Nothing Special   »   [go: up one dir, main page]

EP0924470B1 - Vormischbrennkammer für eine Gasturbine - Google Patents

Vormischbrennkammer für eine Gasturbine Download PDF

Info

Publication number
EP0924470B1
EP0924470B1 EP98123199A EP98123199A EP0924470B1 EP 0924470 B1 EP0924470 B1 EP 0924470B1 EP 98123199 A EP98123199 A EP 98123199A EP 98123199 A EP98123199 A EP 98123199A EP 0924470 B1 EP0924470 B1 EP 0924470B1
Authority
EP
European Patent Office
Prior art keywords
combustor
mixing
zone
pilot
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98123199A
Other languages
English (en)
French (fr)
Other versions
EP0924470A3 (de
EP0924470A2 (de
Inventor
Nikolaos Dr. Zarzalis
Thomas Ripplinger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MTU Aero Engines AG
Original Assignee
MTU Aero Engines GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE1997156663 external-priority patent/DE19756663B4/de
Priority claimed from DE1998110648 external-priority patent/DE19810648A1/de
Application filed by MTU Aero Engines GmbH filed Critical MTU Aero Engines GmbH
Publication of EP0924470A2 publication Critical patent/EP0924470A2/de
Publication of EP0924470A3 publication Critical patent/EP0924470A3/de
Application granted granted Critical
Publication of EP0924470B1 publication Critical patent/EP0924470B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/34Feeding into different combustion zones
    • F23R3/343Pilot flames, i.e. fuel nozzles or injectors using only a very small proportion of the total fuel to insure continuous combustion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply

