EP0924293B2 - Verwendung eines Kristallwachstumsinhibitors zur Verminderung der Abreibung von Geweben - Google Patents
Verwendung eines Kristallwachstumsinhibitors zur Verminderung der Abreibung von Geweben Download PDFInfo
- Publication number
- EP0924293B2 EP0924293B2 EP98202164A EP98202164A EP0924293B2 EP 0924293 B2 EP0924293 B2 EP 0924293B2 EP 98202164 A EP98202164 A EP 98202164A EP 98202164 A EP98202164 A EP 98202164A EP 0924293 B2 EP0924293 B2 EP 0924293B2
- Authority
- EP
- European Patent Office
- Prior art keywords
- units
- mixtures
- formula
- alkyl
- composition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 0 C*(NC)([N+]([O-])PI)O Chemical compound C*(NC)([N+]([O-])PI)O 0.000 description 3
- HYSQEYLBJYFNMH-UHFFFAOYSA-N CN(CCN)CCN Chemical compound CN(CCN)CCN HYSQEYLBJYFNMH-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/16—Organic compounds
- C11D3/37—Polymers
- C11D3/3703—Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- C11D3/3723—Polyamines or polyalkyleneimines
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/16—Organic compounds
- C11D3/20—Organic compounds containing oxygen
- C11D3/2075—Carboxylic acids-salts thereof
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/16—Organic compounds
- C11D3/36—Organic compounds containing phosphorus
- C11D3/361—Phosphonates, phosphinates or phosphonites
Definitions
- the present invention relates to a fabric care composition comprising a polyamine-functional polymer, whereby effective stabilisation of the composition is obtained.
- GB 2 303 146 discloses detergent compositions comprising (a) a cationic ester surfactant; (b) a soil release polymer selected from oligoester soil release polymers and polyamine soil release polymers; and (c) less than 1% wt. of a crystal growth inhibitor.
- WO 95/27 038 discloses laundry detergent compositions comprising (a) an anionic surfactant; (b) a detergent builder; (c) a dye transfer inhibitor, and (d) an optical brightener.
- WO 95/32 272 discloses detergent compositions comprising (a) substantially non-charged ethoxylated/propoxylated polyalkyleneamine polymer, and (b) a crystal growth inhibitor.
- EP 0 112 593 discloses detergent compositions comprising (a) a surfactant; (b) a specific ethoxylated amine having soil removal/anti-redeposition properties, and (c) citric acid.
- EP 0 753 565 discloses detergent compositions comprising (a) a cationic ester surfactant; and (b) an organo diphosphonic acid crystal growth inhibitor component or its salts or complexes.
- WO 96/27 649 discloses laundry compositions comprising (a) a cellulase enzyme, present at a level of ranging from 0.05 CEVU/gram to 125 CEVU/gram finished product; and (b) between 0.01 % and 50% by weight of the composition, of a cationic dye fixing agent.
- EP 0 462 806 (Unilever, published December 27, 1991) discloses a composition for domestic treatment of a fabric, the composition comprises a cationic dye fixinig agent and a detergent active.
- WO 96/21 714 discloses laundry compositions comprising (a) at least 0.5% wt. of a chelating agent for copper cations, nickel cations, or mixtures thereof; (b) at least .01% wt. of a chlorine scavenger; and (c) optionally a fabric softener, a cellulase enzyme and a dye transfer inhibiting agent.
- US 5,518,646 discloses a solid detergent composition in the form of briquettes of compressed granular detergent material, the composition comprises (a) from 1% to 5% wt. of a polycarboxylated polymer selected from homopolymers and copolymers of an acrylic acid and a maleic acid; (b) from 2% to 10% wt. of a water-soluble inorganic carrier selected from silicates, carbonates, and mixtures thereof; and (c) from 0.5% to 10% wt. of a compound selected from 2-phosphonobutane-1,2,4-tricarboxylic acid and the metal salts thereof, wherein the bulk density of the composition ranges from 1000 to 2100 kg/m 3 .
- compositions comprising these polyamine-functional polymers tend to lead to storage stability problem.
- This problem can be characterised by a yellowing of the composition as well as resulting malodours on the treated fabrics.
- This problem is even more acute when the product is formulated as a stand-alone product. Indeed, when fully-formulated such as in a softening composition, the perfume present within provides a certain malodour coverage thus rendering the resulting malodour more acceptable.
- perfume unless present at very high level, do not sufficiently cover the malodour,. High levels of perfume, however, increases the formulation cost.
- high levels of perfume to cover the malodour still does not provide a long-lasting malodour coverage. Indeed, the perfume will provide instant malodour coverage but upon storage the perfume which contain volatile top-notes will evaporate thus lessening the malodour coverage benefit.
- the formulator of a fabric care composition is faced with the dual problem of formulating a composition which provides care to the fabrics without being detrimental to the stability of the composition.
- An essential component of the invention is a polyamine-functional polymer.
- the polyamine-functional polymer provides care to the colors of fabrics.
- the polyamine-functional polymers of the present invention are water-soluble or dispersible polyamines.
- the polyamine-functional polymers for use herein have a molecular weight between 200 and 10 6 , preferably between 600 and 20,000, most preferably between 1000 and 10,000.
- These polyamines comprise backbones that can be either linear or cyclic.
- the polyamine backbones can also comprise polyamine branching chains to a greater or lesser degree.
- the polyamine backbones described herein are modified in such a manner that at least one, preferably each nitrogen of the polyamine chain is thereafter described in terms of a unit that is substituted, quaternized, oxidized, or combinations thereof.
- modification as it relates to the chemical structure of the polyamines is defined as replacing a backbone -NH hydrogen atom by an R' unit (substitution), quaternizing a backbone nitrogen (quaternized) or oxidizing a backbone nitrogen to the N-oxide (oxidized).
- substitution and “substitution” are used interchangeably when referring to the process of replacing a hydrogen atom attached to a backbone nitrogen with an R' unit. Quaternization or oxidation may take place in some circumstances without substitution, but substitution is preferably accompanied by oxidation or quaternization of at least one backbone nitrogen.
- linear or non-cyclic polyamine backbones that comprise the amino-functional polymer have the general formula:
- cyclic polyamine backbones that comprise the amino-functional polymer have the general formula:
- the above backbones prior to optional but preferred subsequent modification comprise primary, secondary and tertiary amine nitrogens connected by R "linking" units.
