Nothing Special   »   [go: up one dir, main page]

EP1002997B1 - Method for controlling a fuel/air ratio of full premix gas burner - Google Patents

Method for controlling a fuel/air ratio of full premix gas burner Download PDF

Info

Publication number
EP1002997B1
EP1002997B1 EP99122611A EP99122611A EP1002997B1 EP 1002997 B1 EP1002997 B1 EP 1002997B1 EP 99122611 A EP99122611 A EP 99122611A EP 99122611 A EP99122611 A EP 99122611A EP 1002997 B1 EP1002997 B1 EP 1002997B1
Authority
EP
European Patent Office
Prior art keywords
signal
ionisation
current
air ratio
signals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99122611A
Other languages
German (de)
French (fr)
Other versions
EP1002997A2 (en
EP1002997A3 (en
Inventor
Martin Petersmann
Jörg Lindemann
Ansgar Schlump
Henning Heider
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Elster Kromschroeder GmbH
Original Assignee
G Kromschroeder AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by G Kromschroeder AG filed Critical G Kromschroeder AG
Publication of EP1002997A2 publication Critical patent/EP1002997A2/en
Publication of EP1002997A3 publication Critical patent/EP1002997A3/en
Application granted granted Critical
Publication of EP1002997B1 publication Critical patent/EP1002997B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/02Regulating fuel supply conjointly with air supply
    • F23N1/022Regulating fuel supply conjointly with air supply using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/02Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
    • F23N5/12Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using ionisation-sensitive elements, i.e. flame rods
    • F23N5/123Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using ionisation-sensitive elements, i.e. flame rods using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2225/00Measuring
    • F23N2225/26Measuring humidity
    • F23N2225/30Measuring humidity measuring lambda
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2233/00Ventilators
    • F23N2233/06Ventilators at the air intake
    • F23N2233/08Ventilators at the air intake with variable speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N3/00Regulating air supply or draught
    • F23N3/08Regulating air supply or draught by power-assisted systems
    • F23N3/082Regulating air supply or draught by power-assisted systems using electronic means

Definitions

  • the invention relates to a method for air quantity control of a provided with a fan and with a gas control valve at least teilvormischenden, preferably vollvormischenden gas burner, being measured in the flame ionization signals using an ionization electrode, the fan speed is detected from the current ionization signal for the current air ratio representative first signal derived and this is compared with a predetermined setpoint, the fan speed in the derivative of the first signal and / or in the selection of the setpoint is taken into account, and from the comparison, a control signal for the gas control valve is derived.
  • the air quantity control of gas burners is becoming more and more important in practice. With the help of air flow control, it is possible to operate gas burners in the optimum working range, in which the pollutant emissions, in particular the CO and NO x emissions are low, the thermal load of the gas burner is very uniform and both the burning behavior and the efficiency of the gas burner are optimal. It has been found that the optimum working range is between 1.15 and 1.3 for an air ratio. With a Heiliereregelung also the susceptibility of the gas burner can be reduced and a safe and quiet burner operation can be ensured.
  • air-flow control is required because the composition of the fuel gas supplied by the supply network can vary greatly. Accordingly, the gas quality varies greatly, in particular the Wobbe index of the fuel gas. If the gas composition of the fuel gas changes, then the air ratio control intervenes and changes the gas supply with the aid of the gas control valve in such a way that the gas burner continues to operate at the desired air ratio.
  • the air ratio can be determined with the aid of various measured variables. However, it has proved useful to determine the air ratio via the ionization signal detected with the aid of an ionization electrode (cf DE-C2-196 27 857).
  • the ionization electrode provides a stable, easy to maintain and simultaneously low-priced air-fuel sensor, which can also be installed with very little effort, if it is not already available for flame monitoring anyway.
  • the ionization signal allows a very reliable and accurate determination of the air ratio.
  • DE-U1-296 12 014 discloses a gas burner for atmospheric premixing operation having at least two flame detection elements mounted at a different distance from the burner surface and controlling combustion with their signals via a regulator.
  • the current air ratio can be determined from the ionization signal and controlled with a characteristic curve characteristic of the respective fan speed.
  • a signal representative of the current air ratio can be derived, which in a specific power range is essentially independent of the burner output. This has the advantage that the air ratio over this power range can be controlled with a single characteristic.
  • the representative of the current air ratio signal is compared with the setpoint for the desired air ratio setpoint of the characteristic, and from this comparison, a control signal for the gas control valve is derived.
  • the object of the invention is therefore to enable in the aforementioned method, the verification of the operating state of the gas burner.
  • This object is achieved in that a representative of the current burner power second signal is detected and this is compared with a predetermined value, being derived from this comparison information about the operating state of the gas burner.
  • the invention is based on the finding that, if changes occur in the supply air or exhaust air system of the gas burner, the burner output set via the fan speed no longer corresponds to the actual burner output. In this case, the missing correlation between fan speed and burner power can be detected and compensated by detecting another signal representative of the current power. If the second signal representative of the current power deviates from the value specified for the set power, the gas burner does not produce the desired power.
  • a service indicator will be activated.
  • a shut-off mechanism can also intervene, which automatically shuts off the gas burner.
  • the fan speed can be varied until the representative of the current power second signal corresponds to the predetermined value.
  • the gas burner then has to be operated in consideration of the changed correlation between fan speed and firing power. In this way, a gas burner can be operated safely and with the desired performance over a long period of time.
  • a development of the invention is characterized in that the first signal is used as the predetermined value for the comparison with the second signal.
  • the power consumption of the fan or the temperature level of the boiler or the air mass flow is detected by the fan as a second signal.
  • a particularly preferred alternative embodiment is characterized in that the second signal is derived from a current ionization signal, the second signal being representative of both the current power and the current air ratio.
  • This embodiment is based on the finding that the ionization signal itself can be used to check the current power. Since the ionization signal is power-dependent, the current operating performance in a very wide power range can be checked according to customer requirements. If the second signal derived from the ionization signal and representative of the current air ratio and the current power deviates from the value specified for this air ratio and this power, the gas burner does not produce the desired power. The required steps can then be initiated.
  • a development of the invention is characterized in that a signal representative of both the current power and the current air ratio is used as the first signal, wherein the first and the second signal have a different dependence on the air ratio and / or the power.
  • the ionization signals themselves can be used as the first and / or second signal.
  • the method according to the invention can be implemented particularly simply by measuring the current ionization signal, from which the first signal is derived, with the aid of a first supply voltage, and the current ionization signal, from which the second signal is derived, by means of a second supply voltage becomes.
  • the ionization signals are measured by applying an AC voltage, preferably of 230V, to the ionization electrode.
  • the polarity effect of the flame causes that only in each case a half-wave, an ionization current flows.
  • the ionization signal can be obtained from a DC component of the tapped voltage derived.
  • the signal is usually first applied to a low-pass filter.
  • the ionization signals may be measured by applying a triangular voltage or a square wave voltage to the ionization electrode.
  • the ionization signal measured to derive the signal representative of the current air ratio and the ionization signal measured to derive the signal representative of the current air ratio and current power need not be measured by applying the same voltage to the ionization electrode.
  • the ionization signal for determining the signal representative of the current air number can be measured with the aid of an alternating voltage and the ionization signal for determining the signal representative of the current air number and for the current power with the aid of a triangular voltage or a rectangular voltage or vice versa.
  • the ionization signals are used alternately to derive the first signal and to derive the second signal.
  • the gas burner can be kept in the long term in the optimum operating range that the second signal at regular intervals, for. B. once a minute, is detected.
  • reference measurements are carried out in which reference signals for different powers and different air numbers are detected and stored as a predetermined value for comparison with the second signal. If the second signal is derived from a current ionization signal, reference measurements are preferably carried out at the start of operation of the gas burner, in which detected reference ionization signals for different fan speeds and different air numbers and these are stored as a predetermined value for comparison with the second value.
  • Fig. 1 shows a diagram in which the voltage of a measuring signal against the air ratio ⁇ is plotted. Six different measured signal curves are shown.
  • the signal waveforms labeled Signal 1 are the signals representative of the current air ratio. These were derived from the measured at an alternating voltage of 230V ionization signal and the fan speed using a special evaluation circuit. The signals are shown for different powers. As can be seen, the curves lie almost completely on top of each other, d. H. These signals are actually power-independent.
  • the signal waveforms labeled Signal 2 are the signals representative of the current air ratio and current power.
  • an AC voltage of 230 V was again applied to the ionization electrode and the ionization signal then passed through a low-pass filter, bypassing the special evaluation circuit. It is noticeable that the curves, which in turn are recorded for different performances, differ greatly from one another.
  • the voltage differences between the Meßsignalkurven are particularly large at a given air ratio in the lower power range.
  • the air ratio control is carried out in normal operation using the superimposed signal 1 characteristics and to check the power, the AC voltage of 230V is applied to the ionization electrode and the special evaluation circuit is bypassed.
  • Fig. 2 shows two diagrams in which the ionization signal is plotted against the fan speed for a second embodiment of the invention.
  • the measured values shown were recorded at a constant air ratio ⁇ of 1.3.
  • the ionization signals are shown at a supply voltage of the ionization electrode of 50V and 230V.
  • the upper diagram shows the normal operating condition of the boiler.
  • -1 is an ionization signal at a supply voltage of 50V of 109. This is the setpoint for controlling the air ratio of 1.3.
  • the supply voltage of the ionization electrode is switched at regular intervals to the control voltage of 230V.
  • the ionization signal is only approximately 102.
  • the difference between the two signals is thus approximately 7.
  • the difference between these two detected ionization signal values is in the range of 7, the operation of the gas burner is in the optimum operating range secured.
  • the ionization signal can be detected by applying a voltage of any shape to the ionization electrode.
  • the ionization signal can be measured by means of a DC voltage.
  • the same transducer can be used to derive the signal representative of the current air ratio and the signal representative of the current air ratio and current power.
  • two transducers can be assigned to the ionization electrode or even two separate ionization electrodes can be arranged in the flame region of the gas burner.
  • the reference measurements can be carried out by the manufacturer before the start of operation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Combustion (AREA)
  • Regulation And Control Of Combustion (AREA)