Definitions

  • the invention relates to a premixing combustion chamber for a gas turbine, comprising a main stage with at least one premixing chamber and at least one for Part of the combustion chamber, which is designed to be rotationally symmetrical with respect to its longitudinal axis, with an i Main combustion zone and a downstream post-combustion zone, the at least one premixing chamber generating tangential swirl into the combustion chamber opens in the area of the main combustion zone; and a pilot stage with a pilot injector.
  • Premix combustion chambers are low-pollution gas turbine combustion chambers.
  • gas turbines can be stationary, e.g. as generator drives in power plants, as well as in Aircraft engines are used.
  • nitrogen oxide emissions from stationary gas turbines There are maximum limits in numerous industrialized countries for nitrogen oxide emissions from stationary gas turbines.
  • There Reduction also comes with corresponding recommendations for aircraft engines the stickodix formation in the combustion chambers as part of the lowering of the Pollutant emissions are of great importance.
  • fat-lean burn is currently used in the combustion with a first rich level and a second lean level with excess air he follows.
  • the hot gases from the pilot zone become the lean Main zone mixed in, the stabilizing effect strongly of the existing n-den Flow field depends and larger in different operating conditions Can be subject to fluctuations.
  • the flow from the main in the post-combustion zone is redirected by 90 °, which leads to an increased pressure loss leads.
  • the object of the invention is to provide a premixing combustor described genus to create, in which the stabilizing effect of pilot combustion is improved.
  • the solution to this problem is characterized in that the Main combustion zone in the combustion chamber essentially coaxial or parallel runs or is arranged to the afterburning zone, i.e. the flow path in runs essentially straight and without significant deflection, and the pilot stage the end of the combustion chamber remote from the afterburning zone is arranged.
  • premix combustion chamber The advantage of this premix combustion chamber is that the flow is within the combustion chamber from the main combustion zone to the afterburning zone is deflected by 90 ° and the associated pressure loss is eliminated.
  • the pilot stage arranged directly on the combustion chamber has a direct one Connection to the main combustion or recirculation zone, creating the stabilizing Effect of pilot combustion is significantly improved.
  • Premix combustors can be used in stationary gas turbines as well as in aircraft engines deploy.
  • the main combustion zone widens forming area of the combustion chamber in the flow direction, from the Main combustion zone runs towards the post-combustion zone, conical on. Through the opening angle of the cone, the recirculation zone and thus control flame stability. While there is an additional one at smaller opening angles Pre-evaporation results in the case of larger opening angles Promotes combustion stability.
  • the pilot stage at the end of the combustion chamber with a smaller radius is preferred arranged at the front and coaxial to it.
  • pilot stage may be one between the pilot injection device and the combustion chamber arranged pilot combustion chamber.
  • the premix combustion chamber 1 shows an exemplary embodiment of a premix combustion chamber, designated as a whole by 1 for a gas turbine.
  • the premix combustion chamber 1 essentially comprises a main stage 2 with a premixing chamber 6, a main combustion zone 3 and a post-combustion zone 5 and a pilot stage 4.
  • the premixing chamber 6 becomes the fuel together with part of the compressor air brought in.
  • the fuel is atomized and evaporated in the premixing chamber 6 and mixed with the air as homogeneously as possible.
  • the premixing chamber 6 is formed as a rectilinear rectangular channel, so that within the premixing chamber 6 a swirl-free flow with a relatively uniform velocity profile is produced.
  • the premixing chamber 6 can depending on the machine design also have other suitable cross-sectional shapes, such as e.g. oval or circular.
  • the cross-sectional shape does not necessarily have to be constant over the length of the premixing chamber 6.
  • the fuel-air mixture flows at an outlet end 8 of the premixing chamber 6 into the combustion chamber 9, which is designed as a truncated cone, in the region of the Main combustion zone 3 lying part and a cylindrical, in the area of Afterburning zone 5 includes lying part 12.
  • the flow is included the greatest possible eccentricity to a longitudinal or central axis M of the rotationally symmetrical Combustion chamber 9 introduced so that the flow of the Fuel / air mixture is impressed a peripheral speed.
  • Premixing chamber 6 is also designed with the lowest possible height H.
  • the combustion chamber 9 has a plurality of for cooling Air inlet openings.
  • pilot stage 4 At an end 10 of the combustion chamber 9 remote from the afterburning zone 5 the pilot stage 4 arranged.
  • pilot level is 4 thus at the front end 10 with the smallest radius as a truncated cone trained part of the combustion chamber 9 arranged.
  • the pilot stage 4 includes one Pilot injector 11, with the fuel in the main combustion zone 3 for Stabilization of the combustion can be introduced in particular in the partial load range can.
  • the hot gases from pilot stage 4 flow directly into the core of the recirculation zone the lean main level 2, resulting in improved stability of the Combustion leads. Both in the main and in the pilot level 2 or 4 gaseous and liquid fuels are used.
  • Fig. 2 shows another embodiment of the premix combustion chamber 1, the Modification is in the area of pilot level 4.
  • the pilot stage 4 additionally to the pilot injection device 11, a pilot combustion chamber 13 in which the Fuel is first mixed with air in a diffusion combustion and only then is then introduced into the front of the combustion chamber 9.
  • Fig. 3 shows an arrangement in which a plurality of premixing combustion chambers 1 with an annular combustion chamber 14 are combined.
  • the individual premixing combustion chambers comprise 1 a premixing chamber 6, which is eccentrically into a truncated cone trained part of the combustion chamber 9 opens a main stage 2, and an afterburning zone arranged essentially coaxially to the main stage 2 5, causing the flow between the main combustion zone 3 and the post-combustion zone 5 does not have to be deflected and therefore the combustion chamber pressure drop is reduced.
  • the combustion chamber 9 could also be cylindrical Have part 12 which is substantially coaxial to the longitudinal axis M of the combustion chamber 9 is arranged.
  • the annular combustion chamber 14 When the annular combustion chamber 14 is installed in a gas turbine, it becomes with its central axis M arranged coaxially with it and from an upstream one Air supplied to the compressor on the injection side.
  • the premix combustion chambers 1 are arranged equidistantly around the end circumference of the annular combustion chamber 14.
  • the wall of the combustion chamber 9 is for cooling with air inlet openings Mistake.
  • the main stage 2 and the pilot stage can 4 Depending on the load or flight phase, they can be operated separately or simultaneously.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Description