- Primary amine nitrogens comprising the backbone or branching chain once modified are defined as V or Z "terminal" units.
- V or Z "terminal” units For example, when a primary amine moiety, located at the end of the main polyamine backbone or branching chain having the structure: H 2 N-[R]- is modified according to the present invention, it is thereafter defined as a V "terminal" unit, or simply a V unit.
- some or all of the primary amine moieties can remain unmodified subject to the restrictions further described herein below. These unmodified primary amine moieties by virtue of their position in the backbone chain remain "terminal" units.
- a primary amine moiety located at the end of the main polyamine backbone having the -NH 2 is modified according to the present invention, it is thereafter defined as a Z "terminal" unit, or simply a Z unit. This unit can remain unmodified subject to the restrictions further described herein below.
- secondary amine nitrogens comprising the backbone or branching chain once modified are defined as W "backbone” units.
- W backbone
- some or all of the secondary amine moieties can remain unmodified. These unmodified secondary amine moieties by virtue of their position in the backbone chain remain "backbone” units.
- tertiary amine nitrogens comprising the backbone or branching chain once modified are further referred to as Y "branching" units.
- Y "branching" units tertiary amine nitrogens comprising the backbone or branching chain once modified.
- a tertiary amine moiety which is a chain branch point of either the polyamine backbone or other branching chains or rings, having the structure: is modified according to the present invention, it is thereafter defined as a Y "branching" unit, or simply a Y unit.
- some or all or the tertiary amine moieties can remain unmodified.
- the final modified structure of the polyamines of the present invention can be therefore represented by the general formula: V (n+1) W m Y n Z for linear amino-functional polymer and by the general formula: V (n-k+1) W m Y n Y' k Z for cyclic amino-functional polymer.
- a Y' unit of the formula serves as a branch point for a backbone or branch ring.
- the polyamine backbone has the formula: therefore comprising no Z terminal unit and having the formula: V n-k W m Y n Y' k wherein k is the number of ring forming branching units.
- the polyamine backbones of the present invention comprise no rings.
- the ratio of the index n to the index m relates to the relative degree of branching.
- a fully non-branched linear modified polyamine according to the present invention has the formula: VW m Z that is, n is equal to 0. The greater the value of n (the lower the ratio of m to n), the greater the degree of branching in the molecule.
- the value for m ranges from a minimum value of 2 to 700, preferably 4 to 400, however larger values of m, especially when the value of the index n is very low or nearly 0, are also preferred.
- Each polyamine nitrogen whether primary, secondary or tertiary, once modified according to the present invention, is further defined as being a member of one of three general classes; simple substituted, quaternized or oxidized. Those polyamine nitrogen units not modified are classed into V, W, Y, Y' or Z units depending on whether they are primary, secondary or tertiary nitrogens. That is unmodified primary amine nitrogens are V or Z units, unmodified secondary amine nitrogens are W units or Y' units and unmodified tertiary amine nitrogens are Y units for the purposes of the present invention.
- V "terminal" units having one of three forms:
- Modified secondary amine moieties are defined as W "backbone" units having one of three forms:
- modified secondary amine moieties are defined as Y' units having one of three forms:
- Modified tertiary amine moieties are defined as Y "branching" units having one of three forms:
- a primary amine unit comprising one R' unit in the form of a hydroxyethyl moiety is a V terminal unit having the formula (HOCH 2 CH 2 )HN-.
- Non-cyclic polyamine backbones according to the present invention comprise only one Z unit whereas cyclic polyamines can comprise no Z units.
- the Z "terminal” unit can be substituted with any of the R' units described further herein below, except when the Z unit is modified to form an N-oxide. In the case where the Z unit nitrogen is oxidized to an N-oxide, the nitrogen must be modified and therefore R' cannot be a hydrogen.
- the polyamines of the present invention comprise backbone R "linking" units that serve to connect the nitrogen atoms of the backbone.
- R units comprise units that are referred -to as “hydrocarbyl R” units and “oxy R” units.
- the "hydrocarbyl” R units are typically C 2 -C 12 alkylene, C 4 -C 12 alkenylene, C 3 -C 12 hydroxyalkylene wherein the hydroxyl moiety may take any position on the R unit chain except the carbon atoms directly connected to the polyamine backbone nitrogens; C 4 -C 12 dihydroxyalkylene wherein the hydroxyl moieties may occupy any two of the carbon atoms of the R unit chain except those carbon atoms directly connected to the polyamine backbone nitrogens; C 8 -C 12 dialkylarylene which are arylene moieties having two alkyl substituent groups as part of the linking chain.
- a dialkylarylene unit has the formula: although the unit need not be 1,4-substituted, but can also be 1,2 or 1,3 substituted C 2 -C 12 alkylene, preferably ethylene, 1,2-propylene, and mixtures thereof, more preferably ethylene.
- the "oxy" R units typically comprise -(R 1 O) x R 5 (OR 1 ) x -, -CH 2 CH(OR 2 )CH 2 O) z (R 1 O) y R 1 (OCH 2 CH(OR 2 )CH 2 ) w -, -CH 2 CH(OR 2 )CH 2 -, -(R 1 O) x R 1 -, and mixtures thereof.
- R units are selected from the group consisting of C 2 -C 12 alkylene, C 3 -C 12 hydroxyalkylene, C 4 -C 12 dihydroxyalkylene, C 8 -C 12 dialkylarylene, -(R 1 O) x R 1 -, -CH 2 CH(OR 2 )CH 2 -, -(CH 2 CH(OH)CH 2 O) z (R 1 O) y R 1 (OCH 2 CH-(OH)CH 2 ) w -, -(R 1 O) x R 5 (OR 1 ) x -, more preferred R units are C 2 -C 12 alkylene, C 3 -C 12 hydroxy-alkylene, C 4 -C 12 dihydroxyalkylene, -(R 1 O) x R 1 -, -(R 1 O) x R 5 (OR 1 ) x -, -(CH 2 CH(OH)CH 2 O) z (R 1 O) y R 1 (OCH 2 CH--
- R 1 units are C 2 -C 6 alkylene, and mixtures thereof, preferably ethylene.
