Diseases 0.000 description 1
- 108010036176 Melitten Proteins 0.000 description 1
- 208000015021 Meningeal Neoplasms Diseases 0.000 description 1
- 206010027202 Meningitis bacterial Diseases 0.000 description 1
- 206010027260 Meningitis viral Diseases 0.000 description 1
- 244000246386 Mentha pulegium Species 0.000 description 1
- 235000016257 Mentha pulegium Nutrition 0.000 description 1
- 235000004357 Mentha x piperita Nutrition 0.000 description 1
- 229920000168 Microcrystalline cellulose Polymers 0.000 description 1
- VFKZTMPDYBFSTM-KVTDHHQDSA-N Mitobronitol Chemical compound BrC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CBr VFKZTMPDYBFSTM-KVTDHHQDSA-N 0.000 description 1
- 229930192392 Mitomycin Natural products 0.000 description 1
- 241000204031 Mycoplasma Species 0.000 description 1
- 208000033761 Myelogenous Chronic BCR-ABL Positive Leukemia Diseases 0.000 description 1
- 102100025243 Myeloid cell surface antigen CD33 Human genes 0.000 description 1
- SGSSKEDGVONRGC-UHFFFAOYSA-N N(2)-methylguanine Chemical compound O=C1NC(NC)=NC2=C1N=CN2 SGSSKEDGVONRGC-UHFFFAOYSA-N 0.000 description 1
- NQTADLQHYWFPDB-UHFFFAOYSA-N N-Hydroxysuccinimide Chemical compound ON1C(=O)CCC1=O NQTADLQHYWFPDB-UHFFFAOYSA-N 0.000 description 1
- 108010025020 Nerve Growth Factor Proteins 0.000 description 1
- 108010088373 Neurofilament Proteins Proteins 0.000 description 1
- 102000008763 Neurofilament Proteins Human genes 0.000 description 1
- 102000008299 Nitric Oxide Synthase Human genes 0.000 description 1
- 108010021487 Nitric Oxide Synthase Proteins 0.000 description 1
- 208000032234 No therapeutic response Diseases 0.000 description 1
- 108091092724 Noncoding DNA Proteins 0.000 description 1
- 238000000636 Northern blotting Methods 0.000 description 1
- 206010030136 Oesophageal achalasia Diseases 0.000 description 1
- 108020005187 Oligonucleotide Probes Proteins 0.000 description 1
- 108700020796 Oncogene Proteins 0.000 description 1
- 241000283973 Oryctolagus cuniculus Species 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 229930012538 Paclitaxel Natural products 0.000 description 1
- 208000000407 Pancreatic Cyst Diseases 0.000 description 1
- 208000016222 Pancreatic disease Diseases 0.000 description 1
- 206010061902 Pancreatic neoplasm Diseases 0.000 description 1
- 206010033645 Pancreatitis Diseases 0.000 description 1
- 206010033649 Pancreatitis chronic Diseases 0.000 description 1
- 241001494479 Pecora Species 0.000 description 1
- 102000057297 Pepsin A Human genes 0.000 description 1
- 108090000284 Pepsin A Proteins 0.000 description 1
- 108010033276 Peptide Fragments Proteins 0.000 description 1
- 102000007079 Peptide Fragments Human genes 0.000 description 1
- 108010067902 Peptide Library Proteins 0.000 description 1
- 108091000080 Phosphotransferase Proteins 0.000 description 1
- 108010004729 Phycoerythrin Proteins 0.000 description 1
- 108010038512 Platelet-Derived Growth Factor Proteins 0.000 description 1
- 102000010780 Platelet-Derived Growth Factor Human genes 0.000 description 1
- 241000276498 Pollachius virens Species 0.000 description 1
- 229920002732 Polyanhydride Polymers 0.000 description 1
- 229920000954 Polyglycolide Polymers 0.000 description 1
- 229920001710 Polyorthoester Polymers 0.000 description 1
- 229920002685 Polyoxyl 35CastorOil Polymers 0.000 description 1
- 102100037681 Protein FEV Human genes 0.000 description 1
- 101710198166 Protein FEV Proteins 0.000 description 1
- 101710188315 Protein X Proteins 0.000 description 1
- 208000010362 Protozoan Infections Diseases 0.000 description 1
- 206010056658 Pseudocyst Diseases 0.000 description 1
- 101000762949 Pseudomonas aeruginosa (strain ATCC 15692 / DSM 22644 / CIP 104116 / JCM 14847 / LMG 12228 / 1C / PRS 101 / PAO1) Exotoxin A Proteins 0.000 description 1
- 101100084022 Pseudomonas aeruginosa (strain ATCC 15692 / DSM 22644 / CIP 104116 / JCM 14847 / LMG 12228 / 1C / PRS 101 / PAO1) lapA gene Proteins 0.000 description 1
- 108010066717 Q beta Replicase Proteins 0.000 description 1
- 230000010799 Receptor Interactions Effects 0.000 description 1
- 108700008625 Reporter Genes Proteins 0.000 description 1
- 206010038997 Retroviral infections Diseases 0.000 description 1
- 108010039491 Ricin Proteins 0.000 description 1
- 241000283984 Rodentia Species 0.000 description 1
- AUVVAXYIELKVAI-UHFFFAOYSA-N SJ000285215 Natural products N1CCC2=CC(OC)=C(OC)C=C2C1CC1CC2C3=CC(OC)=C(OC)C=C3CCN2CC1CC AUVVAXYIELKVAI-UHFFFAOYSA-N 0.000 description 1
- 229920002684 Sepharose Polymers 0.000 description 1
- 206010040070 Septic Shock Diseases 0.000 description 1
- 238000012300 Sequence Analysis Methods 0.000 description 1
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 108020004682 Single-Stranded DNA Proteins 0.000 description 1
- DWAQJAXMDSEUJJ-UHFFFAOYSA-M Sodium bisulfite Chemical compound [Na+].OS([O-])=O DWAQJAXMDSEUJJ-UHFFFAOYSA-M 0.000 description 1
- 206010041329 Somatostatinoma Diseases 0.000 description 1
- 241000251131 Sphyrna Species 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- ZSJLQEPLLKMAKR-UHFFFAOYSA-N Streptozotocin Natural products O=NN(C)C(=O)NC1C(O)OC(CO)C(O)C1O ZSJLQEPLLKMAKR-UHFFFAOYSA-N 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 108091008874 T cell receptors Proteins 0.000 description 1
- 102000016266 T-Cell Antigen Receptors Human genes 0.000 description 1
- 241000223892 Tetrahymena Species 0.000 description 1
- RYYWUUFWQRZTIU-UHFFFAOYSA-N Thiophosphoric acid Chemical group OP(O)(S)=O RYYWUUFWQRZTIU-UHFFFAOYSA-N 0.000 description 1
- 108091036066 Three prime untranslated region Proteins 0.000 description 1
- 108090000190 Thrombin Proteins 0.000 description 1
- 108010000499 Thromboplastin Proteins 0.000 description 1
- 102000003978 Tissue Plasminogen Activator Human genes 0.000 description 1
- 108090000373 Tissue Plasminogen Activator Proteins 0.000 description 1
- 102100030859 Tissue factor Human genes 0.000 description 1
- 229920001615 Tragacanth Polymers 0.000 description 1
- 102100023935 Transmembrane glycoprotein NMB Human genes 0.000 description 1
- 239000013504 Triton X-100 Substances 0.000 description 1
- 229920004890 Triton X-100 Polymers 0.000 description 1
- 108060008682 Tumor Necrosis Factor Proteins 0.000 description 1
- GBOGMAARMMDZGR-UHFFFAOYSA-N UNPD149280 Natural products N1C(=O)C23OC(=O)C=CC(O)CCCC(C)CC=CC3C(O)C(=C)C(C)C2C1CC1=CC=CC=C1 GBOGMAARMMDZGR-UHFFFAOYSA-N 0.000 description 1
- 201000006704 Ulcerative Colitis Diseases 0.000 description 1
- 208000009443 Vascular Malformations Diseases 0.000 description 1
- ZVNYJIZDIRKMBF-UHFFFAOYSA-N Vesnarinone Chemical compound C1=C(OC)C(OC)=CC=C1C(=O)N1CCN(C=2C=C3CCC(=O)NC3=CC=2)CC1 ZVNYJIZDIRKMBF-UHFFFAOYSA-N 0.000 description 1
- 240000006677 Vicia faba Species 0.000 description 1
- 235000010749 Vicia faba Nutrition 0.000 description 1
- 235000002098 Vicia faba var. major Nutrition 0.000 description 1
- 208000036142 Viral infection Diseases 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- 239000005862 Whey Substances 0.000 description 1
- 102000007544 Whey Proteins Human genes 0.000 description 1
- 108010046377 Whey Proteins Proteins 0.000 description 1
- 208000027418 Wounds and injury Diseases 0.000 description 1
- 201000008629 Zollinger-Ellison syndrome Diseases 0.000 description 1
- SIIZPVYVXNXXQG-KGXOGWRBSA-N [(2r,3r,4r,5r)-5-(6-aminopurin-9-yl)-4-[[(3s,4r)-5-(6-aminopurin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-3-hydroxyoxolan-2-yl]methyl [(2r,4r,5r)-2-(6-aminopurin-9-yl)-4-hydroxy-5-(phosphonooxymethyl)oxolan-3-yl] hydrogen phosphate Polymers C1=NC2=C(N)N=CN=C2N1[C@@H]1O[C@H](COP(O)(=O)OC2[C@@H](O[C@H](COP(O)(O)=O)[C@H]2O)N2C3=NC=NC(N)=C3N=C2)[C@@H](O)[C@H]1OP(O)(=O)OCC([C@@H](O)[C@H]1O)OC1N1C(N=CN=C2N)=C2N=C1 SIIZPVYVXNXXQG-KGXOGWRBSA-N 0.000 description 1
- DLYSYXOOYVHCJN-UDWGBEOPSA-N [(2r,3s,5r)-2-[[[(4-methoxyphenyl)-diphenylmethyl]amino]methyl]-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-3-yl]oxyphosphonamidous acid Chemical compound C1=CC(OC)=CC=C1C(C=1C=CC=CC=1)(C=1C=CC=CC=1)NC[C@@H]1[C@@H](OP(N)O)C[C@H](N2C(NC(=O)C(C)=C2)=O)O1 DLYSYXOOYVHCJN-UDWGBEOPSA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- 229940022698 acetylcholinesterase Drugs 0.000 description 1
- 201000000621 achalasia Diseases 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 125000000641 acridinyl group Chemical group C1(=CC=CC2=NC3=CC=CC=C3C=C12)* 0.000 description 1
- 229930183665 actinomycin Natural products 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 229960000643 adenine Drugs 0.000 description 1
- 208000031112 adenoma of pancreas Diseases 0.000 description 1
- 210000003486 adipose tissue brown Anatomy 0.000 description 1
- 210000000593 adipose tissue white Anatomy 0.000 description 1
- 210000004404 adrenal cortex Anatomy 0.000 description 1
- 210000004100 adrenal gland Anatomy 0.000 description 1
- 210000001943 adrenal medulla Anatomy 0.000 description 1
- 230000006838 adverse reaction Effects 0.000 description 1
- 239000000443 aerosol Substances 0.000 description 1
- 238000001261 affinity purification Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 239000000783 alginic acid Substances 0.000 description 1
- 235000010443 alginic acid Nutrition 0.000 description 1
- 229920000615 alginic acid Polymers 0.000 description 1
- 229960001126 alginic acid Drugs 0.000 description 1
- 150000004781 alginic acids Chemical class 0.000 description 1
- 229940100198 alkylating agent Drugs 0.000 description 1
- 239000002168 alkylating agent Substances 0.000 description 1
- 210000001132 alveolar macrophage Anatomy 0.000 description 1
- 230000000202 analgesic effect Effects 0.000 description 1
- 229940035676 analgesics Drugs 0.000 description 1
- 230000002491 angiogenic effect Effects 0.000 description 1
- 239000000730 antalgic agent Substances 0.000 description 1
- MWPLVEDNUUSJAV-UHFFFAOYSA-N anthracene Chemical compound C1=CC=CC2=CC3=CC=CC=C3C=C21 MWPLVEDNUUSJAV-UHFFFAOYSA-N 0.000 description 1
- 229940045799 anthracyclines and related substance Drugs 0.000 description 1
- 230000000078 anti-malarial effect Effects 0.000 description 1
- 230000000340 anti-metabolite Effects 0.000 description 1
- 210000000628 antibody-producing cell Anatomy 0.000 description 1
- 239000003430 antimalarial agent Substances 0.000 description 1
- 229940033495 antimalarials Drugs 0.000 description 1
- 229940100197 antimetabolite Drugs 0.000 description 1
- 239000002256 antimetabolite Substances 0.000 description 1
- 239000003080 antimitotic agent Substances 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 235000006708 antioxidants Nutrition 0.000 description 1
- 239000003443 antiviral agent Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 206010003246 arthritis Diseases 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 235000009582 asparagine Nutrition 0.000 description 1
- 229960001230 asparagine Drugs 0.000 description 1
- 235000003704 aspartic acid Nutrition 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 201000009904 bacterial meningitis Diseases 0.000 description 1
- 230000003385 bacteriostatic effect Effects 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- DZBUGLKDJFMEHC-UHFFFAOYSA-N benzoquinolinylidene Chemical group C1=CC=CC2=CC3=CC=CC=C3N=C21 DZBUGLKDJFMEHC-UHFFFAOYSA-N 0.000 description 1
- 235000019445 benzyl alcohol Nutrition 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 108010005774 beta-Galactosidase Proteins 0.000 description 1
- IQFYYKKMVGJFEH-UHFFFAOYSA-N beta-L-thymidine Natural products O=C1NC(=O)C(C)=CN1C1OC(CO)C(O)C1 IQFYYKKMVGJFEH-UHFFFAOYSA-N 0.000 description 1
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 1
- 210000000013 bile duct Anatomy 0.000 description 1
- 239000003833 bile salt Substances 0.000 description 1
- 229940093761 bile salts Drugs 0.000 description 1
- 238000004166 bioassay Methods 0.000 description 1
- 229920000249 biocompatible polymer Polymers 0.000 description 1
- 230000008827 biological function Effects 0.000 description 1
- 230000008512 biological response Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000006287 biotinylation Effects 0.000 description 1
- 238000007413 biotinylation Methods 0.000 description 1
- 210000002459 blastocyst Anatomy 0.000 description 1
- 230000008499 blood brain barrier function Effects 0.000 description 1
- 210000001218 blood-brain barrier Anatomy 0.000 description 1
- 210000001124 body fluid Anatomy 0.000 description 1
- 239000010839 body fluid Substances 0.000 description 1
- 230000037396 body weight Effects 0.000 description 1
- RSIHSRDYCUFFLA-DYKIIFRCSA-N boldenone Chemical compound O=C1C=C[C@]2(C)[C@H]3CC[C@](C)([C@H](CC4)O)[C@@H]4[C@@H]3CCC2=C1 RSIHSRDYCUFFLA-DYKIIFRCSA-N 0.000 description 1
- 210000002798 bone marrow cell Anatomy 0.000 description 1
- 230000024279 bone resorption Effects 0.000 description 1
- 208000006752 brain edema Diseases 0.000 description 1
- 230000003925 brain function Effects 0.000 description 1
- 210000005013 brain tissue Anatomy 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 239000006172 buffering agent Substances 0.000 description 1
- 229960002092 busulfan Drugs 0.000 description 1
- DQXBYHZEEUGOBF-UHFFFAOYSA-N but-3-enoic acid;ethene Chemical compound C=C.OC(=O)CC=C DQXBYHZEEUGOBF-UHFFFAOYSA-N 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 230000036952 cancer formation Effects 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 231100000504 carcinogenesis Toxicity 0.000 description 1
- 229960005243 carmustine Drugs 0.000 description 1
- 230000034196 cell chemotaxis Effects 0.000 description 1
- 230000010261 cell growth Effects 0.000 description 1
- 230000012292 cell migration Effects 0.000 description 1
- 230000036755 cellular response Effects 0.000 description 1
- 230000004700 cellular uptake Effects 0.000 description 1
- 208000026106 cerebrovascular disease Diseases 0.000 description 1
- 239000002738 chelating agent Substances 0.000 description 1
- NDAYQJDHGXTBJL-MWWSRJDJSA-N chembl557217 Chemical compound C1=CC=C2C(C[C@H](NC(=O)[C@@H](CC(C)C)NC(=O)[C@H](CC=3C4=CC=CC=C4NC=3)NC(=O)[C@@H](CC(C)C)NC(=O)[C@H](CC=3C4=CC=CC=C4NC=3)NC(=O)[C@@H](CC(C)C)NC(=O)[C@H](CC=3C4=CC=CC=C4NC=3)NC(=O)[C@@H](C(C)C)NC(=O)[C@H](C(C)C)NC(=O)[C@@H](C(C)C)NC(=O)[C@H](C)NC(=O)[C@H](NC(=O)CNC(=O)[C@@H](NC=O)C(C)C)CC(C)C)C(=O)NCCO)=CNC2=C1 NDAYQJDHGXTBJL-MWWSRJDJSA-N 0.000 description 1
- 235000013330 chicken meat Nutrition 0.000 description 1
- 229960004630 chlorambucil Drugs 0.000 description 1
- JCKYGMPEJWAADB-UHFFFAOYSA-N chlorambucil Chemical compound OC(=O)CCCC1=CC=C(N(CCCl)CCCl)C=C1 JCKYGMPEJWAADB-UHFFFAOYSA-N 0.000 description 1
- 229960004926 chlorobutanol Drugs 0.000 description 1
- 210000002987 choroid plexus Anatomy 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 230000008711 chromosomal rearrangement Effects 0.000 description 1
- 230000001684 chronic effect Effects 0.000 description 1
- 208000016532 chronic granulomatous disease Diseases 0.000 description 1
- 229960004316 cisplatin Drugs 0.000 description 1
- 150000001860 citric acid derivatives Chemical class 0.000 description 1
- 238000012411 cloning technique Methods 0.000 description 1
- 238000000975 co-precipitation Methods 0.000 description 1
- 230000015271 coagulation Effects 0.000 description 1
- 238000005345 coagulation Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 229940110456 cocoa butter Drugs 0.000 description 1
- 235000019868 cocoa butter Nutrition 0.000 description 1
- 229960004126 codeine Drugs 0.000 description 1
- 229920001436 collagen Polymers 0.000 description 1
- 229940075614 colloidal silicon dioxide Drugs 0.000 description 1
- 210000001072 colon Anatomy 0.000 description 1
- 238000002742 combinatorial mutagenesis Methods 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 230000001268 conjugating effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000013270 controlled release Methods 0.000 description 1
- 239000000599 controlled substance Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000008120 corn starch Substances 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 239000006071 cream Substances 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- 208000031513 cyst Diseases 0.000 description 1
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 1
- 235000018417 cysteine Nutrition 0.000 description 1
- 229960000684 cytarabine Drugs 0.000 description 1
- GBOGMAARMMDZGR-TYHYBEHESA-N cytochalasin B Chemical compound C([C@H]1[C@@H]2[C@@H](C([C@@H](O)[C@@H]3/C=C/C[C@H](C)CCC[C@@H](O)/C=C/C(=O)O[C@@]23C(=O)N1)=C)C)C1=CC=CC=C1 GBOGMAARMMDZGR-TYHYBEHESA-N 0.000 description 1
- GBOGMAARMMDZGR-JREHFAHYSA-N cytochalasin B Natural products C[C@H]1CCC[C@@H](O)C=CC(=O)O[C@@]23[C@H](C=CC1)[C@H](O)C(=C)[C@@H](C)[C@@H]2[C@H](Cc4ccccc4)NC3=O GBOGMAARMMDZGR-JREHFAHYSA-N 0.000 description 1
- 230000001472 cytotoxic effect Effects 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- RSIHSRDYCUFFLA-UHFFFAOYSA-N dehydrotestosterone Natural products O=C1C=CC2(C)C3CCC(C)(C(CC4)O)C4C3CCC2=C1 RSIHSRDYCUFFLA-UHFFFAOYSA-N 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 239000003398 denaturant Substances 0.000 description 1
- 230000002074 deregulated effect Effects 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 239000008121 dextrose Substances 0.000 description 1
- 206010012601 diabetes mellitus Diseases 0.000 description 1
- 150000001982 diacylglycerols Chemical class 0.000 description 1
- 238000002405 diagnostic procedure Methods 0.000 description 1
- 230000029087 digestion Effects 0.000 description 1
- 210000002249 digestive system Anatomy 0.000 description 1
- UGMCXQCYOVCMTB-UHFFFAOYSA-K dihydroxy(stearato)aluminium Chemical compound CCCCCCCCCCCCCCCCCC(=O)O[Al](O)O UGMCXQCYOVCMTB-UHFFFAOYSA-K 0.000 description 1
- 231100000676 disease causative agent Toxicity 0.000 description 1
- 230000007783 downstream signaling Effects 0.000 description 1
- 230000000857 drug effect Effects 0.000 description 1
- 230000036267 drug metabolism Effects 0.000 description 1
- 238000007877 drug screening Methods 0.000 description 1
- 201000006549 dyspepsia Diseases 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 210000002308 embryonic cell Anatomy 0.000 description 1
- AUVVAXYIELKVAI-CKBKHPSWSA-N emetine Chemical compound N1CCC2=CC(OC)=C(OC)C=C2[C@H]1C[C@H]1C[C@H]2C3=CC(OC)=C(OC)C=C3CCN2C[C@@H]1CC AUVVAXYIELKVAI-CKBKHPSWSA-N 0.000 description 1
- 229960002694 emetine Drugs 0.000 description 1
- AUVVAXYIELKVAI-UWBTVBNJSA-N emetine Natural products N1CCC2=CC(OC)=C(OC)C=C2[C@H]1C[C@H]1C[C@H]2C3=CC(OC)=C(OC)C=C3CCN2C[C@H]1CC AUVVAXYIELKVAI-UWBTVBNJSA-N 0.000 description 1
- 206010014599 encephalitis Diseases 0.000 description 1
- 239000007920 enema Substances 0.000 description 1
- 229940079360 enema for constipation Drugs 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000003797 essential amino acid Substances 0.000 description 1
- 235000020776 essential amino acid Nutrition 0.000 description 1
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 1
- ZMMJGEGLRURXTF-UHFFFAOYSA-N ethidium bromide Chemical compound [Br-].C12=CC(N)=CC=C2C2=CC=C(N)C=C2[N+](CC)=C1C1=CC=CC=C1 ZMMJGEGLRURXTF-UHFFFAOYSA-N 0.000 description 1
- 229960005542 ethidium bromide Drugs 0.000 description 1
- 239000005038 ethylene vinyl acetate Substances 0.000 description 1
- VJJPUSNTGOMMGY-MRVIYFEKSA-N etoposide Chemical compound COC1=C(O)C(OC)=CC([C@@H]2C3=CC=4OCOC=4C=C3[C@@H](O[C@H]3[C@@H]([C@@H](O)[C@@H]4O[C@H](C)OC[C@H]4O3)O)[C@@H]3[C@@H]2C(OC3)=O)=C1 VJJPUSNTGOMMGY-MRVIYFEKSA-N 0.000 description 1
- 229960005420 etoposide Drugs 0.000 description 1
- 208000021045 exocrine pancreatic carcinoma Diseases 0.000 description 1
- 238000010195 expression analysis Methods 0.000 description 1
- 210000001508 eye Anatomy 0.000 description 1
- 210000003754 fetus Anatomy 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- MHMNJMPURVTYEJ-UHFFFAOYSA-N fluorescein-5-isothiocyanate Chemical compound O1C(=O)C2=CC(N=C=S)=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 MHMNJMPURVTYEJ-UHFFFAOYSA-N 0.000 description 1
- 239000007850 fluorescent dye Substances 0.000 description 1
- 235000013355 food flavoring agent Nutrition 0.000 description 1
- 230000037406 food intake Effects 0.000 description 1
- 235000003599 food sweetener Nutrition 0.000 description 1
- IECPWNUMDGFDKC-MZJAQBGESA-N fusidic acid Chemical class O[C@@H]([C@@H]12)C[C@H]3\C(=C(/CCC=C(C)C)C(O)=O)[C@@H](OC(C)=O)C[C@]3(C)[C@@]2(C)CC[C@@H]2[C@]1(C)CC[C@@H](O)[C@H]2C IECPWNUMDGFDKC-MZJAQBGESA-N 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 201000000052 gastrinoma Diseases 0.000 description 1
- 208000021302 gastroesophageal reflux disease Diseases 0.000 description 1
- 238000001502 gel electrophoresis Methods 0.000 description 1
- 239000007903 gelatin capsule Substances 0.000 description 1
- 208000016361 genetic disease Diseases 0.000 description 1
- 238000003205 genotyping method Methods 0.000 description 1
- 208000004104 gestational diabetes Diseases 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000003862 glucocorticoid Substances 0.000 description 1
- 235000013922 glutamic acid Nutrition 0.000 description 1
- 239000004220 glutamic acid Substances 0.000 description 1
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 1
- 125000000404 glutamine group Chemical group N[C@@H](CCC(N)=O)C(=O)* 0.000 description 1
- 125000005456 glyceride group Chemical group 0.000 description 1
- 101150036612 gnl gene Proteins 0.000 description 1
- 210000003714 granulocyte Anatomy 0.000 description 1
- 230000012010 growth Effects 0.000 description 1
- 239000003102 growth factor Substances 0.000 description 1
- 210000004209 hair Anatomy 0.000 description 1
- 201000009277 hairy cell leukemia Diseases 0.000 description 1
- 210000000259 harderian gland Anatomy 0.000 description 1
- 230000035876 healing Effects 0.000 description 1
- 208000024798 heartburn Diseases 0.000 description 1
- 210000003958 hematopoietic stem cell Anatomy 0.000 description 1
- 230000008588 hemolysis Effects 0.000 description 1
- 230000002439 hemostatic effect Effects 0.000 description 1
- 208000002672 hepatitis B Diseases 0.000 description 1
- 208000010710 hepatitis C virus infection Diseases 0.000 description 1
- 208000029824 high grade glioma Diseases 0.000 description 1
- 235000001050 hortel pimenta Nutrition 0.000 description 1
- 208000003906 hydrocephalus Diseases 0.000 description 1
- OROGSEYTTFOCAN-UHFFFAOYSA-N hydrocodone Natural products C1C(N(CCC234)C)C2C=CC(O)C3OC2=C4C1=CC=C2OC OROGSEYTTFOCAN-UHFFFAOYSA-N 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 201000009939 hypertensive encephalopathy Diseases 0.000 description 1
- 230000007954 hypoxia Effects 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000003100 immobilizing effect Effects 0.000 description 1
- 238000002649 immunization Methods 0.000 description 1
- 238000010166 immunofluorescence Methods 0.000 description 1
- 229940072221 immunoglobulins Drugs 0.000 description 1
- 239000000367 immunologic factor Substances 0.000 description 1
- 230000003308 immunostimulating effect Effects 0.000 description 1
- 239000002596 immunotoxin Substances 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 239000003701 inert diluent Substances 0.000 description 1
- 230000007574 infarction Effects 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 208000027866 inflammatory disease Diseases 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 239000003999 initiator Substances 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 239000007972 injectable composition Substances 0.000 description 1
- 229960003786 inosine Drugs 0.000 description 1
- 229940125396 insulin Drugs 0.000 description 1
- 206010022498 insulinoma Diseases 0.000 description 1
- 239000000138 intercalating agent Substances 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 229940079322 interferon Drugs 0.000 description 1
- 229940100601 interleukin-6 Drugs 0.000 description 1
- 238000007917 intracranial administration Methods 0.000 description 1
- 238000010253 intravenous injection Methods 0.000 description 1
- 208000028867 ischemia Diseases 0.000 description 1
- 230000000302 ischemic effect Effects 0.000 description 1
- 239000007951 isotonicity adjuster Substances 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 239000000787 lecithin Substances 0.000 description 1
- 235000010445 lecithin Nutrition 0.000 description 1
- 229940067606 lecithin Drugs 0.000 description 1
- 231100000225 lethality Toxicity 0.000 description 1
- 210000002332 leydig cell Anatomy 0.000 description 1