Die Erfindung betrifft eine Vormischbrennkammer für eine Gasturbine, umfassend eine Hauptstufe mit mindestens einer Vormischkammer und einer wenigstens zum Teil rotationssymmetrisch zu ihrer Längsachse ausgebildeten Brennkammer mit e i-ner Hauptverbrennungs- und einer stromabwärts gelegenen Nachverbrennungszone, wobei die mindestens eine Vormischkammer tangential drallerzeugend in die Brennkammer im Bereich der Hauptverbrennungszone mündet; und eine Pilotstufe mit einer Piloteinspritzvorrichtung.
Vormischbrennkammern sind schadstoffarme Gasturbinenbrennkammern. Gasturbinen können sowohl stationär, z.B. als Generatorantriebe in Kraftwerken, als auch in Flugtriebwerken eingesetzt werden. In zahlreichen Industrieländern sind Höchstgrenzen für die Stickoxidemission stationärer Gasturbinen festgelegt worden. Da auch bei Flugantrieben entsprechende Empfehlungen existieren, kommt der Red u-zierung der Stickodixbildung in den Brennkammern im Rahmen der Senkung der Schadstoffemission eine große Bedeutung zu. Zur Stickoxidreduktion wird bei Flugtriebwerken derzeit die Fett-Mager-Verbrennung eingesetzt, bei der die Verbrennung mit einer ersten fetten Stufe und einer zweiten mageren Stufe unter Luftüberschuß erfolgt.
Mit der bei stationären Gasturbinen angewendeten, vorgemischten Magerverbrennung lassen sich im Vergleich dazu noch größere Reduktionen erzielen. Da die Stickoxidbildung u.a. mit der höchsten Temperatur in der Flamme steigt, wurden Verfahren entwickelt, die höchste Flammentemperatur abzusenken. Man unterscheidet dabei zwischen nassen und trockenen Verfahren. Bei den bisher überwi e-gend eingesetzten, nassen Verfahren werden Wasser oder Wasserdampf getrennt oder mit dem Brennstoff vorgemischt in die Verbrennungszone eingebracht. Dabei ist nachteilig, daß aufbereitetes Wasser erforderlich ist, dessen Verbrauch zudem hoch ist. Darüber hinaus sinkt bei den nassen Verfahren der Anlagenwirkungsgrad.
Aufgrund dieser Nachteile sind zunehmend trockene Verfahren erwünscht, bei denen die Luftüberschußzahl in der Verbrennungszone soweit wie möglich erhöht und Luft und Brennstoff ganz oder teilweise vorgemischt werden. Um den gesetzlichen Vor-schriften und Empfehlungen zu genügen, müssen Luft und Brennstoff vor dem Ver-brennungsraum möglichst homogen gemischt werden. Allein auf diese Weise können die Spitzentemperaturen in der Flamme verringert werden. Dazu wurden Vormischbrennkammern entwickelt, bei denen es zur Erzielung eines hohen Homogenitätsgrads einer bestimmten Länge der Vormischkammer oder einer Mindestverweilzeit in der Vormischkammer bedarf. Dabei besteht jedoch die Gefahr, daß sich das Brennstoff/Luft-Gemisch in der Vormischkammer entzündet. Da in diesem Fall der Vermischungsprozeß nicht abgeschlossen ist, entstehen lokal infolge von Inhomogenitäten hohe Temperaturen, die zur erhöhten Stickoxidbildung führen. Des weiteren besteht die Gefahr eines Flammenrückschlags aus der Verbrennungszone in die Vormischkammer. Zu dessen Vermeidung werden bei herkömmlichen Vormischbrennkammern am Ende der Vormischkammer Schaufelgitter od. dgl. angebracht, um das Gemisch zu beschleunigen und eine Drallbildung zu erzeugen. Tritt ein Rückzünden gleichwohl auf, führt dieses zur Beschädigung oder Zerstörung von Brennkammerteilen, wie z.B. der Schaufelgitter.
Bei einer bekannten Brennkammeranordnung gemäß DE-PS 43 18 405 wird mittels vorgemischter Magerverbrennung eine Senkung der Stickodixbildung ohne Gefahr der Selbstzündung in einer Vormischstrecke ermöglicht, indem der Brennstoff in eine im wesentlichen gerade ausgebildete Vormischkammer eingespritzt wird, die tangential in eine im wesentlichen rotationssymmetrisch ausgebildete Verbrennungskammer mündet, wodurch beim Einströmen des Gemisches eine Drallbildung erzielt wird. Da die Drallbildung nicht mittels zusätzlicher Bauteile, wie Schaufelgitter, e r-zeugt wird, scheidet die Gefahr der Bauteilbeschädigung bei einem eventuell auftretenden Flammenrückschlag aus. Eine ausreichende Verbrennungsstabilität wird mi t-tels einer unterstützenden Pilotverbrennung gewährleistet, die in einer separaten Verbrennungszone erfolgt. Die Heißgase aus der Pilotzone werden in die magere Hauptzone eingemischt, wobei die stabilisierende Wirkung stark von dem existiere n-den Strömungsfeld abhängt und bei unterschiedlichen Betriebszuständen größeren Schwankungen unterworfen sein kann. Zudem wird die Strömung von der Haupt- in die Nachverbrennungszone um 90° umgelenkt, was zu einem erhöhten Druckverlust führt.