- R 2 is hydrogen, and -(R 1 O) x B, preferably hydrogen.
- R 3 is C 1 -C 18 alkyl, C 7 -C 12 arylalkylene, C 7 -C 12 alkyl substituted aryl, C 6 -C 12 aryl, and mixtures thereof, preferably C 1 -C 12 alkyl, C 7 -C 12 arylalkylene, more preferably C 1 -C 12 alkyl, most preferably methyl.
- R 3 units serve as part of R' units described herein below.
- R 4 is C 1 -C 12 alkylene, C 4 -C 12 alkenylene, C 8 -C 12 arylalkylene, C 6 -C 10 arylene, preferably C 1 -C 10 alkylene, C 8 -C 12 arylalkylene, more preferably C 2 -C 8 alkylene, most preferably ethylene or butylene.
- R 5 is C 1 -C 12 alkylene, C 3 -C 12 hydroxyalkylene, C 4 -C 12 dihydroxyalkylene, C 8 -C 12 dialkylarylene, -C(O)-, -C(O)NHR 6 NHC(O)-, -C(O)(R 4 ) r C(O)-, -R 1 (OR 1 )-, -CH 2 CH(OH)CH 2 O(R 1 O) y R 1 OCH 2 CH(OH)CH 2 -, -C(O)(R 4 ) r C(O)-, -CH 2 CH(OH)CH 2 -, R 5 is preferably ethylene, -C(O)-, -C(O)NHR 6 NHC(O)-, -R 1 (OR 1 )-, -CH 2 CH(OH)CH 2 -, -CH 2 CH(OH)CH 2 O(R 1 O) y R 1 OCH 2 CH-(OH)CH 2
- the preferred "oxy" R units are further defined in terms of the R 1 , R 2 , and R 5 units.
- Preferred "oxy" R units comprise the preferred R 1 , R 2 , and R 5 units.
- the preferred cotton soil release agents of the present invention comprise at least 50% R 1 units that are ethylene.
- Preferred R 1 , R 2 , and R 5 units are combined with the "oxy" R units to yield the preferred "oxy” R units in the following manner.
- R' units do not comprise carbonyl moieties directly bonded to a nitrogen atom when the V, W or Z units are oxidized, that is, the nitrogens are N-oxides.
- the R' unit -C(O)R 3 moiety is not bonded to an N-oxide modified nitrogen, that is, there are no N-oxide amides having the structure or combinations thereof.
- indices have the following values: p has the value from 1 to 6, q has the value from 0 to 6; r has the value 0 or 1; w has the value 0 or 1, x has the value from 1 to 100; y has the value from 0 to 100; z has the value 0 or 1; m has the value from 2 to 700, preferably from 4 to 400, n has the value from 0 to 350, preferably from 0 to 200; m + n has the value of at least 5.
- x has a value lying in the range of from 1 to 20, preferably from 1 to 10.
- the preferred polyamine-functional polymers of the present invention comprise polyamine backbones wherein less than 50% of the R groups comprise "oxy" R units, preferably less than 20% , more preferably less than 5%, most preferably the R units comprise no "oxy" R units.
- polyamine-functional polymers which comprise no "oxy" R units comprise polyamine backbones wherein less than 50% of the R groups comprise more than 3 carbon atoms.
- ethylene, 1,2-propylene, and 1,3-propylene comprise 3 or less carbon atoms and are the preferred "hydrocarbyl" R units. That is when backbone R units are C 2 -C 12 alkylene, preferred is C 2 -C 3 alkylene, most preferred is ethylene.
- the polyamine-functional polymers of the present invention preferably comprise modified homogeneous and non-homogeneous polyamine backbones, wherein 100% or less of the -NH units are modified.
- the term "homogeneous polyamine backbone” is defined as a polyamine backbone having R units that are the same (i.e., all ethylene). However, this sameness definition does not exclude polyamines that comprise other extraneous units comprising the polymer backbone which are present due to an artifact of the chosen method of chemical synthesis.
- ethanolamine may be used as an "initiator" in the synthesis of polyethyleneimines, therefore a sample of polyethyleneimine that comprises one hydroxyethyl moiety resulting from the polymerization "initiator” would be considered to comprise a homogeneous polyamine backbone for the purposes of the present invention.
- a polyamine backbone comprising all ethylene R units wherein no branching Y units are present is a homogeneous backbone.
- a polyamine backbone comprising all ethylene R units is a homogeneous backbone regardless of the degree of branching or the number of cyclic branches present.
- non-homogeneous polymer backbone refers to polyamine backbones that are a composite of various R unit lengths and R unit types.
- a non-homogeneous backbone comprises R units that are a mixture of ethylene and 1,2-propylene units.
- a mixture of "hydrocarbyl” and “oxy” R units is not necessary to provide a non-homogeneous backbone.
- Preferred polyamine-functional polymers of the present invention comprise homogeneous polyamine backbones that are totally or partially substituted by polyethyleneoxy moieties, totally or partially quaternized amines, nitrogens totally or partially oxidized to N-oxides, and mixtures thereof.
- polyethyleneoxy moieties totally or partially quaternized amines
- nitrogens totally or partially oxidized to N-oxides, and mixtures thereof.
- not all backbone amine nitrogens must be modified in the same manner, the choice of modification being left to the specific needs of the formulator.
- the degree of ethoxylation is also determined by the specific requirements of the formulator.
- the preferred polyamines that comprise the backbone of the compounds of the present invention are generally polyalkyleneimines (PAI's), preferably polyethyleneimines (PEI's), or PEI's connected by moieties having longer R units than the parent PAI's or PEI's.
- PAI's polyalkyleneimines
- PEI's polyethyleneimines
- PEI's polyethyleneimines
- Preferred amine polymer backbones comprise R units that are C 2 alkylene (ethylene) units, also known as polyethylenimines (PEI's).
- Preferred PEI's have at least moderate branching, that is the ratio of m to n is less than 4:1, however PEI's having a ratio of m to n of 2:1 are most preferred.
- Preferred backbones, prior to modification have the general formula: wherein R', m and n are the same as defined herein above. Preferred PEI's will have a molecular weight greater than 200 daltons.
- the relative proportions of primary, secondary and tertiary amine units in the polyamine backbone will vary, depending on the manner of preparation.