- 229960004194 lidocaine Drugs 0.000 description 1
- 238000001638 lipofection Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000033001 locomotion Effects 0.000 description 1
- 229960002247 lomustine Drugs 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- HWYHZTIRURJOHG-UHFFFAOYSA-N luminol Chemical compound O=C1NNC(=O)C2=C1C(N)=CC=C2 HWYHZTIRURJOHG-UHFFFAOYSA-N 0.000 description 1
- 239000006166 lysate Substances 0.000 description 1
- 235000019359 magnesium stearate Nutrition 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 230000003211 malignant effect Effects 0.000 description 1
- 210000005075 mammary gland Anatomy 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 230000013011 mating Effects 0.000 description 1
- 229960004961 mechlorethamine Drugs 0.000 description 1
- HAWPXGHAZFHHAD-UHFFFAOYSA-N mechlorethamine Chemical compound ClCCN(C)CCCl HAWPXGHAZFHHAD-UHFFFAOYSA-N 0.000 description 1
- 210000003593 megakaryocyte Anatomy 0.000 description 1
- VDXZNPDIRNWWCW-JFTDCZMZSA-N melittin Chemical compound NCC(=O)N[C@@H]([C@@H](C)CC)C(=O)NCC(=O)N[C@@H](C)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H]([C@@H](C)O)C(=O)NCC(=O)N[C@@H](CC(C)C)C(=O)N1CCC[C@H]1C(=O)N[C@@H](C)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CO)C(=O)N[C@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCC(N)=O)C(N)=O)CC1=CNC2=CC=CC=C12 VDXZNPDIRNWWCW-JFTDCZMZSA-N 0.000 description 1
- 229960001924 melphalan Drugs 0.000 description 1
- SGDBTWWWUNNDEQ-LBPRGKRZSA-N melphalan Chemical compound OC(=O)[C@@H](N)CC1=CC=C(N(CCCl)CCCl)C=C1 SGDBTWWWUNNDEQ-LBPRGKRZSA-N 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 229960001428 mercaptopurine Drugs 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 230000031864 metaphase Effects 0.000 description 1
- 229930182817 methionine Natural products 0.000 description 1
- IZAGSTRIDUNNOY-UHFFFAOYSA-N methyl 2-[(2,4-dioxo-1h-pyrimidin-5-yl)oxy]acetate Chemical compound COC(=O)COC1=CNC(=O)NC1=O IZAGSTRIDUNNOY-UHFFFAOYSA-N 0.000 description 1
- STZCRXQWRGQSJD-GEEYTBSJSA-M methyl orange Chemical compound [Na+].C1=CC(N(C)C)=CC=C1\N=N\C1=CC=C(S([O-])(=O)=O)C=C1 STZCRXQWRGQSJD-GEEYTBSJSA-M 0.000 description 1
- 229940012189 methyl orange Drugs 0.000 description 1
- 235000010270 methyl p-hydroxybenzoate Nutrition 0.000 description 1
- 229960001047 methyl salicylate Drugs 0.000 description 1
- 230000011987 methylation Effects 0.000 description 1
- 238000007069 methylation reaction Methods 0.000 description 1
- 235000019813 microcrystalline cellulose Nutrition 0.000 description 1
- 239000008108 microcrystalline cellulose Substances 0.000 description 1
- 229940016286 microcrystalline cellulose Drugs 0.000 description 1
- 230000002025 microglial effect Effects 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 235000013336 milk Nutrition 0.000 description 1
- 239000008267 milk Substances 0.000 description 1
- 210000004080 milk Anatomy 0.000 description 1
- 229960005485 mitobronitol Drugs 0.000 description 1
- 229960001156 mitoxantrone Drugs 0.000 description 1
- KKZJGLLVHKMTCM-UHFFFAOYSA-N mitoxantrone Chemical compound O=C1C2=C(O)C=CC(O)=C2C(=O)C2=C1C(NCCNCCO)=CC=C2NCCNCCO KKZJGLLVHKMTCM-UHFFFAOYSA-N 0.000 description 1
- 238000001823 molecular biology technique Methods 0.000 description 1
- 238000010369 molecular cloning Methods 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 239000002324 mouth wash Substances 0.000 description 1
- 229940051866 mouthwash Drugs 0.000 description 1
- 201000006417 multiple sclerosis Diseases 0.000 description 1
- 101150029137 mutY gene Proteins 0.000 description 1
- 201000005962 mycosis fungoides Diseases 0.000 description 1
- ZTLGJPIZUOVDMT-UHFFFAOYSA-N n,n-dichlorotriazin-4-amine Chemical compound ClN(Cl)C1=CC=NN=N1 ZTLGJPIZUOVDMT-UHFFFAOYSA-N 0.000 description 1
- XJVXMWNLQRTRGH-UHFFFAOYSA-N n-(3-methylbut-3-enyl)-2-methylsulfanyl-7h-purin-6-amine Chemical compound CSC1=NC(NCCC(C)=C)=C2NC=NC2=N1 XJVXMWNLQRTRGH-UHFFFAOYSA-N 0.000 description 1
- UMWKZHPREXJQGR-XOSAIJSUSA-N n-methyl-n-[(2s,3r,4r,5r)-2,3,4,5,6-pentahydroxyhexyl]decanamide Chemical compound CCCCCCCCCC(=O)N(C)C[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO UMWKZHPREXJQGR-XOSAIJSUSA-N 0.000 description 1
- SBWGZAXBCCNRTM-CTHBEMJXSA-N n-methyl-n-[(2s,3r,4r,5r)-2,3,4,5,6-pentahydroxyhexyl]octanamide Chemical compound CCCCCCCC(=O)N(C)C[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO SBWGZAXBCCNRTM-CTHBEMJXSA-N 0.000 description 1
- 239000007922 nasal spray Substances 0.000 description 1
- 239000006218 nasal suppository Substances 0.000 description 1
- 239000006199 nebulizer Substances 0.000 description 1
- 230000003589 nefrotoxic effect Effects 0.000 description 1
- 230000014399 negative regulation of angiogenesis Effects 0.000 description 1
- 230000001613 neoplastic effect Effects 0.000 description 1
- 231100000381 nephrotoxic Toxicity 0.000 description 1
- 229940053128 nerve growth factor Drugs 0.000 description 1
- 210000005044 neurofilament Anatomy 0.000 description 1
- 210000002569 neuron Anatomy 0.000 description 1
- 208000014500 neuronal tumor Diseases 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 239000000346 nonvolatile oil Substances 0.000 description 1
- 238000011330 nucleic acid test Methods 0.000 description 1
- 239000002777 nucleoside Substances 0.000 description 1
- 150000003833 nucleoside derivatives Chemical class 0.000 description 1
- HEGSGKPQLMEBJL-RKQHYHRCSA-N octyl beta-D-glucopyranoside Chemical compound CCCCCCCCO[C@@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O HEGSGKPQLMEBJL-RKQHYHRCSA-N 0.000 description 1
- 210000000956 olfactory bulb Anatomy 0.000 description 1
- 239000002751 oligonucleotide probe Substances 0.000 description 1
- 239000012285 osmium tetroxide Substances 0.000 description 1
- 229910000489 osmium tetroxide Inorganic materials 0.000 description 1
- 230000001599 osteoclastic effect Effects 0.000 description 1
- 210000001672 ovary Anatomy 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- QUANRIQJNFHVEU-UHFFFAOYSA-N oxirane;propane-1,2,3-triol Chemical compound C1CO1.OCC(O)CO QUANRIQJNFHVEU-UHFFFAOYSA-N 0.000 description 1
- 229960001592 paclitaxel Drugs 0.000 description 1
- 201000002528 pancreatic cancer Diseases 0.000 description 1
- 208000008443 pancreatic carcinoma Diseases 0.000 description 1
- 208000022102 pancreatic neuroendocrine neoplasm Diseases 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 229940111202 pepsin Drugs 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 229960003742 phenol Drugs 0.000 description 1
- 101150009573 phoA gene Proteins 0.000 description 1
- 235000021317 phosphate Nutrition 0.000 description 1
- 125000002467 phosphate group Chemical group [H]OP(=O)(O[H])O[*] 0.000 description 1
- 150000008300 phosphoramidites Chemical class 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 102000020233 phosphotransferase Human genes 0.000 description 1
- 230000001766 physiological effect Effects 0.000 description 1
- 230000006461 physiological response Effects 0.000 description 1
- 239000002504 physiological saline solution Substances 0.000 description 1
- 239000006187 pill Substances 0.000 description 1
- 210000002826 placenta Anatomy 0.000 description 1
- 108010031345 placental alkaline phosphatase Proteins 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 1
- 229920000747 poly(lactic acid) Polymers 0.000 description 1
- 239000008389 polyethoxylated castor oil Substances 0.000 description 1
- 239000004633 polyglycolic acid Substances 0.000 description 1
- 239000004626 polylactic acid Substances 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 210000002729 polyribosome Anatomy 0.000 description 1
- 230000003389 potentiating effect Effects 0.000 description 1
- 201000009104 prediabetes syndrome Diseases 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 230000002335 preservative effect Effects 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 229960004919 procaine Drugs 0.000 description 1
- MFDFERRIHVXMIY-UHFFFAOYSA-N procaine Chemical compound CCN(CC)CCOC(=O)C1=CC=C(N)C=C1 MFDFERRIHVXMIY-UHFFFAOYSA-N 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000035755 proliferation Effects 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 239000003380 propellant Substances 0.000 description 1
- 229960003712 propranolol Drugs 0.000 description 1
- 238000001742 protein purification Methods 0.000 description 1
- 230000004850 protein–protein interaction Effects 0.000 description 1
- 230000006337 proteolytic cleavage Effects 0.000 description 1
- 229950010131 puromycin Drugs 0.000 description 1
- 208000024981 pyrosis Diseases 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 239000000018 receptor agonist Substances 0.000 description 1
- 229940044601 receptor agonist Drugs 0.000 description 1
- 239000002464 receptor antagonist Substances 0.000 description 1
- 229940044551 receptor antagonist Drugs 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 230000014493 regulation of gene expression Effects 0.000 description 1
- 230000022532 regulation of transcription, DNA-dependent Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 230000001177 retroviral effect Effects 0.000 description 1
- 238000003757 reverse transcription PCR Methods 0.000 description 1
- PYWVYCXTNDRMGF-UHFFFAOYSA-N rhodamine B Chemical compound [Cl-].C=12C=CC(=[N+](CC)CC)C=C2OC2=CC(N(CC)CC)=CC=C2C=1C1=CC=CC=C1C(O)=O PYWVYCXTNDRMGF-UHFFFAOYSA-N 0.000 description 1
- CVHZOJJKTDOEJC-UHFFFAOYSA-N saccharin Chemical compound C1=CC=C2C(=O)NS(=O)(=O)C2=C1 CVHZOJJKTDOEJC-UHFFFAOYSA-N 0.000 description 1
- 229940081974 saccharin Drugs 0.000 description 1
- 235000019204 saccharin Nutrition 0.000 description 1
- 239000000901 saccharin and its Na,K and Ca salt Substances 0.000 description 1
- 210000003296 saliva Anatomy 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000003345 scintillation counting Methods 0.000 description 1
- 210000000582 semen Anatomy 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 230000036303 septic shock Effects 0.000 description 1
- 210000000717 sertoli cell Anatomy 0.000 description 1
- 231100000004 severe toxicity Toxicity 0.000 description 1
- 238000002741 site-directed mutagenesis Methods 0.000 description 1
- 210000003491 skin Anatomy 0.000 description 1
- 239000001509 sodium citrate Substances 0.000 description 1
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 1
- 235000010267 sodium hydrogen sulphite Nutrition 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 230000037439 somatic mutation Effects 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 210000000278 spinal cord Anatomy 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 102000009076 src-Family Kinases Human genes 0.000 description 1
- 108010087686 src-Family Kinases Proteins 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 238000003153 stable transfection Methods 0.000 description 1
- 238000012409 standard PCR amplification Methods 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- ZSJLQEPLLKMAKR-GKHCUFPYSA-N streptozocin Chemical compound O=NN(C)C(=O)N[C@H]1[C@@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O ZSJLQEPLLKMAKR-GKHCUFPYSA-N 0.000 description 1
- 229960001052 streptozocin Drugs 0.000 description 1
- 210000001913 submandibular gland Anatomy 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 150000005846 sugar alcohols Polymers 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 229940124530 sulfonamide Drugs 0.000 description 1
- 150000003456 sulfonamides Chemical class 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 239000000829 suppository Substances 0.000 description 1
- 239000002511 suppository base Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
- 239000003765 sweetening agent Substances 0.000 description 1
- 208000011580 syndromic disease Diseases 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 229940037128 systemic glucocorticoids Drugs 0.000 description 1
- RCINICONZNJXQF-MZXODVADSA-N taxol Chemical compound O([C@@H]1[C@@]2(C[C@@H](C(C)=C(C2(C)C)[C@H](C([C@]2(C)[C@@H](O)C[C@H]3OC[C@]3([C@H]21)OC(C)=O)=O)OC(=O)C)OC(=O)[C@H](O)[C@@H](NC(=O)C=1C=CC=CC=1)C=1C=CC=CC=1)O)C(=O)C1=CC=CC=C1 RCINICONZNJXQF-MZXODVADSA-N 0.000 description 1
- NRUKOCRGYNPUPR-QBPJDGROSA-N teniposide Chemical compound COC1=C(O)C(OC)=CC([C@@H]2C3=CC=4OCOC=4C=C3[C@@H](O[C@H]3[C@@H]([C@@H](O)[C@@H]4O[C@@H](OC[C@H]4O3)C=3SC=CC=3)O)[C@@H]3[C@@H]2C(OC3)=O)=C1 NRUKOCRGYNPUPR-QBPJDGROSA-N 0.000 description 1
- 229960001278 teniposide Drugs 0.000 description 1
- 208000001608 teratocarcinoma Diseases 0.000 description 1
- 238000012956 testing procedure Methods 0.000 description 1
- 229960002372 tetracaine Drugs 0.000 description 1
- GKCBAIGFKIBETG-UHFFFAOYSA-N tetracaine Chemical compound CCCCNC1=CC=C(C(=O)OCCN(C)C)C=C1 GKCBAIGFKIBETG-UHFFFAOYSA-N 0.000 description 1
- 238000011285 therapeutic regimen Methods 0.000 description 1
- RTKIYNMVFMVABJ-UHFFFAOYSA-L thimerosal Chemical compound [Na+].CC[Hg]SC1=CC=CC=C1C([O-])=O RTKIYNMVFMVABJ-UHFFFAOYSA-L 0.000 description 1
- 229940033663 thimerosal Drugs 0.000 description 1
- 238000003161 three-hybrid assay Methods 0.000 description 1
- 229960004072 thrombin Drugs 0.000 description 1
- 229940104230 thymidine Drugs 0.000 description 1
- 210000001685 thyroid gland Anatomy 0.000 description 1
- 229960003087 tioguanine Drugs 0.000 description 1
- 229960000187 tissue plasminogen activator Drugs 0.000 description 1
- 230000000699 topical effect Effects 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000002103 transcriptional effect Effects 0.000 description 1
- 238000010361 transduction Methods 0.000 description 1
- 230000026683 transduction Effects 0.000 description 1
- 230000005945 translocation Effects 0.000 description 1
- 108091007466 transmembrane glycoproteins Proteins 0.000 description 1
- 230000008733 trauma Effects 0.000 description 1
- 238000011269 treatment regimen Methods 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- GPRLSGONYQIRFK-MNYXATJNSA-N triton Chemical compound [3H+] GPRLSGONYQIRFK-MNYXATJNSA-N 0.000 description 1
- 230000004614 tumor growth Effects 0.000 description 1
- 102000003390 tumor necrosis factor Human genes 0.000 description 1
- 230000006433 tumor necrosis factor production Effects 0.000 description 1
- 238000003160 two-hybrid assay Methods 0.000 description 1
- 125000001493 tyrosinyl group Chemical group [H]OC1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])C([H])(N([H])[H])C(*)=O 0.000 description 1
- ORHBXUUXSCNDEV-UHFFFAOYSA-N umbelliferone Chemical compound C1=CC(=O)OC2=CC(O)=CC=C21 ORHBXUUXSCNDEV-UHFFFAOYSA-N 0.000 description 1
- HFTAFOQKODTIJY-UHFFFAOYSA-N umbelliferone Natural products Cc1cc2C=CC(=O)Oc2cc1OCC=CC(C)(C)O HFTAFOQKODTIJY-UHFFFAOYSA-N 0.000 description 1
- 241000701161 unidentified adenovirus Species 0.000 description 1
- 241001515965 unidentified phage Species 0.000 description 1
- 241001430294 unidentified retrovirus Species 0.000 description 1
- 229940035893 uracil Drugs 0.000 description 1
- 210000003932 urinary bladder Anatomy 0.000 description 1
- 210000004291 uterus Anatomy 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
- 238000009777 vacuum freeze-drying Methods 0.000 description 1
- 208000019553 vascular disease Diseases 0.000 description 1
- 230000029812 viral genome replication Effects 0.000 description 1
- 230000009385 viral infection Effects 0.000 description 1
- 201000010044 viral meningitis Diseases 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000008215 water for injection Substances 0.000 description 1
- 238000001262 western blot Methods 0.000 description 1
- WCNMEQDMUYVWMJ-JPZHCBQBSA-N wybutoxosine Chemical compound C1=NC=2C(=O)N3C(CC([C@H](NC(=O)OC)C(=O)OC)OO)=C(C)N=C3N(C)C=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O WCNMEQDMUYVWMJ-JPZHCBQBSA-N 0.000 description 1
- 229940075420 xanthine Drugs 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/705—Receptors; Cell surface antigens; Cell surface determinants
- C07K14/715—Receptors; Cell surface antigens; Cell surface determinants for cytokines; for lymphokines; for interferons
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K2217/00—Genetically modified animals
- A01K2217/05—Animals comprising random inserted nucleic acids (transgenic)
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
Definitions
- Cytokine receptors convert an extracellular signal, the binding of a cytokine to its receptor, into an intracellular signal, generally the activation of an enzyme. Cytokine receptors are characteristically transmembrane proteins and have been grouped into several superfamilies based upon the presence of conserved structural motifs.
- the members of class II cytokine receptor superfamily also known as the interferon (LFN) receptor superfamily, are single spanning transmembrane glycoproteins characterized by the presence of one or two homologous extracellular regions of about 200 amino acids, each of which includes two fibronectin III (FNIII) domains.
- LFN interferon
- FNIII fibronectin III
- Members of the class II cytokine receptor superfamily include the IFN ⁇ / ⁇ receptor, the IFN ⁇ receptor, interleukin-10 (IL-10) receptor, and the initiating protein of the coagulation cascade, tissue factor.
- Ligands that interact with class II cytokine receptors e.g., LFN- ⁇ , IFN- ⁇ , IFN- ⁇ , and IL-10, exert important physiological effects on cells.
- the interferons have anti-viral activity, antiproliferative activity, and immunomodulatory activity.
- IFN- ⁇ and IFN- ⁇ inhibit viral replication, activate natural killer cell lyric functions, and modulate MHC expression.
- IFN- ⁇ is a potent anti-viral agent and an important immunomodulatory agent.
- LFN- ⁇ induces expression of class I and class II MHC antigens, nitric oxide synthase, and several cytokines, including interleukin-1.
- IFN- ⁇ plays a role in inflammatory responses, autoimmune diseases, and activation of macrophages. Moreover, LFN- ⁇ is important in the natural resolution of bacterial infections. IL-10 can inhibit cytokine production by macrophages and inhibit the accessory functions of macrophages in T-cell function. Specifically, IL-10 can inhibit TNF production triggered by endotoxin (LPS). Thus, IL-10 may reduce the lethality of septic shock.
- LPS endotoxin
- cytokine a receptor permits the identification of both the ligands which bind to the receptor and the intracellular molecules and signal transduction pathways associated with the receptor, and permits the identification or design of modulators of receptor activity, e.g., receptor agonists or antagonists and modulators of signal transduction.
- the present invention is based, at least in part, on the discovery of cDNA molecules encoding TANGO 241 and TANGO 242, both of which are predicted to be members of the class II cytokine receptor superfamily, also referred to as the interferon receptor superfamily. These receptors and fragments, derivatives, and variants of these receptors are collectively referred to as polypeptides of the invention or proteins of the invention. Nucleic acid molecules encoding polypeptides of the invention are collectively referred to as nucleic acids of the invention. The nucleic acids and polypeptides of the present invention are useful as modulating agents in regulating a variety of cellular processes.
- the present invention provides isolated nucleic acid molecules encoding a polypeptide of the invention or a biologically active portion thereof.
- the present invention also provides nucleic acid molecules which are suitable as primers or hybridization probes for the detection of nucleic acids encoding a polypeptide of the invention.
- the invention features nucleic acid molecules which are at least 45% (or 55%, 65%, 15%, 85%, 95%, or 98%) identical to the nucleotide sequence of any of SEQ ID NOs:l, 3, 11, 13, 19, 21, 22, 24 or the nucleotide sequence of the cDNA of a clone deposited with ATCC as Accession Number 20716 or 20717 (the "cDNA of a clone deposited as ATCC 20716 or 20717”), or a complement thereof.
- the invention features nucleic acid molecules which include a fragment of at least 50 (100, 150, 200, 250, 300, 350, 400, 450, 550, 650, 700, 800, 900, 1000, 1200, 1400, 1600, 1800, 2000, 2200, 2400, 2600, or 2900) nucleotides of the nucleotide sequence of any of SEQ LD NOs:l, 3, 11, 13, 19, 21, 22, 24 or the cDNA of a clone deposited as ATCC 20716 or 20717, or a complement thereof.
- the invention also features nucleic acid molecules which include a nucleotide sequence encoding a protein having an amino acid sequence that is at least 45% (or 55%, 65%, 75%, 85%, 95%, or 98%) identical to the amino acid sequence of any of SEQ ID NOs:2, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 16, 17, 18, 20 , 23 or the amino acid sequence encoded by the cDNA of a clone deposited as ATCC 20716 or 20717, or a complement thereof.
- the nucleic acid molecules have the nucleotide sequence of any of SEQ ID NOs:l, 3, 11, 13, 19, 21, 22, 24 or the nucleotide sequence of the cDNA of a clone deposited as ATCC 20716 or 20717.
- nucleic acid molecules which encode a fragment of a polypeptide having the amino acid sequence of any of SEQ ID NOs:2, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 16, 17, 18, 20, or 23 the fragment including at least 15 (25, 30, 50, 100, 125, 150, 200, 225, 250, 275, 300, 325, 350, 375, 400, 425, 450, 475, 500, 525, 550, 575, or 600) contiguous amino acids of any of SEQ ID NOs: 2, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 16, 17, 18, 20, 23 or the polypeptide encoded by the cDNA of a clone deposited as ATCC 20716 or 20717.
- the invention includes nucleic acid molecules which encode a naturally occurring allelic variant of a polypeptide comprising the amino acid sequence of any of SEQ ID NOs:2, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 16, 17, 18, 20, 23 or the amino acid sequence encoded by the cDNA of a clone deposited as ATCC 20716 or 20717, wherein the nucleic acid molecule hybridizes under stringent conditions to a nucleic acid molecule having a nucleic acid sequence encoding any of SEQ ID NOs:l, 3, 11, 13, 19, 21, 22, 24 or a complement thereof.
- isolated polypeptides or proteins having an amino acid sequence that is at least about 65%, preferably 75%, 85%, 95%, or 98% identical to the amino acid sequence of any of SEQ ID NOs:2, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 16, 17, 18, 20, or 23.
- isolated polypeptides or proteins which are encoded by a nucleic acid molecule having a nucleotide sequence that is at least about 65%, preferably 75%, 85%, or 95% identical the nucleic acid sequence encoding any of SEQ ID NOs:2, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 16, 17, 18, 20 or 23 and isolated polypeptides or proteins which are encoded by a nucleic acid molecule consisting of the nucleotide sequence which hybridizes under stringent hybridization conditions to a nucleic acid molecule consisting of the nucleotide sequence of any of SEQ ID NOs:l, 3, 11, 13, 19, 21, 22, 24 or a complement thereof, or the non-coding strand of the cDNA of a clone deposited as ATCC 20716 or 20717.
- polypeptides which are naturally occurring allelic variants of a polypeptide that includes the amino acid sequence of any of SEQ ID NOs:2, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 16, 17, 18, 20, 23 or the amino acid sequence encoded by the cDNA of a clone deposited as ATCC 20716 or 20717, wherein the polypeptide is encoded by a nucleic acid molecule which hybridizes under stringent conditions to a nucleic acid molecule consisting of the nucleotide sequence of any of SEQ ID NOs:l, 3, 11, 13, 19, 21, 22, 24 or a complement thereof.
- the invention also features nucleic acid molecules that hybridize under stringent conditions to a nucleic acid molecule comprising the nucleotide sequence of any of SEQ ID NOs:l, 3, 11, and 13, 19, 21, 22, 24 or the cDNA of a clone deposited as ATCC 20716 or 20717, or a complement thereof.
- the nucleic acid molecules are at least 50 (75, 100, 125, 150, 175, 200, 225, 250, 275, 300, 325, 350, 375, 400, 425, 450, 500, 550, 600, 650, 700, 800,
- nucleic acid molecules consisting of the nucleotide sequence of any of SEQ LD NOs:l, 3, 11, 13, 19, 21, 22, and 24 or the cDNA of a clone deposited as ATCC 20716 or 20717, or a complement thereof.
- the isolated nucleic acid molecules encode a cytoplasmic, transmembrane, or extracellular domain of a polypeptide of the invention.