Abstract

The method involves measuring ionisation signals in the flame region using an ionisation electrode, detecting the fan speed, deriving a signal representing the current air ratio from the current ionisation signal and comparing it with a demand value, whereby the fan speed is taken into account in deriving the first signal and selecting the demand value, and deriving a control signal for the gas regulating valve from the comparison. A signal representing the current power is detected and compared with a defined value to obtain information about the burner's operating state.

Description

Die Erfindung betrifft ein Verfahren zur Luftzahlregelung eines mit einem Lüfter und mit einem Gas-Regelventil versehenen wenigstens teilvormischenden, vorzugsweise vollvormischenden Gasbrenners, wobei im Flammenbereich Ionisationssignale mit Hilfe einer Ionisations-Elektrode gemessen werden, die Lüfterdrehzahl erfasst wird, aus dem aktuellen Ionisationssignal ein für die aktuelle Luftzahl repräsentatives erstes Signal abgeleitet und dieses mit einem vorgegebenen Sollwert verglichen wird, wobei die Lüfterdrehzahl bei der Ableitung des ersten Signals und/oder bei der Auswahl des Sollwertes berücksichtigt wird, und aus dem Vergleich ein Stellsignal für das Gas-Regelventil abgeleitet wird.The invention relates to a method for air quantity control of a provided with a fan and with a gas control valve at least teilvormischenden, preferably vollvormischenden gas burner, being measured in the flame ionization signals using an ionization electrode, the fan speed is detected from the current ionization signal for the current air ratio representative first signal derived and this is compared with a predetermined setpoint, the fan speed in the derivative of the first signal and / or in the selection of the setpoint is taken into account, and from the comparison, a control signal for the gas control valve is derived.

Die Luftzahlregelung von Gasbrennern nimmt in der Praxis immer stärker an Bedeutung zu. Mit Hilfe der Luftzahlregelung gelingt es, Gasbrenner im optimalen Arbeitsbereich zu betreiben, in dem die Schadstoffemissionen, insbesondere die CO- und NOx-Emissionen, gering sind, die thermische Belastung des Gasbrenners sehr gleichmäßig ist und sowohl das Brennverhalten als auch der Wirkungsgrad des Gasbrenners optimal sind. Es hat sich herausgestellt, dass der optimale Arbeitsbereich bei einer Luftzahl zwischen 1,15 und 1,3 liegt. Mit einer Luftzahlregelung kann zudem die Störanfälligkeit des Gasbrenners verringert und ein sicherer und geräuscharmer Brennerbetrieb sichergestellt werden.The air quantity control of gas burners is becoming more and more important in practice. With the help of air flow control, it is possible to operate gas burners in the optimum working range, in which the pollutant emissions, in particular the CO and NO x emissions are low, the thermal load of the gas burner is very uniform and both the burning behavior and the efficiency of the gas burner are optimal. It has been found that the optimum working range is between 1.15 and 1.3 for an air ratio. With a Luftzahlregelung also the susceptibility of the gas burner can be reduced and a safe and quiet burner operation can be ensured.