- Each hydrogen atom attached to each nitrogen atom of the polyamine backbone chain represents a potential site for subsequent substitution, quaternization or oxidation.
- polyamines can be prepared, for example, by polymerizing ethyleneimine in the presence of a catalyst such as carbon dioxide, sodium bisulfite, sulfuric acid, hydrogen peroxide, hydrochloric acid, acetic acid, etc.
- a catalyst such as carbon dioxide, sodium bisulfite, sulfuric acid, hydrogen peroxide, hydrochloric acid, acetic acid, etc.
- Specific methods for preparing these polyamine backbones are disclosed in U.S. Patent 2,182,306 , Ulrich et al., issued December 5, 1939; U.S. Patent 3,033,746 , Mayle et al., issued May 8, 1962; U.S. Patent 2,208,095 , Esselmann et al., issued July 16, 1940; U.S. Patent 2,806,839 , Crowther, issued September 17, 1957; and U.S. Patent 2,553,696 , Wilson, issued May 21, 1951.
- Formulas I - IV Examples of amino-functional polymers comprising PEI's, are illustrated in Formulas I - IV: Formula I depicts an amino-functional polymer comprising a PEI backbone wherein all substitutable nitrogens are modified by replacement of hydrogen with a polyoxyalkyleneoxy unit, -(CH 2 CH 2 O)H, having the formula
- Formula II depicts a polyamine-functional polymer comprising a PEI backbone wherein all substitutable primary amine nitrogens are modified by replacement of hydrogen with a polyoxyalkyleneoxy unit, -(CH 2 CH 2 O) 2 H, the molecule is then modified by subsequent oxidation of all oxidizable primary and secondary nitrogens to N-oxides, said polymer having the formula
- Formula III depicts a polyamine-functional polymer comprising a PEI backbone wherein all backbone hydrogen atoms are substituted and some backbone amine units are quaternized.
- the substituents are polyoxyalkyleneoxy units, -(CH 2 CH 2 O) 7 H, or methyl groups.
- the modified PEI has the formula
- Formula IV depicts a polyamine-functional polymer comprising a PEI backbone wherein the backbone nitrogens are modified by substitution (i.e. by -(CH 2 CH 2 O) 3 H or methyl), quaternized, oxidized to N-oxides or combinations thereof.
- the resulting polymer has the formula
- not all nitrogens of a unit class comprise the same modification.
- the present invention allows the formulator to have a portion of the secondary amine nitrogens ethoxylated while having other secondary amine nitrogens oxidized to N-oxides.
- This also applies to the primary amine nitrogens, in that the formulator may choose to modify all or a portion of the primary amine nitrogens with one or more substituents prior to oxidation or quaternization. Any possible combination of R' groups can be substituted on the primary and secondary amine nitrogens, except for the restrictions described herein above.
- poly(ethyleneimine) with a MW 1200 poly(ethyleneimine) with a MW 1200
- hydroxyethylated poly(ethyleneimine) from Polysciences with a MW 2000
- 80% hydroxyethylated poly(ethyleneimine) from Aldrich are commercially available polyamine-functional polymers suitable for use herein.
- a typical amount of polyamine-functional polymer to be employed in the composition of the invention is preferably up to 90% by weight, preferably from 0.01% to 50% active by weight, more preferably from 0.1% to 20% by weight and most preferably from 0.5% to 15% by weight of the composition.
- a crystal growth inhibitor is an essential component of the invention.
- crystal growth inhibitor it is meant a compound that reduces the rate of formation of inorganic microcrystals, thereby reducing the size and/or the amount of such micro-crystals at the fabric surface.
- the suitable CGI for use herein can be defined by the following test procedure, so called crystal growth inhibition test measurement.
- the ability for a compound to inhibit crystal growth can be assessed by evaluating the impact in vitro on the growth rate of inorganic micro-crystals.
- a system developed by G. H. Nancollas in 1964, described in Nancollas, G. H and Koutsoukos, P. G. "Calcium Phosphate Nucleation and Growth in solution.” Prog. Crystal Growth Charact. 3, 77-102 (1980) can be used. This system consists of measuring the growth rate of calcium phosphate crystals seeded with hydroxyapatite ([Ca 5 (PO 4 ) 3 OH] or HAP) in the presence of CaCl 2 and NaH 2 PO 4 .
- hydroxyapatite [Ca 5 (PO 4 ) 3 OH] or HAP
- the observed t-lag value defines the efficiency of a compound to inhibit the growth of calcium phosphate crystals; wherein the higher the t-lag, the better the CGI.
- the hydroxyapatite slurry is prepared as follows:
- T-lag for a particular crystal growth inhibitor is determined graphically as described in the figure above.
- the crystal growth inhibitors to be used for the purpose of this invention have a t-lag of at least 10 minutes at a concentration of 1.10 -6 M, preferably at least 20 minutes, most preferably at least 50 minutes.
- Still another suitable method for determining the crystal growth inhibition property of the selected component which is comparable to the T-lag method is by a visual grading.
- the method is as follows:
- the crystal growth inhibitors differentiate themselves from the chelating agents by their low binding affinity for copper defined by its Log K, i.e the ML/M.L Log K at 25C, 0.1 ionic strength, of the CGI is of less than 15, preferably less than 12.
- the CGI for use in the present invention are selected from organic monophosphonic acids, organic diphosphonic acids, and mixtures thereof.
- Organo monophosphonic acid or one of its salts or complexes is also suitable for use herein as a CGI.
- organo monophosphonic acid it is meant herein an organo monophosphonic acid which does not contain nitrogen as part of its chemical structure. This definition therefore excludes the organo aminophosphonates, which however may be included in compositions of the invention as heavy metal ion sequestrants.
- the organo monophosphonic acid component may be present in its acid form or in the form of one of its salts or complexes with a suitable counter cation.
- any salts/complexes are water soluble, with the alkali metal and alkaline earth metal salts/complexes being especially preferred.
- a prefered organo monophosphonic acid is 2-phosphonobutane-1,2,4-tricarboxylic acid commercially available from Bayer under the tradename of Bayhibit.
- Organo diphosphonic acid or one of its salts or complexes is also suitable for use herein as a CGI.