- the invention provides an isolated nucleic acid molecule which is antisense to the coding strand of a nucleic acid of the invention.
- Another aspect of the invention provides vectors, e.g., recombinant expression vectors, comprising a nucleic acid molecule of the invention.
- the invention provides isolated host cells containing such a vector.
- the invention also provides methods for producing a polypeptide of the invention by culturing, in a suitable medium, a host cell of the invention containing a recombinant expression vector encoding a polypeptide of the invention such that the polypeptide of the invention is produced.
- Another aspect of this invention features isolated or recombinant proteins and polypeptides of the invention. Preferred proteins and polypeptides possess at least one biological activity possessed by the corresponding naturally-occurring human polypeptide.
- An activity, a biological activity, and a functional activity of a polypeptide of the invention refers to an activity exerted by a protein or polypeptide of the invention on a responsive cell as determined in vivo, or in vitro, according to standard techniques.
- activities can be a direct activity, such as an association with or an enzymatic activity on a second protein or an indirect activity, such as a cellular signaling activity mediated by interaction of the protein with a second protein.
- activities include, e.g., (1) the ability to form protein-protein interactions with proteins in the signaling pathway of the naturally-occurring polypeptide; (2) the ability to bind a ligand of the naturally-occurring polypeptide; and (3) the ability to bind to an intracellular target of the naturally-occurring polypeptide.
- cytokine signalling e.g., cytokine signalling in a kinase (e.g., Janus kinase (JAK), src kinase, and/or MAP kinase)/Signal Transducer and Activators of Transcription (STAT) pathway
- a kinase e.g., Janus kinase (JAK), src kinase, and/or MAP kinase
- STAT Transcription
- the ability to modulate cytokine production by an immune cell e.g., an activated immune cell
- the ability to modulate proliferation, differentiation, morphology, and/or function of a cell in which they are expressed e.g., an immune cell, e.g., an immune cell having IFN, e.g., LFN alpha, IFN beta, IFN gamma, receptors and/or IL-10 receptors, e.g.,
- a polypeptide of the invention has an amino acid sequence sufficiently identical to an identified domain of a polypeptide of the invention.
- the term "sufficiently identical" refers to a first amino acid or nucleotide sequence which contains a sufficient or minimum number of identical or equivalent (e.g., with a similar side chain) amino acid residues or nucleotides to a second amino acid or nucleotide sequence such that the first and second amino acid or nucleotide sequences have a common structural domain and/or common functional activity.
- amino acid or nucleotide sequences which contain a common structural domain having about 65% identity, preferably 75% identity, more preferably 85%, 95%, or 98% identity are defined herein as sufficiently identical.
- the isolated polypeptide of the invention lacks both a transmembrane and a cytoplasmic domain. In another embodiment, the polypeptide lacks both a transmembrane domain and a cytoplasmic domain and is soluble under physiological conditions.
- polypeptides of the present invention can be operably linked to a heterologous amino acid sequence to form fusion proteins.
- the invention further features antibodies that specifically bind a polypeptide of the invention such as monoclonal or polyclonal antibodies.
- the polypeptides of the invention or biologically active portions thereof can be incorporated into pharmaceutical compositions, which optionally include pharmaceutically acceptable carriers.
- the present invention provides methods for detecting the presence of the activity or expression of a polypeptide of the invention in a biological sample by contacting the biological sample with an agent capable of detecting an indicator of activity such that the presence of activity is detected in the biological sample.
- the invention provides methods for modulating activity of a polypeptide of the invention comprising contacting a cell with an agent that modulates (inhibits or stimulates) the activity or expression of a polypeptide of the invention such that activity or expression in the cell is modulated.
- the agent is an antibody that specifically binds to a polypeptide of the invention.
- the agent modulates expression of a polypeptide of the invention by modulating transcription, splicing, or translation of an mRNA encoding a polypeptide of the invention.
- the agent is a nucleic acid molecule having a nucleotide sequence that is antisense to the coding strand of an mRNA encoding a polypeptide of the invention.
- the present invention also provides methods to treat a subject having a disorder characterized by aberrant activity of a polypeptide of the invention or aberrant expression of a nucleic acid of the invention by administering an agent which is a modulator of the activity of a polypeptide of the invention or a modulator of the expression of a nucleic acid of the invention to the subject.
- the modulator is a protein of the invention.
- the modulator is a nucleic acid of the invention.
- the modulator is a peptide, peptidomimetic, or other small molecule.
- the present invention also provides diagnostic assays for identifying the presence or absence of a genetic lesion or mutation characterized by at least one of: (i) aberrant modification or mutation of a gene encoding a polypeptide of the invention, (ii) mis-regulation of a gene encoding a polypeptide of the invention, and (iii) aberrant post-translational modification of a polypeptide of the invention wherein a wild-type form of the gene encodes a polypeptide having the activity of the polypeptide of the invention.
- the invention provides a method for identifying a compound that binds to or modulates the activity of a polypeptide of the invention.
- such methods entail measuring a biological activity of the polypeptide in the presence and absence of a test compound and identifying those compounds which alter the activity of the polypeptide.
- the invention also features methods for identifying a compound which modulates the expression of a polypeptide or nucleic acid of the invention by measuring the expression of the polypeptide or nucleic acid in the presence and absence of the compound.
- Figure 1 depicts the cDNA sequence of human TANGO 241 (SEQ ID NO:l) and the predicted amino acid sequence of TANGO 241 (SEQ ID NO:2).
- the 1722 nucleotide open reading frame of SEQ ID NO:l extends from nucleotide 58 to 1779 of SEQ ID NO:l (SEQ ID NO:3).
- the single underscored region is the signal sequence, and the double underscored region is the transmembrane domain.
- Figure 2 depicts a hydropathy plot of human TANGO 241. Relatively hydrophobic regions are above the dashed horizontal line, and relatively hydrophilic regions are below the dashed horizontal line.
- Figure 3 depicts the cDNA sequence of human TANGO 242 (SEQ ID NO: 11) and predicted amino acid sequence of TANGO 242 (SEQ ID NO: 12).
- the 933 nucleotide open reading frame of SEQ ID NO:l 1 extends from nucleotide 71 to 1003 of SEQ ID NO:l 1 (SEQ LD NO:13).
- the single underscored region is the signal sequence, and the double underscored region is the transmembrane domain.
- Figure 4 depicts a hydropathy plot of a human TANGO 242. Relatively hydrophobic residues are above the dashed horizontal line, and relatively hydrophilic residues are below the dashed horizontal line.
- Figure 5 depicts an alignment of human IL-10 receptor (SwissProt Accession No. Q13651; SEQ LD NO: 19) with human TANGO 241 (SEQ ID NO:2).
- this alignment (paml20.mat scoring matrix, gap penalties -12/-4), the proteins are 21.2%) identical.
- Identical amino acid residues are indicated by a ".” between the aligned amino acids.
- Similar amino acid residues are indicated by a ":” between the aligned amino acids.
- Figure 6 depicts an alignment of human IL-10 receptor (SwissProt Accession No. Q13651; SEQ LD NO: 19) with human TANGO 242 (SEQ LD NO:12).
- this alignment (paml20.mat scoring matrix, gap penalties -12/-4), the proteins are 14.9% identical.
- Identical amino acid residues are indicated by a ".” between the aligned amino acids.
- Similar amino acid residues are indicated by a ":" between the aligned amino acids.
- Figures 7A-7B depict a partial cDNA sequence of murine TANGO 241 (SEQ ID NO: 19) and the predicted amino acid sequence of murine TANGO 241 (SEQ LD NO: 20).
- the 1060 nucleotide open reading frame of SEQ ID NO: 19 extends from nucleotide 1 to 1060 of SEQ LD NO:19 (SEQ LD NO:21) and encodes a 353 amino acid protein.
- Figures 8A-8B depict the cDNA sequence of murine TANGO 242 (SEQ LD NO:22) and predicted amino acid sequence of murine TANGO 242 (SEQ ID NO:22).
- the 924 nucleotide open reading frame of SEQ ID NO:22 extends from nucleotide 107 to 1031 of SEQ LD NO:22 (SEQ LD NO:24) and encodes a 308 amino acid protein.
- Figures 9A-9C depict an alignment of a portion of the cDNA sequence of human TANGO 241 (upper line of each pair; SEQ ID NO:25) with the cDNA sequence of murine TANGO 241 (lower line of each pair; SEQ ID NO:22). In this alignment, created using the WisconsinTM BestFit software (Smith and Waterman (1981) Adv. Appl. Math. 2:482-489, gap opening penalty 10, gap extension penalty 10), the sequences are 68.6% identical.
- Figures 10A-10B depict an alignment of the partial ORF sequence of murine
- TANGO 241 (upper line of each pair; SEQ LD NO:21) with a portion of the ORF sequence of human TANGO 241 (lower line of each pair; SEQ ID NO:26).
- the sequences are 78.4% identical.
- Figure 11 depicts an alignment of the partial amino acid sequence of murine TANGO 241 (upper line of each pair; SEQ ID NO:20) with a portion of the amino acid sequence of human TANGO 241 (lower line of each pair; SEQ ID NO:27).
- the WisconsinTM BestFit software Smith and Waterman (1981) Adv. Appl. Math. 2:482-489, gap opening penalty 10, gap extension penalty 10
- the sequences are 72.5% identical.
- Figures 12A-12D depict an alignment of the cDNA sequence of human TANGO 242 (upper line of each pair; SEQ ID NO: 11 ) with the cDNA sequence of murine TANGO 242 (lower line of each pair; SEQ ID NO:22).
- this alignment created using the WisconsinTM BestFit software (Smith and Waterman (1981) Adv. Appl. Math. 2:482-489, gap opening penalty 10, gap extension penalty 10), the sequences are 71.1% identical.
- Figures 13A-13B depict an alignment of the ORF sequence of human TANGO 242 (upper line of each pair; SEQ ID NO: 13) with the ORF sequence of murine TANGO 242 (lower line of each pair; SEQ ID NO:24).
- this alignment created using the WisconsinTM BestFit software (Smith and Waterman (1981) Adv. Appl. Math. 2:482-489, gap opening penalty 10, gap extension penalty 10), the sequences are 82% identical.
- Figure 14 depicts an alignment of the amino acid sequence of human TANGO 242 (upper line of each pair; SEQ ID NO: 12) with the amino acid sequence of murine TANGO 242 (lower line of each pair; SEQ ID NO:23).
- this alignment created using the WisconsinTM BestFit software (Smith and Waterman, (1981) Adv. Appl. Math. 2:482-489, gap opening penalty 10, gap extension penalty 10), the sequences are 77.5% identical.
- the present invention is based, in part, on the discovery of cDNA molecules encoding TANGO 241 and TANGO 242, transmembrane proteins which are predicted to be members of the class II cytokine receptor superfamily, also referred to as the interferon receptor superfamily.
- Human TANGO 241 transmembrane proteins which are predicted to be members of the class II cytokine receptor superfamily, also referred to as the interferon receptor superfamily.
- the present invention is based, in part, on the discovery of a cDNA molecule encoding a TANGO 241, a protein having sequence similarity to members of the class II cytokine receptor family and having both a fibronectin III domain and a box 3 element.
- TANGO 241 proteins and nucleic acid molecules comprise a family of molecules having certain conserved structural and functional features.
- family is intended to mean two or more proteins or nucleic acid molecules having a common structural domain and having sufficient amino acid or nucleotide sequence identity as defined herein.
- Family members can be from either the same or different species.
- a family can comprise two or more proteins of human origin, or can comprise one or more proteins of human origin and one or more of non-human origin. Members of the same family also have common structural domains.
- TANGO 241 proteins having a signal sequence are also included within the scope of the invention.
- a signal sequence includes a peptide of at least about 10 amino acid residues in length which occurs at the N-terminus of membrane-bound proteins and which contains at least about 45% hydrophobic amino acid residues such as alanine, leucine, isoleucine, phenylalanine, proline, tyrosine, tryptophan, or valine.
- a signal sequence contains at least about 10 to 35 amino acid residues, preferably about 10 to 20 amino acid residues, and has at least about 35-60%, more preferably 40-50%, and more preferably at least about 45% hydrophobic residues.
- a signal sequence serves to direct a protein containing such a sequence to a lipid bilayer.
- a TANGO 241 protein contains a signal sequence corresponding to amino acids 1-14 of SEQ ID NO:2 (SEQ LD NO:4). The signal sequence is cleaved during processing of the mature protein.
- TANGO 241 proteins can also include an extracellular domain.
- the human TANGO 241 extracellular domain is located from amino acid 15 to amino acid 226 of SEQ ID NO:2.
- TANGO 241 proteins typically also have a fibronectin III domain.
- fibronectin III domain refers to a protein domain that includes about 50-105 amino acid residues, more preferably about 60-105 amino acid residues, and most preferably about 65-95 amino acid residues.
- a fibronectin III domain includes at least the following consensus sequence: W-Xaa(nl)-P-Xaa(n2)-Y-Xaa(n3)-Y-Xaa(n4)-Y- Xaa(n5)-R-V-Xaa(n6)-A, wherein W is a tryptophan residue, Xaa is any amino acid, nl is about 1-10 amino acid residues in length, and more preferably about 1-7 amino acid residues in length, n2 is about 1-10 amino acid residues in length, more preferably about 2-10 amino acid residues in length, and most preferably about 3-9 amino acid residues in length, n3 is about 1-5 amino acid residues in length, more preferably about 2-4 amino acid residues in length, and most preferably about 3 amino acid residues in length, n4 is about 20-50 amino acid residues in length, preferably about 25-45 amino acid residues in length, and most preferably about 30- 45 amino acid residues in length, n5 is about
- N is a valine residue
- A is an alanine residue
- a TANGO 241 protein includes a fibronectin III domain having an amino acid sequence that is at least about 55%, preferably at least about 65%, more preferably at least about 75%, yet more preferably at least about 85%, and most preferably at least about 95% identical to amino acids 38 to 105 of SEQ ID NO: 1
- a TANGO 241 protein includes a fibronectin III domain having an amino acid sequence that is at least about 55%, preferably at least about 65% ⁇ , more preferably at least about 75%, yet more preferably at least about 85%, and most preferably at least about 95% identical to amino acids 38 to 105 of SEQ ID NO:2 and includes a fibronectin III consensus sequence as described herein.
- a TANGO 241 protein includes a fibronectin III domain having an amino acid sequence that is at least 55%, preferably at least about 65%, more preferably at least about 75%, yet more preferably at least about 85%), and most preferably at least about 95%) identical to amino acids 38 to 105 of SEQ ID NO:2, includes a fibronectin III consensus sequence as described herein and has at least one biological activity as described herein.
- a TANGO 241 protein has the amino acid sequence of SEQ ID NO:2 wherein the fibronectin III domain is located from amino acid 38 to amino acid 105 and the fibronectin consensus sequence is located from amino acid 41 to amino acid 98. There are also three N-linked glycosylation sites in the extracellular domain of human TANGO 241 protein at positions 80, 87, and 172 of SEQ ID NO:2.
- the present invention includes TANGO 241 proteins having a cytoplasmic domain.
- the human TANGO 241 cytoplasmic domain is located from amino acid 252 to amino acid 574 of SEQ LD NO:2.
- TANGO 241 proteins typically also have a Box 3 element.
- Box 3 element refers to a protein domain that includes about 5-15 amino acid residues, more preferably 8-5, and most preferably about 9-12 amino acid residues.
- a Box 3 element includes at least the following consensus sequence (see e.g., Stahl et al.
- the Box 3 element is the portion of the TANGO 241 protein which is involved in binding to a STAT, e.g., STAT 1-6 (see e.g., Heim (1996) Eur. J. Clin. Invest. 26:1-12, which describes the various STAT).
- a TANGO 241 protein includes a Box 3 element having an amino acid sequence that is at least about 55%, preferably at least about 65%, more preferably at least about 75%, yet more preferably at least about 85%, and most preferably at least about 95% identical to amino acids 372 to 381 of SEQ ID NO:2.
- a TANGO 241 protein includes a Box 3 element having an amino acid sequence that is at least about 55%, preferably at least about 65%, more preferably at least about 75%, yet more preferably at least about 85%, and most preferably at least about 95% identical to amino acids 372 to 381 of SEQ ID NO:2 and a Box 3 element consensus sequence as described herein.
- a TANGO 241 protein includes a Box 3 element having an amino acid sequence that is at least 55%, preferably at least about 65%, more preferably at least about 75%, yet more preferably at least about 85%, and most preferably at least about 95% identical to amino acids 372 to 381 of SEQ ID NO:2, includes a Box 3 element consensus sequence as described herein and has at least one biological activity as described herein.
- a TANGO 241 protein has the amino acid sequence of SEQ ID NO:2 wherein the Box 3 element is located from amino acid 372 to amino acid 381 and the Box 3 element consensus sequence is located from amino acid 377 to amino acid 380.
- the present invention also includes TANGO 241 proteins having a transmembrane domain.
- a transmembrane domain refers to an amino acid sequence having at least about 20 to 25 amino acid residues in length and which contains at least about 65-70% hydrophobic amino acid such as alanine, leucine, phenylalanine, protein, tyrosine, tryptophan, or valine.
- a transmembrane domain contains at least about 15 to 30 amino acid residues, preferably about 20-25 amino acid residues, and has at least about 60-80%, more preferably 65-75%, and more preferably at least about 70% hydrophobic residues.
- a TANGO 241 protein contains a transmembrane domain corresponding to amino acids 227-251 of SEQ ID NO:2 (SEQ ID NO:7).
- a TANGO 241 protein of the invention includes a fibronectin III domain or a box 3 element. In another embodiment, a TANGO 241 protein of the invention includes both a fibronectin III domain and a box 3 element. In another embodiment, a TANGO 241 protein of the invention includes a fibronectin III domain, a Box 3 element, and a transmembrane domain.
- a cDNA encoding human TANGO 241 was isolated from a human esophagus library. An initial clone was selected based on its sequence similarity to IFN ⁇ / ⁇ receptor genes. The initial clone was used to isolate a full length TANGO 241 cDNA clone (AthEa20d7). Analysis of the full length TANGO 241 cDNA revealed that TANGO 241 protein has significant sequence similarity to members of the class II cytokine receptor superfamily, e.g., IFN ⁇ / ⁇ receptor and IL-10 receptor.
- the full length human TANGO 241 cDNA ( Figure 1; SEQ ID NO:l) is 2856 nucleotides long. The open reading frame of this cDNA, nucleotides 58 to 1779 of SEQ ID NO:l (SEQ ID NO:3), encodes a 574 amino acid transmembrane protein ( Figure 1; SEQ ID NO:2).
- the signal peptide prediction program SIGNALP (Nielsen et al. (1997) Protein Engineering 10:1-6) predicted that human TANGO 241 includes a 14 amino acid signal peptide (amino acids 1-14 of SEQ ID NO:2; SEQ ID NO:4) preceding the mature TANGO 241 protein (amino acid 15-574 of SEQ ID NO:2; SEQ ID NO:5).
- Human TANGO 241 includes an extracellular domain (amino acids 15-226 of SEQ ID NO:2; SEQ ID NO:6); a transmembrane (TM) domain (amino acids 227- 251 of SEQ ID NO:2; SEQ LD NO:7); and a cytoplasmic domain (amino acids 252- 574 of SEQ ID NO:2; SEQ LD NO:8).
- the extracellular domain of human TANGO 241 includes a fibronectin III domain (amino acids 38-105 of SEQ ID NO:2; SEQ ID NO:9).
- the cytoplasmic domain of human TANGO 241 includes a Box-3-like element (amino acids 372-381 of SEQ ID NO:2; SEQ ID NO: 10).
- the predicted molecular weight of the entire human TANGO 241 protein without modification and prior to cleavage of the signal sequence is about 62.9 kDa.
- the predicted molecular weight of the mature human TANGO 241 protein without modification and after cleavage of the signal sequence about 61.5 kDa.
- Clone AthEa20d7, encoding human TANGO 241, inserted into pMET7 vector and designated plasmid ApAthEa20d7 was deposited with the American Type Culture Collection (ATCC, 10801 University Boulevard, Manassas, VA 20110-2209) on December 30, 1998 and was assigned Accession Number 20716. This deposit will be maintained under the terms of the Budapest Treaty on the International Recognition of the Deposit of Microorganisms for the Purposes of Patent Procedure. This deposit was made merely as a convenience to those of skill in the art and is not an admission that a deposit is required under 35 U.S.C.. 112.
- Figure 2 depicts a hydropathy plot of human TANGO 241. Relatively hydrophobic regions are above the horizontal line, and relatively hydrophilic regions are below the horizontal line.
- the hydrophobic region which corresponds to amino acids 1-14 of SEQ ID NO:2 is the signal sequence of TANGO 241 (SEQ ID NO:4).
- the hydrophobic region which corresponds to amino acids 227-251 of SEQ ID NO:2 is the transmembrane domain of TANGO 241 (SEQ ID NO:7).
- TANGO 241 protein exhibits considerable sequence similarity to human IL- 10 receptor.
- Figure 5 depicts an alignment of human IL-10 receptor (SwissProt Accession No. Q13651; SEQ ID NO:19) with human TANGO 241 (SEQ ID NO:2). In this alignment (paml20.mat scoring matrix, gap penalties -12/-4), the proteins are 21.2% identical.
- Human TANGO 241 exhibits considerable similarity to interferon alpha/beta receptor 2 (approximately 30% identity and 50% similarity at the amino acid level).
- Northern analysis of TANGO 241 expression in human tissues revealed that
- TANGO 241 is expressed at a high level in the pancreas as an approximately 3.0 kb transcript. No expression was detected in the adrenal medulla, thyroid, adrenal cortex, testis, thymus, small intestine, or stomach.
- Genomic mapping of human TANGO 241 revealed that it maps to human chromosomal location lp36.
- a partial murine TANGO 241 cDNA ( Figure 7; SEQ ID NO: 19) was identified in a murine esophagus library (clone ftmEa241a5).
- This cDNA is 1596 nucleotides long and includes a open reading frame (nucleotides 1 to 1060 of SEQ ID NO:19; SEQ LD NO:21) encoding a 354 amino acid protein ( Figure 7; SEQ ID NO:20).
- the present invention is based, in part, on the discovery of a cDNA molecule encoding murine TANGO 241.
- murine TANGO 241 proteins having a signal sequence.
- a signal sequence includes a peptide of at least about 10 amino acid residues in length which occurs at the N-terminus of membrane-bound proteins and which contains at least about 45% hydrophobic amino acid residues such as alanine, leucine, isoleucine, phenylalanine, proline, tyrosine, tryptophan, or valine.
- a signal sequence contains at least about 10 to 35 amino acid residues, preferably about 10 to 20 amino acid residues, and has at least about 35-60%), more preferably 40-50%, and more preferably at least about 45% hydrophobic residues.
- a signal sequence serves to direct a protein containing such a sequence to a lipid bilayer. The signal sequence is cleaved during processing of the mature protein.
- Murine TANGO 241 proteins can also include an extracellular domain.
- TANGO 241 proteins typically also have a fibronectin III domain.
- the present invention also includes TANGO 241 proteins having a transmembrane domain.
- a transmembrane domain refers to an amino acid sequence having at least about 20 to 25 amino acid residues in length and which contains at least about 65-70% hydrophobic amino acid such as alanine, leucine, phenylalanine, protein, tyrosine, tryptophan, or valine.
- a transmembrane domain contains at least about 15 to 30 amino acid residues, preferably about 20-25 amino acid residues, and has at least about 60-80%), more preferably 65-75%, and more preferably at least about 70% hydrophobic residues.
- Figures 9A-9C depict an alignment of a portion of the cDNA sequence of human TANGO 241 (upper line of each pair; SEQ ID NO:25) with the cDNA sequence of murine TANGO 241 (lower line of each pair; SEQ ID NO:22).
- this alignment created using the WisconsinTM BestFit software (Smith and Waterman (1981) Adv. Appl. Math. 2:482-489, gap opening penalty 10, gap extension penalty
- Figures 10A-10B depict an alignment of the partial ORF sequence of murine TANGO 241 (upper line of each pair; SEQ LD NO:21) with a portion of the ORF sequence of human TANGO 241 (lower line of each pair; SEQ LD NO:26).
- this alignment created using the WisconsinTM BestFit software (Smith and Waterman (1981) Adv. Appl. Math. 2:482-489, gap opening penalty 10, gap extension penalty 10), the sequences are 78.4% identical.
- Figure 11 depicts an alignment of the partial amino acid sequence of murine TANGO 241 (upper line of each pair; SEQ ID NO:20) with a portion of the amino acid sequence of human TANGO 241 (lower line of each pair; SEQ ID NO:27).
- this alignment created using the WisconsinTM BestFit software (Smith and Waterman (1981) Adv. Appl. Math. 2:482-489, gap opening penalty 10, gap extension penalty 10), the sequences are 72.5% identical.
- a mouse library array was screened to identify tissues and conditions in which murine TANGO 241 is expressed.
- the library array was screened using PCR to amplify any murine TANGO 241 cDNA present in the individual libraries.
- the PCR amplification employed a primer for the vector used to create the library and an internal murine TANGO 241 primer.
- the following libraries were screened: differentiated 3T3 cells; 10.5 day mouse fetus; mouse kidney fibrosis model nephrotoxic serum (NTS); LPS-stimulated heart; LPS-stimulated osteoblasts, 1 hour; lung, chronic boyle model, d24/72h, from 4 mice; normal spleen (random primed); 11.5 day mouse; LPS-stimulated lung; lung, day 15, 3 hour Gonzolo inflammation model; LPS-stimulated osteoblasts 24 hour; BL6 lung, day 15, 3 hour Gonzolo inflammation model; LPS-stimulated lung; 12.5 day mouse; LPS- stimulated kidney; LPS-stimulated lymph node; LPS-stimulated osteoblasts, 24 hours; esophagus; choroid plexus; 13.5 day mouse; LPS-stimulated anchored heart; normal thymus; Th2-ova-Tg; brain (random-primed); Balb C liver (bile duct ligation d2);
- TM4 seroli cells
- LPS-stimulated microglial cells Gonzolo day 15; Thl; Gonzolo day 21, 3 hour; LPS-stimulated brain; LPS-stimulated Alveolar macrophage cell line; mouse lung bleomycin Model d7; and pregnant uterus.
- TANGO 241 expression was detected only in the esophagus library.
- the predicted molecular weight of the murine TANGO 241 protein encoded by the cDNA described above without modification and prior to cleavage of the signal sequence is about 39.3 kDa.
- Human TANGO 242 In another aspect, the present invention is based, in part, on the discovery of a cDNA molecule encoding a human TANGO 242, a protein having sequence similarity to members of the class II cytokine receptor family and having a fibronectin III domain.
- TANGO 242 proteins and nucleic acid molecules comprise a family of molecules having certain conserved structural and functional features.
- family is intended to mean two or more proteins or nucleic acid molecules having a common structural domain and having sufficient amino acid or nucleotide sequence identity as defined herein.
- Family members can be from either the same or different species.