Statt einer einmaligen Luftzahleinstellung ist eine Luftzahlregelung erforderlich, da die Zusammensetzung des von dem Versorgungsnetz gelieferten Brenngases stark schwanken kann. Dementsprechend stark schwankt auch die Gasbeschaffenheit, insbesondere der Wobbeindex des Brenngases. Ändert sich die Gasbeschaffenheit des Brenngases, so greift die Luftzahlregelung ein und ändert die Gaszufuhr mit Hilfe des Gas-Regelventils derart, dass der Gasbrenner weiterhin bei der gewünschten Luftzahl arbeitet.Instead of a one-time set of air numbers, air-flow control is required because the composition of the fuel gas supplied by the supply network can vary greatly. Accordingly, the gas quality varies greatly, in particular the Wobbe index of the fuel gas. If the gas composition of the fuel gas changes, then the air ratio control intervenes and changes the gas supply with the aid of the gas control valve in such a way that the gas burner continues to operate at the desired air ratio.

Zur Luftzahlregelung kann die Luftzahl mit Hilfe von verschiedenen Messgrößen bestimmt werden. Es hat sich jedoch bewährt, die Luftzahl über das mit Hilfe einer Ionisations-Elektrode erfasste Ionisationssignal zu bestimmen (vgl. DE-C2-196 27 857). Die Ionisations-Elektrode stellt einen standfesten, leicht zu wartenden und gleichzeitig preisgünstigen Luftzahlsensor dar, der zudem mit äußerst geringem Aufwand installiert werden kann, sofern er nicht ohnehin zur Flammenüberwachung bereits vorhanden ist. Außerdem erlaubt das Ionisationssignal eine sehr zuverlässige und genaue Bestimmung der Luftzahl.For the air number control, the air ratio can be determined with the aid of various measured variables. However, it has proved useful to determine the air ratio via the ionization signal detected with the aid of an ionization electrode (cf DE-C2-196 27 857). The ionization electrode provides a stable, easy to maintain and simultaneously low-priced air-fuel sensor, which can also be installed with very little effort, if it is not already available for flame monitoring anyway. In addition, the ionization signal allows a very reliable and accurate determination of the air ratio.

Aus der EP-A2-0 770 824 ist ein Verfahren und zur Regelung eines Gasbrenners mit Hilfe einer lonisations-Elektrode bekannt, bei dem in Intervallen zwangsweise ein Kalibrierzyklus durchfahren wird.From EP-A2-0 770 824 a method and for controlling a gas burner with the aid of an ionization electrode is known in which a calibration cycle is forcibly traversed at intervals.

Die DE-U1-296 12 014 offenbart einen Gasbrenner für atmosphärischen vormischenden Betrieb mit mindestens zwei Flammendetektiohselementen, die in einem unterschiedlichen Abstand zur Brenneroberfläche angebracht sind und mit ihren Signalen über einen Regler die Verbrennung steuern.DE-U1-296 12 014 discloses a gas burner for atmospheric premixing operation having at least two flame detection elements mounted at a different distance from the burner surface and controlling combustion with their signals via a regulator.

Wenn die Lüfterdrehzahl bekannt ist, kann aus dem Ionisationssignal die aktuelle Luftzahl bestimmt und mit einer für die jeweilige Lüfterdrehzahl charakteristischen Kennlinie geregelt werden.If the fan speed is known, the current air ratio can be determined from the ionization signal and controlled with a characteristic curve characteristic of the respective fan speed.

Alternativ kann aus dem Ionisationssignal und der Lüfterdrehzahl bei Verwendung entsprechender Auswerteschaltungen ein für die aktuelle Luftzahl repräsentatives Signal abgeleitet werden, welches in einem bestimmten Leistungsbereich im Wesentlichen unabhängig von der Brennerleistung ist. Dies hat den Vorteil, dass die Luftzahl über diesen Leistungsbereich mit einer einzigen Kennlinie geregelt werden kann. Das für die aktuelle Luftzahl repräsentative Signal wird mit dem für die gewünschte Luftzahl vorgegebenen Sollwert der Kennlinie verglichen, und aus diesem Vergleich wird ein Stellsignal für das Gas-Regelventil abgeleitet.Alternatively, from the ionization signal and the fan speed, using appropriate evaluation circuits, a signal representative of the current air ratio can be derived, which in a specific power range is essentially independent of the burner output. This has the advantage that the air ratio over this power range can be controlled with a single characteristic. The representative of the current air ratio signal is compared with the setpoint for the desired air ratio setpoint of the characteristic, and from this comparison, a control signal for the gas control valve is derived.

Es hat sich jedoch gezeigt, dass mit der Zeit Veränderungen am Zuluft- bzw. Abluftsystem des Gasbrenners auftreten können, welche dazu führen, dass der Gasbrenner trotz der obigen Luftzahlregelung nicht mehr im optimalen Arbeitsbereich arbeitet.However, it has been shown that over time changes in the supply air or exhaust air system of the gas burner can occur, which cause the gas burner, despite the above Luftzahlregelung no longer works in the optimal working range.

Aufgabe der Erfindung ist es daher, bei dem eingangs genannten Verfahren die Überprüfung des Betriebszustandes des Gasbrenners zu ermöglichen.The object of the invention is therefore to enable in the aforementioned method, the verification of the operating state of the gas burner.

Diese Aufgabe wird erfindungsgemäß dadurch gelöst, dass ein für die aktuelle Brennerleistung repräsentatives zweites Signal erfasst wird und dieses mit einem vorgegebenen Wert verglichen wird, wobei aus diesem Vergleich Informationen über den Betriebszustand des Gasbrenners abgeleitet werden.This object is achieved in that a representative of the current burner power second signal is detected and this is compared with a predetermined value, being derived from this comparison information about the operating state of the gas burner.