Die Aufgabe der Erfindung besteht darin, eine Vormischbrennkammer der eingangs beschriebenen Gattung zu schaffen, bei der die stabilisierende Wirkung der Pilotverbrennung verbessert wird.
Die Lösung dieser Aufgabe ist erfindungsgemäß dadurch gekennzeichnet, daß die Hauptverbrennungszone in der Brennkammer im wesentlichen koaxial bzw. parallel zur Nachverbrennungszone verläuft bzw. angeordnet ist, d.h. der Strömungsweg im wesentlichen gerade und ohne erhebliche Umlenkung verläuft, und die Pilotstufe an dem der Nachverbrennungszone entfernten Ende der Brennkammer angeordnet ist.
Der Vorteil dieser Vormischbrennkammer besteht darin, daß die Strömung innerhalb der Brennkammer von der Hauptverbrennungszone zur Nachverbrennungszone nicht um 90° umgelenkt wird und der damit verbundene Druckverlust entfällt. Durch die unmittelbar an der Brennkammer angeordnete Pilotstufe besitzt diese eine direkte Verbindung zur Hauptverbrennungs- bzw. Rezirkulationszone, wodurch die stabilisierende Wirkung der Pilotverbrennung deutlich verbessert wird. Die erfindungsgemäße Vormischbrennkammer läßt sich sowohl in stationären Gasturbinen als auch in Flug-triebwerken einsetzen.
In einer bevorzugten Ausgestaltung der Erfindung weitet sich der die Hauptverbrennungszone bildende Bereich der Brennkammer in Strömungsrichtung, die von der Hauptverbrennungszone in Richtung auf die Nachverbrennungszone verläuft, konisch auf. Durch den Öffnungswinkel des Konus läßt sich die Rezirkulationszone und damit die Flammenstabilität steuern. Während sich bei kleineren Öffnungswinkeln ein zu-sätzlicher Vorverdampfungsbereich ergibt, wird bei größeren Öffnungswinkeln die Stabilität der Verbrennung gefördert.
Bevorzugt ist die Pilotstufe an dem Ende der Brennkammer mit kleinerem Radius stirnseitig angeordnet und verläuft koaxial dazu.
Es kann zweckmäßig sein, daß die Pilotstufe eine zwischen der Piloteinspritzvorrichtung und der Brennkammer angeordnete Pilotbrennkammer aufweist.
Im folgenden wird die Erfindung anhand von Ausführungsbeispielen unter Bezugnahme auf eine Zeichnung näher erläutert: Es zeigt:
Fig. 1
in perspektivischer Darstellung eine schematische Ansicht eines Ausführungsbeispiels der erfindungsgemäßen Vormischbrennkammer, die auf die wesentlichen Bestandteile zur Erläuterung der Anordnung beschränkt ist,
Fig. 2
eine mit Fig. 1 vergleichbare Ansicht eines weiteren Ausführungsbeispiels der erfindungsgemäßen Vormischbrennkammer und
Fig. 3
in perspektivischer Darstellung eine geschnittene Teilansicht einer Ringbrennkammeranordnung.
Fig. 1 zeigt ein Ausführungsbeispiel einer im ganzen mit 1 bezeichneten Vormischbrennkammer für eine Gasturbine. Die Vormischbrennkammer 1 umfaßt im wesen t-lichen eine Hauptstufe 2 mit einer Vormischkammer 6, einer Hauptverbrennungszone 3 und einer Nachverbrennungszone 5 sowie eine Pilotstufe 4. An einem Ende 7 der Vormischkammer 6 wird der Brennstoff zusammen mit einem Teil der Verdichterluft eingebracht. Der Brennstoff wird in der Vormischkammer 6 zerstäubt, verdampft und mit der Luft möglichst homogen vermischt. Die Vormischkammer 6 ist als geradliniger Rechteckkanal ausgebildet, so daß innerhalb der Vormischkammer 6 eine drallfreie Strömung mit einem verhältnismäßig gleichmäßigen Geschwindi g-keitsprofil erzeugt wird. Dieses führt die zu einer hohen Gemischhomogenität zwi-schen dem Brennstoff und der Luft, wodurch Temperaturspitzen mit einer verstärk-ten thermischen Stickoxidbildung vermieden werden. Die Vormischkammer 6 kann je nach Maschinendesign auch andere geeignete Querschnittsformen aufweisen, wie z.B. oval oder auch kreisrund. Auch muß die Querschnittsform nicht zwingend konstant über die Länge der Vormischkammer 6 sein.