- a family can comprise two or more proteins of human origin, or can comprise one or more proteins of human origin and one or more of non-human origin. Members of the same family also have common structural domains.
- TANGO 242 proteins having a signal sequence.
- a signal sequence includes a peptide of at least about 10 amino acid residues in length which occurs at the N-terminus of membrane-bound proteins and which contains at least about 45% hydrophobic amino acid residues such as alanine, leucine, isoleucine, phenylalanine, proline, tyrosine, tryptophan, or valine.
- a signal sequence contains at least about 10 to 35 amino acid residues, preferably about 15 to 30 amino acid residues, and has at least about 35-60%, more preferably 40-50%), and more preferably at least about 45% hydrophobic residues.
- a signal sequence serves to direct a protein containing such a sequence to a lipid bilayer.
- a human TANGO 242 protein contains a signal sequence corresponding to amino acids 1-29 of SEQ ID NO: 12 (SEQ ID NO: 14). The signal sequence is cleaved during processing of the mature protein.
- TANGO 242 proteins can also include an extracellular domain.
- the human TANGO 242 proteins can also include an extracellular domain.
- TANGO 242 extracellular domain is located from amino acid 30 to amino acid 230 of SEQ ID NO: 12. Within the extracellular domain, TANGO 242 proteins typically also have a fibronectin III domain.
- fibronectin III domain refers to a protein domain that includes about 50-105 amino acid residues, and more preferably about 50-105 amino acid residues, more preferably about 60-
- a fibronectin III domain includes at least the following consensus sequence: W-Xaa(nl)-P-Xaa(n2)-Y-Xaa(n3)-Y-Xaa(n4)-Y-Xaa(n5)-R-V-Xaa(n6)- A, wherein W is a tryptophan residue, Xaa is any amino acid, nl is about 1-10 amino acid residues in length, and more preferably about 1-7 amino acid residues in length, n2 is about 1-10 amino acid residues in length, more preferably about 2-10 amino acid residues in length, and most preferably about 3-9 amino acid residues in length, n3 is about 1-5 amino acid residues in length, more preferably about 2-4 amino acid residues in length, and most preferably about 3 amino acid residues in length, n4 is about 20-50 amino acid residues in length, preferably about 25-45 amino acid residues in length, and
- a TANGO 242 protein includes a fibronectin III domain having an amino acid sequence that is at least about 55%, preferably at least about 65%, more preferably at least about 75%, yet more preferably at least about 85%, and most preferably at least about 95% identical to amino acids 35-125 of SEQ ID NO: 12.
- a TANGO 242 protein includes a fibronectin III domain having an amino acid sequence that is at least about 55%, preferably at least about 65%o, more preferably at least about 75%, yet more preferably at least about 85%), and most preferably at least about 95% identical to amino acids 35 to 125 of SEQ LD NO: 12 and includes a fibronectin III consensus sequence as described herein.
- a TANGO 242 protein in yet another embodiment, includes a fibronectin III domain having an amino acid sequence that is at least 55%, preferably at least about 65%, more preferably at least about 75%, yet more preferably at least about 85%, and most preferably at least about 95%) identical to amino acids 35 to 125 of SEQ ID NO: 12, includes a fibronectin III consensus sequence as described herein and has at least one biological activity as described herein.
- a TANGO 242 protein has the amino acid sequence of SEQ ID NO: 12 wherein the fibronectin III domain is located from amino acid 35 to amino acid 125 and the fibronectin consensus sequence is located from amino acid 54 to amino acid 115.
- transmembrane domain refers to an amino acid sequence having at least about 20 to 25 amino acid residues in length and which contains at least about 65-70% hydrophobic amino acid such as alanine, leucine, phenylalanine, protein, tyrosine, tryptophan, or valine.
- a transmembrane domain contains at least about 15 to 30 amino acid residues, preferably about 20-25 amino acid residues, and has at least about 60-80%, more preferably 65-75%, and more preferably at least about 70% hydrophobic residues.
- a TANGO 242 protein contains a transmembrane domain corresponding to amino acids 231-255 of SEQ ID NO: 12 (SEQ ID NO: 17).
- a TANGO 242 protein of the invention includes a fibronectin III domain. In another embodiment, a TANGO 242 protein of the invention includes both a fibronectin III domain and transmembrane domain. In another embodiment, a TANGO 242 protein of the invention includes a fibronectin III domain, a transmembrane domain, and a signal sequence.
- a cDNA encoding human TANGO 242 was isolated from a human esophagus library. An initial clone was selected based on its sequence similarity to IFN ⁇ receptor genes. The initial clone was used to isolate a full length TANGO 242 cDNA clone (AthEa89c8). Analysis of the full length TANGO 242 cDNA revealed that TANGO 242 protein has significant sequence similarity to members of the class II cytokine receptor superfamily, e.g., IFN ⁇ / ⁇ receptor and IL-10 receptor.
- the full length human TANGO 242 cDNA ( Figure 3; SEQ ID NO:l 1) is 1832 nucleotides long.
- the signal peptide prediction program SIGNALP (Nielsen et al.
- Human TANGO 242 includes a 29 amino acid signal peptide (amino acids 1-29 of SEQ LD NO:12; SEQ LD NO:14) preceding the mature TANGO 242 protein (amino acids 30-311 of SEQ ID NO: 12; SEQ ID NO: 15).
- Human TANGO 242 includes an extracellular domain (amino acids 30- 230 of SEQ ID NO: 12; SEQ LD NO: 16); a transmembrane (TM) domain (amino acids 231-255 of SEQ ID NO:12; SEQ ID NO:17); and a cytoplasmic domain (amino acid 256-311 of SEQ LD NO: 12; SEQ ID NO: 18).
- the extracellular domain of human TANGO 242 includes a fibronectin III domain (amino acids 35-125 of SEQ ID NO:12; SEQ ID NO:19).
- the predicted molecular weight of the entire human TANGO 242 protein without modification and prior to cleavage of the signal sequence is about 35.1 kDa.
- the predicted molecular weight of the mature human TANGO 242 protein without modification and after cleavage of the signal sequence about 31.5 kDa.
- Clone AthEa89c8, encoding human TANGO 242, inserted into pMET7 vector and designated plasmid ApAthEa89c8 was deposited with the American Type Culture Collection (ATCC, 10801 University Boulevard, Manassas, VA 20110- 2209) on December 30, 1998 and was assigned Accession Number 20717. This deposit will be maintained under the terms of the Budapest Treaty on the International Recognition of the Deposit of Microorganisms for the Purposes of
- Figure 4 depicts a hydropathy plot of human TANGO 242. Relatively hydrophobic regions are above the horizontal line, and relatively hydrophilic regions are below the horizontal line. As shown in the hydropathy plot, the hydrophobic region at amino acids 1-29 of SEQ ID NO: 12 is the signal sequence of TANGO 242, and the hydrophobic regions at amino acids 231-255 of SEQ ID NO:12 is the transmembrane domain of TANGO 242.
- TANGO 242 protein exhibits considerable sequence similarity to human IL- 10 receptor.
- Figure 6 depicts an alignment of human IL-10 receptor (SwissProt
- Human TANGO 242 exhibits considerable similarity to interferon alpha/beta receptor 2 (approximately 30% identity and 47% similarity at the amino acid level).
- Northern analysis of TANGO 242 expression in human tissues revealed that
- TANGO 241 is expressed at a high level in the brain as an approximately 2.6 kb transcript. No expression was detected in the heart, spleen, lung, liver, skeletal muscle, kidney or testis.
- Genomic mapping of human TANGO 242 revealed that it maps to human chromosomal location 3q21.
- FIG. 8A-8B depict the cDNA 2405 nucleotide sequence of murine TANGO 242 (SEQ LD NO:22) and predicted amino acid sequence of murine TANGO 242 (SEQ ID NO:23).
- the 1218 nucleotide open reading frame of SEQ ID NO:22 extends from nucleotide 107 to 1031 of SEQ ID NO:22 (SEQ ID NO:24).
- the present invention is based, in part, on the discovery of a cDNA molecule encoding a murine TANGO 242, a protein having sequence similarity to members of the class II cytokine receptor family and having a fibronectin III domain.
- a signal sequence includes a peptide of at least about 10 amino acid residues in length which occurs at the N- terminus of membrane-bound proteins and which contains at least about 45% hydrophobic amino acid residues such as alanine, leucine, isoleucine, phenylalanine, proline, tyrosine, tryptophan, or valine.
- a signal sequence contains at least about 10 to 35 amino acid residues, preferably about 15 to 30 amino acid residues, and has at least about 35-60%, more preferably 40-50%, and more preferably at least about 45% hydrophobic residues.
- TANGO 242 proteins can also include an extracellular domain. Within the extracellular domain, TANGO 242 proteins typically also have a fibronectin III domain. As used herein, the term "fibronectin III domain" refers to a protein domain that includes about 50- 105 amino acid residues, and more preferably about 50-105 amino acid residues, more preferably about 60-105 amino acid residues, and most preferably about 65-95 amino acid residues.
- a fibronectin III domain includes at least the following consensus sequence: W-Xaa(nl)-P-Xaa(n2)-Y-Xaa(n3)-Y-Xaa(n4)-Y- Xaa(n5)-R-V-Xaa(n6)-A, wherein W is a tryptophan residue, Xaa is any amino acid, nl is about 1-10 amino acid residues in length, and more preferably about 1-7 amino acid residues in length, n2 is about 1-10 amino acid residues in length, more preferably about 2-10 amino acid residues in length, and most preferably about 3-9 amino acid residues in length, n3 is about 1-5 amino acid residues in length, more preferably about 2-4 amino acid residues in length, and most preferably about 3 amino acid residues in length, n4 is about 20-50 amino acid residues in length, preferably about 25-45 amino acid residues in length, and most preferably about 30- 45 amino acid residues in length, n5 is about
- a TANGO 242 protein includes a fibronectin III domain having an amino acid sequence that is at least about 55%, preferably at least about 65%), more preferably at least about 75%, yet more preferably at least about 85%, and most preferably at least about 95% identical to amino acids 30-120 of SEQ ID NO:23.
- a TANGO 242 protein includes a fibronectin III domain having an amino acid sequence that is at least about 55%>, preferably at least about 65%), more preferably at least about 75%, yet more preferably at least about 85%), and most preferably at least about 95% identical to amino acids 30 to 120 of SEQ ID NO:23 and includes a fibronectin III consensus sequence as described herein.
- a TANGO 242 protein includes a fibronectin III domain having an amino acid sequence that is at least 55%, preferably at least about 65%), more preferably at least about 75%, yet more preferably at least about 85%>, and most preferably at least about 95% identical to amino acids 30 to 120 of SEQ ID NO: 1
- NO:23 includes a fibronectin III consensus sequence as described herein and has at least one biological activity as described herein.
- the present invention also includes murine TANGO 242 proteins having a transmembrane domain.
- a transmembrane domain refers to an amino acid sequence having at least about 20 to 25 amino acid residues in length and which contains at least about 65-70% hydrophobic amino acid such as alanine, leucine, phenylalanine, protein, tyrosine, tryptophan, or valine.
- a transmembrane domain contains at least about 15 to 30 amino acid residues, preferably about 20-25 amino acid residues, and has at least about 60-80%), more preferably 65-75%, and more preferably at least about 70% hydrophobic residues.
- a murine TANGO 242 protein of the invention includes a fibronectin III domain. In another embodiment, a TANGO 242 protein of the invention includes both a fibronectin III domain and transmembrane domain. In another embodiment, a TANGO 242 protein of the invention includes a fibronectin
- ILT domain ILT domain
- transmembrane domain ILT domain
- transmembrane domain ILT domain
- signal sequence ILT domain
- Figures 12A-12D depict an alignment of the cDNA sequence of human
- TANGO 242 (upper line of each pair; SEQ ID NO:l 1) with the cDNA sequence of murine TANGO 242 (lower line of each pair; SEQ LD NO:22).
- SEQ ID NO:l the cDNA sequence of murine TANGO 242
- SEQ LD NO:22 the cDNA sequence of murine TANGO 242
- Figures 13A-13B depict an alignment of the ORF sequence of human TANGO 242 (upper line of each pair; SEQ ID NO: 13) with the ORF sequence of murine TANGO 242 (lower line of each pair; SEQ LD NO:24).
- SEQ ID NO: 13 the ORF sequence of human TANGO 242
- SEQ LD NO:24 the ORF sequence of murine TANGO 242
- TANGO 242 (upper line of each pair; SEQ ID NO: 12) with the amino acid sequence of murine TANGO 242 (lower line of each pair; SEQ ID NO:23).
- the sequences are 11.5% identical.
- Murine in situ expression analysis revealed that TANGO 242 is expressed in the cerebellum and dentate gyrus of the adult brain. Expression in the cerebellum includes granule cells. However, expression was not observed in the olfactory bulb, a region which, like the dentate gyrus and cerebellum, contains granule cells.
- TANGO 241 and TANGO 242 mediate ligand binding though their extracellular domain. Based on sequence homology, ligands of class II cytokine receptors are expected to function as ligands for TANGO 241 and TANGO 242. However, TANGO 241 and TANGO 242 also have their own specific ligands and activities in addition to those reported for other class II cytokine receptors. Proteins that bind class II cytokine receptors play a role in a large number of cellular processes, e.g., anti-viral and anti-bacterial infection, inflammation, autoimmune disease, vascular injury and disorders associated with osteoclastic bone resorption.
- Important class II cytokine receptor ligands include IFN- ⁇ , IFN- ⁇ , IFN- ⁇ , IL-10, and tissue plasmin. Interferons exert a variety of effects on target cells including the induction of enzymes on target cells, e.g., the induction of 2'-5' oligoadenylate synthetase which inhibits viral RNA and DNA replication.
- TANGO 241 and TANGO 242 proteins, nucleic acids, and modulators thereof can be used in the treatment of viral infection (e.g., chronic hepatitis B, chronic hepatitis C, and condyloma acuminata), bacterial infection (e.g., chronic granulomatous disease), inflammatory disorders (e.g., arthritis, multiple sclerosis, and ulcerative colitis), autoimmune disorders, vascular injury (e.g., modulation of would healing, regrowth of vasculature, and regrowth of vasculature into ischemic organs in stroke or coronary bypass patients), and unwanted angiogenesis (e.g., inhibition of angiogenesis that promotes tumor growth).
- viral infection e.g., chronic hepatitis B, chronic hepatitis C, and condyloma acuminata
- bacterial infection e.g., chronic granulomatous disease
- inflammatory disorders e.g., arthritis, multiple sclerosis,
- TANGO 241 and TANGO 242 proteins, nucleic acids, and modulators thereof can be used in the treatment of proliferative disorders (e.g., cancers, hairy cell leukemia, chronic myelogenous leukemia, mycosis fungoides, and Kaposi's sarcoma).
- proliferative disorders e.g., cancers, hairy cell leukemia, chronic myelogenous leukemia, mycosis fungoides, and Kaposi's sarcoma.
- Tissue plasmin is an initiator of blood coagulation. Deregulated expression of tissue plasmin is associated with thrombogenesis in sepsis, cancer, and inflammation. Tissue plasmin also appears to be involved in a variety of non- hemostatic functions including inflammation, brain function, tumor associated angiogenesis.
- TANGO 241 and TANGO 242 proteins, nucleic acids, and modulators thereof can be used in the treatment of sepsis. Soluble forms of TANGO 241 and TANGO 242 (e.g., truncated forms lacking a transmembrane or cytoplasmic domain) can be used to inhibit receptor activity by interfering with the interaction between TANGO 241 or TANGO 242 and their respective ligand(s).
- TANGO 241 polypeptides and nucleic acids as well as modulators of the expression or activity of TANGO 241 can be used to treat disorders of the tissue in which it is expressed.
- TANGO 241 polypeptides, nucleic acids, or modulators thereof can be used to treat pancreatic disorders, such as pancreatitis (e.g., acute hemorrhagic pancreatitis and chronic pancreatitis), pancreatic cysts (e.g., congenital cysts, pseudocysts, and benign or malignant neoplastic cysts), pancreatic tumors (e.g., pancreatic carcinoma and adenoma), diabetes mellitus (e.g., insulin- and non-insulin-dependent types, impaired glucose tolerance, and gestational diabetes), or islet cell tumors (e.g., insulinomas, adenomas, Zollinger-Ellison syndrome, glucagonomas, and somatostatinoma).
- TANGO 241 polypeptides, nucleic acids, or modulators thereof can be used to treat esophageal and other digestive system related disorders, e.g., dysphagia (e.g., oropharyngeal dysphagia, esophageal dysphagia), pyrosis, achalasia, diffuse esophageal spasm, nutcracker esophagus, and gastroesophageal reflux disease.
- dysphagia e.g., oropharyngeal dysphagia, esophageal dysphagia
- pyrosis e.g., achalasia, diffuse esophageal spasm, nutcracker esophagus, and gastroesophageal reflux disease.
- TANGO 242 polypeptides and nucleic acids as well as modulators of the expression or activity of TANGO 242 can be used to treat disorders of the tissue in which it is expressed.
- TANGO 242 polypeptides, nucleic acids, or modulators thereof can be used to treat disorders of the brain, such as cerebral edema, hydrocephalus, brain herniations, iatrogenic disease (due to, e.g., infection, toxins, or drugs), inflammations (e.g., bacterial and viral meningitis, encephalitis, and cerebral toxoplasmosis), cerebrovascular diseases (e.g., hypoxia, ischemia, and infarction, intracranial hemorrhage and vascular malformations, and hypertensive encephalopathy), and tumors (e.g., neuroglial tumors, neuronal tumors, tumors of pineal cells, meningeal tumors, primary and secondary lymphomas, intracranial tumors, and medulloblasto
- Tables 1 and 2 summarize sequence information for TANGO 241 and TANGO 242.
- nucleic acid molecules that encode a polypeptide of the invention or a biologically active portion thereof, as well as nucleic acid molecules sufficient for use as hybridization probes to identify nucleic acid molecules encoding a polypeptide of the invention and fragments of such nucleic acid molecules suitable for use as PCR primers for the amplification or mutation of nucleic acid molecules.
- nucleic acid molecule is intended to include DNA molecules (e.g., cDNA or genomic DNA) and RNA molecules (e.g., mRNA) and analogs of the DNA or RNA generated using nucleotide analogs.
- the nucleic acid molecule can be single-stranded or double- stranded, but preferably is double-stranded DNA.
- an “isolated” nucleic acid molecule is one which is separated from other nucleic acid molecules which are present in the natural source of the nucleic acid molecule.
- an “isolated” nucleic acid molecule is free of sequences (preferably protein encoding sequences) which naturally flank the nucleic acid (i.e., sequences located at the 5' and 3 1 ends of the nucleic acid) in the genomic DNA of the organism from which the nucleic acid is derived.
- the isolated nucleic acid molecule can contain less than about 5 kB, 4 kB, 3 kB, 2 kB, 1 kB, 0.5 kB or 0.1 kB of nucleotide sequences which naturally flank the nucleic acid molecule in genomic DNA of the cell from which the nucleic acid is derived.
- an "isolated" nucleic acid molecule such as a cDNA molecule, can be substantially free of other cellular material, or culture medium when produced by recombinant techniques, or substantially free of chemical precursors or other chemicals when chemically synthesized.
- a nucleic acid molecule of the present invention e.g., a nucleic acid molecule having the nucleotide sequence of SEQ ID NO:l, 3, 11, 13, 19, 21, 22, 24 or a complement thereof, can be isolated using standard molecular biology techniques and the sequence information provided herein. Using all or a portion of the nucleic acid sequences of SEQ TD NO: 1, 3, 11, 13,19, 21, 22, or 24 as a hybridization probe, nucleic acid molecules of the invention can be isolated using standard hybridization and cloning techniques (e.g., as described in Sambrook et al., eds., Molecular Cloning: A Laboratory Manual, 2nd ed., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989).
- a nucleic acid molecule of the invention can be amplified using cDNA, mRNA or genomic DNA as a template and appropriate oligonucleotide primers according to standard PCR amplification techniques.
- the nucleic acid so amplified can be cloned into an appropriate vector and characterized by DNA sequence analysis.
- oligonucleotides corresponding to all or a portion of a nucleic acid molecule of the invention can be prepared by standard synthetic techniques, e.g., using an automated DNA synthesizer.
- an isolated nucleic acid molecule of the invention comprises a nucleic acid molecule which is a complement of the nucleotide sequence of SEQ ID NO:l, 3, 11, 13, 19, 21, 22, 24 or a portion thereof.
- a nucleic acid molecule which is complementary to a given nucleotide sequence is one which is sufficiently complementary to the given nucleotide sequence that it can hybridize to the given nucleotide sequence thereby forming a stable duplex.
- a nucleic acid molecule of the invention can comprise only a portion of a nucleic acid sequence encoding a full-length polypeptide of the invention for example, a fragment which can be used as a probe or primer or a fragment encoding a biologically active portion of a polypeptide of the invention.
- the nucleotide sequence determined from the cloning one gene allows for the generation of probes and primers designed for use in identifying and/or cloning homologues in other cell types, e.g., from other tissues, as well as homologues from other mammals.
- the probe/primer typically comprises substantially purified oligonucleotide.
- the oligonucleotide typically comprises a region of nucleotide sequence that hybridizes under stringent conditions to at least about 12, preferably about 25, more preferably about 50, 75, 100, 125, 150, 175, 200, 250, 300, 350 or 400 consecutive nucleotides of the sense or anti-sense sequence of SEQ ID NO:l, 3, 11, 13, 19, 21, 22, 24 or of a naturally occurring mutant of SEQ ID NO: 1, 3, 11, 13, 19, 21, 22, or 24.
- Probes based on the sequence of a nucleic acid molecule of the invention can be used to detect transcripts or genomic sequences encoding the same protein molecule encoded by a selected nucleic acid molecule.
- the probe comprises a label group attached thereto, e.g., a radioisotope, a fluorescent compound, an enzyme, or an enzyme co-factor.
- a label group attached thereto, e.g., a radioisotope, a fluorescent compound, an enzyme, or an enzyme co-factor.
- Such probes can be used as part of a diagnostic test kit for identifying cells or tissues which mis-express the protein, such as by measuring levels of a nucleic acid molecule encoding the protein in a sample of cells from a subject, e.g., detecting mRNA levels or determining whether a gene encoding the protein has been mutated or deleted.
- a nucleic acid fragment encoding a biologically active portion of a polypeptide of the invention can be prepared by isolating a portion of any of SEQ LD NOs:3 or 13 expressing the encoded portion of the polypeptide protein (e.g., by recombinant expression in vitro) and assessing the activity of the encoded portion of the polypeptide.
- the invention further encompasses nucleic acid molecules that differ from the nucleotide sequence of SEQ LD NO:l, 3, 11, 13, 19, 21, 22, 24 due to degeneracy of the genetic code and thus encode the same protein as that encoded by the nucleotide sequence of SEQ LD NO:3 or 13.
- allelic variant refers to a nucleotide sequence which occurs at a given locus or to a polypeptide encoded by the nucleotide sequence.
- the terms "gene” and “recombinant gene” refer to nucleic acid molecules comprising an open reading frame encoding a polypeptide of the invention.
- Such natural allelic variations can typically result in l-5%> variance in the nucleotide sequence of a given gene.
- Alternative alleles can be identified by sequencing the gene of interest in a number of different individuals. This can be readily carried out by using hybridization probes to identify the same genetic locus in a variety of individuals. Any and all such nucleotide variations and resulting amino acid polymorphisms or variations that are the result of natural allelic variation and that do not alter the functional activity are intended to be within the scope of the invention.
- nucleic acid molecules encoding proteins of the invention from other species which have a nucleotide sequence which differs from that of the human protein described herein are intended to be within the scope of the invention.
- Nucleic acid molecules corresponding to natural allelic variants and homologues of a cDNA of the invention can be isolated based on their identity to the human nucleic acid molecule disclosed herein using the human cDNAs, or a portion thereof, as a hybridization probe according to standard hybridization techniques under stringent hybridization conditions.
- a cDNA encoding a soluble form of a membrane-bound protein of the invention isolated based on its hybridization to a nucleic acid molecule encoding all or part of the membrane- bound form.
- a cDNA encoding a membrane-bound form can be isolated based on its hybridization to a nucleic acid molecule encoding all or part of the soluble form.
- an isolated nucleic acid molecule of the invention is at least 300 (325, 350, 375, 400, 425, 450, 500, 550, 600, 650, 700, 800, 900, 1000, or 1290) nucleotides in length and hybridizes under stringent conditions to the nucleic acid molecule comprising the nucleotide sequence, preferably the coding sequence, of SEQ ID NO:l, 3, 11 13, 19, 21, 22, 24 or complement thereof.
- hybridizes under stringent conditions is intended to describe conditions for hybridization and washing under which nucleotide sequences at least 60% (65%, 70%, preferably 75%) identical to each other typically remain hybridized to each other.
- stringent hybridization conditions are known to those skilled in the art and can be found in Current Protocols in Molecular Biology, John Wiley & Sons, N.Y. (1989), 6.3.1-6.3.6.
- a preferred, non-limiting example of stringent hybridization conditions are hybridization in 6X sodium chloride/sodium citrate (SSC) at about 45 C, followed by one or more washes in 0.2 X SSC, 0.1%) SDS at 50-65 C.
- SSC sodium chloride/sodium citrate
- SDS 6X sodium chloride/sodium citrate
- an isolated nucleic acid molecule of the invention that hybridizes under stringent conditions to the sequence of SEQ ID
- nucleic acid molecule corresponds to a naturally- occurring nucleic acid molecule.
- a "naturally-occurring" nucleic acid molecule refers to an RNA or DNA molecule having a nucleotide sequence that occurs in nature (e.g., encodes a natural protein).
- allelic variants of a nucleic acid molecule of the invention sequence that may exist in the population, the skilled artisan will further appreciate that changes can be introduced by mutation thereby leading to changes in the amino acid sequence of the encoded protein, without altering the biological activity of the protein. For example, one can make nucleotide substitutions leading to amino acid substitutions at "non-essential" amino acid residues.
- a "non-essential” amino acid residue is a residue that can be altered from the wild-type sequence without altering the biological activity, whereas an "essential" amino acid residue is required for biological activity.
- amino acid residues that are not conserved or only semi-conserved among homologues of various species may be non-essential for activity and thus would be likely targets for alteration.
- amino acid residues that are conserved among the homologues of various species e.g., murine and human
- amino acid residues that are conserved among the homologues of various species may be essential for activity and thus would not be likely targets for alteration.
- nucleic acid molecules encoding a polypeptide of the invention that contain changes in amino acid residues that are not essential for activity. Such polypeptides differ in amino acid sequence from SEQ ID NO:2, or 12 yet retain biological activity.
- the isolated nucleic acid molecule includes a nucleotide sequence encoding a protein that includes an amino acid sequence that is at least about 45% identical, 65%, 75%), 85%, 95%, or 98% identical to the amino acid sequence of SEQ ID NO:2, or 12.