Der Erfindung liegt die Erkenntnis zugrunde, dass sofern Veränderungen am Zuluft- bzw. Abluftsystem des Gasbrenners auftreten, die über die Lüfterdrehzahl eingestellte Brennerleistung nicht mehr der tatsächlichen Brennerleistung entspricht. In diesem Fall kann die fehlende Korrelation zwischen Lüfterdrehzahl und Brennerleistung dadurch erfasst und kompensiert werden, dass ein anderes für die aktuelle Leistung repräsentatives Signal erfasst wird. Weicht das für die aktuelle Leistung repräsentative zweite Signal von dem für die eingestellte Leistung vorgegebenen Wert ab, erbringt der Gasbrenner nicht die gewünschte Leistung.The invention is based on the finding that, if changes occur in the supply air or exhaust air system of the gas burner, the burner output set via the fan speed no longer corresponds to the actual burner output. In this case, the missing correlation between fan speed and burner power can be detected and compensated by detecting another signal representative of the current power. If the second signal representative of the current power deviates from the value specified for the set power, the gas burner does not produce the desired power.

In diesem Fall kann z. B., wenn die Abweichung einen vorgegebenen Schwellwert überschreitet, eine Wartungsanzeige aktiviert werden. Bei einer besonders großen Abweichung kann ferner ein Abschaltmechanismus eingreifen, welcher den Gasbrenner automatisch abschaltet. Alternativ kann die Lüfterdrehzahl solange variiert werden, bis das für die aktuelle Leistung repräsentative zweite Signal dem vorgegebenen Wert entspricht. Bei dieser Ausführungsform muss der Gasbrenner dann unter Berücksichtigung der geänderten Korrelation zwischen Lüfterdrehzahl und Brenneneistung weiter betrieben werden. Auf diese Weise kann ein Gasbrenner über einen langen Zeitraum sicher und mit der gewünschten Leistung betrieben werden.In this case, z. For example, if the deviation exceeds a predetermined threshold, a service indicator will be activated. In the case of a particularly large deviation, a shut-off mechanism can also intervene, which automatically shuts off the gas burner. Alternatively, the fan speed can be varied until the representative of the current power second signal corresponds to the predetermined value. In this embodiment, the gas burner then has to be operated in consideration of the changed correlation between fan speed and firing power. In this way, a gas burner can be operated safely and with the desired performance over a long period of time.

Eine Weiterbildung der Erfindung ist dadurch gekennzeichnet, dass für den Vergleich mit dem zweiten Signal das erste Signal als vorgegebener Wert verwendet wird.A development of the invention is characterized in that the first signal is used as the predetermined value for the comparison with the second signal.

Vorteilhafterweise wird als zweites Signal die Leistungsaufnahme des Lüfters oder das Temperaturniveau des Kessels oder der Luftmassenstrom durch den Lüfter erfasst.Advantageously, the power consumption of the fan or the temperature level of the boiler or the air mass flow is detected by the fan as a second signal.

Ein besonders bevorzugtes alternatives Ausführungsbeispiel ist dadurch gekennzeichnet, daß das zweite Signal aus einem aktuellen Ionisationssignal abgeleitet wird, wobei das zweite Signal sowohl für die aktuelle Leistung, als auch für die aktuelle Luftzahl repräsentativ ist. Diesem Ausführungsbeispiel liegt die Erkenntnis zugrunde, daß das Ionisationssignal selbst zur Überprüfung der aktuellen Leistung verwendet werden kann. Da das Ionisationssignal leistungsabhängig ist, kann dem Kundenbedarf entsprechend die aktuelle Betriebsleistung in einem sehr breiten Leistungsbereich überprüft werden. Weicht das aus dem Ionisationssignal abgeleitete, für die aktuelle Luftzahl und die aktuelle Leistung repräsentative zweite Signal von dem für diese Luftzahl und diese Leistung vorgegebenen Wert ab, erbringt der Gasbrenner nicht die gewünschte Leistung. Es können dann die erforderlichen Schritte eingeleitet werden.A particularly preferred alternative embodiment is characterized in that the second signal is derived from a current ionization signal, the second signal being representative of both the current power and the current air ratio. This embodiment is based on the finding that the ionization signal itself can be used to check the current power. Since the ionization signal is power-dependent, the current operating performance in a very wide power range can be checked according to customer requirements. If the second signal derived from the ionization signal and representative of the current air ratio and the current power deviates from the value specified for this air ratio and this power, the gas burner does not produce the desired power. The required steps can then be initiated.

Eine Weiterbildung der Erfindung ist dadurch gekennzeichnet, daß auch als erstes Signal ein sowohl für die aktuelle Leistung als auch für die aktuelle Luftzahl repräsentatives Signal verwendet wird, wobei das erste und das zweite Signal eine unterschiedliche Abhängigkeit von der Luftzahl und/oder der Leistung aufweisen. Vorteilhafterweise können die Ionisationssignale selbst als erstes und/oder zweites Signal verwendet werden.A development of the invention is characterized in that a signal representative of both the current power and the current air ratio is used as the first signal, wherein the first and the second signal have a different dependence on the air ratio and / or the power. Advantageously, the ionization signals themselves can be used as the first and / or second signal.

Besonders einfach läßt sich das erfindungsgemäße Verfahren dadurch realisieren, daß das aktuelle Ionisationssignal, aus welchem das erste Signal abgeleitet wird, mit Hilfe einer ersten Speisespannung gemessen wird, und das aktuelle Ionisationssignal, aus welchem das zweite Signal abgeleitet wird, mit Hilfe einer zweiten Speisespannung gemessen wird.The method according to the invention can be implemented particularly simply by measuring the current ionization signal, from which the first signal is derived, with the aid of a first supply voltage, and the current ionization signal, from which the second signal is derived, by means of a second supply voltage becomes.