An einem Austrittsende 8 der Vormischkammer 6 strömt das Brennstoff-Luftgemisch in die Brennkammer 9, die einen als Kegelstumpf ausgebildeten, im Bereich der Hauptverbrennunszone 3 liegenden Teil und einen zylindrischen, im Bereich der Nachverbrennungszone 5 liegenden Teil 12 umfaßt. Die Strömung wird dabei mit einer möglichst großen Exzentrizität zu einer Längs- bzw. Mittelachse M der rotationssymmetrischen Brennkammer 9 eingebracht, so daß in dieser der Strömung des Brennstoff/Luft-Gemisches eine Umfangsgeschwindigkeit aufgeprägt wird. Zur Erzielung einer größtmöglichen Exzentrizität ist die im Querschnitt rechteckförmige Vormischkammer 6 zudem mit einer möglichst geringen Höhe H ausgebildet. Infolge der Drallbildung ergibt sich eine ausgeprägte, aus dem kegelstumpfförmig ausgebildeten Teil der Brennkammer 9 hinausreichende Rezirkulation des Brennstoff-Luftgemisches, wodurch diese in die Hauptverbrennungszone 3 bzw. den konisch ausgebildeten Teil der Brennkammer 9 zurückströmt und die Verbrennung stabili-siert. Erst im Anschluß gelangt die Strömung in die im wesentlichen parallel bzw. koaxial zur Hauptverbrennungszone 3 und insbesondere zur Mittelachse M der zum Teil kegelstumpfförmigen Brennkammer 9 verlaufende, stromabwärtige Nachverbrennungszone 5. Der Strömungsweg für das Brennstoff-Luft-Gemisch ist somit im wesentlichen gerade. Die Brennkammer 9 weist zur Kühlung eine Vielzahl von Lufteintrittsöffnungen auf.
An einem zur Nachverbrennungszone 5 entfernten Ende 10 der Brennkammer 9 ist die Pilotstufe 4 angeordnet. in der vorliegenden Ausgestaltung ist die Pilotstufe 4 mithin an dem stirnseitigen Ende 10 mit dem kleinsten Radius des als Kegelstumpf ausgebildeten Teils der Brennkammer 9 angeordnet. Die Pilotstufe 4 umfaßt eine Piloteinspritzvorrichtung 11, mit der Brennstoff in die Hauptverbrennungszone 3 zur Stabilisierung der Verbrennung insbesondere im Teillastbereich eingebracht werden kann. Die Heißgase aus der Pilotstufe 4 strömen unmittelbar in den Kern der Rezirkulatioszone der mageren Hauptstufe 2, was zu einer verbesserten Stabilität der Verbrennung führt. Sowohl in der Haupt- als auch in der Pilotstufe 2 bzw. 4 können gasförmige und flüssige Brennstoffe eingesetzt werden.
Fig. 2 zeigt ein anderes Ausführungsbeispiel der Vormischbrennkammer 1, dessen Modifikation im Bereich der Pilotstufe 4 liegt. In Fig. 2 weist die Pilotstufe 4 zusätzlich zur Piloteinspritzvorrichtung 11 eine Pilotbrennkammer 13 auf, in welcher der Brennstoff zunächst in einer Diffusionsverbrennung mit Luft gemischt wird und erst dann stirnseitig in die Brennkammer 9 eingebracht wird.
Fig. 3 zeigt eine Anordnung, bei der eine Vielzahl von Vormischbrennkammern 1 mit einer Ringbrennkammer 14 kombiniert sind. Auch hier umfassen die einzelnen Vormischbrennkammern 1 eine Vormischkammer 6, die exzentrisch in einen als Kegel-stumpf ausgebildeten Teil der Brennkammer 9 einer Hauptstufe 2 mündet, sowie eine im wesentlichen koaxial zur Hauptstufe 2 angeordnete Nachverbrennungszone 5, wodurch die Strömung zwischen der Hauptverbrennungszone 3 und der Nachverbrennungszone 5 nicht umgelenkt werden muß und mithin der Brennkammerdruckverlust reduziert wird. Zwischen dem konusförmigen Teil der Brennkammer 9 und der Ringbrennkammer 14 könnte die Brennkammer 9 auch hier einen zylindrischen Teil 12 aufweisen, der im wesentlichen koaxial zur Längsachse M der Brennkammer 9 angeordnet ist. Beim Einbau der Ringbrennkammer 14 in eine Gasturbine wird diese mit ihrer Mittelachse M koaxial dazu angeordnet und von einem stromaufwärtigen Verdichter einspritzseitig mit Luft beaufschlagt. Die Vormischbrennkammern 1 sind äquidistant um den stirnseitigen Umfang der Ringbrennkammer 14 angeordnet. Auch hier ist die Wandung der Brennkammer 9 zur Kühlung mit Lufteintrittsöffnungen versehen.
Beim Betrieb der Vormischbrennkammer 1 können die Hauptstufe 2 und die Pilotstufe 4 je nach Last bzw. Flugphase wahlweise separat oder gleichzeitig betrieben wer-den.