- An isolated nucleic acid molecule encoding a variant protein can be created by introducing one or more nucleotide substitutions, additions or deletions into the nucleotide sequence of SEQ ID NO:l, 3, 11, 13, 19, 21, 22, or 24 such that one or more amino acid substitutions, additions or deletions are introduced into the encoded protein. Mutations can be introduced by standard techniques, such as site-directed mutagenesis and PCR-mediated mutagenesis. Preferably, conservative amino acid substitutions are made at one or more predicted non-essential amino acid residues. A "conservative amino acid substitution" is one in which the amino acid residue is replaced with an amino acid residue having a similar side chain. Families of amino acid residues having similar side chains have been defined in the art.
- amino acids with basic side chains e.g., lysine, arginine, histidine
- acidic side chains e.g., aspartic acid, glutamic acid
- uncharged polar side chains e.g., glycine, asparagine, glutamine, serine, threonine, tyrosine, cysteine
- nonpolar side chains e.g., alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan
- beta-branched side chains e.g., threonine, valine, isoleucine
- aromatic side chains e.g., tyrosine, phenylalanine, tryptophan, histidine
- mutations can be introduced randomly along all or part of the coding sequence, such as by saturation mutagenesis, and the resultant mutants can be screened for biological activity to identify mutants that retain activity.
- the encoded protein can be expressed recombinantly and the activity of the protein can be determined.
- a mutant polypeptide that is a variant of a polypeptide of the invention can be assayed for: (1) the ability to form proteimprotein interactions with proteins in a signaling pathway of the polypeptide of the invention; (2) the ability to bind a ligand of the polypeptide of the invention; or (3) the ability to bind to an intracellular target protein of the polypeptide of the invention.
- the mutant polypeptide can be assayed for the ability to modulate cellular proliferation, cellular migration or chemotaxis, or cellular differentiation.
- the present invention encompasses antisense nucleic acid molecules, i.e., molecules which are complementary to a sense nucleic acid encoding a polypeptide of the invention, e.g., complementary to the coding strand of a double-stranded cDNA molecule or complementary to an mRNA sequence. Accordingly, an antisense nucleic acid can hydrogen bond to a sense nucleic acid.
- the antisense nucleic acid can be complementary to an entire coding strand, or to only a portion thereof, e.g., all or part of the protein coding region (or open reading frame).
- An antisense nucleic acid molecule can be antisense to all or part of a non-coding region of the coding strand of a nucleotide sequence encoding a polypeptide of the invention.
- the non-coding regions ("5" and 3' untranslated regions") are the 5' and 3 1 sequences which flank the coding region and are not translated into amino acids.
- An antisense oligonucleotide can be, for example, about 5, 10, 15, 20, 25, 30, 35, 40, 45 or 50 nucleotides in length.
- An antisense nucleic acid of the invention can be constructed using chemical synthesis and enzymatic ligation reactions using procedures known in the art.
- an antisense nucleic acid e.g., an antisense oligonucleotide
- an antisense nucleic acid e.g., an antisense oligonucleotide
- modified nucleotides which can be used to generate the antisense nucleic acid include 5-fluorouracil, 5- bromouracil, 5-chlorouracil, 5-iodouracil, hypoxanthine, xanthine, 4-acetylcytosine, 5-(carboxyhydroxylmethyl) uracil, 5-carboxymethylaminomethyl-2-thiouridine, 5- carboxymethylaminomethyluracil, dihydrouracil, beta-D-galactosylqueosine, inosine, N6-isopentenyladenine, 1-methylguanine, 1-methylinosine, 2,2- dimethylguanine, 2-methyladenine, 2-methylguanine, 3-methylcytosine, 5- methylcytosine, N6-adenine, 7-methylguanine, 5-methylaminomethyluracil, 5- methoxyaminomethyl-2-thiouracil, beta-D-mannosylqueosine, 5 1 - methoxycar
- the antisense nucleic acid can be produced biologically using an expression vector into which a nucleic acid has been subcloned in an antisense orientation (i.e., RNA transcribed from the inserted nucleic acid will be of an antisense orientation to a target nucleic acid of interest, described further in the following subsection).
- the antisense nucleic acid molecules of the invention are typically administered to a subject or generated in situ such that they hybridize with or bind to cellular mRNA and/or genomic DNA encoding a selected polypeptide of the invention to thereby inhibit expression, e.g., by inhibiting transcription and/or translation.
- the hybridization can be by conventional nucleotide complementarity to form a stable duplex, or, for example, in the case of an antisense nucleic acid molecule which binds to DNA duplexes, through specific interactions in the major groove of the double helix.
- An example of a route of administration of antisense nucleic acid molecules of the invention includes direct injection at a tissue site.
- antisense nucleic acid molecules can be modified to target selected cells and then administered systemically.
- antisense molecules can be modified such that they specifically bind to receptors or antigens expressed on a selected cell surface, e.g., by linking the antisense nucleic acid molecules to peptides or antibodies which bind to cell surface receptors or antigens.
- the antisense nucleic acid molecules can also be delivered to cells using the vectors described herein.
- vector constructs in which the antisense nucleic acid molecule is placed under the control of a strong pol II or pol III promoter are preferred.
- An antisense nucleic acid molecule of the invention can be an ⁇ -anomeric nucleic acid molecule.
- An ⁇ -anomeric nucleic acid molecule forms specific double- stranded hybrids with complementary RNA in which, contrary to the usual ⁇ -units, the strands run parallel to each other (Gaultier et al. (1987) Nucleic Acids Res. 15:6625-6641).
- the antisense nucleic acid molecule can also comprise a 2'-o- methylribonucleotide (Inoue et al. (1987) Nucleic Acids Res. 15:6131-6148) or a chimeric RNA-DNA analogue (Inoue et al. (1987) FEBS Lett. 215:327-330).
- Ribozymes are catalytic RNA molecules with ribonuclease activity which are capable of cleaving a single-stranded nucleic acid, such as an mRNA, to which they have a complementary region.
- ribozymes e.g., hammerhead ribozymes (described in Haselhoff and Gerlach (1988) Nature 334:585-591)
- a ribozyme having specificity for a nucleic acid molecule encoding a polypeptide of the invention can be designed based upon the nucleotide sequence of a cDNA disclosed herein.
- a derivative of a Tetrahymena L-19 IVS RNA can be constructed in which the nucleotide sequence of the active site is complementary to the nucleotide sequence to be cleaved in a Cech et al. U.S. Patent No. 4,987,071; and Cech et al. U.S. Patent No. 5,116,742.
- an mRNA encoding a polypeptide of the invention can be used to select a catalytic RNA having a specific ribonuclease activity from a pool of RNA molecules. See, e.g., Bartel and Szostak (1993) Science 261:1411-1418.
- the invention also encompasses nucleic acid molecules which form triple helical structures.
- expression of a polypeptide of the invention can be inhibited by targeting nucleotide sequences complementary to the regulatory region of the gene encoding the polypeptide (e.g., the promoter and/or enhancer) to form triple helical structures that prevent transcription of the gene in target cells.
- nucleotide sequences complementary to the regulatory region of the gene encoding the polypeptide e.g., the promoter and/or enhancer
- the nucleic acid molecules of the invention can be modified at the base moiety, sugar moiety or phosphate backbone to improve, e.g., the stability, hybridization, or solubility of the molecule.
- the deoxyribose phosphate backbone of the nucleic acids can be modified to generate peptide nucleic acids (see Hyrup et al. (1996) Bioorganic & Medicinal Chemistry 4(1): 5-23).
- peptide nucleic acids refer to nucleic acid mimics, e.g., DNA mimics, in which the deoxyribose phosphate backbone is replaced by a pseudopeptide backbone and only the four natural nucleobases are retained.
- the neutral backbone of PNAs has been shown to allow for specific hybridization to DNA and RNA under conditions of low ionic strength.
- the synthesis of PNA oligomers can be performed using standard solid phase peptide synthesis protocols as described in Hyrup et al. (1996), supra; Perry-O'Keefe et al. (1996) Proc. Natl. Acad. Sci. USA 93: 14670-675.
- PNAs can be used in therapeutic and diagnostic applications.
- PNAs can be used as antisense or antigene agents for sequence-specific modulation of gene expression by, e.g., inducing transcription or translation arrest or inhibiting replication.
- PNAs can also be used, e.g., in the analysis of single base pair mutations in a gene by, e.g., PNA directed PCR clamping; as artificial restriction enzymes when used in combination with other enzymes, e.g., SI nucleases (Hyrup (1996), supra; or as probes or primers for DNA sequence and hybridization (Hyrup (1996), supra; Perry-O'Keefe et al. (1996) Proc. Natl. Acad. Sci.
- PNAs can be modified, e.g., to enhance their stability or cellular uptake, by attaching lipophilic or other helper groups to PNA, by the formation of PNA-DNA chimeras, or by the use of liposomes or other techniques of drug delivery known in the art.
- PNA-DNA chimeras can be generated which may combine the advantageous properties of PNA and DNA.
- Such chimeras allow DNA recognition enzymes, e.g., RNAse H and DNA polymerases, to interact with the DNA portion while the PNA portion would provide high binding affinity and specificity.
- PNA-DNA chimeras can be linked using linkers of appropriate lengths selected in terms of base stacking, number of bonds between the nucleobases, and orientation (Hyrup (1996), supra).
- the synthesis of PNA-DNA chimeras can be performed as described in Hyrup (1996), supra, and Finn et al. (1996) Nucleic Acids Res. 24(17):3357-63.
- a DNA chain can be synthesized on a solid support using standard phosphoramidite coupling chemistry and modified nucleoside analogs.
- PNA monomers are then coupled in a stepwise manner to produce a chimeric molecule with a 5' PNA segment and a 3' DNA segment (Finn et al. (1996) Nucleic Acids Res. 24(17):3357-63).
- chimeric molecules can be synthesized with a 5' DNA segment and a 3' PNA segment (Peterser et al. (1975) Bioorganic Med. Chem. Lett. 5 : 1119- 11124).
- the oligonucleotide may include other appended groups such as peptides (e.g., for targeting host cell receptors in vivo), or agents facilitating transport across the cell membrane (see, e.g., Letsinger et al. (1989) Proc. Natl. Acad. Sci. USA 86:6553-6556; Lemaitre et al. (1987) Proc. Natl. Acad. Sci. USA 84:648-652; PCT Publication No. WO 88/09810) or the blood-brain barrier (see, e.g., PCT Publication No. W0 89/10134).
- peptides e.g., for targeting host cell receptors in vivo
- agents facilitating transport across the cell membrane see, e.g., Letsinger et al. (1989) Proc. Natl. Acad. Sci. USA 86:6553-6556; Lemaitre et al. (1987) Proc. Natl.
- oligonucleotides can be modified with hybridization-triggered cleavage agents (see, e.g., Krol et al. (1988) Bio/Techniques 6:958-976) or intercalating agents (see, e.g., Zon (1988) Pharm. Res. 5:539-549).
- the oligonucleotide may be conjugated to another molecule, e.g., a peptide, hybridization triggered cross-linking agent, transport agent, hybridization-triggered cleavage agent, etc.
- One aspect of the invention pertains to isolated proteins, and biologically active portions thereof, as well as polypeptide fragments suitable for use as immunogens to raise antibodies directed against a polypeptide of the invention.
- the native polypeptide can be isolated from cells or tissue sources by an appropriate purification scheme using standard protein purification techniques.
- polypeptides of the invention are produced by recombinant DNA techniques.
- a polypeptide of the invention can be synthesized chemically using standard peptide synthesis techniques.
- an “isolated” or “purified” protein or biologically active portion thereof is substantially free of cellular material or other contaminating proteins from the cell or tissue source from which the protein is derived, or substantially free of chemical precursors or other chemicals when chemically synthesized.
- the language “substantially free of cellular material” includes preparations of protein in which the protein is separated from cellular components of the cells from which it is isolated or recombinantly produced.
- protein that is substantially free of cellular material includes preparations of protein having less than about 30%, 20%, 10%, or 5% (by dry weight) of heterologous protein (also referred to herein as a "contaminating protein").
- the protein or biologically active portion thereof is recombinantly produced, it is also preferably substantially free of culture medium, i.e., culture medium represents less than about 20%, 10%, or 5% of the volume of the protein preparation.
- culture medium represents less than about 20%, 10%, or 5% of the volume of the protein preparation.
- the protein is produced by chemical synthesis, it is preferably substantially free of chemical precursors or other chemicals, i.e., it is separated from chemical precursors or other chemicals which are involved in the synthesis of the protein. Accordingly such preparations of the protein have less than about 30%, 20%, 10%, 5% (by dry weight) of chemical precursors or compounds other than the polypeptide of interest.
- Biologically active portions of a polypeptide of the invention include polypeptides comprising amino acid sequences sufficiently identical to or derived from the amino acid sequence of the protein (e.g., the amino acid sequence shown in any of SEQ ID NOs:2, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 16, 17, 18, 20, or 23), which include fewer amino acids than the full length protein, and exhibit at least one activity of the corresponding full-length protein.
- biologically active portions comprise a domain or motif with at least one activity of the corresponding protein.
- a biologically active portion of a protein of the invention can be a polypeptide which is, for example, 10, 25, 50, 100 or more amino acids in length.
- polypeptides have the amino acid sequence of SEQ ID NO:2, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 16, 17, 18, 20 or 23.
- Other useful proteins are substantially identical (e.g., at least about 45%, preferably 55%, 65%, 75%, 85%, 95%, or 99%) to any of SEQ ID NO:2, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 16, 17, 18, 20, or 23 and retain the functional activity of the protein of the corresponding naturally-occurring protein yet differ in amino acid sequence due to natural allelic variation or mutagenesis.
- the sequences are aligned for optimal comparison purposes (e.g., gaps can be introduced in the sequence of a first amino acid or nucleic acid sequence for optimal alignment with a second amino or nucleic acid sequence).
- the amino acid residues or nucleotides at corresponding amino acid positions or nucleotide positions are then compared. When a position in the first sequence is occupied by the same amino acid residue or nucleotide as the corresponding position in the second sequence, then the molecules are identical at that position.
- the determination of percent identity between two sequences can be accomplished using a mathematical algorithm.
- a preferred, non-limiting example of a mathematical algorithm utilized for the comparison of two sequences is the algorithm of Karlin and Altschul (1990) Proc. Natl. Acad. Sci. USA 87:2264-2268, modified as in Karlin and Altschul (1993) Proc. Natl. Acad. Sci. USA 90:5873- 5877.
- Gapped BLAST can be utilized as described in Altschul et al. (1997) Nucleic Acids Res. 25:3389-3402.
- PSI-Blast can be used to perform an iterated search which detects distant relationships between molecules. Id.
- the default parameters of the respective programs e.g., XBLAST and NBLAST
- Another preferred, non-limiting example of a mathematical algorithm utilized for the comparison of sequences is the algorithm of Myers and Miller, (1988) CABIOS 4: 11-17. Such an algorithm is incorporated into the ALIGN program (version 2.0) which is part of the GCG sequence alignment software package.
- ALIGN program version 2.0
- the percent identity between two sequences can be determined using techniques similar to those described above, with or without allowing gaps. In calculating percent identity, only exact matches are counted.
- a "chimeric protein” or “fusion protein” comprises all or part (preferably biologically active) of a polypeptide of the invention operably linked to a heterologous polypeptide (i.e., a polypeptide other than the same polypeptide of the invention).
- a heterologous polypeptide i.e., a polypeptide other than the same polypeptide of the invention.
- the term "operably linked” is intended to indicate that the polypeptide of the invention and the heterologous polypeptide are fused in- frame to each other.
- the heterologous polypeptide can be fused to the N-terminus or C- terminus of the polypeptide of the invention.
- One useful fusion protein is a GST fusion protein in which the polypeptide of the invention is fused to the C-terminus of GST sequences. Such fusion proteins can facilitate the purification of a recombinant polypeptide of the invention.
- the fusion protein contains a heterologous signal sequence at its N-terminus.
- the native signal sequence of a polypeptide of the invention can be removed and replaced with a signal sequence from another protein.
- the gp67 secretory sequence of the baculovirus envelope protein can be used as a heterologous signal sequence (Current Protocols in Molecular Biology, Ausubel et al., eds., John Wiley & Sons, 1992).
- Other examples of eukaryotic heterologous signal sequences include the secretory sequences of melittin and human placental alkaline phosphatase (Stratagene; La Jolla, California).
- useful prokaryotic heterologous signal sequences include the phoA secretory signal (Sambrook et al., supra) and the protein A secretory signal (Pharmacia Biotech; Piscataway, New Jersey).
- the fusion protein is an immunoglobulin fusion protein in which all or part of a polypeptide of the invention is fused to sequences derived from a member of the immunoglobulin protein family.
- the immunoglobulin fusion proteins of the invention can be incorporated into pharmaceutical compositions and administered to a subject to inhibit an interaction between a ligand (soluble or membrane-bound) and a protein on the surface of a cell (receptor), to thereby suppress signal transduction in vivo.
- the immunoglobulin fusion protein can be used to affect the bioavailability of a cognate ligand of a polypeptide of the invention.
- Inhibition of ligand/receptor interaction may be useful therapeutically, both for treating proliferative and differentiative disorders and for modulating (e.g. promoting or inhibiting) cell survival.
- the immunoglobulin fusion proteins of the invention can be used as immunogens to produce antibodies directed against a polypeptide of the invention in a subject, to purify ligands and in screening assays to identify molecules which inhibit the interaction of receptors with ligands.
- Chimeric and fusion proteins of the invention can be produced by standard recombinant DNA techniques.
- the fusion gene can be synthesized by conventional techniques including automated DNA synthesizers.
- PCR amplification of gene fragments can be carried out using anchor primers which give rise to complementary overhangs between two consecutive gene fragments which can subsequently be annealed and reamplified to generate a chimeric gene sequence (see, e.g., Ausubel et al., supra).
- many expression vectors are commercially available that already encode a fusion moiety (e.g., a GST polypeptide).
- a nucleic acid encoding a polypeptide of the invention can be cloned into such an expression vector such that the fusion moiety is linked in- frame to the polypeptide of the invention.
- a signal sequence of a polypeptide of the invention can be used to facilitate secretion and isolation of the secreted protein or other proteins of interest.
- Signal sequences are typically characterized by a core of hydrophobic amino acids which are generally cleaved from the mature protein during secretion in one or more cleavage events.
- Such signal peptides contain processing sites that allow cleavage of the signal sequence from the mature proteins as they pass through the secretory pathway.
- the invention pertains to the described polypeptides having a signal sequence, as well as to the signal sequence itself and to the polypeptide in the absence of the signal sequence (i.e., the cleavage products).
- a nucleic acid sequence encoding a signal sequence of the invention can be operably linked in an expression vector to a protein of interest, such as a protein which is ordinarily not secreted or is otherwise difficult to isolate.
- the signal sequence directs secretion of the protein, such as from a eukaryotic host into which the expression vector is transformed, and the signal sequence is subsequently or concurrently cleaved.
- the protein can then be readily purified from the extracellular medium by art recognized methods.
- the signal sequence can be linked to the protein of interest using a sequence which facilitates purification, such as with a GST domain.
- the signal sequences of the present invention can be used to identify regulatory sequences, e.g., promoters, enhancers, repressors. Since signal sequences are the most amino-terminal sequences of a peptide, it is expected that the nucleic acids which flank the signal sequence on its amino-terminal side will be regulatory sequences which affect transcription. Thus, a nucleotide sequence which encodes all or a portion of a signal sequence can be used as a probe to identify and isolate signal sequences and their flanking regions, and these flanking regions can be studied to identify regulatory elements therein.
- regulatory sequences e.g., promoters, enhancers, repressors.
- the present invention also pertains to variants of the polypeptides of the invention.
- variants have an altered amino acid sequence which can function as either agonists (mimetics) or as antagonists.
- Variants can be generated by mutagenesis, e.g., discrete point mutation or truncation.
- An agonist can retain substantially the same, or a subset, of the biological activities of the naturally occurring form of the protein.
- An antagonist of a protein can inhibit one or more of the activities of the naturally occurring form of the protein by, for example, competitively binding to a downstream or upstream member of a cellular signaling cascade which includes the protein of interest.
- specific biological effects can be elicited by treatment with a variant of limited function.
- Variants of a protein of the invention which function as either agonists (mimetics) or as antagonists can be identified by screening combinatorial libraries of mutants, e.g., truncation mutants, of the protein of the invention for agonist or antagonist activity.
- a variegated library of variants is generated by combinatorial mutagenesis at the nucleic acid level and is encoded by a variegated gene library.
- a variegated library of variants can be produced by, for example, enzymatically ligating a mixture of synthetic oligonucleotides into gene sequences such that a degenerate set of potential protein sequences is expressible as individual polypeptides, or alternatively, as a set of larger fusion proteins (e.g., for phage display).
- methods which can be used to produce libraries of potential variants of the polypeptides of the invention from a degenerate oligonucleotide sequence. Methods for synthesizing degenerate oligonucleotides are known in the art (see, e.g., Narang (1983) Tetrahedron 39:3; Itakura et al. (1984) Annu. Rev. Biochem. 53:323; Itakura et al. (1984) Science 198:1056; Ike et al. (1983) Nucleic Acid Res. 11:477).
- libraries of fragments of the coding sequence of a polypeptide of the invention can be used to generate a variegated population of polypeptides for screening and subsequent selection of variants.
- a library of coding sequence fragments can be generated by treating a double stranded PCR fragment of the coding sequence of interest with a nuclease under conditions wherein nicking occurs only about once per molecule, denaturing the double stranded DNA, renaturing the DNA to form double stranded DNA which can include sense/antisense pairs from different nicked products, removing single stranded portions from reformed duplexes by treatment with S 1 nuclease, and ligating the resulting fragment library into an expression vector.
- an expression library can be derived which encodes N-terminal and internal fragments of various sizes of the protein of interest.
- REM Recursive ensemble mutagenesis
- An isolated polypeptide of the invention, or a fragment thereof, can be used as an immunogen to generate antibodies using standard techniques for polyclonal and monoclonal antibody preparation.
- the full-length polypeptide or protein can be used or, alternatively, the invention provides antigenic peptide fragments for use as immunogens.
- the antigenic peptide of a protein of the invention comprises at least 8 (preferably 10, 15, 20, or 30) amino acid residues of the amino acid sequence of SEQ ID NO:2, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 16, 17, 18, 20 or 23, and encompasses an epitope of the protein such that an antibody raised against the peptide forms a specific immune complex with the protein.
- Preferred epitopes encompassed by the antigenic peptide are regions that are located on the surface of the protein, e.g., hydrophilic regions.
- Figures 8-14 are hydrophobicity plots of the proteins of the invention. These plots or similar analyses can be used to identify hydrophilic regions.
- An immunogen typically is used to prepare antibodies by immunizing a suitable subject, (e.g., rabbit, goat, mouse or other mammal).
- a suitable subject e.g., rabbit, goat, mouse or other mammal.
- An appropriate immunogenic preparation can contain, for example, recombinantly expressed or chemically synthesized polypeptide.
- the preparation can further include an adjuvant, such as Freund's complete or incomplete adjuvant, or similar immunostimulatory agent.
- antibody refers to immunoglobulin molecules and immunologically active portions of immunoglobulin molecules, i.e., molecules that contain an antigen binding site which specifically binds an antigen, such as a polypeptide of the invention.
- a molecule which specifically binds to a given polypeptide of the invention is a molecule which binds the polypeptide, but does not substantially bind other molecules in a sample, e.g., a biological sample, which naturally contains the polypeptide.
- immunologically active portions of immunoglobulin molecules include F(ab) and F(ab')2 fragments which can be generated by treating the antibody with an enzyme such as pepsin.
- the invention provides polyclonal and monoclonal antibodies.
- the term "monoclonal antibody” or “monoclonal antibody composition”, as used herein, refers to a population of antibody molecules that contain only one species of an antigen binding site capable of immunoreacting with a particular epitope.
- Polyclonal antibodies can be prepared as described above by immunizing a suitable subject with a polypeptide of the invention as an immunogen.
- the antibody titer in the immunized subject can be monitored over time by standard techniques, such as with an enzyme linked immunosorbent assay (ELISA) using immobilized polypeptide.
- ELISA enzyme linked immunosorbent assay
- the antibody molecules can be isolated from the mammal (e.g., from the blood) and further purified by well-known techniques, such as protein A chromatography to obtain the IgG fraction.
- antibody-producing cells can be obtained from the subject and used to prepare monoclonal antibodies by standard techniques, such as the hybridoma technique originally described by Kohler and Milstein (1975) Nature 256:495-497, the human B cell hybridoma technique (Kozbor et al. (1983) Immunol. Today 4:72), the EBV-hybridoma technique (Cole et al. (1985), Monoclonal Antibodies and Cancer Therapy, Alan R. Liss, Inc., pp. 77- 96) or trioma techniques.
- Hybridoma cells producing a monoclonal antibody of the invention are detected by screening the hybridoma culture superaatants for antibodies that bind the polypeptide of interest, e.g., using a standard ELISA assay.
- a monoclonal antibody directed against a polypeptide of the invention can be identified and isolated by screening a recombinant combinatorial immunoglobulin library (e.g., an antibody phage display library) with the polypeptide of interest.
- Kits for generating and screemng phage display libraries are commercially available (e.g., the Pharmacia Recombinant Phage Antibody System, Catalog No. 27-9400-01 ; and the Stratagene SurfZAP Phage Display Kit, Catalog No. 240612). Additionally, examples of methods and reagents particularly amenable for use in generating and screening antibody display library can be found in, for example, U.S. Patent No. 5,223,409; PCT Publication No. WO 92/18619; PCT Publication No. WO 91/17271; PCT Publication No. WO 92/20791; PCT Publication No. WO 92/15679; PCT Publication No. WO 93/01288; PCT Publication No.
- recombinant antibodies such as chimeric and humanized monoclonal antibodies, comprising both human and non-human portions, which can be made using standard recombinant DNA techniques, are within the scope of the invention.
- Such chimeric and humanized monoclonal antibodies can be produced by recombinant DNA techniques known in the art, for example using methods described in PCT Publication No. WO 87/02671; European Patent Application 184,187; European Patent Application 171,496; European Patent Application 173,494; PCT Publication No. WO 86/01533; U.S. Patent No. 4,816,567; European Patent Application 125,023; Better et al. (1988) Science 240:1041-1043; Liu et al.
- Patent 5,225,539 Jones et al. (1986) Nature 321:552-525; Verhoeyan et al. (1988) Science 239:1534; and Beidler et al. (1988) J. Immunol. 141:4053-4060.
- Fully human antibodies are particularly desirable for therapeutic treatment of human patients.
- Such antibodies can be produced using transgenic mice which are incapable of expressing endogenous immunoglobulin heavy and light chains genes, but which can express human heavy and light chain genes.
- the transgenic mice are immunized in the normal fashion with a selected antigen, e.g., all or a portion of a polypeptide of the invention.