Vorteilhafterweise werden die Ionisationssignale dadurch gemessen, daß eine Wechselspannung, vorzugsweise von 230V, an die Ionisations-Elektrode angelegt wird. Der Polaritätseffekt der Flamme bewirkt, daß nur bei jeweils einer Halbwelle ein Ionisationsstrom fließt. Dadurch läßt sich aus einem Gleichanteil der abgegriffenen Spannung das Ionisationssignal ableiten. Ein auf diese Weise gemessenes Ionisationssignal läßt sich besonders zuverlässig und genau auswerten. Zur Auswertung wird das Signal in der Regel zunächst an ein Tiefpaßfilter angelegt.Advantageously, the ionization signals are measured by applying an AC voltage, preferably of 230V, to the ionization electrode. The polarity effect of the flame causes that only in each case a half-wave, an ionization current flows. As a result, the ionization signal can be obtained from a DC component of the tapped voltage derived. A measured in this way ionization signal can be evaluated very reliable and accurate. For evaluation, the signal is usually first applied to a low-pass filter.

Alternativ können die Ionisationssignale dadurch gemessen werden, daß eine Dreiecksspannung oder eine Rechteckspannung an die Ionisations-Elektrode angelegt wird.Alternatively, the ionization signals may be measured by applying a triangular voltage or a square wave voltage to the ionization electrode.

Das zur Ableitung des für die aktuelle Luftzahl repräsentativen Signals gemessene Ionisationssignal und das zur Ableitung des für die aktuelle Luftzahl und die aktuelle Leistung repräsentativen Signals gemessene Ionisationssignal müssen nicht durch Anlegen der gleichen Spannung an die Ionisations-Elektrode gemessen werden. Z.B. kann das Ionisationssignal zur Bestimmung des für die aktuelle Luftzahl repräsentativen Signals mit Hilfe einer Wechselspannung und das Ionisationssignal zur Bestimmung des für die aktuelle Luftzahl und für die aktuelle Leistung repräsentativen Signals mit Hilfe einer Dreiecksspannung oder einer Rechteckspannung gemessen werden oder umgekehrt.The ionization signal measured to derive the signal representative of the current air ratio and the ionization signal measured to derive the signal representative of the current air ratio and current power need not be measured by applying the same voltage to the ionization electrode. For example, For example, the ionization signal for determining the signal representative of the current air number can be measured with the aid of an alternating voltage and the ionization signal for determining the signal representative of the current air number and for the current power with the aid of a triangular voltage or a rectangular voltage or vice versa.

Vorzugsweise werden die Ionisationssignale abwechselnd zur Ableitung des ersten Signals und zur Ableitung des zweiten Signals genutzt.Preferably, the ionization signals are used alternately to derive the first signal and to derive the second signal.

Der Gasbrenner kann dadurch langfristig im optimalen Betriebsbereich gehalten werden, daß das zweite Signal in regelmäßigen Zeitabständen, z. B. einmal pro Minute, erfaßt wird.The gas burner can be kept in the long term in the optimum operating range that the second signal at regular intervals, for. B. once a minute, is detected.

Zur Eichung des Systems ist es vorteilhaft, daß bei dem Betriebsstart des Gasbrenners Referenzmessungen durchgeführt werden, bei denen Referenzsignale für verschiedene Leistungen und verschiedene Luftzahlen erfaßt und diese als vorgegebener Wert für den Vergleich mit dem zweiten Signal gespeichert werden. Sofern das zweite Signal aus einem aktuellen Ionisationssignal abgeleitet wird, werden bei dem Betriebsstart des Gasbrenners vorzugsweise Referenzmessungen durchgeführt, bei denen Referenz-Ionisationssignale für verschiedene Lüfterdrehzahlen und verschiedene Luftzahlen erfaßt und diese als vorgegebener Wert für den Vergleich mit dem zweiten Wert gespeichert werden.To calibrate the system, it is advantageous that at the start of operation of the gas burner reference measurements are carried out in which reference signals for different powers and different air numbers are detected and stored as a predetermined value for comparison with the second signal. If the second signal is derived from a current ionization signal, reference measurements are preferably carried out at the start of operation of the gas burner, in which detected reference ionization signals for different fan speeds and different air numbers and these are stored as a predetermined value for comparison with the second value.

Weitere vorteilhafte Ausführungsformen der Erfindung sind in den Unteransprüchen gekennzeichnet.Further advantageous embodiments of the invention are characterized in the subclaims.

Im folgenden wird die Erfindung anhand zweier in der Zeichnung dargestellter Ausführungsbeispiele näher erläutert. In der Zeichnung zeigen:

  • Fig. 1 ein erstes erfindungsgemäßes Ausführungsbeispiel veranschaulichendes Diagramm; und
  • Fig. 2 zwei ein zweites erfindungsgemäßes Ausführungsbeispiel veranschaulichende Diagramme.
In the following the invention will be explained in more detail with reference to two illustrated in the drawings embodiments. In the drawing show:
  • Fig. 1 shows a first embodiment of the invention illustrative diagram; and
  • 2 shows two diagrams illustrating a second embodiment according to the invention.

Fig. 1 zeigt ein Diagramm, in dem die Spannung eines Meßsignals gegen die Luftzahl λ aufgetragen ist. Es sind sechs verschiedene Meßsignalkurven dargestellt. Bei den mit Signal 1 bezeichneten Meßsignalkurven handelt es sich um die für die aktuelle Luftzahl repräsentativen Signale. Diese wurden aus dem bei einer Wechselspannung von 230V gemessenen Ionisationssignal und der Lüfterdrehzahl mit Hilfe einer speziellen Auswerteschaltung abgeleitet. Die Signale sind für verschiedene Leistungen dargestellt. Wie zu sehen ist, liegen die Kurven fast vollständig übereinander, d. h. diese Signale sind tatsächlich leistungsunabhängig.Fig. 1 shows a diagram in which the voltage of a measuring signal against the air ratio λ is plotted. Six different measured signal curves are shown. The signal waveforms labeled Signal 1 are the signals representative of the current air ratio. These were derived from the measured at an alternating voltage of 230V ionization signal and the fan speed using a special evaluation circuit. The signals are shown for different powers. As can be seen, the curves lie almost completely on top of each other, d. H. These signals are actually power-independent.