Claims (10)

  1. Vormischbrennkammer für eine Gasturbine, umfassend eine Hauptstufe mit min-destens einer Vormischkammer und einer wenigstens zum Teil rotationssymmetrisch zu ihrer Längsachse ausgebildeten Brennkammer mit einer Hauptverbrennungszone und einer stromabwärtigen Nachverbrennungszone, wobei die mindestens eine Vormischkammer tangential drallerzeugend in die Brennkammer mü n-det; und eine Pilotstufe mit einer Piloteinspritzvorrichtung, dadurch gekennzeichnet, daß die Hauptverbrennungszone (3) in der Brennkammer (9) im wesentlichen koaxial zur Nachverbrennungszone (5) verläuft und die Pilotstufe (4) an dem der Nachverbrennungszone (5) entfernten Ende (10) der Brennkammer (9) angeordnet ist.
  2. Vormischbrennkammer nach Anspruch 1, dadurch gekennzeichnet, daß die min-destens eine Vormischkammer (6) als Rechteckkanal ausgebildet ist.
  3. Vormischbrennkammer nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Höhe (H) der mindestens einen Vormischkammer (6) im Verhältnis zu deren Länge und Breite gering ist.
  4. Vormischbrennkammer nach einem oder mehreren der vorhergehenden Anspr üche, dadurch gekennzeichnet, daß das eine Austrittsende (8) der mindestens ei-nen Vormischkammer (6) so zur Brennkammer (9) angeordnet ist, daß die in die Brennkammer (9) eintretende Strömung eine maximale Exzentrizität zur Längs-achse (M) der Brennkammer (9) aufweist.
  5. Vormischbrennkammer nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß zwei oder vier Vormischkammern (6) jeweils paarweise an zumindest annähernd diametral gegenüberliegenden Stellen mit gleichsinniger Drallerzeugung in die Brennkammer (9) münden.
  6. Vormischbrennkammer nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß sich der die Hauptverbrennungszone (3) umfassende Bereich der Brennkammer (9) in Strömungsrichtung konisch aufweitet.
  7. Vormischbrennkammer nach Anspruch 6, dadurch gekennzeichnet, daß die Pilotstufe (4) an dem Ende (10) der Brennkammer (9) mit kleinerem Radius stirnseitig angeordnet ist und koaxial dazu verläuft.
  8. Vormischbrennkammer nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Pilotstufe (4) eine zwischen der Piloteinspritzvorrichtung (11) und der Brennkammer (9) angeordneter Pilotbrennkammer (12) aufweist.
  9. Vormischbrennkammeranordnung nach einem oder mehreren der vorhergehen-den Ansprüche, dadurch gekennzeichnet, daß der die Nachverbrennungszone (5) bildende Teil der Brennkammer (9) als Ringbrennkammer (14) ausgebildet ist, an deren Stirnseite eine Vielzahl von die Hauptverbrennungszone (3) umfassenden Brennkammern (9) einschließlich Vormischkammern (6) und Pilotstufen (4) äquidistant angeschlossen sind.
  10. Vormischbrennkammeranordnung nach Anspruch 9, dadurch gekennzeichnet, daß jede Brennkammer (9) einen im wesentlichen die Hauptverbrennungszone (3) umfassenden, konusförmigen Teil und stromabwärts dazu einen zu ihrer Längsachse (M) koaxial angeordneten, in die Ringbrennkammer (14) mündenden, zylindrischen Teil (12) umfaßt.
EP98123199A 1997-12-19 1998-12-05 Vormischbrennkammer für eine Gasturbine Expired - Lifetime EP0924470B1 (de)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE19756663 1997-12-19
DE1997156663 DE19756663B4 (de) 1997-12-19 1997-12-19 Vormischbrennkammer für eine Gasturbine
DE19810648 1998-03-12
DE1998110648 DE19810648A1 (de) 1998-03-12 1998-03-12 Vormischbrennkammer für eine Gasturbine