- Monoclonal antibodies directed against the antigen can be obtained using conventional hybridoma technology.
- the human immunoglobulin transgenes harbored by the transgenic mice rearrange during B cell differentiation, and subsequently undergo class switching and somatic mutation. Thus, using such a technique, it is possible to produce therapeutically useful IgG, IgA and IgE antibodies.
- Completely human antibodies which recognize a selected epitope can be generated using a technique referred to as "guided selection.”
- a selected non-human monoclonal antibody e.g., a murine antibody
- a completely human antibody recognizing the same epitope Jespers et al. (1994) Bio/technology 12:899-903.
- An antibody directed against a polypeptide of the invention can be used to isolate the polypeptide by standard techniques, such as affinity chromatography or immunoprecipitation. Moreover, such an antibody can be used to detect the protein (e.g., in a cellular lysate or cell supernatant) in order to evaluate the abundance and pattern of expression of the polypeptide.
- the antibodies can also be used diagnostically to monitor protein levels in tissue as part of a clinical testing procedure, e.g., to, for example, determine the efficacy of a given treatment regimen. Detection can be facilitated by coupling the antibody to a detectable substance.
- detectable substances include various enzymes, prosthetic groups, fluorescent materials, luminescent materials, bioluminescent materials, and radioactive materials.
- suitable enzymes include horseradish peroxidase, alkaline phosphatase, beta-galactosidase, or acetylcholinesterase
- suitable prosthetic group complexes include streptavidin/biotin and avidin/biotin
- suitable fluorescent materials include umbelliferone, fluorescein, fluorescein isothiocyanate, rhodamine, dichlorotriazinylamine fluorescein, dansyl chloride or phycoerythrin
- an example of a luminescent material includes luminol
- examples of bioluminescent materials include luciferase, luciferin, and aequorin
- suitable radioactive material include I, I, S or 3 H.
- an antibody may be conjugated to or administered with a therapeutic moiety such as a cytotoxin, a therapeutic agent or a radioactive metal ion.
- a cytotoxin or cytotoxic agent includes any agent that is detrimental to cells.
- Examples include taxol, cytochalasin B, gramicidin D, ethidium bromide, emetine, mitomycin, etoposide, tenoposide, vincristine, vinblastine, colchicin, doxorubicin, daunorubicin, dihydroxy anthracin dione, mitoxantrone, mithramycin, actinomycin D, 1-dehydrotestosterone, glucocorticoids, procaine, tetracaine, lidocaine, propranolol, and puromycin and analogs or homologs thereof.
- Therapeutic agents include, but are not limited to, antimetabolites (e.g., methotrexate, 6-mercaptopurine, 6-thioguanine, cytarabine, 5-fluorouracil decarbazine), alkylating agents (e.g., mechlorethamine, thioepa chlorambucil, melphalan, carmustine (BSNU) and lomustine (CCNU), cyclothosphamide, busulfan, dibromomannitol, streptozotocin, mitomycin C, and cis-dichlorodiamine platinum (II) (DDP) cisplatin), anthracyclines (e.g., daunorubicin (formerly daunomycin) and doxorubicin), antibiotics (e.g., dactinomycin (formerly actinomycin), bleomycin, mithramycin, and anthramycin (AMC)), and anti-mitotic agents (e.g.
- the conjugates of the invention can be used for modifying a given biological response.
- the drug moiety is not to be construed as limited to classical chemical therapeutic agents.
- the drug moiety may be a protein or polypeptide possessing a desired biological activity.
- proteins may include, for example, a toxin such as abrin, ricin A, pseudomonas exotoxin, or diphtheria toxin; a protein such as tumor necrosis factor, alpha-interferon, beta-interferon, nerve growth factor, platelet derived growth factor, tissue plasminogen activator; or, biological response modifiers such as, for example, lymphokines, interleukin-1 ("IL-1"), interleukin-2 (“IL-2”), interleukin-6 (“LL-6”), granulocyte macrophase colony stimulating factor ("GM-CSF”), granulocyte colony stimulating factor (“G- CSF”), or other growth factors.
- IL-1 interleukin-1
- IL-2 interleukin-2
- an antibody can be conjugated to a second antibody to form an antibody heteroconjugate as described by Segal in U.S. Patent No. 4,676,980.
- vectors preferably expression vectors, containing a nucleic acid encoding a polypeptide of the invention (or a portion thereof).
- vector refers to a nucleic acid molecule capable of transporting another nucleic acid to which it has been linked.
- plasmid refers to a circular double stranded DNA loop into which additional DNA segments can be ligated.
- viral vector Another type of vector is a viral vector, wherein additional DNA segments can be ligated into the viral genome.
- Certain vectors are capable of autonomous replication in a host cell into which they are introduced (e.g., bacterial vectors having a bacterial origin of replication and episomal mammalian vectors).
- vectors e.g., non-episomal mammalian vectors
- expression vectors are capable of directing the expression of genes to which they are operably linked.
- expression vectors of utility in recombinant DNA techniques are often in the form of plasmids (vectors).
- the invention is intended to include such other forms of expression vectors, such as viral vectors (e.g., replication defective retroviruses, adenoviruses and adeno- associated viruses), which serve equivalent functions.
- the recombinant expression vectors of the invention comprise a nucleic acid of the invention in a form suitable for expression of the nucleic acid in a host cell.
- the recombinant expression vectors include one or more regulatory sequences, selected on the basis of the host cells to be used for expression, which is operably linked to the nucleic acid sequence to be expressed.
- "operably linked" is intended to mean that the nucleotide sequence of interest is linked to the regulatory sequence(s) in a manner which allows for expression of the nucleotide sequence (e.g., in an in vitro transcription/translation system or in a host cell when the vector is introduced into the host cell).
- regulatory sequence is intended to include promoters, enhancers and other expression control elements (e.g., polyadenylation signals). Such regulatory sequences are described, for example, in Goeddel, Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, CA (1990). Regulatory sequences include those which direct constitutive expression of a nucleotide sequence in many types of host cell and those which direct expression of the nucleotide sequence only in certain host cells (e.g., tissue-specific regulatory sequences). It will be appreciated by those skilled in the art that the design of the expression vector can depend on such factors as the choice of the host cell to be transformed, the level of expression of protein desired, etc.
- the expression vectors of the invention can be introduced into host cells to thereby produce proteins or peptides, including fusion proteins or peptides, encoded by nucleic acids as described herein.
- the recombinant expression vectors of the invention can be designed for expression of a polypeptide of the invention in prokaryotic (e.g., E. coli) or eukaryotic cells (e.g., insect cells (using baculovirus expression vectors), yeast cells or mammalian cells). Suitable host cells are discussed further in Goeddel, supra.
- the recombinant expression vector can be transcribed and translated in vitro, for example using T7 promoter regulatory sequences and T7 polymerase.
- Fusion vectors add a number of amino acids to a protein encoded therein, usually to the amino terminus of the recombinant protein.
- Such fusion vectors typically serve three purposes: 1) to increase expression of recombinant protein; 2) to increase the solubility of the recombinant protein; and 3) to aid in the purification of the recombinant protein by acting as a ligand in affinity purification.
- a proteolytic cleavage site is introduced at the junction of the fusion moiety and the recombinant protein to enable separation of the recombinant protein from the fusion moiety subsequent to purification of the fusion protein.
- enzymes, and their cognate recognition sequences include Factor Xa, thrombin and enterokinase.
- Typical fusion expression vectors include pGEX (Pharmacia Biotech Inc; Smith and Johnson (1988) Gene 67:31-40), pMAL (New England Biolabs, Beverly, MA) and pRIT5 (Pharmacia, Piscataway, NJ) which fuse glutathione S-transferase (GST), maltose E binding protein, or protein A, respectively, to the target recombinant protein.
- GST glutathione S-transferase
- maltose E binding protein or protein A, respectively, to the target recombinant protein.
- Suitable inducible non- fusion E. coli expression vectors include pTrc (Amann et al., (1988) Gene 69:301-315) and pET 1 Id (Studier et al., Gene
- Target gene expression from the pTrc vector relies on host RNA polymerase transcription from a hybrid trp-lac fusion promoter.
- Target gene expression from the pET l id vector relies on transcription from a T7 gnlO-lac fusion promoter mediated by a coexpressed viral RNA polymerase (T7 gnl). This viral polymerase is supplied by host strains BL21(DE3) or HMS174(DE3) from a resident e prophage harboring a T7 gnl gene under the transcriptional control of the lacUV 5 promoter.
- One strategy to maximize recombinant protein expression in E. coli is to express the protein in a host bacteria with an impaired capacity to proteolytically cleave the recombinant protein (Gottesman, Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, California (1990) 119-128).
- Another strategy is to alter the nucleic acid sequence of the nucleic acid to be inserted into an expression vector so that the individual codons for each amino acid are those preferentially utilized in E. coli (Wada et al. (1992) Nucleic Acids Res. 20:2111-2118). Such alteration of nucleic acid sequences of the invention can be carried out by standard DNA synthesis techniques.
- the expression vector is a yeast expression vector.
- yeast expression vectors for expression in yeast S. cerivisae include pYepSecl (Baldari et al. (1987) EMBO J. 6:229-234), pMFa (Kurjan and Herskowitz, (1982) Cell 30:933-943), pJRY88 (Schultz et al. (1987) Gene 54:113-123), pYES2 (Invitrogen Corporation, San Diego, CA), and pPicZ (Invitrogen Corp, San Diego, CA).
- the expression vector is a baculovirus expression vector.
- Baculovirus vectors available for expression of proteins in cultured insect cells include the pAc series (Smith et al. (1983) Mol. Cell Biol. 3:2156-2165) and the pVL series (Lucklow and Summers (1989) Virology 170:31-39).
- a nucleic acid of the invention is expressed in mammalian cells using a mammalian expression vector.
- mammalian expression vectors include pCDM8 (Seed (1987) Nature 329:840) and pMT2PC (Kaufman et al. (1987) EMBO J. 6:187-195).
- the expression vector's control functions are often provided by viral regulatory elements.
- commonly used promoters are derived from polyoma, Adenovirus 2, cytomegalovirus and Simian Virus 40.
- suitable expression systems for both prokaryotic and eukaryotic cells see chapters 16 and 17 of Sambrook et al., supra.
- the recombinant mammalian expression vector is capable of directing expression of the nucleic acid preferentially in a particular cell type (e.g., tissue-specific regulatory elements are used to express the nucleic acid).
- tissue-specific regulatory elements are known in the art.
- suitable tissue-specific promoters include the albumin promoter (liver-specific; Pinkert et al. (1987) Genes Dev. 1:268-277), lymphoid-specific promoters (Calame and Eaton (1988) Adv. Immunol. 43:235-275), in particular promoters of T cell receptors (Winoto and Baltimore (1989) EMBO J.
- promoters are also encompassed, for example the murine hox promoters (Kessel and Gruss (1990) Science 249:374-379) and the a-fetoprotein promoter (Campes and Tilghman (1989) Genes Dev. 3:537-546).
- the invention further provides a recombinant expression vector comprising a DNA molecule of the invention cloned into the expression vector in an antisense orientation. That is, the DNA molecule is operably linked to a regulatory sequence in a manner which allows for expression (by transcription of the DNA molecule) of an RNA molecule which is antisense to the mRNA encoding a polypeptide of the invention.
- Regulatory sequences operably linked to a nucleic acid cloned in the antisense orientation can be chosen which direct the continuous expression of the antisense RNA molecule in a variety of cell types, for instance viral promoters and/or enhancers, or regulatory sequences can be chosen which direct constitutive, tissue specific or cell type specific expression of antisense RNA.
- the antisense expression vector can be in the form of a recombinant plasmid, phagemid or attenuated virus in which antisense nucleic acids are produced under the control of a high efficiency regulatory region, the activity of which can be determined by the cell type into which the vector is introduced.
- a high efficiency regulatory region the activity of which can be determined by the cell type into which the vector is introduced.
- host cell and "recombinant host cell” are used interchangeably herein. It is understood that such terms refer not only to the particular subject cell but to the progeny or potential progeny of such a cell. Because certain modifications may occur in succeeding generations due to either mutation or environmental influences, such progeny may not, in fact, be identical to the parent cell, but are still included within the scope of the term as used herein.
- a host cell can be any prokaryotic (e.g., E. coli) or eukaryotic cell (e.g., insect cells, yeast or mammalian cells).
- prokaryotic e.g., E. coli
- eukaryotic cell e.g., insect cells, yeast or mammalian cells.
- Vector DNA can be introduced into prokaryotic or eukaryotic cells via conventional transformation or transfection techniques.
- transformation and “transfection” are intended to refer to a variety of art- recognized techniques for introducing foreign nucleic acid into a host cell, including calcium phosphate or calcium chloride co-precipitation, DEAE-dextran-mediated transfection, lipofection, or electroporation. Suitable methods for transforming or transfecting host cells can be found in Sambrook, et al. (supra), and other laboratory manuals.
- a gene that encodes a selectable marker (e.g., for resistance to antibiotics) is generally introduced into the host cells along with the gene of interest.
- selectable markers include those which confer resistance to drugs, such as G418, hygromycin and methotrexate.
- Cells stably transfected with the introduced nucleic acid can be identified by drug selection (e.g., cells that have incorporated the selectable marker gene will survive, while the other cells die).
- a host cell of the invention such as a prokaryotic or eukaryotic host cell in culture, can be used to produce a polypeptide of the invention. Accordingly, the invention further provides methods for producing a polypeptide of the invention using the host cells of the invention. In one embodiment, the method comprises culturing the host cell of invention (into which a recombinant expression vector encoding a polypeptide of the invention has been introduced) in a suitable medium such that the polypeptide is produced. In another embodiment, the method further comprises isolating the polypeptide from the medium or the host cell.
- an endogenous TANGO 241 or TANGO 242 gene within a cell line may be modified by inserting a heterologous DNA regulatory element into the genome of a stable cell line or a recombinant cell such that the inserted regulatory element is operatively linked with the endogenous TANGO 241 or TANGO 242 gene.
- a heterologous DNA regulatory element into the genome of a stable cell line or a recombinant cell such that the inserted regulatory element is operatively linked with the endogenous TANGO 241 or TANGO 242 gene.
- an endogenous TANGO 241 or TANGO 242 gene that is normally transcriptionally silent or is expressed at a very low level may be activated by inserting a regulatory element which is capable of promoting the expression of the gene in the cell line.
- a promiscuous regulatory element that works across numerous or all cell types may be used.
- a host cell of the invention is a fertilized oocyte or an embryonic stem cell into which sequences encoding a polypeptide of the invention have been introduced.
- transgenic animal is a non-human animal, preferably a mammal, more preferably a rodent such as a rat or mouse, in which one or more of the cells of the animal includes a transgene.
- transgenic animals include non-human primates, sheep, dogs, cows, goats, chickens, amphibians, etc.
- a transgene is exogenous DNA which is integrated into the genome of a cell from which a transgenic animal develops and which remains in the genome of the mature animal, thereby directing the expression of an encoded gene product in one or more cell types or tissues of the transgenic animal.
- an "homologous recombinant animal” is a non-human animal, preferably a mammal, more preferably a mouse, in which an endogenous gene has been altered by homologous recombination between the endogenous gene and an exogenous DNA molecule introduced into a cell of the animal, e.g., an embryonic cell of the animal, prior to development of the animal.
- a transgenic animal of the invention can be created by introducing nucleic acid encoding a polypeptide of the invention (or a homologue thereof) into the male pronuclei of a fertilized oocyte, e.g., by microinjection, retroviral infection, and allowing the oocyte to develop in a pseudopregnant female foster animal.
- Intronic sequences and polyadenylation signals can also be included in the transgene to increase the efficiency of expression of the transgene.
- a tissue-specific regulatory sequence(s) can be operably linked to the transgene to direct expression of the polypeptide of the invention to particular cells.
- transgenic founder animal can be identified based upon the presence of the transgene in its genome and/or expression of mRNA encoding the transgene in tissues or cells of the animals. A transgenic founder animal can then be used to breed additional animals carrying the transgene. Moreover, transgenic animals carrying the transgene can further be bred to other transgenic animals carrying other transgenes.
- a vector which contains at least a portion of a gene encoding a polypeptide of the invention into which a deletion, addition or substitution has been introduced to thereby alter, e.g., functionally disrupt, the gene.
- the vector is designed such that, upon homologous recombination, the endogenous gene is functionally disrupted (i.e., no longer encodes a functional protein; also referred to as a "knock out" vector).
- the vector can be designed such that, upon homologous recombination, the endogenous gene is mutated or otherwise altered but still encodes functional protein (e.g., the upstream regulatory region can be altered to thereby alter the expression of the endogenous protein).
- the altered portion of the gene is flanked at its 5' and 3' ends by additional nucleic acid of the gene to allow for homologous recombination to occur between the exogenous gene carried by the vector and an endogenous gene in an embryonic stem cell.
- the additional flanking nucleic acid sequences are of sufficient length for successful homologous recombination with the endogenous gene.
- flanking DNA both at the 5' and 3' ends
- flanking DNA both at the 5' and 3' ends
- the vector is introduced into an embryonic stem cell line (e.g., by electroporation) and cells in which the introduced gene has homologously recombined with the endogenous gene are selected (see, e.g., Li et al. (1992) Cell 69:915).
- the selected cells are then injected into a blastocyst of an animal (e.g., a mouse) to form aggregation chimeras (see, e.g., Bradley in Teratocarcinomas and Embryonic Stem Cells: A Practical Approach, Robertson, ed. (IRL, Oxford, 1987) pp. 113-152).
- a chimeric embryo can then be implanted into a suitable pseudopregnant female foster animal and the embryo brought to term.
- Progeny harboring the homologously recombined DNA in their germ cells can be used to breed animals in which all cells of the animal contain the homologously recombined DNA by germline transmission of the transgene.
- transgenic non-human animals can be produced which contain selected systems which allow for regulated expression of the transgene.
- a system is the cre/loxP recombinase system of bacteriophage PI.
- cre/loxP recombinase system of bacteriophage PI.
- FLP recombinase system of Saccharomyces cerevisiae (O'Gorman et al. (1991) Science 251:1351-1355.
- mice containing transgenes encoding both the Cre recombinase and a selected protein are required.
- Such animals can be provided through the construction of "double" transgenic animals, e.g., by mating two transgenic animals, one containing a transgene encoding a selected protein and the other containing a transgene encoding a recombinase.
- Clones of the non-human transgenic animals described herein can also be produced according to the methods described in Wilmut et al. (1997) Nature 385:810-813 and PCT Publication NOS. WO 97/07668 and WO 97/07669.
- compositions suitable for administration can be inco ⁇ orated into pharmaceutical compositions suitable for administration.
- Such compositions typically comprise the nucleic acid molecule, protein, or antibody and a pharmaceutically acceptable carrier.
- pharmaceutically acceptable carrier is intended to include any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and abso ⁇ tion delaying agents, and the like, compatible with pharmaceutical administration.
- the use of such media and agents for pharmaceutically active substances is well known in the art. Except insofar as any conventional media or agent is incompatible with the active compound, use thereof in the compositions is contemplated. Supplementary active compounds can also be inco ⁇ orated into the compositions.
- the invention includes methods for preparing pharmaceutical compositions for modulating the expression or activity of a polypeptide or nucleic acid of the invention. Such methods comprise formulating a pharmaceutically acceptable carrier with an agent which modulates expression or activity of a polypeptide or nucleic acid of the invention. Such compositions can further include additional active agents. Thus, the invention further includes methods for preparing a pharmaceutical composition by formulating a pharmaceutically acceptable carrier with an agent which modulates expression or activity of a polypeptide or nucleic acid of the invention and one or more addtional active compounds.
- a pharmaceutical composition of the invention is formulated to be compatible with its intended route of administration.
- routes of administration include parenteral, e.g., intravenous, intradermal, subcutaneous, oral (e.g., inhalation), transdermal (topical), transmucosal, and rectal administration.
- Solutions or suspensions used for parenteral, intradermal, or subcutaneous application can include the following components: a sterile diluent such as water for injection, saline solution, fixed oils, polyethylene glycols, glycerine, propylene glycol or other synthetic solvents; antibacterial agents such as benzyl alcohol or methyl parabens; antioxidants such as ascorbic acid or sodium bisulfite; chelating agents such as ethylenediaminetetraacetic acid; buffers such as acetates, citrates or phosphates and agents for the adjustment of tonicity such as sodium chloride or dextrose. pH can be adjusted with acids or bases, such as hydrochloric acid or sodium hydroxide.
- the parenteral preparation can be enclosed in ampoules, disposable syringes or multiple dose vials made of glass or plastic.
- compositions suitable for injectable use include sterile aqueous solutions (where water soluble) or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersions.
- suitable carriers include physiological saline, bacteriostatic water, Cremophor EL (BASF; Parsippany, NJ) or phosphate buffered saline (PBS).
- the composition must be sterile and should be fluid to the extent that easy syringability exists. It must be stable under the conditions of manufacture and storage and must be preserved against the contaminating action of microorganisms such as bacteria and fungi.
- the carrier can be a solvent or dispersion medium containing, for example, water, ethanol, polyol (for example, glycerol, propylene glycol, and liquid polyetheylene glycol, and the like), and suitable mixtures thereof.
- the proper fluidity can be maintained, for example, by the use of a coating such as lecithin, by the maintenance of the required particle size in the case of dispersion and by the use of surfactants.
- Prevention of the action of microorganisms can be achieved by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, ascorbic acid, thimerosal, and the like.
- isotonic agents for example, sugars, polyalcohols such as mannitol, sorbitol, sodium chloride in the composition.
- Prolonged abso ⁇ tion of the injectable compositions can be brought about by including in the composition an agent which delays abso ⁇ tion, for example, aluminum monostearate and gelatin.
- Sterile injectable solutions can be prepared by inco ⁇ orating the active compound (e.g., a polypeptide or antibody) in the required amount in an appropriate solvent with one or a combination of ingredients enumerated above, as required, followed by filtered sterilization.
- the active compound e.g., a polypeptide or antibody
- dispersions are prepared by inco ⁇ orating the active compound into a sterile vehicle which contains a basic dispersion medium and the required other ingredients from those enumerated above.
- the preferred methods of preparation are vacuum drying and freeze-drying which yields a powder of the active ingredient plus any additional desired ingredient from a previously sterile-filtered solution thereof.
- Oral compositions generally include an inert diluent or an edible carrier. They can be enclosed in gelatin capsules or compressed into tablets. For the pu ⁇ ose of oral therapeutic administration, the active compound can be inco ⁇ orated with excipients and used in the form of tablets, troches, or capsules. Oral compositions can also be prepared using a fluid carrier for use as a mouthwash, wherein the compound in the fluid carrier is applied orally and swished and expectorated or swallowed.
- compositions can contain any of the following ingredients, or compounds of a similar nature: a binder such as microcrystalline cellulose, gum tragacanth or gelatin; an excipient such as starch or lactose, a disintegrating agent such as alginic acid, Primogel, or corn starch; a lubricant such as magnesium stearate or Sterotes; a glidant such as colloidal silicon dioxide; a sweetening agent such as sucrose or saccharin; or a flavoring agent such as peppermint, methyl salicylate, or orange flavoring.
- a binder such as microcrystalline cellulose, gum tragacanth or gelatin
- an excipient such as starch or lactose, a disintegrating agent such as alginic acid, Primogel, or corn starch
- a lubricant such as magnesium stearate or Sterotes
- a glidant such as colloidal silicon dioxide
- a sweetening agent such as sucrose or saccharin
- the compounds are delivered in the form of an aerosol spray from a pressurized container or dispenser which contains a suitable propellant, e.g., a gas such as carbon dioxide, or a nebulizer.
- a suitable propellant e.g., a gas such as carbon dioxide, or a nebulizer.
- Systemic administration can also be by transmucosal or transdermal means.
- penetrants appropriate to the barrier to be permeated are used in the formulation.
- penetrants are generally known in the art, and include, for example, for transmucosal administration, detergents, bile salts, and fusidic acid derivatives.
- Transmucosal administration can be accomplished through the use of nasal sprays or suppositories.
- the active compounds are formulated into ointments, salves, gels, or creams as generally known in the art.
- the compounds can also be prepared in the form of suppositories (e.g., with conventional suppository bases such as cocoa butter and other glycerides) or retention enemas for rectal delivery.
- the active compounds are prepared with carriers that will protect the compound against rapid elimination from the body, such as a controlled release formulation, including implants and microencapsulated delivery systems.
- Biodegradable, biocompatible polymers can be used, such as ethylene vinyl acetate, polyanhydrides, polyglycolic acid, collagen, polyorthoesters, and polylactic acid. Methods for preparation of such formulations will be apparent to those skilled in the art.
- the materials can also be obtained commercially from Alza Co ⁇ oration and Nova Pharmaceuticals, Inc.
- Liposomal suspensions can also be used as pharmaceutically acceptable carriers. These can be prepared according to methods known to those skilled in the art, for example, as described in U.S. Patent No. 4,522,811.
- Dosage unit form refers to physically discrete units suited as unitary dosages for the subject to be treated; each unit containing a predetermined quantity of active compound calculated to produce the desired therapeutic effect in association with the required pharmaceutical carrier.
- the specification for the dosage unit forms of the invention are dictated by and directly dependent on the unique characteristics of the active compound and the particular therapeutic effect to be achieved, and the limitations inherent in the art of compounding such an active compound for the treatment of individuals.
- the preferred dosage is 0.1 mg/kg to 100 mg/kg of body weight (generally 10 mg/kg to 20 mg/kg). If the antibody is to act in the brain, a dosage of 50 mg/kg to 100 mg/kg is usually appropriate. Generally, partially human antibodies and fully human antibodies have a longer half-life within the human body than other antibodies. Accordingly, lower dosages and less frequent administration is often possible. Modifications such as lipidation can be used to stabilize antibodies and to enhance uptake and tissue penetration (e.g., into the brain). A method for lipidation of antibodies is described by Cruikshank et al. ((1997) J. Acquired Immune Deficiency Syndromes and Human Retrovirology 14:193).
- the nucleic acid molecules of the invention can be inserted into vectors and used as gene therapy vectors.
- Gene therapy vectors can be delivered to a subject by, for example, intravenous injection, local administration (U.S. Patent 5,328,470) or by stereotactic injection (see, e.g., Chen et al. (1994) Proc. Natl. Acad. Sci. USA 91 :3054-3057).
- the pharmaceutical preparation of the gene therapy vector can include the gene therapy vector in an acceptable diluent, or can comprise a slow release matrix in which the gene delivery vehicle is imbedded.
- the pharmaceutical preparation can include one or more cells which produce the gene delivery system.
- compositions can be included in a container, pack, or dispenser together with instructions for administration.
- nucleic acid molecules, proteins, protein homologues, and antibodies described herein can be used in one or more of the following methods: a) screemng assays; b) detection assays (e.g., chromosomal mapping, tissue typing, forensic biology); c) predictive medicine (e.g., diagnostic assays, prognostic assays, monitoring clinical trials, and pharmacogenomics); and d) methods of treatment (e.g., therapeutic and prophylactic).