Bei den mit Signal 2 bezeichneten Meßsignalkurven handelt es sich um die für die aktuelle Luftzahl und die aktuelle Leistung repräsentativen Signale. Zur Messung wurde wiederum eine Wechselspannung von 230V an die Ionisations-Elektrode angelegt und das Ionisationssignal anschließend unter Umgehung der speziellen Auswerteschaltung durch ein Tiefpaßfilter geschickt. Es fällt auf, daß die wiederum für unterschiedliche Leistungen aufgenommenen Kurven stark voneinander abweichen. Die Spannungsunterschiede zwischen den Meßsignalkurven sind bei einer vorgegebenen Luftzahl im unteren Leistungsbereich besonders groß. Somit kann ein sehr großer Leistungsbereich des Gasbrenners dadurch zuverlässig überwacht werden, daß die Luftzahlregelung im Normalbetrieb mit Hilfe der übereinanderliegenden Signal 1-Kennlinien erfolgt und zur Überprüfung der Leistung die Wechselspannung von 230V an die Ionisations-Elektrode angelegt und die spezielle Auswerteschaltung umgangen wird. Durch Vergleich des bei letztgenannter Messung erzielten Meßwerts mit den verschiedenen vorgegebenen Signal 2-Kurven kann festgestellt werden, ob der Gasbrenner tatsächlich die gewünschte Leistung erbringt.The signal waveforms labeled Signal 2 are the signals representative of the current air ratio and current power. For measurement, an AC voltage of 230 V was again applied to the ionization electrode and the ionization signal then passed through a low-pass filter, bypassing the special evaluation circuit. It is noticeable that the curves, which in turn are recorded for different performances, differ greatly from one another. The voltage differences between the Meßsignalkurven are particularly large at a given air ratio in the lower power range. Thus, a very large power range of the gas burner can be reliably monitored, that the air ratio control is carried out in normal operation using the superimposed signal 1 characteristics and to check the power, the AC voltage of 230V is applied to the ionization electrode and the special evaluation circuit is bypassed. By comparing the measured value obtained in the latter measurement with the various predetermined signal 2 curves, it can be determined whether the gas burner actually provides the desired performance.

Fig. 2 zeigt zwei Diagramme, in denen das Ionisationssignal gegen die Gebläsedrehzahl für ein zweites Ausführungsbeispiel der Erfindung aufgetragen ist. Die dargestellten Meßwerte wurden bei konstanter Luftzahl λ von 1,3 aufgenommen. In beiden Diagrammen sind die Ionisationssignale bei einer Speisespannung der Ionisations-Elektrode von 50V und von 230V dargestellt. Das obere Diagramm veranschaulicht den normalen Betriebszustand des Kessels. Bei der eingestellten Gaszufuhr ergibt sich bei einer Drehzahl von 2000min.-1 ein Ionisationssignal bei einer Speisespannung von 50V von 109. Dies ist der Sollwert für die Regelung der Luftzahl von 1,3. Zur Überprüfung des Systems wird die Speisespannung der Ionisations-Elektrode in regelmäßigen Zeitabständen auf die Kontrollspannung von 230V umgeschaltet. Wie dem obigen Diagramm zu entnehmen ist, beträgt in diesem Fall das Ionisationssignal nur ungefähr 102. Die Differenz zwischen beiden Signalen ist somit ungefähr 7. Solange die Differenz zwischen diesen beiden ermittelten Ionisationssignalwerten im Bereich von 7 liegt, ist der Betrieb des Gasbrenners im optimalen Arbeitsbereich gesichert.Fig. 2 shows two diagrams in which the ionization signal is plotted against the fan speed for a second embodiment of the invention. The measured values shown were recorded at a constant air ratio λ of 1.3. In both diagrams, the ionization signals are shown at a supply voltage of the ionization electrode of 50V and 230V. The upper diagram shows the normal operating condition of the boiler. At the set gas supply results at a speed of 2000min. -1 is an ionization signal at a supply voltage of 50V of 109. This is the setpoint for controlling the air ratio of 1.3. To check the system, the supply voltage of the ionization electrode is switched at regular intervals to the control voltage of 230V. As can be seen from the above diagram, in this case the ionization signal is only approximately 102. The difference between the two signals is thus approximately 7. As long as the difference between these two detected ionization signal values is in the range of 7, the operation of the gas burner is in the optimum operating range secured.

Sofern das Luft-Abgassystem verstopft ist, z. B. durch eine Störung im Schornstein, verschiebt sich der gesamte Arbeitsbereich zu höheren Drehzahlen hin, wie in dem unteren Diagramm in Fig. 2 zu sehen ist. Bei der vorgegebenen Gaszufuhr wurde in diesem Fall die Differenz zwischen den beiden Ionisationssignalen bei 2000min.-1 ungefähr 14 betragen. Durch Vergleich dieser Abweichung mit der Abweichung von 7 im normalen Betriebszustand kann auf einfache Weise festgestellt werden, daß der Gasbrenner nicht die gewünschte Leistung erbringt. Während bei dem ersten Ausführungsbeispiel die Auswertschaltung umgeschaltet wurde, werden bei diesem zweiten Ausführungsbeispiel durch Umschaltung der Speisespannung zwei Ionisationssignale erzeugt, die eine unterschiedliche Abhängigkeit von der aktuellen Leistung des Gasbrenners haben. In beiden Fällen gelingt es so, einen Gasbrenner über einen langen Zeitraum sicher und mit der gewünschten Leistung zu betreiben.If the air-exhaust system is clogged, z. B. by a disturbance in the chimney, the entire workspace moves towards higher speeds, as can be seen in the lower diagram in Fig. 2. In the case of the given gas supply, the difference between the two ionization signals at 2000 min. -1 about 14. By comparing this deviation with the deviation of 7 in the normal operating condition can be easily determined that the gas burner is not the desired performance he brings. While in the first embodiment, the evaluation circuit has been switched, two ionization signals are generated in this second embodiment by switching the supply voltage, which have a different dependence on the current performance of the gas burner. In both cases, it is possible to operate a gas burner for a long time safely and with the desired performance.

Im Rahmen der Erfindung sind zahlreiche Abwandlungen möglich. Z.B. kann das Ionisationssignal durch Anlegen einer Spannung einer beliebigen Form an die Ionisations-Elektrode erfaßt werden. Genauso kann das Ionisationssignal mit Hilfe einer Gleichspannung gemessen werden. Zur Abtastung des Ionisationssignals von der Ionisations-Elektrode kann zur Ableitung des für die aktuelle Luftzahl repräsentativen Signals und des für die aktuelle Luftzahl und die aktuelle Leistung repräsentativen Signals der gleiche Meßwertaufnehmer verwendet werden. Alternativ können zwei Meßwertaufnehmer der Ionisations-Elektrode zugeordnet werden oder im Flammenbereich des Gasbrenners sogar zwei separate Ionisations-Elektroden angeordnet werden. Schließlich können die Referenzmessungen statt beim Betriebsstart bereits vorher herstellerseitig durchgeführt werden.Numerous modifications are possible within the scope of the invention. For example, For example, the ionization signal can be detected by applying a voltage of any shape to the ionization electrode. Likewise, the ionization signal can be measured by means of a DC voltage. For sampling the ionization signal from the ionization electrode, the same transducer can be used to derive the signal representative of the current air ratio and the signal representative of the current air ratio and current power. Alternatively, two transducers can be assigned to the ionization electrode or even two separate ionization electrodes can be arranged in the flame region of the gas burner. Finally, the reference measurements can be carried out by the manufacturer before the start of operation.