- organo diphosphonic acid it is meant herein an organo diphosphonic acid which does not contain nitrogen as part of its chemical structure. This definition therefore excludes the organo aminophosphonates, which however may be included in compositions of the invention as heavy metal ion sequestrants.
- the organo diphosphonic acid component may be present in its acid form or in the form of one of its salts or complexes with a suitable counter cation.
- any salts/complexes are water soluble, with the alkali metal and alkaline earth metal salts/complexes being especially preferred.
- the organo diphosphonic acid is preferably a C 1 -C 4 diphosphonic acid and more preferably a C 2 diphosphonic acid selected from ethylene diphosphonic acid, ⁇ -hydroxy-2 phenyl ethyl diphosphonic acid, methylene diphosphonic acid, vinylidene 1,1 diphosphonic acid, 1,2 dihydroxyethane 1,1 diphosphonic acid and hydroxy-ethane 1,1 diphosphonic acid and any salts thereof and mixtures thereof.
- a most preferred organo diphosphonic acid is hydroxy-ethane 1,1 diphosphonic acid (HEDP).
- preferred classes for use herein are the class of organic monophosphonic acids and/or organic diphosphonic acids.
- the CGI is present at a level of less than 1%, preferably from 0.005% to 0.5%, more preferably from 0.05% to 0.50%, most preferably from 0.1% to 0.2% by weight of the composition.
- stabilisation of the polyamino-functional polymer containing composition are best stabilised where a weight ratio of said CGI to said polymer is of from 0.005:1 to 0.5:1, preferably from 0.01:1 to 0.1:1 is present.
- composition of the invention can be employed in stand alone product including pre-or post-wash additives. It can also be employed It can also be used in fully-formulated compositions including laundry compositions as well as rinse added fabric softener compositions and dryer added compositions (e.g. sheets) which provide softening and/or antistatic benefits, and rinse added compositions.
- composition of the invention is formulated as a fabric softening composition. Accordingly, it will comprises a fabric softening compound.
- Typical levels of incorporation of the softening compound in the softening composition are of from 1% to 80% by weight, preferably from 5% to 75%, more preferably from 15% to 70%, and even more preferably from 19% to 65%, by weight of the composition.
- the fabric softener compound is a cationic fabric softening component as defined hereinafter.
- An example of a preferred fabric softener active is a mixture of quaternized amines having the formula: wherein R is preferably methyl; R 1 is a linear or branched alkyl or alkenyl chain comprising at least 11 atoms, preferably at least 15 atoms.
- the unit -O 2 CR 1 represents a fatty acyl unit which is typically derived from a triglyceride source.
- the triglyceride source is preferably derived from tallow, partially hydrogenated tallow, lard, partially hydrogenated lard, vegetable oils and/or partially hydrogenated vegetable oils, such as, canola oil, safflower oil, peanut oil, sunflower oil, corn oil, soybean oil, tall oil, rice bran oil, etc. and mixtures of these oils.
- the preferred fabric softening actives of the present invention are the Diester and/or Diamide Quaternary Ammonium (DEQA) compounds, the diesters and diamides having the formula: wherein R, R 1 , X, m and n are the same as defined herein above for formulas (1) and (2), and Q has the formula:
- These preferred fabric softening actives are formed from the reaction of an amine with a fatty acyl unit to form an amine intermediate having the formula: wherein R is preferably methyl, Q and R 1 are as defined herein before; followed by quaternization to the final softener active.
- Non-limiting examples of preferred amines which are used to form the DEQA fabric softening actives according to the present invention include methyl bis(2-hydroxyethyl)amine having the formula: methyl (3-aminopropyl) (2-hydroxyethyl)amine having the formula: methyl bis(2-aminoethyl)amine having the formula: triethanol amine having the formula: di(2-aminoethyl) ethanolamine having the formula:
- the counterion, X (-) above can be any softener-compatible anion, preferably the anion of a strong acid, for example, chloride, bromide, methylsulfate, ethylsulfate, sulfate, nitrate and the like, more preferably chloride or methyl sulfate.
- the anion can also, but less preferably, carry a double charge in which case X (-) represents half a group.
- Tallow and canola oil are convenient and inexpensive sources of fatty acyl units which are suitable for use in the present invention as R 1 units.
- R 1 units The following are non-limiting examples of quaternary ammonium compounds suitable for use in the compositions of the present invention.
- tallowyl indicates the R 1 unit is derived from a tallow triglyceride source and is a mixture of fatty acyl units.
- canolyl refers to a mixture of fatty acyl units derived from canola oil.
- quaternary ammoniun softening compounds are methylbis(tallowamidoethyl)(2-hydroxyethyl)ammonium methylsulfate and methylbis(hydrogenated tallowamidoethyl)(2-hydroxyethyl)ammonium methylsulfate; these materials are available from Witco Chemical Company under the trade names Varisoft® 222 and Varisoft® 110, respectively.
- N,N-di(tallowoyl-oxy-ethyl)-N,N-dimethyl ammonium chloride where the tallow chains are at least partially unsaturated.
- the level of unsaturation contained within the tallow, canola, or other fatty acyl unit chain can be measured by the Iodine Value (IV) of the corresponding fatty acid, which in the present case should preferably be in the range of from 5 to 100 with two categories of compounds being distinguished, having a IV below or above 25.
- IV Iodine Value
- fabric softener actives are derived from fatty acyl groups wherein the terms “tallowyl” and canolyl” in the above examples are replaced by the terms “cocoyl, palmyl, lauryl, oleyl, ricinoleyl, stearyl, palmityl,” which correspond to the triglyceride source from which the fatty acyl units are derived.
- These alternative fatty acyl sources can comprise either fully saturated, or preferably at least partly unsaturated chains.
- R units are preferably methyl, however, suitable fabric softener actives are described by replacing the term "methyl” in the above examples in Table II with the units "ethyl, ethoxy, propyl, propoxy, isopropyl, butyl, isobutyl and t-butyl.
- the counter ion, X in the examples of Table II can be suitably replaced by bromide, methylsulfate, formate, sulfate, nitrate, and mixtures thereof.
- the anion, X is merely present as a counterion of the positively charged quaternary ammonium compounds. The scope of this invention is not considered limited to any particular anion.
- the pH of the compositions herein is an important parameter of the present invention. Indeed, it influences the stability of the quaternary ammonium or amine precursors compounds, especially in prolonged storage conditions.