- polypeptides of the invention can to used to (i) modulate cellular proliferation; (ii) modulate cell migration and chemotaxis; (iii) modulate cellular differentiation; and/or (iv) modulate angiogenesis.
- the isolated nucleic acid molecules of the invention can be used to express proteins (e.g., via a recombinant expression vector in a host cell in gene therapy applications), to detect mRNA (e.g., in a biological sample) or a genetic lesion, and to modulate activity of a polypeptide of the invention.
- the polypeptides of the invention can be used to screen drugs or compounds which modulate activity or expression of a polypeptide of the invention as well as to treat disorders characterized by insufficient or excessive production of a protein of the invention or production of a form of a protein of the invention which has decreased or aberrant activity compared to the wild type protein.
- the antibodies of the invention can be used to detect and isolate a protein of the and modulate activity of a protein of the invention.
- This invention further pertains to novel agents identified by the above- described screening assays and uses thereof for treatments as described herein.
- the invention provides a method (also referred to herein as a "screening assay") for identifying modulators, i.e., candidate or test compounds or agents (e.g., peptides, peptidomimetics, small molecules or other drugs) which bind to polypeptide of the invention or have a stimulatory or inhibitory effect on, for example, expression or activity of a polypeptide of the invention.
- modulators i.e., candidate or test compounds or agents (e.g., peptides, peptidomimetics, small molecules or other drugs) which bind to polypeptide of the invention or have a stimulatory or inhibitory effect on, for example, expression or activity of a polypeptide of the invention.
- the invention provides assays for screening candidate or test compounds which bind to or modulate the activity of the membrane-bound form of a polypeptide of the invention or biologically active portion thereof.
- the test compounds of the present invention can be obtained using any of the numerous approaches in combinatorial library methods known in the art, including: biological libraries; spatially addressable parallel solid phase or solution phase libraries; synthetic library methods requiring deconvolution; the "one-bead one-compound” library method; and synthetic library methods using affinity chromatography selection.
- the biological library approach is limited to peptide libraries, while the other four approaches are applicable to peptide, non-peptide oligomer or small molecule libraries of compounds (Lam (1997) Anticancer Drug Des. 12:145).
- an assay is a cell-based assay in which a cell which expresses a membrane-bound form of a polypeptide of the invention, or a biologically active portion thereof, on the cell surface is contacted with a test compound and the ability of the test compound to bind to the polypeptide determined.
- the cell for example, can be a yeast cell or a cell of mammalian origin. Determining the ability of the test compound to bind to the polypeptide can be accomplished, for example, by coupling the test compound with a radioisotope or enzymatic label such that binding of the test compound to the polypeptide or biologically active portion thereof can be determined by detecting the labeled compound in a complex.
- test compounds can be labeled with 1251, 35S, 14C, or 3H, either directly or indirectly, and the radioisotope detected by direct counting of radioemmission or by scintillation counting.
- test compounds can be enzymatically labeled with, for example, horseradish peroxidase, alkaline phosphatase, or luciferase, and the enzymatic label detected by determination of conversion of an appropriate substrate to product.
- the assay comprises contacting a cell which expresses a membrane- bound form of a polypeptide of the invention, or a biologically active portion thereof, on the cell surface with a known compound which binds the polypeptide to form an assay mixture, contacting the assay mixture with a test compound, and determining the ability of the test compound to interact with the polypeptide, wherein determining the ability of the test compound to interact with the polypeptide comprises determining the ability of the test compound to preferentially bind to the polypeptide or a biologically active portion thereof as compared to the known compound.
- an assay is a cell-based assay comprising contacting a cell expressing a membrane-bound form of a polypeptide of the invention, or a biologically active portion thereof, on the cell surface with a test compound and determining the ability of the test compound to modulate (e.g., stimulate or inhibit) the activity of the polypeptide or biologically active portion thereof. Determining the ability of the test compound to modulate the activity of the polypeptide or a biologically active portion thereof can be accomplished, for example, by determining the ability of the polypeptide protein to bind to or interact with a target molecule.
- a target molecule is a molecule with which a selected polypeptide (e.g., a polypeptide of the invention binds or interacts with in nature, for example, a molecule on the surface of a cell which expresses the selected protein, a molecule on the surface of a second cell, a molecule in the extracellular milieu, a molecule associated with the internal surface of a cell membrane or a cytoplasmic molecule.
- a target molecule can be a polypeptide of the invention or some other polypeptide or protein.
- a target molecule can be a component of a signal transduction pathway which facilitates transduction of an extracellular signal (e.g., a signal generated by binding of a compound to a polypeptide of the invention) through the cell membrane and into the cell or a second intercellular protein which has catalytic activity or a protein which facilitates the association of downstream signaling molecules with a polypeptide of the invention. Determining the ability of a polypeptide of the invention to bind to or interact with a target molecule can be accomplished by determining the activity of the target molecule.
- an extracellular signal e.g., a signal generated by binding of a compound to a polypeptide of the invention
- the activity of the target molecule can be determined by detecting induction of a cellular second messenger of the target (e.g., intracellular Ca2+, diacylglycerol, IP3, etc.), detecting catalytic/enzymatic activity of the target on an appropriate substrate, detecting the induction of a reporter gene (e.g., a regulatory element that is responsive to a polypeptide of the invention operably linked to a nucleic acid encoding a detectable marker, e.g. luciferase), or detecting a cellular response, for example, cellular differentiation, or cell proliferation.
- a reporter gene e.g., a regulatory element that is responsive to a polypeptide of the invention operably linked to a nucleic acid encoding a detectable marker, e.g. luciferase
- a cellular response for example, cellular differentiation, or cell proliferation.
- an assay of the present invention is a cell-free assay comprising contacting a polypeptide of the invention or biologically active portion thereof with a test compound and determining the ability of the test compound to bind to the polypeptide or biologically active portion thereof. Binding of the test compound to the polypeptide can be determined either directly or indirectly as described above.
- the assay includes contacting the polypeptide of the invention or biologically active portion thereof with a known compound which binds the polypeptide to form an assay mixture, contacting the assay mixture with a test compound, and determining the ability of the test compound to interact with the polypeptide, wherein determining the ability of the test compound to interact with the polypeptide comprises determining the ability of the test compound to preferentially bind to the polypeptide or biologically active portion thereof as compared to the known compound.
- an assay is a cell-free assay comprising contacting a polypeptide of the invention or biologically active portion thereof with a test compound and determining the ability of the test compound to modulate (e.g., stimulate or inhibit) the activity of the polypeptide or biologically active portion thereof. Determining the ability of the test compound to modulate the activity of the polypeptide can be accomplished, for example, by determining the ability of the polypeptide to bind to a target molecule by one of the methods described above for determimng direct binding. In an alternative embodiment, determining the ability of the test compound to modulate the activity of the polypeptide can be accomplished by determining the ability of the polypeptide of the invention to further modulate the target molecule. For example, the catalytic/enzymatic activity of the target molecule on an appropriate substrate can be determined as previously described.
- the cell-free assay comprises contacting a polypeptide of the invention or biologically active portion thereof with a known compound which binds the polypeptide to form an assay mixture, contacting the assay mixture with a test compound, and determining the ability of the test compound to interact with the polypeptide, wherein determining the ability of the test compound to interact with the polypeptide comprises determining the ability of the polypeptide to preferentially bind to or modulate the activity of a target molecule.
- the cell-free assays of the present invention are amenable to use of both a soluble form or the membrane-bound form of a polypeptide of the invention.
- solubilizing agent such that the membrane-bound form of the polypeptide is maintained in solution.
- solubilizing agents include non-ionic detergents such as n-octylglucoside, n-dodecylglucoside, n- octylmaltoside, octanoyl-N-methylglucamide, decanoyl-N-methylglucamide, Triton X-100, Triton X-l 14, Thesit, Isotridecypoly(ethylene glycol ether)n, 3-[(3- cholamidopropyl)dimethylamminio]-l -propane sulfonate (CHAPS), 3-[(3- cholamidopropyl)dimethylammimo]-2-hydroxy-l-propane sulfonate (CHAPSO),
- the polypeptide of the invention may be desirable to immobilize either the polypeptide of the invention or its target molecule to facilitate separation of complexed from uncomplexed forms of one or both of the proteins, as well as to accommodate automation of the assay.
- Binding of a test compound to the polypeptide, or interaction of the polypeptide with a target molecule in the presence and absence of a candidate compound can be accomplished in any vessel suitable for containing the reactants.
- vessels include microtitre plates, test tubes, and micro-centrifuge tubes.
- a fusion protein can be provided which adds a domain that allows one or both of the proteins to be bound to a matrix.
- glutathione-S- transferase fusion proteins or glutathione-S -transferase fusion proteins can be adsorbed onto glutathione sepharose beads (Sigma Chemical; St.
- the test compound or the test compound and either the non-adsorbed target protein or A polypeptide of the invention are then combined with the test compound or the test compound and either the non-adsorbed target protein or A polypeptide of the invention, and the mixture incubated under conditions conducive to complex formation (e.g., at physiological conditions for salt and pH).
- the beads or microtitre plate wells are washed to remove any unbound components and complex formation is measured either directly or indirectly, for example, as described above.
- the complexes can be dissociated from the matrix, and the level of binding or activity of the polypeptide of the invention can be determined using standard techniques.
- polypeptide of the invention or its target molecule can be immobilized utilizing conjugation of biotin and streptavidin.
- Biotinylated polypeptide of the invention or target molecules can be prepared from biotin-NHS (N-hydroxy-succinimide) using techniques well known in the art (e.g., biotinylation kit, Pierce Chemicals; Rockford, IL), and immobilized in the wells of streptavidin-coated 96 well plates (Pierce Chemical).
- antibodies reactive with the polypeptide of the invention or target molecules but which do not interfere with binding of the polypeptide of the invention to its target molecule can be derivatized to the wells of the plate, and unbound target or polypeptidede of the invention trapped in the wells by antibody conjugation.
- Methods for detecting such complexes include immunodetection of complexes using antibodies reactive with the polypeptide of the invention or target molecule, as well as enzyme-linked assays which rely on detecting an enzymatic activity associated with the polypeptide of the invention or target molecule.
- modulators of expression of a polypeptide of the invention are identified in a method in which a cell is contacted with a candidate compound and the expression of the selected mRNA or protein (i.e., the mRNA or protein corresponding to a polypeptide or nucleic acid of the invention) in the cell is determined.
- the level of expression of the selected mRNA or protein in the presence of the candidate compound is compared to the level of expression of the selected mRNA or protein in the absence of the candidate compound.
- the candidate compound can then be identified as a modulator of expression of the polypeptide of the invention based on this comparison. For example, when expression of the selected mRNA or protein is greater (statistically significantly greater) in the presence of the candidate compound than in its absence, the candidate compound is identified as a stimulator of the selected mRNA or protein expression.
- the candidate compound when expression of the selected mRNA or protein is less (statistically significantly less) in the presence of the candidate compound than in its absence, the candidate compound is identified as an inhibitor of the selected mRNA or protein expression.
- the level of the selected mRNA or protein expression in the cells can be determined by methods described herein.
- a polypeptide of the inventions can be used as "bait proteins" in a two-hybrid assay or three hybrid assay (see, e.g., U.S. Patent No. 5,283,317; Zervos et al. (1993) Cell 72:223-232; Madura et al. (1993) J. Biol. Chem. 268:12046-12054; Bartel et al.
- cDNA sequences identified herein can be used in numerous ways as polynucleotide reagents. For example, these sequences can be used to: (i) map their respective genes on a chromosome and, thus, locate gene regions associated with genetic disease; (ii) identify an individual from a minute biological sample (tissue typing); and (iii) aid in forensic identification of a biological sample. These applications are described in the subsections below.
- sequence (or a portion of the sequence) of a gene has been isolated, this sequence can be used to map the location of the gene on a chromosome. Accordingly, nucleic acid molecules described herein or fragments thereof, can be used to map the location of the corresponding genes on a chromosome. The mapping of the sequences to chromosomes is an important first step in correlating these sequences with genes associated with disease.
- genes can be mapped to chromosomes by preparing PCR primers (preferably 15-25 bp in length) from the sequence of a gene of the invention.
- Computer analysis of the sequence of a gene of the invention can be used to rapidly select primers that do not span more than one exon in the genomic DNA, thus complicating the amplification process.
- These primers can then be used for PCR screening of somatic cell hybrids containing individual human chromosomes. Only those hybrids containing the human gene corresponding to the gene sequences will yield an amplified fragment.
- D'Eustachio et al. see D'Eustachio et al. ((1983) Science 220:919-924).
- PCR mapping of somatic cell hybrids is a rapid procedure for assigning a particular sequence to a particular chromosome. Three or more sequences can be assigned per day using a single thermal cycler. Using the nucleic acid sequences of the invention to design oligonucleotide primers, sublocalization can be achieved with panels of fragments from specific chromosomes. Other mapping strategies which can similarly be used to map a gene to its chromosome include in situ hybridization (described in Fan et al. (1990) Proc. Natl. Acad. Sci. USA 87:6223- 27), pre-screening with labeled flow-sorted chromosomes, and pre-selection by hybridization to chromosome specific cDNA libraries.
- Fluorescence in situ hybridization (FISH) of a DNA sequence to a metaphase chromosomal spread can further be used to provide a precise chromosomal location in one step.
- FISH Fluorescence in situ hybridization
- Reagents for chromosome mapping can be used individually to mark a single chromosome or a single site on that chromosome, or panels of reagents can be used for marking multiple sites and/or multiple chromosomes. Reagents co ⁇ esponding to noncoding regions of the genes actually are prefened for mapping pu ⁇ oses.
- Coding sequences are more likely to be conserved within gene families, thus increasing the chance of cross hybridizations during chromosomal mapping.
- the physical position of the sequence on the chromosome can be correlated with genetic map data. (Such data are found, for example, in V. McKusick, Mendelian Inheritance in Man, available on-line through Johns Hopkins University Welch Medical Library).
- the relationship between genes and disease, mapped to the same chromosomal region can then be identified through linkage analysis (co-inheritance of physically adjacent genes), described in, e.g., Egeland et al. (1987) Nature 325:783-787.
- differences in the DNA sequences between individuals affected and unaffected with a disease associated with a gene of the invention can be determined. If a mutation is observed in some or all of the affected individuals but not in any unaffected individuals, then the mutation is likely to be the causative agent of the particular disease. Comparison of affected and unaffected individuals generally involves first looking for structural alterations in the chromosomes such as deletions or translocations that are visible from chromosome spreads or detectable using PCR based on that DNA sequence. Ultimately, complete sequencing of genes from several individuals can be performed to confirm the presence of a mutation and to distinguish mutations from polymo ⁇ hisms.
- the nucleic acid sequences of the present invention can also be used to identify individuals from minute biological samples.
- the United States military for example, is considering the use of restriction fragment length polymo ⁇ hism (RFLP) for identification of its personnel.
- RFLP restriction fragment length polymo ⁇ hism
- an individual's genomic DNA is digested with one or more restriction enzymes, and probed on a Southern blot to yield unique bands for identification.
- This method does not suffer from the current limitations of "Dog Tags" which can be lost, switched, or stolen, making positive identification difficult.
- the sequences of the present invention are useful as additional DNA markers for RFLP (described in U.S. Patent 5,272,057).
- sequences of the present invention can be used to provide an alternative technique which determines the actual base-by-base DNA sequence of selected portions of an individual's genome.
- the nucleic acid sequences described herein can be used to prepare two PCR primers from the 5' and 3' ends of the sequences. These primers can then be used to amplify an individual's DNA and subsequently sequence it. Panels of corresponding DNA sequences from individuals, prepared in this manner, can provide unique individual identifications, as each individual will have a unique set of such DNA sequences due to allelic differences.
- the sequences of the present invention can be used to obtain such identification sequences from individuals and from tissue.
- the nucleic acid sequences of the invention uniquely represent portions of the human genome.
- allelic variation occurs to some degree in the coding regions of these sequences, and to a greater degree in the noncoding regions. It is estimated that allelic variation between individual humans occurs with a frequency of about once per each 500 bases.
- Each of the sequences described herein can, to some degree, be used as a standard against which DNA from an individual can be compared for identification pu ⁇ oses. Because greater numbers of polymo ⁇ hisms occur in the noncoding regions, fewer sequences are necessary to differentiate individuals.
- the noncoding sequences of SEQ ID NO:l or 11 can comfortably provide positive individual identification with a panel of perhaps 10 to 1,000 primers which each yield a noncoding amplified sequence of 100 bases. If predicted coding sequences, such as those in SEQ ID NO:3, or 13, are used, a more appropriate number of primers for positive individual identification would be 500- 2,000.
- a panel of reagents from the nucleic acid sequences described herein is used to generate a unique identification database for an individual, those same reagents can later be used to identify tissue from that individual.
- positive identification of the individual, living or dead can be made from extremely small tissue samples.
- DNA-based identification techniques can also be used in forensic biology.
- Forensic biology is a scientific field employing genetic typing of biological evidence found at a crime scene as a means for positively identifying, for example, a pe ⁇ etrator of a crime.
- PCR technology can be used to amplify DNA sequences taken from very small biological samples such as tissues, e.g., hair or skin, or body fluids, e.g., blood, saliva, or semen found at a crime scene. The amplified sequence can then be compared to a standard, thereby allowing identification of the origin of the biological sample.
- sequences of the present invention can be used to provide polynucleotide reagents, e.g., PCR primers, targeted to specific loci in the human genome, which can enhance the reliability of DNA-based forensic identifications by, for example, providing another "identification marker" (i.e. another DNA sequence that is unique to a particular individual).
- an "identification marker” i.e. another DNA sequence that is unique to a particular individual.
- actual base sequence information can be used for identification as an accurate alternative to patterns formed by restriction enzyme generated fragments.
- Sequences targeted to noncoding regions are particularly appropriate for this use as greater numbers of polymo ⁇ hisms occur in the noncoding regions, making it easier to differentiate individuals using this technique.
- polynucleotide reagents include the nucleic acid sequences of the invention or portions thereof, e.g., fragments derived from noncoding regions having a length of at least 20 or 30 bases.
- nucleic acid sequences described herein can further be used to provide polynucleotide reagents, e.g., labeled or labelable probes which can be used in, for example, an in situ hybridization technique, to identify a specific tissue, e.g., brain tissue. This can be very useful in cases where a forensic pathologist is presented with a tissue of unknown origin. Panels of such probes can be used to identify tissue by species and/or by organ type.
- polynucleotide reagents e.g., labeled or labelable probes which can be used in, for example, an in situ hybridization technique, to identify a specific tissue, e.g., brain tissue. This can be very useful in cases where a forensic pathologist is presented with a tissue of unknown origin. Panels of such probes can be used to identify tissue by species and/or by organ type.
- the present invention also pertains to the field of predictive medicine in which diagnostic assays, prognostic assays, pharmacogenomics, and monitoring clinical trails are used for prognostic (predictive) pu ⁇ oses to thereby treat an individual prophylactically.
- diagnostic assays for determimng expression of a polypeptide or nucleic acid of the invention and/or activity of a polypeptide of the invention in the context of a biological sample (e.g., blood, serum, cells, tissue) to thereby determine whether an individual is afflicted with a disease or disorder, or is at risk of developing a disorder, associated with aberrant expression or activity of a polypeptide of the invention.
- a biological sample e.g., blood, serum, cells, tissue
- the invention also provides for prognostic (or predictive) assays for determining whether an individual is at risk of developing a disorder associated with abe ⁇ ant expression or activity of a polypeptide of the invention. For example, mutations in a gene of the invention can be assayed in a biological sample. Such assays can be used for prognostic or predictive pu ⁇ ose to thereby prophylactically treat an individual prior to the onset of a disorder characterized by or associated with aberrant expression or activity of a polypeptide of the invention.
- Another aspect of the invention provides methods for expression of a nucleic acid or polypeptide of the invention or activity of a polypeptide of the invention in an individual to thereby select appropriate therapeutic or prophylactic agents for that individual (refe ⁇ ed to herein as "pharmacogenomics").
- Pharmacogenomics allows for the selection of agents (e.g., drugs) for therapeutic or prophylactic treatment of an individual based on the genotype of the individual (e.g., the genotype of the individual examined to determine the ability of the individual to respond to a particular agent).
- Yet another aspect of the invention pertains to monitoring the influence of agents (e.g., drugs or other compounds) on the expression or activity of a polypeptide of the invention in clinical trials.
- An exemplary method for detecting the presence or absence of a polypeptide or nucleic acid of the invention in a biological sample involves obtaining a biological sample from a test subject and contacting the biological sample with a compound or an agent capable of detecting a polypeptide or nucleic acid (e.g., mRNA, genomic DNA) of the invention such that the presence of a polypeptide or nucleic acid of the invention is detected in the biological sample.
- a preferred agent for detecting mRNA or genomic DNA encoding a polypeptide of the invention is a labeled nucleic acid probe capable of hybridizing to mRNA or genomic DNA encoding a polypeptide of the invention.
- the nucleic acid probe can be, for example, a full-length cDNA, such as the nucleic acid of SEQ ID NO:l, or 11, or a portion thereof, such as an oligonucleotide of at least 15, 30, 50, 100, 250 or 500 nucleotides in length and sufficient to specifically hybridize under stringent conditions to a mRNA or genomic DNA encoding a polypeptide of the invention.
- a preferred agent for detecting a polypeptide of the invention is an antibody capable of binding to a polypeptide of the invention, preferably an antibody with a detectable label.
- Antibodies can be polyclonal, or more preferably, monoclonal.
- an intact antibody, or a fragment thereof can be used.
- labeled with regard to the probe or antibody, is intended to encompass direct labeling of the probe or antibody by coupling (i.e., physically linking) a detectable substance to the probe or antibody, as well as indirect labeling of the probe or antibody by reactivity with another reagent that is directly labeled.
- indirect labeling include detection of a primary antibody using a fluorescently labeled secondary antibody and end-labeling of a DNA probe with biotin such that it can be detected with fluorescently labeled streptavidin.
- biological sample is intended to include tissues, cells and biological fluids isolated from a subject, as well as tissues, cells and fluids present within a subject. That is, the detection method of the invention can be used to detect mRNA, protein, or genomic DNA in a biological sample in vitro as well as in vivo.
- in vitro techniques for detection of mRNA include Northern hybridizations and in situ hybridizations.
- in vitro techniques for detection of a polypeptide of the invention include enzyme linked immunosorbent assays (ELISAs), Western blots, immunoprecipitations and immunofluorescence.
- In vitro techniques for detection of genomic DNA include Southern hybridizations.
- in vivo techniques for detection of a polypeptide of the invention include introducing into a subject a labeled antibody directed against the polypeptide.
- the antibody can be labeled with a radioactive marker whose presence and location in a subject can be detected by standard imaging techniques.
- the biological sample contains protein molecules from the test subject.
- the biological sample can contain mRNA molecules from the test subject or genomic DNA molecules from the test subject.
- a preferred biological sample is a peripheral blood leukocyte sample isolated by conventional means from a subject.
- the methods further involve obtaining a control biological sample from a control subject, contacting the control sample with a compound or agent capable of detecting a polypeptide of the invention or mRNA or genomic DNA encoding a polypeptide of the invention, such that the presence of the polypeptide or mRNA or genomic DNA encoding the polypeptide is detected in the biological sample, and comparing the presence of the polypeptide or mRNA or genomic DNA encoding the polypeptide in the control sample with the presence of the polypeptide or mRNA or genomic DNA encoding the polypeptide in the test sample.
- kits for detecting the presence of a polypeptide or nucleic acid of the invention in a biological sample can be used to determine if a subject is suffering from or is at increased risk of developing a disorder associated with abe ⁇ ant expression of a polypeptide of the invention (e.g., a proliferative disorder, e.g., psoriasis or cancer).
- a disorder associated with abe ⁇ ant expression of a polypeptide of the invention e.g., a proliferative disorder, e.g., psoriasis or cancer.
- the kit can comprise a labeled compound or agent capable of detecting the polypeptide or mRNA encoding the polypeptide in a biological sample and means for determining the amount of the polypeptide or mRNA in the sample (e.g., an antibody which binds the polypeptide or an oligonucleotide probe which binds to DNA or mRNA encoding the polypeptide).
- Kits may also include instructions for observing that the tested subject is suffering from or is at risk of developing a disorder associated with abe ⁇ ant expression of the polypeptide if the amount of the polypeptide or mRNA encoding the polypeptide is above or below a normal level.
- the kit may comprise, for example: (1 ) a first antibody (e.g., attached to a solid support) which binds to a polypeptide of the invention; and, optionally, (2) a second, different antibody which binds to either the polypeptide or the first antibody and is conjugated to a detectable agent.
- a first antibody e.g., attached to a solid support
- a second, different antibody which binds to either the polypeptide or the first antibody and is conjugated to a detectable agent.
- the kit may comprise, for example: (1) an oligonucleotide, e.g., a detectably labeled oligonucleotide, which hybridizes to a nucleic acid sequence encoding a polypeptide of the invention or (2) a pair of primers useful for amplifying a nucleic acid molecule encoding a polypeptide of the invention.
- the kit may also comprise, e.g., a buffering agent, a preservative, or a protein stabilizing agent.
- the kit may also comprise components necessary for detecting the detectable agent (e.g., an enzyme or a substrate).
- the kit may also contain a control sample or a series of control samples which can be assayed and compared to the test sample contained.
- Each component of the kit is usually enclosed within an individual container and all of the various containers are within a single package along with instructions for observing whether the tested subject is suffering from or is at risk of developing a disorder associated with abe ⁇ ant expression of the polypeptide.
- the methods described herein can furthermore be utilized as diagnostic or prognostic assays to identify subjects having or at risk of developing a disease or disorder associated with abe ⁇ ant expression or activity of a polypeptide of the invention.
- the assays described herein such as the preceding diagnostic assays or the following assays, can be utilized to identify a subject having or at risk of developing a disorder associated with abe ⁇ ant expression or activity of a polypeptide of the invention, e.g., a proliferative disorder, e.g., psoriasis or cancer, or an angiogenic disorder.
- the prognostic assays can be utilized to identify a subject having or at risk for developing such a disease or disorder.
- test sample refers to a biological sample obtained from a subject of interest.
- a test sample can be a biological fluid (e.g., serum), cell sample, or tissue.
- the prognostic assays described herein can be used to determine whether a subject can be administered an agent (e.g., an agonist, antagonist, peptidomimetic, protein, peptide, nucleic acid, small molecule, or other drug candidate) to treat a disease or disorder associated with abe ⁇ ant expression or activity of a polypeptide of the invention.