Claims (14)

  1. Method for controlling the fuel/air ratio of an at least partially premixed gas burner provided with a fan and a gas control valve, whereby ionisation signals are measured in the flame zone with the aid of an ionisation electrode,
    the fan speed is recorded,
    a first signal which is representative for the current fuel/air ratio is derived from the current ionisation signal and this is compared with a set value, whereby the fan speed is taken into account when deriving the first signal and/or selecting the set value, and
    an actuating signal for the gas control valve is derived from the comparison,
    characterised in that
    a second signal representative for the current burner output is recorded and compared with a preset value,
    whereby information on the operating condition of the gas burner is derived from this comparison.
  2. Method according to claim 1, characterised in that the first signal is used as the preset value for comparison with the second signal.
  3. Method according to claim 1 or 2, characterised in that the power consumption of the fan or the temperature level of the boiler or the air mass flow through the fan is recorded as the second signal.
  4. Method according to claim 1 or 2, characterised in that the second signal is derived from a current ionisation signal, the second signal being representative both for the current burner output and for the current fuel/air ratio.
  5. Method according to claim 4, characterised in that a signal which is both representative for the current burner output and for the current fuel/air ratio is used as the first signal, the first and the second signal exhibiting a different dependence on the fuel/air ratio and/or the output.
  6. Method according to any one of claims 1 through 5, characterised in that the ionisation signals themselves are used as the first and/or second signal.
  7. Method according to any one of claims 4 through 6, characterised in that the current ionisation signal from which the first signal is derived is measured with the aid of a first supply voltage, and the current ionisation signal from which the second signal is derived is measured with the aid of a second supply voltage.
  8. Method according to any one of claims 1 through 7, characterised in that the ionisation signals are measured by applying an AC voltage to the ionisation electrode.
  9. Method according to any one of claims 1 through 7, characterised in that the ionisation signals are measured by applying a delta voltage or a square wave voltage to the ionisation electrode.
  10. Method according to any one of claims 4 through 9, characterised in that the ionisation signals are used alternately to derive the first signal and to derive the second signal.
  11. Method according to any one of claims 1 through 10, characterised in that the second signal is recorded at regular intervals, e.g. once per minute.
  12. Method according to any one of claims 1 through 11, characterised in that when the gas burner is started up reference measurements are taken during which reference signals for various outputs are recorded and stored as preset values for comparison with the second signal.
  13. Method according to any one of claims 1 through 12, characterised in that, when the gas burner is started up, reference measurements are taken during which reference ionisation signals for various fan speeds and various fuel/air ratios are recorded and stored as preset values for comparison with the second signal.
  14. Method according to any one of claims 1 through 13, characterised in that the gas burner is switched off or recalibrated or a fault is displayed when the second signal deviates from the preset value by more than a preset threshold value.
EP99122611A 1998-11-20 1999-11-11 Method for controlling a fuel/air ratio of full premix gas burner Expired - Lifetime EP1002997B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19853567 1998-11-20
DE19853567A DE19853567A1 (en) 1998-11-20 1998-11-20 Process for controlling the air ratio of a fully premixed gas burner

Publications (3)

Publication Number Publication Date
EP1002997A2 EP1002997A2 (en) 2000-05-24
EP1002997A3 EP1002997A3 (en) 2003-01-15
EP1002997B1 true EP1002997B1 (en) 2004-04-28

Family

ID=7888448

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99122611A Expired - Lifetime EP1002997B1 (en) 1998-11-20 1999-11-11 Method for controlling a fuel/air ratio of full premix gas burner

Country Status (3)

Country Link
EP (1) EP1002997B1 (en)
AT (1) ATE265655T1 (en)
DE (2) DE19853567A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009057121A1 (en) * 2009-12-08 2011-06-09 Scheer Heizsysteme & Produktionstechnik Gmbh Method for qualitative monitoring of combustion status of boiler system in e.g. industrial combustion, involves determining exhaust gas value of combustion of fuel-air-mixture by boiler-isothermal current and/or voltage characteristic curve
DE102010008908A1 (en) * 2010-02-23 2011-08-25 Robert Bosch GmbH, 70469 A method of operating a burner and the air-frequency controlled modulating a burner power
DE102012023606A1 (en) * 2012-12-04 2014-06-05 Robert Bosch Gmbh Method for controlling combustion in a gas or oil burner
EP2796787A1 (en) 2013-04-26 2014-10-29 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method for monitoring a combustor
EP3680553A1 (en) 2019-01-10 2020-07-15 Vaillant GmbH Method for regulating the combustion air ratio of a burner of a heater

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6939127B2 (en) 2001-03-23 2005-09-06 Gvp Gesellschaft Zur Vermarktung Der Porenbrennertechnik Mbh Method and device for adjusting air ratio
AT412902B (en) * 2003-09-23 2005-08-25 Vaillant Gmbh METHOD FOR ADJUSTING THE HEATING PERFORMANCE OF A FAN SUPPORTED HEATER
DE102004055716C5 (en) * 2004-06-23 2010-02-11 Ebm-Papst Landshut Gmbh Method for controlling a firing device and firing device (electronic composite I)
DE102010004826A1 (en) 2010-01-15 2011-07-21 Honeywell Technologies S.A.R.L. Method for operating a gas burner
DE102011102575A1 (en) 2011-05-26 2012-11-29 Robert Bosch Gmbh Method for calibrating air ratio regulation of burner with modulated burner output, involves adjusting blower to predetermined calibration speed, where calibration flow rate of air or fuel or fuel-air-mixture is determined
DE102015225886A1 (en) * 2015-12-18 2017-06-22 Robert Bosch Gmbh Heater system and method with a heater system
DE102016211345A1 (en) * 2016-06-24 2017-12-28 Robert Bosch Gmbh Method for determining operating data of a gas heating device
DE102020104210A1 (en) * 2020-02-18 2021-08-19 Vaillant Gmbh Method and device for regulating a fuel gas-air mixture in a heating device with variable power
IT202100032360A1 (en) 2021-12-23 2023-06-23 Sit Spa METHOD AND APPARATUS FOR MONITORING AND CONTROL OF COMBUSTION IN FUEL GAS BURNERS