- the pH as defined in the present context, is measured in the neat compositions at 20 °C. While these compositions are operable at pH of less than about 6.0, for optimum hydrolytic stability of these compositions, the neat pH, measured in the above-mentioned conditions, must preferably be in the range of from about 2.0 to about 5, preferably in the range of 2.5 to 4.5, preferably about 2.5 to about 3.5.
- the pH of these compositions herein can be regulated by the addition of a Bronsted acid.
- Suitable acids include the inorganic mineral acids, carboxylic acids, in particular the low molecular weight (C 1 -C 5 ) carboxylic acids, and alkylsulfonic acids.
- Suitable inorganic acids include HCl, H 2 SO 4 , HNO 3 and H 3 PO 4 .
- Suitable organic acids include formic, acetic, citric, methylsulfonic and ethylsulfonic acid.
- Preferred acids are citric, hydrochloric, phosphoric, formic, methylsulfonic acid, and benzoic acids.
- the diester when specified, it will include the monoester that is normally present in manufacture. For softening, under no/low detergent carry-over laundry conditions the percentage of monoester should be as low as possible, preferably no more than about 2.5%. However, under high detergent carry-over conditions, some monoester is preferred.
- the overall ratios of diester to monoester are from about 100:1 to about 2:1, preferably from about 50:1 to about 5:1, more preferably from about 13:1 to about 8:1. Under high detergent carry-over conditions, the di/monoester ratio is preferably about 11:1.
- the level of monoester present can be controlled in the manufacturing of the softener compound.
- Mixtures of actives of formula (1) and (2) may also be prepared.
- composition may comprises optional ingredients such as a dye fixing agent, and further optional ingredient.
- composition of the invention may optionally comprise a dye fixing agent.
- Dye fixing agents or "fixatives”, are well-known, commercially available materials which are designed to improve the appearance of dyed fabrics by minimizing the loss of dye from fabrics due to washing. Not included within this definition are components which are fabric softeners or those described hereinbefore as amino-functional polymers.
- Cationic fixatives are available under various trade names from several suppliers. Representative examples include: CROSCOLOR PMF (July 1981, Code No. 7894) and CROSCOLOR NOFF (January 1988, Code No. 8544) from Crosfield; INDOSOL E-50 (February 27, 1984, Ref. No.
- Dye fixing agents suitable for use in the present invention are ammonium compounds such as fatty acid - diamine condensates e.g.
- a typical amount of the dye fixing agent to be employed in the composition of the invention is preferably up 90% by weight, preferably up to 50% by weight, more preferably from 0.001 % to 10% by weight, most preferably from 0.5% to 5% active by weight of the composition.
- Fully formulated fabric softening compositions may contain, in addition to the hereinbefore described components, one or more of the following ingredients.
- the liquid carrier employed in the instant compositions is preferably at least primarily water due to its low cost, relative availability, safety, and environmental compatibility.
- the level of water in the liquid carrier is preferably at least about 50%, most preferably at least about 60%, by weight of the carrier.
- Mixtures of water and low molecular weight, e.g., ⁇ about 200, organic solvent, e.g., lower alcohols such as ethanol, propanol, isopropanol or butanol are useful as the carrier liquid.
- Low molecular weight alcohols include monohydric, dihydric (glycol, etc.) trihydric (glycerol, etc.), and higher polyhydric (polyols) alcohols.
- compositions of the present invention may comprise one or more solvents which provide increased ease of formulation.
- These ease of formulation solvents are all disclosed in WO 97/03169 . This is particularly the case when formulating liquid, clear fabric softening compositions.
- the ease of formulation solvent system preferably comprises less than about 40%, preferably from about 10% to about 35%, more preferably from about 12% to about 25%, and even more preferably from about 14% to about 20%, by weight of the composition.
- the ease of formulation solvent is selected to minimize solvent odor impact in the composition and to provide a low viscosity to the final composition.
- isopropyl alcohol is not very effective and has a strong odor.
- n-Propyl alcohol is more effective, but also has a distinct odor.
- butyl alcohols also have odors but can be used for effective clarity/stability, especially when used as part of a ease of formulation solvent system to minimize their odor.
- the alcohols are also selected for optimum low temperature stability, that is they are able to form compositions that are liquid with acceptable low viscosities and translucent, preferably clear, down to about 40°F (about 4.4°C) and are able to recover after storage down to about 20°F (about minus 6.7°C).
- Suitable solvents can be selected based upon their octanol/water partition coefficient (P) as defined in WO 97/03169 .
- the ease of formulation solvents herein are selected from those having a ClogP of from about 0.15 to about 0.64, preferably from about 0.25 to about 0.62, and more preferably from about 0.40 to about 0.60, said ease of formulation solvent preferably being at least somewhat asymmetric, and preferably having a melting, or solidification, point that allows it to be liquid at, or near room temperature. Solvents that have a low molecular weight and are biodegradable are also desirable for some purposes.
- the more assymetric solvents appear to be very desirable, whereas the highly symmetrical solvents such as 1,7-heptanediol, or 1,4-bis(hydroxymethyl) cyclohexane, which have a center of symmetry, appear to be unable to provide the essential clear compositions when used alone, even though their ClogP values fall in the preferred range.
- the most preferred ease of formulation solvents can be identified by the appearance of the softener vesicles, as observed via cryogenic electron microscopy of the compositions that have been diluted to the concentration used in the rinse. These dilute compositions appear to have dispersions of fabric softener that exhibit a more unilamellar appearance than conventional fabric softener compositions. The closer to uni-lamellar the appearance, the better the compositions seem to perform. These compositions provide surprisingly good fabric softening as compared to similar compositions prepared in the conventional way with the same fabric softener active.
- Particularly preferred ease of formulation solvents include hexanediols such as 1,2-Hexanediol and 2-Ethyl-1,3-hexanediol and pentanediols such as 2,2,4-Trimethyl-1,3-pentanediol.
- compositions containing both saturated and unsaturated diester quaternary ammonium compounds can be prepared that are stable without the addition of concentration aids.
- the compositions of the present invention may require organic and/or inorganic concentration aids to go to even higher concentrations and/or to meet higher stability standards depending on the other ingredients.