Publications (3)

Publication Number Publication Date
EP0924470A2 EP0924470A2 (de) 1999-06-23
EP0924470A3 EP0924470A3 (de) 2001-03-14
EP0924470B1 true EP0924470B1 (de) 2003-06-18

Family

ID=26042638

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98123199A Expired - Lifetime EP0924470B1 (de) 1997-12-19 1998-12-05 Vormischbrennkammer für eine Gasturbine

Country Status (4)

Country Link
US (1) US6202420B1 (de)
EP (1) EP0924470B1 (de)
JP (1) JPH11248159A (de)
DE (1) DE59808754D1 (de)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100443806C (zh) * 2006-05-16 2008-12-17 北京航空航天大学 切向驻涡燃烧室
EP2299178B1 (de) * 2009-09-17 2015-11-04 Alstom Technology Ltd Verfahren und Gasturbinenverbrennungssystem zum sicheren Mischen von H2-reichen Brennstoffen mit Luft
CN102032597B (zh) * 2010-11-29 2012-07-04 北京航空航天大学 一种离散管主燃级的预混预蒸发燃烧室
US8978388B2 (en) 2011-06-03 2015-03-17 General Electric Company Load member for transition duct in turbine system
US8448450B2 (en) 2011-07-05 2013-05-28 General Electric Company Support assembly for transition duct in turbine system
US8650852B2 (en) 2011-07-05 2014-02-18 General Electric Company Support assembly for transition duct in turbine system
US9328623B2 (en) * 2011-10-05 2016-05-03 General Electric Company Turbine system
US8701415B2 (en) 2011-11-09 2014-04-22 General Electric Company Flexible metallic seal for transition duct in turbine system
US8459041B2 (en) 2011-11-09 2013-06-11 General Electric Company Leaf seal for transition duct in turbine system
US8974179B2 (en) 2011-11-09 2015-03-10 General Electric Company Convolution seal for transition duct in turbine system
CN102393028B (zh) * 2011-12-09 2013-08-28 中国船舶重工集团公司第七�三研究所 天然气燃料燃气轮机干式低排放燃烧室
US9133722B2 (en) 2012-04-30 2015-09-15 General Electric Company Transition duct with late injection in turbine system
US9038394B2 (en) 2012-04-30 2015-05-26 General Electric Company Convolution seal for transition duct in turbine system
US8707673B1 (en) 2013-01-04 2014-04-29 General Electric Company Articulated transition duct in turbomachine
US9080447B2 (en) 2013-03-21 2015-07-14 General Electric Company Transition duct with divided upstream and downstream portions
CN103266922B (zh) * 2013-06-15 2014-11-12 厦门大学 一种带有级间燃烧室的涡轮静子叶片
US9458732B2 (en) 2013-10-25 2016-10-04 General Electric Company Transition duct assembly with modified trailing edge in turbine system
US10227883B2 (en) 2016-03-24 2019-03-12 General Electric Company Transition duct assembly
US10260752B2 (en) 2016-03-24 2019-04-16 General Electric Company Transition duct assembly with late injection features
US10260360B2 (en) 2016-03-24 2019-04-16 General Electric Company Transition duct assembly
US10145251B2 (en) 2016-03-24 2018-12-04 General Electric Company Transition duct assembly
US10260424B2 (en) 2016-03-24 2019-04-16 General Electric Company Transition duct assembly with late injection features
US10989406B2 (en) 2018-02-23 2021-04-27 Fulton Group N.A., Inc. Compact inward-firing premix fuel combustion system, and fluid heating system and packaged burner system including the same
CN109113895B (zh) * 2018-09-11 2019-08-27 中国人民解放军国防科技大学 冲压发动机火焰稳定装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2552492A (en) * 1948-06-07 1951-05-08 Power Jets Res & Dev Ltd Air ducting arrangement for combustion chambers
US3872664A (en) * 1973-10-15 1975-03-25 United Aircraft Corp Swirl combustor with vortex burning and mixing
US3958416A (en) 1974-12-12 1976-05-25 General Motors Corporation Combustion apparatus
US4204402A (en) * 1976-05-07 1980-05-27 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Reduction of nitric oxide emissions from a combustor
US4498288A (en) * 1978-10-13 1985-02-12 General Electric Company Fuel injection staged sectoral combustor for burning low-BTU fuel gas
DE2944863A1 (de) * 1979-11-07 1981-05-27 Daimler-Benz Ag, 7000 Stuttgart Brennkammer fuer gasturbinen
CH672366A5 (de) * 1986-12-09 1989-11-15 Bbc Brown Boveri & Cie
JPH01114623A (ja) * 1987-10-27 1989-05-08 Toshiba Corp ガスタービン燃焼器
GB9023004D0 (en) 1990-10-23 1990-12-05 Rolls Royce Plc A gas turbine engine combustion chamber and a method of operating a gas turbine engine combustion chamber
CA2124069A1 (en) 1993-05-24 1994-11-25 Boris M. Kramnik Low emission, fixed geometry gas turbine combustor
DE4318405C2 (de) 1993-06-03 1995-11-02 Mtu Muenchen Gmbh Brennkammeranordnung für eine Gasturbine
JP2950720B2 (ja) * 1994-02-24 1999-09-20 株式会社東芝 ガスタービン燃焼装置およびその燃焼制御方法
US5687571A (en) * 1995-02-20 1997-11-18 Asea Brown Boveri Ag Combustion chamber with two-stage combustion
DE59710046D1 (de) * 1997-03-20 2003-06-12 Alstom Switzerland Ltd Gasturbine mit toroidaler Brennkammer