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2638819A1 (en) * 1988-11-10 1990-05-11 Vaillant Sarl METHOD AND DEVICE FOR PREPARING A COMBUSTIBLE-AIR MIXTURE FOR COMBUSTION
ATE189301T1 (en) * 1995-10-25 2000-02-15 Stiebel Eltron Gmbh & Co Kg METHOD AND CIRCUIT FOR CONTROLLING A GAS BURNER
DE19627857C2 (en) * 1996-07-11 1998-07-09 Stiebel Eltron Gmbh & Co Kg Process for operating a gas fan burner
DE29612014U1 (en) * 1996-07-10 1996-09-05 Buderus Heiztechnik Gmbh, 35576 Wetzlar Gas burner

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009057121A1 (en) * 2009-12-08 2011-06-09 Scheer Heizsysteme & Produktionstechnik Gmbh Method for qualitative monitoring of combustion status of boiler system in e.g. industrial combustion, involves determining exhaust gas value of combustion of fuel-air-mixture by boiler-isothermal current and/or voltage characteristic curve
DE102010008908A1 (en) * 2010-02-23 2011-08-25 Robert Bosch GmbH, 70469 A method of operating a burner and the air-frequency controlled modulating a burner power
DE102010008908B4 (en) 2010-02-23 2018-12-20 Robert Bosch Gmbh A method of operating a burner and the air-frequency controlled modulating a burner power
DE102012023606A1 (en) * 2012-12-04 2014-06-05 Robert Bosch Gmbh Method for controlling combustion in a gas or oil burner
DE102012023606B4 (en) 2012-12-04 2019-02-21 Robert Bosch Gmbh Method for controlling combustion in a gas or oil burner
EP2796787A1 (en) 2013-04-26 2014-10-29 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method for monitoring a combustor
DE102013207720A1 (en) * 2013-04-26 2014-10-30 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Process for monitoring incinerators
EP3680553A1 (en) 2019-01-10 2020-07-15 Vaillant GmbH Method for regulating the combustion air ratio of a burner of a heater
DE102019100467A1 (en) 2019-01-10 2020-07-16 Vaillant Gmbh Process for controlling the combustion air ratio on the burner of a heater

Also Published As

Publication number Publication date
DE59909316D1 (en) 2004-06-03
DE19853567A1 (en) 2000-05-25
ATE265655T1 (en) 2004-05-15
EP1002997A2 (en) 2000-05-24
EP1002997A3 (en) 2003-01-15

Similar Documents

Publication Publication Date Title
EP1002997B1 (en) Method for controlling a fuel/air ratio of full premix gas burner
EP0770824B1 (en) Method and circuit for controlling a gas burner
DE19539568C1 (en) Gas burner regulation system
EP1154202B1 (en) Control device for a burner
DE4433425C2 (en) Control device for setting a gas-combustion air mixture in a gas burner
DE69910126T2 (en) Combustion process of a fuel with an oxygen-rich oxidant
EP1331444B1 (en) Method for regulating a gas burner
DE19502901C1 (en) Regulating device for gas burner
DE102011079325A1 (en) Method for controlling the air number of a burner
AT505442A1 (en) METHOD FOR FUEL GAS AIR ADJUSTMENT FOR A FUEL-DRIVEN BURNER
EP3690318A2 (en) Method and device for regulating a fuel-air mixture in a heating device
DE102019119186A1 (en) Method and device for controlling a fuel gas-air mixture in a heater
EP2017531A2 (en) Method for monitoring an ionisation electrode signal in burners
WO2020038919A1 (en) Heating device and method for regulating a fan-operated gas burner
EP0615095B1 (en) Burner controller
DE19854824C1 (en) Process and circuit for control of a gas burner uses a lambda sensor to control gas supply
EP1293728B1 (en) Method for controlling the power of a gas cooking appliance as well as a cooking appliance using this method
DE10300602B4 (en) Method for controlling a gas burner
EP2354657B1 (en) Method for operating a gas burner
DE10220773A1 (en) Gas burner regulation method in which a signal from an ionization sensor is subject to spectral frequency analysis to set a fuel-air ratio for regulation of the burner
WO2020221758A1 (en) Method for checking a gas mixture sensor and ionization sensor in a fuel-gas-powered heating device
EP0614051B1 (en) Burner automat
EP0655583B1 (en) Method for controlling and monitoring combustion
EP2105669B1 (en) Flame monitoring and evaluation device
EP3767174B1 (en) Method and device for recalibrating a measuring system for regulating a fuel-air mixture in a heating device

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RIN1 Information on inventor provided before grant (corrected)

Inventor name: HEIDER, HENNING

Inventor name: SCHLUMP, ANSGAR

Inventor name: LINDEMANN, JOERG

Inventor name: PETERSMANN, MARTIN

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RIC1 Information provided on ipc code assigned before grant

Free format text: 7F 23N 5/12 A, 7F 23N 1/02 B, 7F 23N 3/08 B

17P Request for examination filed

Effective date: 20030109

17Q First examination report despatched

Effective date: 20030402

AKX Designation fees paid

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040428

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040428

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040428

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20040428

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 59909316

Country of ref document: DE

Date of ref document: 20040603

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040728

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040728

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040728

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040808

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041130

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041130

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20050131

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: CH

Ref legal event code: AEN

Free format text: WEITERBEHANDLUNG GUTGEHEISSEN

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040928

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20171124

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20171130

Year of fee payment: 19

Ref country code: BE

Payment date: 20171124

Year of fee payment: 19

Ref country code: AT

Payment date: 20171128

Year of fee payment: 19

Ref country code: CH

Payment date: 20171124

Year of fee payment: 19

Ref country code: IT

Payment date: 20171122

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20180131

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20181127

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59909316

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20181201

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 265655

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181111

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20181111

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20181130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181130

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181201

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190601

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181111

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181111