- concentration aids which typically can be viscosity modifiers may be needed, or preferred, for ensuring stability under extreme conditions when particular softener active levels are used.
- the surfactant concentration aids are typically selected from the group consisting of (1) single long chain alkyl cationic surfactants; (2) nonionic surfactants; (3) amine oxides; (4) fatty acids; and (5) mixtures thereof.
- the total level is from 2% to 25%, preferably from 3% to 17%, more preferably from 4% to 15%, and even more preferably from 5% to 13% by weight of the composition.
- These materials can either be added as part of the active softener raw material, (I), e.g., the mono-long chain alkyl cationic surfactant and/or the fatty acid which are reactants used to form the biodegradable fabric softener active as discussed hereinbefore, or added as a separate component.
- the total level of dispersibility aid includes any amount that may be present as part of component (I).
- Inorganic viscosity/dispersibility control agents which can also act like or augment the effect of the surfactant concentration aids, include water-soluble, ionizable salts which can also optionally be incorporated into the compositions of the present invention.
- ionizable salts can be used. Examples of suitable salts are the halides of the Group IA and IIA metals of the Periodic Table of the Elements, e.g., calcium chloride, magnesium chloride, sodium chloride, potassium bromide, and lithium chloride.
- the ionizable salts are particularly useful during the process of mixing the ingredients to make the compositions herein, and later to obtain the desired viscosity.
- the amount of ionizable salts used depends on the amount of active ingredients used in the compositions and can be adjusted according to the desires of the formulator. Typical levels of salts used to control the composition viscosity are from about 20 to about 20,000 parts per million (ppm), preferably from about 20 to about 11,000 ppm, by weight of the composition.
- Alkylene polyammonium salts can be incorporated into the composition to give viscosity control in addition to or in place of the water-soluble, ionizable salts above.
- these agents can act as scavengers, forming ion pairs with anionic detergent carried over from the main wash, in the rinse, and on the fabrics, and may improve softness performance.
- alkylene polyammonium salts include I-lysine monohydrochloride and 1,5-diammonium 2-methyl pentane dihydrochloride.
- Stabilizers can be present in the compositions of the present invention.
- the term "stabilizer,” as used herein, includes antioxidants and reductive agents. These agents are present at a level of from 0% to about 2%, preferably from about 0.01% to about 0.2%, more preferably from about 0.035% to about 0.1% for antioxidants, and more preferably from about 0.01% to about 0.2% for reductive agents. These assure good odor stability under long term storage conditions for the compositions and compounds stored in molten form.
- the use of antioxidants and reductive agent stabilizers is especially critical for low scent products (low perfume).
- antioxidants examples include a mixture of ascorbic acid, ascorbic palmitate, propyl gallate, available from Eastman Chemical Products, Inc., under the trade names Tenox® PG and Tenox S-1; a mixture of BHT (butylated hydroxytoluene), BHA (butylated hydroxyanisole), propyl gallate, and citric acid, available from Eastman Chemical Products, Inc., under the trade name Tenox-6; butylated hydroxytoluene, available from UOP Process Division under the trade name Sustane® BHT; tertiary butylhydroquinone, Eastman Chemical Products, Inc., as Tenox TBHQ; natural tocopherols, Eastman Chemical Products, Inc., as Tenox GT-1/GT-2; and butylated hydroxyanisole, Eastman Chemical Products, Inc., as BHA; long chain esters (C 8 -C 22 ) of gallic acid, e.g., dodecyl
- reductive agents examples include sodium borohydride, hypophosphorous acid, Irgafos® 168, and mixtures thereof.
- Soil Release agents are desirably used in fabric softening compositions of the instant invention. Any polymeric soil release agent known to those skilled in the art can optionally be employed in the compositions of this invention. Polymeric soil release agents are characterized by having both hydrophilic segments, to hydrophilize the surface of hydrophobic fibers, such as polyester and nylon, and hydrophobic segments, to deposit upon hydrophobic fibers and remain adhered thereto through completion of washing and rinsing cycles and, thus, serve as an anchor for the hydrophilic segments. This can enable stains occurring subsequent to treatment with the soil release agent to be more easily cleaned in later washing procedures.
- soil release agents will generally comprise from about 0.01% to about 10.0%, by weight, of the detergent compositions herein, typically from about 0.1% to about 5%, preferably from about 0.2% to about 3.0%.
- soil release agents include the METOLOSE SM100, METOLOSE SM200 manufactured by Shin-etsu Kagaku Kogyo K.K., SOKALAN type of material, e.g., SOKALAN HP-22, available from BASF (Germany), ZELCON 5126 (from Dupont) and MILEASE T (from ICI).
- bactericides used in the compositions of this invention include glutaraldehyde, formaldehyde, 2-bromo-2-nitro-propane-1,3-diol sold by Inolex Chemicals, located in Philadelphia, Pennsylvania, under the trade name Bronopol®, and a mixture of 5-chloro-2-methyl-4-isothiazoline-3-one and 2-methyl-4-isothiazoline-3-one sold by Rohm and Haas Company under the trade name Kathon 1 to 1,000 ppm by weight of the agent.
- the present invention can contain a perfume.
- perfumes are disclosed in U.S. Pat. 5,500,138 .
- perfume includes fragrant substance or mixture of substances including natural (i.e., obtained by extraction of flowers, herbs, leaves, roots, barks, wood, blossoms or plants), artificial (i.e., a mixture of different nature oils or oil constituents) and synthetic (i.e., synthetically produced) odoriferous substances.
- natural i.e., obtained by extraction of flowers, herbs, leaves, roots, barks, wood, blossoms or plants
- artificial i.e., a mixture of different nature oils or oil constituents
- synthetic i.e., synthetically produced odoriferous substances.
- Such materials are often accompanied by auxiliary materials, such as fixatives, extenders, stabilizers and solvents. These auxiliaries are also included within the meaning of "perfume", as used herein.
- perfumes are complex mixtures of a plurality of organic compounds.