Also Published As

Publication number Publication date
EP0924470A3 (de) 2001-03-14
DE59808754D1 (de) 2003-07-24
JPH11248159A (ja) 1999-09-14
US6202420B1 (en) 2001-03-20
EP0924470A2 (de) 1999-06-23

Similar Documents

Publication Publication Date Title
EP0924470B1 (de) Vormischbrennkammer für eine Gasturbine
DE69632111T2 (de) Vormischbrenner für eine Gasturbinen-Brennkammer mit niedriger Schadstoffemission
DE60028910T2 (de) Verfahren und Vorrichtung zur Verminderung der Emissionen in einer Brennkammer
DE60128513T2 (de) Verfahren und Vorrichtung zur Verminderung der Emissionen in einer Brennkammer mit einer Wirbelmischvorrichtung
DE69203729T2 (de) Gasbrenner mit niedrigem nox-gehalt.
DE60007946T2 (de) Eine Brennkammer
DE69513542T2 (de) Brennstoffdüse
DE69205855T2 (de) Luft-/Kraftstoff-Mischer für eine Gasturbinenbrennkammer.
EP0029619B1 (de) Brennkammer einer Gasturbine mit Vormisch/Vorverdampf-Elementen
DE19615910B4 (de) Brenneranordnung
DE69822984T2 (de) Kraftstoffleitung
DE69220091T2 (de) Vormischgasdüse
DE69834621T2 (de) Gasturbinenbrenner mit niedrigem NOx Ausstoss
EP2116766B1 (de) Brenner mit Brennstofflanze
DE69412484T2 (de) Verbrennungskammer eines gasturbinenmotors
DE60310170T2 (de) Brennstoffinjektionsvorrichtung
DE2845619C2 (de) Brennkammer für ein Gasturbinentriebwerk
EP2156095B1 (de) Drallfreie stabilisierung der flamme eines vormischbrenners
DE69617290T2 (de) Verbrennungsgerät für Gasturbinenmotor
DE69525920T2 (de) Brennstoffeinspritzeinrictung für mit gasförmigem oder flüssigem Brennstoff betriebene Turbine
DE69111614T2 (de) Gasturbinenbrennkammer und deren arbeitsweise.
EP0576697B1 (de) Brennkammer einer Gasturbine
DE69428549T2 (de) Gasturbinenkammer mit niedriger schadstoffemission
CH701539A2 (de) Vorrichtung zur Brennstoffeinspritzung bei einer Turbine.
DE2460740A1 (de) Brennkammer fuer gasturbinentriebwerke

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RIC1 Information provided on ipc code assigned before grant

Free format text: 7F 23R 3/28 A, 7F 23R 3/42 B

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MTU AERO ENGINES GMBH

17P Request for examination filed

Effective date: 20010706

AKX Designation fees paid

Free format text: DE FR GB

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 59808754

Country of ref document: DE

Date of ref document: 20030724

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20031021

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040319

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20061218

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20061221

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20061212

Year of fee payment: 9

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20071205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080701

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20081020

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071231