- an agent e.g., an agonist, antagonist, peptidomimetic, protein, peptide, nucleic acid, small molecule, or other drug candidate
- agents e.g., an agonist, antagonist, peptidomimetic, protein, peptide, nucleic acid, small molecule, or other drug candidate
- agents e.g., an agonist, antagonist, peptidomimetic, protein, peptide, nucleic acid, small molecule, or other drug candidate
- such methods can be used to determine whether a subject can be effectively treated with a specific agent or class of agents (e.g., agents of a type which decrease activity
- the present invention provides methods for determining whether a subject can be effectively treated with an agent for a disorder associated with abe ⁇ ant expression or activity of a polypeptide of the invention in which a test sample is obtained and the polypeptide or nucleic acid encoding the polypeptide is detected (e.g., wherein the presence of the polypeptide or nucleic acid is diagnostic for a subject that can be administered the agent to treat a disorder associated with abe ⁇ ant expression or activity of the polypeptide).
- the methods of the invention can also be used to detect genetic lesions or mutations in a gene of the invention, thereby determining if a subject with the lesioned gene is at risk for a disorder characterized abe ⁇ ant expression or activity of a polypeptide of the invention.
- the methods include detecting, in a sample of cells from the subject, the presence or absence of a genetic lesion or mutation characterized by at least one of an alteration affecting the integrity of a gene encoding the polypeptide of the invention, or the mis-expression of the gene encoding the polypeptide of the invention.
- such genetic lesions or mutations can be detected by ascertaining the existence of at least one of: 1) a deletion of one or more nucleotides from the gene; 2) an addition of one or more nucleotides to the gene; 3) a substitution of one or more nucleotides of the gene; 4) a chromosomal rearrangement of the gene; 5) an alteration in the level of a messenger RNA transcript of the gene; 6) an abe ⁇ ant modification of the gene, such as of the methylation pattern of the genomic DNA; 7) the presence of a non- wild type splicing pattern of a messenger RNA transcript of the gene; 8) a non-wild type level of a the protein encoded by the gene; 9) an allelic loss of the gene; and 10) an inappropriate post-translational modification of the protein encoded by the gene.
- detection of the lesion involves the use of a probe/primer in a polymerase chain reaction (PCR) (see, e.g., U.S. Patent Nos. 4,683,195 and 4,683,202), such as anchor PCR or RACE PCR, or, alternatively, in a ligation chain reaction (LCR) (see, e.g., Landegran et al. (1988) Science 241:1077- 1080; and Nakazawa et al. (1994) Proc. Natl. Acad. Sci.
- PCR polymerase chain reaction
- LCR ligation chain reaction
- This method can include the steps of collecting a sample of cells from a patient, isolating nucleic acid (e.g., genomic, mRNA or both) from the cells of the sample, contacting the nucleic acid sample with one or more primers which specifically hybridize to the selected gene under conditions such that hybridization and amplification of the gene (if present) occurs, and detecting the presence or absence of an amplification product, or detecting the size of the amplification product and comparing the length to a control sample. It is anticipated that PCR and/or LCR may be desirable to use as a preliminary amplification step in conjunction with any of the techniques used for detecting mutations described herein.
- nucleic acid e.g., genomic, mRNA or both
- Alternative amplification methods include: self sustained sequence replication (Guatelli et al. (1990) Proc. Natl. Acad. Sci. USA 87:1874-1878), transcriptional amplification system (Kwoh, et al. (1989) Proc. Natl. Acad. Sci. USA 86:1173-1177), Q-Beta Replicase (Lizardi et al. (1988) Bio/Technology 6:1197), or any other nucleic acid amplification method, followed by the detection of the amplified molecules using techniques well known to those of skill in the art. These detection schemes are especially useful for the detection of nucleic acid molecules if such molecules are present in very low numbers.
- mutations in a selected gene from a sample cell can be identified by alterations in restriction enzyme cleavage patterns.
- sample and control DNA is isolated, amplified (optionally), digested with one or more restriction endonucleases, and fragment length sizes are determined by gel electrophoresis and compared. Differences in fragment length sizes between sample and control DNA indicates mutations in the sample DNA.
- sequence specific ribozymes see, e.g., U.S. Patent No. 5,498,531 can be used to score for the presence of specific mutations by development or loss of a ribozyme cleavage site.
- genetic mutations can be identified by hybridizing a sample and control nucleic acids, e.g., DNA or RNA, to high density a ⁇ ays containing hundreds or thousands of oligonucleotides probes (Cronin et al. (1996) Human Mutation 7:244-255; Kozal et al. (1996) Nature Medicine 2:753-759).
- a sample and control nucleic acids e.g., DNA or RNA
- high density a ⁇ ays containing hundreds or thousands of oligonucleotides probes e.g., DNA or RNA
- genetic mutations can be identified in two-dimensional a ⁇ ays containing light-generated DNA probes as described in Cronin et al., supra.
- a first hybridization a ⁇ ay of probes can be used to scan through long stretches of DNA in a sample and control to identify base changes between the sequences by making linear arrays of sequential overlapping probes. This step allows the identification of point mutations. This step is followed by a second hybridization a ⁇ ay that allows the characterization of specific mutations by using smaller, specialized probe a ⁇ ays complementary to all variants or mutations detected.
- Each mutation a ⁇ ay is composed of parallel probe sets, one complementary to the wild-type gene and the other complementary to the mutant gene.
- any of a variety of sequencing reactions known in the art can be used to directly sequence the selected gene and detect mutations by comparing the sequence of the sample nucleic acids with the co ⁇ esponding wild- type (control) sequence.
- Examples of sequencing reactions include those based on techniques developed by Maxim and Gilbert ((1977) Proc. Natl. Acad. Sci. USA 74:560) or Sanger ((1977) Proc. Natl. Acad. Sci. USA 74:5463). It is also contemplated that any of a variety of automated sequencing procedures can be utilized when performing the diagnostic assays ((1995) Bio/Techniques 19:448), including sequencing by mass spectrometry (see, e.g., PCT Publication No. WO 94/16101; Cohen et al. (1996) Adv. Chromatogr. 36:127-162; and Griffin et al.
- RNA RNA or RNA/DNA heteroduplexes Other methods for detecting mutations in a selected gene include methods in which protection from cleavage agents is used to detect mismatched bases in RNA RNA or RNA/DNA heteroduplexes (Myers et al. (1985) Science 230:1242).
- the technique of mismatch cleavage entails providing heteroduplexes formed by hybridizing (labeled) RNA or DNA containing the wild-type sequence with potentially mutant RNA or DNA obtained from a tissue sample.
- the double- stranded duplexes are treated with an agent which cleaves single-stranded regions of the duplex such as which will exist due to basepair mismatches between the control and sample strands.
- RNA/DNA duplexes can be treated with RNase to digest mismatched regions, and DNA/DNA hybrids can be treated with SI nuclease to digest mismatched regions.
- either DNA DNA or RNA/DNA duplexes can be treated with hydroxylamine or osmium tetroxide and with piperidine in order to digest mismatched regions. After digestion of the mismatched regions, the resulting material is then separated by size on denaturing polyacrylamide gels to determine the site of mutation. See, e.g., Cotton et al. (1988) Proc. Natl. Acad. Sci. USA 85:4397; Saleeba et al. (1992) Methods Enzymol. 217:286-295. In a prefened embodiment, the control DNA or RNA can be labeled for detection.
- the mismatch cleavage reaction employs one or more proteins that recognize mismatched base pairs in double-stranded DNA (so called DNA mismatch repair enzymes) in defined systems for detecting and mapping point mutations in cDNAs obtained from samples of cells.
- DNA mismatch repair enzymes proteins that recognize mismatched base pairs in double-stranded DNA
- the mutY enzyme of E. coli cleaves A at G/A mismatches and the thymidine DNA glycosylase from HeLa cells cleaves T at G/T mismatches (Hsu et al. (1994) Carcinogenesis 15:1657-1662).
- a probe based on a selected sequence e.g., a wild-type sequence, is hybridized to a cDNA or other DNA product from a test cell(s).
- duplex is treated with a DNA mismatch repair enzyme, and the cleavage products, if any, can be detected from electrophoresis protocols or the like. See, e.g., U.S. Patent No. 5,459,039.
- alterations in electrophoretic mobility will be used to identify mutations in genes.
- single strand conformation polymo ⁇ hism may be used to detect differences in electrophoretic mobility between mutant and wild type nucleic acids (Orita et al. (1989) Proc. Natl. Acad. Sci. USA 86:2766; see also Cotton (1993) Mutat. Res. 285:125-144; Hayashi (1992) Genet. Anal. Tech. Appl. 9:73-79).
- Single-stranded DNA fragments of sample and control nucleic acids will be denatured and allowed to renature.
- the secondary structure of single-stranded nucleic acids varies according to sequence, and the resulting alteration in electrophoretic mobility enables the detection of even a single base change.
- the DNA fragments may be labeled or detected with labeled probes.
- the sensitivity of the assay may be enhanced by using RNA (rather than DNA), in which the secondary structure is more sensitive to a change in sequence.
- the subject method utilizes heteroduplex analysis to separate double stranded heteroduplex molecules on the basis of changes in electrophoretic mobility (Keen et al. (1991) Trends Genet. 7:5).
- the movement of mutant or wild-type fragments in polyacrylamide gels containing a gradient of denaturant is assayed using denaturing gradient gel electrophoresis (DGGE) (Myers et al. (1985) Nature 313:495).
- DGGE denaturing gradient gel electrophoresis
- DNA will be modified to insure that it does not completely denature, for example by adding a 'GC clamp of approximately 40 bp of high-melting GC-rich DNA by PCR.
- a temperature gradient is used in place of a denaturing gradient to identify differences in the mobility of control and sample DNA (Rosenbaum and Reissner (1987) Biophys. Chem. 265:12753).
- oligonucleotide primers may be prepared in which the known mutation is placed centrally and then hybridized to target DNA under conditions which permit hybridization only if a perfect match is found (Saiki et al. (1986) Nature 324:163); Saiki et al. (1989) Proc. Natl. Acad. Sci. USA 86:6230).
- allele specific oligonucleotides are hybridized to PCR amplified target DNA or a number of different mutations when the oligonucleotides are attached to the hybridizing membrane and hybridized with labeled target DNA.
- allele specific amplification technology which depends on selective PCR amplification may be used in conjunction with the instant invention.
- Oligonucleotides used as primers for specific amplification may carry the mutation of interest in the center of the molecule (so that amplification depends on differential hybridization) (Gibbs et al. (1989) Nucleic Acids Res.
- amplification may also be performed using Taq ligase for amplification (Barany (1991) Proc. Natl. Acad. Sci. USA 88:189).
- ligation will occur only if there is a perfect match at the 3' end of the 5' sequence making it possible to detect the presence of a known mutation at a specific site by looking for the presence or absence of amplification.
- the methods described herein may be performed, for example, by utilizing pre-packaged diagnostic kits comprising at least one probe nucleic acid or antibody reagent described herein, which may be conveniently used, e.g., in clinical settings to diagnose patients exhibiting symptoms or family history of a disease or illness involving a gene encoding a polypeptide of the invention.
- any cell type or tissue, preferably peripheral blood leukocytes, in which the polypeptide of the invention is expressed may be utilized in the prognostic assays described herein.
- Agents, or modulators which have a stimulatory or inhibitory effect on activity or expression of a polypeptide of the invention as identified by a screening assay described herein can be administered to individuals to treat (prophylactically or therapeutically) disorders associated with abe ⁇ ant activity of the polypeptide.
- the pharmacogenomics i.e., the study of the relationship between an individual's genotype and that individual's response to a foreign compound or drug
- Differences in metabolism of therapeutics can lead to severe toxicity or therapeutic failure by altering the relation between dose and blood concentration of the pharmacologically active drug.
- the pharmacogenomics of the individual permits the selection of effective agents (e.g., drugs) for prophylactic or therapeutic treatments based on a consideration of the individual's genotype. Such pharmacogenomics can further be used to determine appropriate dosages and therapeutic regimens. Accordingly, the activity of a polypeptide of the invention, expression of a nucleic acid of the invention, or mutation content of a gene of the invention in an individual can be determined to thereby select appropriate agent(s) for therapeutic or prophylactic treatment of the individual. Pharmacogenomics deals with clinically significant hereditary variations in the response to drugs due to altered drug disposition and abnormal action in affected persons. See, e.g., Linder (1997) Clin. Chem. 43(2):254-266.
- G6PD glucose-6-phosphate dehydrogenase deficiency
- the activity of drug metabolizing enzymes is a major determinant of both the intensity and duration of drug action.
- drug metabolizing enzymes e.g., N-acetyltransferase 2 (NAT 2) and cytochrome P450 enzymes CYP2D6 and CYP2C19
- NAT 2 N-acetyltransferase 2
- CYP2D6 and CYP2C19 cytochrome P450 enzymes
- the gene coding for CYP2D6 is highly polymo ⁇ hic and several mutations have been identified in PM, which all lead to the absence of functional CYP2D6. Poor metabolizers of CYP2D6 and CYP2C19 quite frequently experience exaggerated drug response and side effects when they receive standard doses. If a metabolite is the active therapeutic moiety, a PM will show no therapeutic response, as 5 demonstrated for the analgesic effect of codeine mediated by its CYP2D6-formed metabolite mo ⁇ hine. The other extreme are the so called ultra-rapid metabolizers who do not respond to standard doses. Recently, the molecular basis of ultra-rapid metabolism has been identified to be due to CYP2D6 gene amplification.
- the activity of a polypeptide of the invention, expression of a nucleic o acid encoding the polypeptide, or mutation content of a gene encoding the polypeptide in an individual can be determined to thereby select appropriate agent(s) for therapeutic or prophylactic treatment of the individual.
- pharmacogenetic studies can be used to apply genotyping of polymo ⁇ hic alleles encoding drug-metabolizing enzymes to the identification of an individual's drug 5 responsiveness phenotype.
- Monitoring the influence of agents (e.g., drugs, compounds) on the expression or activity of a polypeptide of the invention can be applied not only 5 in basic drug screening, but also in clinical trials.
- agents e.g., drugs, compounds
- the effectiveness of an agent, as determined by a screening assay as described herein, to increase gene expression, protein levels or protein activity can be monitored in clinical trials of subjects exhibiting decreased gene expression, protein levels, or protein activity.
- the effectiveness of an agent, as determined by a screening assay, to 0 decrease gene expression, protein levels or protein activity can be monitored in clinical trials of subjects exhibiting increased gene expression, protein levels, or protein activity.
- expression or activity of a polypeptide of the invention and preferably, that of other polypeptide that have been implicated in for example, a cellular proliferation disorder can be used as a marker of the immune responsiveness of a particular cell.
- genes, including those of the invention, that are modulated in cells by treatment with an agent (e.g., compound, drug or small molecule) which modulates activity or expression of a polypeptide of the invention can be identified.
- cells can be isolated and RNA prepared and analyzed for the levels of expression of a gene of the invention and other genes implicated in the disorder.
- the levels of gene expression i.e., a gene expression pattern
- the levels of gene expression can be quantified by Northern blot analysis or RT-PCR, as described herein, or alternatively by measuring the amount of protein produced, by one of the methods as described herein, or by measuring the levels of activity of a gene of the invention or other genes.
- the gene expression pattern can serve as a marker, indicative of the physiological response of the cells to the agent. Accordingly, this response state may be determined before, and at various points during, treatment of the individual with the agent.
- the present invention provides a method for monitoring the effectiveness of treatment of a subject with an agent (e.g., an agonist, antagonist, peptidomimetic, protein, peptide, nucleic acid, small molecule, or other drug candidate identified by the screening assays described herein) comprising the steps of (i) obtaining a pre-administration sample from a subject prior to administration of the agent; (ii) detecting the level of the polypeptide or nucleic acid of the invention in the preadministration sample; (iii) obtaining one or more post- administration samples from the subject; (iv) detecting the level the of the polypeptide or nucleic acid of the invention in the post-administration samples; (v) comparing the level of the polypeptide or nucleic acid of the invention in the pre- administration sample with the level of the polypeptide or nucleic acid of the invention in the post-administration sample or samples; and (vi) altering the admimsfration of the agent to the subject accordingly.
- an agent e.g., an
- increased administration of the agent may be desirable to increase the expression or activity of the polypeptide to higher levels than detected, i.e., to increase the effectiveness of the agent.
- decreased administration of the agent may be desirable to decrease expression or activity of the polypeptide to lower levels than detected, i.e., to decrease the effectiveness of the agent.
- the present invention provides for both prophylactic and therapeutic o methods of treating a subject at risk of (or susceptible to) a disorder or having a disorder associated with abe ⁇ ant expression or activity of a polypeptide of the invention.
- disorders characterized by abberant expression or activity of the polypeptides of the invention include proliferative disorders, autoimmune disorders, immunomodulatory disorders, and disorders of cell differentiation.
- the polypeptides of the invention can be used to promote wound healing and angiogenesis, as well as other uses described herein.
- the invention provides a method for preventing in a subject, a 0 disease or condition associated with an abe ⁇ ant expression or activity of a polypeptide of the invention, by administering to the subject an agent which modulates expression or at least one activity of the polypeptide.
- Subjects at risk for a disease which is caused or contributed to by abe ⁇ ant expression or activity of a polypeptide of the invention can be identified by, for example, any or a combination 5 of diagnostic or prognostic assays as described herein.
- Administration of a prophylactic agent can occur prior to the manifestation of symptoms characteristic of the abe ⁇ ancy, such that a disease or disorder is prevented or, alternatively, delayed in its progression.
- an agonist or antagonist agent can be used for treating the subject.
- an antagonist of 0 an ELVIS protein may be used to treat a proliferative disorder, e.g., psoriasis, associated with abberant ELVIS expression or activity.
- the appropriate agent can be determined based on screening assays described herein.
- the modulatory method of the invention involves contacting a cell with an agent that modulates one or more of the activities of the polypeptide.
- An agent that modulates activity can be an agent as described herein, such as a nucleic acid or a protein, a naturally-occurring cognate ligand of the polypeptide, a peptide, a peptidomimetic, or other small molecule.
- the agent stimulates one or more of the biological activities of the polypeptide.
- stimulatory agents include the active polypeptide of the invention and a nucleic acid molecule encoding the polypeptide of the invention that has been introduced into the cell.
- the agent inhibits one or more of the biological activities of the polypeptide of the invention.
- inhibitory agents include antisense nucleic acid molecules and antibodies.
- the method involves administering an agent (e.g., an agent identified by a screening assay described herein), or combination of agents that modulates (e.g., upregulates or downregulates) expression or activity.
- an agent e.g., an agent identified by a screening assay described herein
- the method involves administering a polypeptide of the invention or a nucleic acid molecule of the invention as therapy to compensate for reduced or abe ⁇ ant expression or activity of the polypeptide.
- Stimulation of activity is desirable in situations in which activity or expression is abnormally low or downregulated and/or in which increased activity is likely to have a beneficial effect, e.g., in wound healing. Conversely, inhibition of activity is desirable in situations in which activity or expression is abnormally high or upregulated and/or in which decreased activity is likely to have a beneficial effect.
- Clone AthEa20d7, encoding human TANGO 241, inserted into vecotr pMET7 and designated plasmid ApAthEa20d7 was deposited with the American Type Culture Collection (ATCC, 10801 University Boulevard, Manassas, VA 20110-2209) on December 30, 1998 and was assigned Accession Number 20716.
- Clone AthEa89c8, encoding human TANGO 242, inserted into vector pMET7 and designated plasmid ApAthEa89c8 was deposited with the American Type Culture Collection (ATCC, 10801 University Boulevard, Manassas, VA 20110-2209) on December 30, 1998 and was assigned Accession Number 20717.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Biochemistry (AREA)
- Genetics & Genomics (AREA)
- Gastroenterology & Hepatology (AREA)
- Toxicology (AREA)
- Immunology (AREA)
- Biophysics (AREA)
- General Health & Medical Sciences (AREA)
- Zoology (AREA)
- Medicinal Chemistry (AREA)
- Molecular Biology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Cell Biology (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Peptides Or Proteins (AREA)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US22466998A | 1998-12-31 | 1998-12-31 | |
US224669 | 1998-12-31 | ||
PCT/US1999/031328 WO2000039161A1 (en) | 1998-12-31 | 1999-12-30 | Class ii cytokine receptor-like proteins and nucleic acids encoding them |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1141008A1 true EP1141008A1 (de) | 2001-10-10 |
Family
ID=22841655
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP99966738A Withdrawn EP1141008A1 (de) | 1998-12-31 | 1999-12-30 | Cytokinin klasse ii rezeptor-ähnliche proteine und für diese kodierende nukleinsäuren |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP1141008A1 (de) |
AU (1) | AU2222700A (de) |
WO (1) | WO2000039161A1 (de) |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ATE458814T1 (de) | 1999-12-03 | 2010-03-15 | Zymogenetics Inc | Menschliches zytokinrezeptor |
US6610286B2 (en) | 1999-12-23 | 2003-08-26 | Zymogenetics, Inc. | Method for treating inflammation using soluble receptors to interleukin-20 |
ATE485306T1 (de) | 1999-12-23 | 2010-11-15 | Zymogenetics Inc | Löslicher interleukin-20-rezeptor |
US20030170823A1 (en) | 1999-12-23 | 2003-09-11 | Presnell Scott R. | Novel cytokine ZCYTO18 |
US7122632B2 (en) | 1999-12-23 | 2006-10-17 | Zymogenetics, Inc. | Soluble Interleukin-20 receptor |
EP1743648B1 (de) * | 1999-12-23 | 2010-03-03 | ZymoGenetics, Inc. | Verfahren zur Behandlung von Entzündungen |
EP1736545A3 (de) * | 2000-08-08 | 2007-03-28 | ZymoGenetics, Inc. | Lösliche Zcyctor 11 Cytokinrezeptoren |
CA2418950A1 (en) | 2000-08-08 | 2002-02-14 | Zymogenetics, Inc. | Soluble zcytor 11 cytokine receptors |
AU2001290837A1 (en) | 2000-09-15 | 2002-03-26 | Zymogenetics Inc. | Use of a polypeptide comprising the extracellular domains of il-20rb for the treatment of inflammation |
IL157726A0 (en) * | 2001-03-09 | 2004-03-28 | Zymogenetics Inc | Soluble heterodimeric cytokine receptor |
US20040086908A1 (en) | 2002-03-07 | 2004-05-06 | Chandrasekher Yasmin A. | Soluble heterodimeric cytokine receptor |
EP1373508B1 (de) | 2001-03-27 | 2013-04-24 | ZymoGenetics, Inc. | Menschlicher cytokin-rezeptor |
ES2371006T3 (es) | 2001-12-17 | 2011-12-26 | Zymogenetics, Inc. | Procedimiento para el tratamiento del cáncer de cuello de útero. |
IL164181A0 (en) | 2002-03-22 | 2005-12-18 | Zymogenetics Inc | Anti-il-tif antibodies and methods of using in inflammation |
EA009026B1 (ru) | 2003-03-24 | 2007-10-26 | Займоджинетикс, Инк. | Антитела против il-22ra, их партнеры по связыванию и способы их применения при воспалениях |
EP1692180B1 (de) | 2003-11-21 | 2009-11-04 | ZymoGenetics, Inc. | Anti-il-20-antikörper und bindungspartner und verfahren zur anwendung bei entzündungen |
WO2006047249A1 (en) | 2004-10-22 | 2006-05-04 | Zymogenetics, Inc. | Anti-il-22ra antibodies and binding partners and methods of using in inflammation |
EP3409289B1 (de) | 2010-02-26 | 2020-09-30 | Novo Nordisk A/S | Stabile, antikörperhaltige zusammensetzungen |
AU2011257219B2 (en) | 2010-05-28 | 2014-12-04 | Novo Nordisk A/S | Stable multi-dose compositions comprising an antibody and a preservative |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5789192A (en) * | 1992-12-10 | 1998-08-04 | Schering Corporation | Mammalian receptors for interleukin-10 (IL-10) |
US5965704A (en) * | 1997-08-05 | 1999-10-12 | Zymogenetics, Inc. | Class two cytokine receptor-11 |
-
1999
- 1999-12-30 WO PCT/US1999/031328 patent/WO2000039161A1/en not_active Application Discontinuation
- 1999-12-30 EP EP99966738A patent/EP1141008A1/de not_active Withdrawn
- 1999-12-30 AU AU22227/00A patent/AU2222700A/en not_active Abandoned
Non-Patent Citations (1)
Title |
---|
See references of WO0039161A1 * |
Also Published As
Publication number | Publication date |
---|---|
AU2222700A (en) | 2000-07-31 |
WO2000039161A1 (en) | 2000-07-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6245527B1 (en) | Nucleic acid molecules encoding glycoprotein VI and recombinant uses thereof | |
WO2000039161A1 (en) | Class ii cytokine receptor-like proteins and nucleic acids encoding them | |
WO1999006426A1 (en) | Novel molecules of the tango-77 related protein family and uses thereof | |
EP1710299A2 (de) | Sekretierte Proteine und dafür kodierende Polynukleotide | |
EP1140976A2 (de) | Sekretierte proteine und ihre verwendungen. | |
WO1999052945A9 (en) | NOVEL MOLECULES OF THE BGCKr-RELATED PROTEIN FAMILY AND USES THEREOF | |
WO2000029438A9 (en) | Egf-like nucleic acids and polypeptides and uses thereof | |
US6872811B1 (en) | HRPCa9 and HRPCa10 nucleic acids and polypeptides | |
US7803564B2 (en) | EGF-like nucleic acids and polypeptides and uses thereof | |
WO2000008045A2 (en) | Novel molecules of the tango-93-related protein family and uses thereof | |
WO2000018800A1 (en) | Novel secreted immunomodulatory proteins and uses thereof | |
EP1223218A1 (de) | CD2000 und CD2001 Moleküle und deren Verwendungen | |
EP1201681A1 (de) | "Fail" Moleküle und deren Verwendung | |
US20140072968A1 (en) | Novel Genes Encoding Proteins Having Prognostic, Diagnostic, Preventive, Therapeutic, and Other Uses | |
US20030113865A1 (en) | Novel secreted immunomodulatory proteins and uses thereof | |
WO2001023523A2 (en) | Secreted proteins and uses thereof | |
US20050260702A1 (en) | Novel integrin alpha subunit and uses thereof | |
US20020164689A1 (en) | Class II cytokine receptor-like proteins and nucleic acids encoding them | |
WO2001000672A1 (en) | Secreted proteins and uses thereof | |
WO2000032746A2 (en) | Netrin-like and ependymin-like nucleic acids and polypeptides and uses thereof | |
WO2000039150A2 (en) | Secreted proteins and uses thereof | |
WO2000050442A2 (en) | Secreted proteins and uses thereof | |
WO2001029088A1 (en) | Novel genes encoding proteins having prognostic, diagnostic, preventive, therapeutic, and other uses | |
WO2001030831A1 (en) | Secreted proteins and uses thereof | |
WO2001009185A2 (en) | Transmembrane transport proteins, nucleic acids encoding them and uses therefor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20010731 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN |
|
18W | Application withdrawn |
Effective date: 20030313 |