- the range of the natural raw substances can embrace not only readily-volatile, but also moderately-volatile and slightly-volatile components and that of the synthetics can include representatives from practically all classes of fragrant substances, as will be evident from the following illustrative compilation: natural products, such as tree moss absolute, basil oil, citrus fruit oils (such as bergamot oil, mandarin oil, etc.), mastix absolute, myrtle oil, palmarosa oil, patchouli oil, petitgrain oil Paraguay, wormwood oil, alcohols, such as farnesol, geraniol, linalool, nerol, phenylethyl alcohol, rhodinol, cinnamic alcohol, aldehydes, such as citral, HelionalTM, alpha-hexyl-cinnamaldehyde, hydroxycitronellal, LilialTM (p-tert-butyl-alpha -methyldihydrocinnamaldehyde
- any conventional fragrant acetal or ketal known in the art can be added to the present composition as an optional component of the conventionally formulated perfume (c).
- Such conventional fragrant acetals and ketals include the well-known methyl and ethyl acetals and ketals, as well as acetals or ketals based on benzaldehyde, those comprising phenylethyl moieties, or more recently developed specialties such as those described in a United States Patent entitled "Acetals and Ketals of Oxo-Tetralins and Oxo-Indanes, see U.S. Pat. No. 5 ,084,440, issued January 28, 1992 , assigned to Givaudan Corp.
- perfume compositions for fully-formulated fabric softening compositions include the enol ethers of alkyl-substituted oxo-tetralins and oxo-indanes as described in U.S. Pat. 5,332,725, July 26, 1994 , assigned to Givaudan; or Schiff Bases as described in U.S. Pat. 5,264,615, December 9, 1991 , assigned to Givaudan.
- the perfumes useful in the present invention compositions are substantially free of halogenated materials and nitromusks.
- Perfume can be present at a level of from 0% to 10%, preferably from 0.1% to 5%, and more preferably from 0.2% to 3%, by weight of the finished composition.
- Fabric softener compositions of the present invention provide improved fabric perfume deposition.
- compositions and processes herein can optionally employ one or more enzymes such as lipases, proteases, cellulase, amylases and peroxidases.
- a preferred enzyme for use herein is a cellulase enzyme. Indeed, this type of enzyme will further provide a color care benefit to the treated fabric.
- Cellulases usable herein include both bacterial and fungal types, preferably having a pH optimum between 5 and 9.5. U.S.
- 4,435,307 discloses suitable fungal cellulases from Humicola insolens or Humicola strain DSM1800 or a cellulase 212-producing fungus belonging to the genus Aeromonas, and cellulase extracted from the hepatopancreas of a marine mollusk, Dolabella Auricula Solander .
- Suitable cellulases are also disclosed in GB-A-2.075.028 ; GB-A-2.095.275 and DE-OS-2.247.832 .
- CAREZYME® and CELLUZYME® (Novo) are especially useful.
- compositions herein will typically comprise from 0.001% to 5%, preferably 0.01%-1% by weight of a commercial enzyme preparation.
- activity units are preferred (e.g. CEVU or cellulase Equivalent Viscosity Units).
- compositions of the present invention can contain cellulase enzymes at a level equivalent to an activity from 0.5 to 1000 CEVU/gram of composition.
- Cellulase enzyme preparations used for the purpose of formulating the compositions of this invention typically have an activity comprised between 1,000 and 10,000 CEVU/gram in liquid form, around 1,000 CEVU/gram in solid form.
- the present invention can include optional components conventionally used in textile treatment compositions, for example: brighteners, colorants; surfactants; anti-shrinkage agents; fabric crisping agents; spotting agents; germicides; fungicides; anti-oxidants such as butylated hydroxy toluene, anti-corrosion agents, antifoam agents, and the like.
- the present invention can also include other compatible ingredients, including those as disclosed in WO96/02625 , WO96/21714 , and WO96/21715 , and dispersible polyolefin such as Velustrol® as disclosed in co-pending application PCT/US 97/01644 , and the like.
- the present invention can also contain optional chelating agents.
- the polyamino functional polymer containing composition is stabilised by means of the CGI. Accordingly, in an aspect of the invention, there is provided the use of a crystal growth inhibitor to stabilise compositions comprising amino-functional polymer.
- compositions of the invention provide better care to the fabrics compared to compositions which do not have such stabilisation means. Accordingly, in another aspect of the invention, there is provided a method for providing care to the color fabrics which comprises the steps of contacting the fabrics with a composition of the invention.
- the color care benefit may either be assessed visually or by determination of the so-called delta-E values.
- PSU panel score unit
- Delta E is the computed color difference as defined in ASTM D2244, i.e. the magnitude and direction of the difference between two psychophysical color stimuli defined by tristimulus values, or by chromaticity coordinates and luminance factor, as computed by means of a specified set of color-difference equations defined in the CIE 1976 CIELAB opponent-color space, the Hunter opponent-color space, the Friele-Mac Adam-Chickering color space or any equivalent color space.
- compositions of the invention are suitable for use in any steps of the domestic treatment, that is as a pre-treatment composition, as a wash additive as a composition suitable for use in the rinse-cycle of the laundry cycle or applied on a dryer-sheet.
- a pre-treatment composition of the invention may also be in a spray, foam, or aerosol form which for example can be suitable for use while ironing, or applied on the surfaces of the tumble dryer.
- Step A and B Vacuum is continuously applied while the autoclave is cooled to about 50 °C while introducing 376 g of a 25% sodium methoxide in methanol solution (1.74 moles, to achieve a 10% catalyst loading based upon PEI nitrogen functions).
- the methoxide solution is sucked into the autoclave under vacuum and then the autoclave temperature controller setpoint is increased to 130 °C.
- a device is used to monitor the power consumed by the agitator. The agitator power is monitored along with the temperature and pressure.
- Agitator power and temperature values gradually increase as methanol is removed from the autoclave and the viscosity of the mixture increases and stabilizes in about 1 hour indicating that most of the methanol has been removed.
- the mixture is further heated and agitated under vacuum for an additional 30 minutes. Vacuum is removed and the autoclave is cooled to 105 °C while it is being charged with nitrogen to 250 psia and then vented to ambient pressure. The autoclave is charged to 200 psia with nitrogen. Ethylene oxide is again added to the autoclave incrementally as before while closely monitoring the autoclave pressure, temperature, and ethylene oxide flow rate while maintaining the temperature between 100 and 110 °C and limiting any temperature increases due to reaction exotherm.
- PEI 1800 E2 PEI 1800 E3, PEI 1800 E15 and PEI 1800 E20 can be prepared by the above method by adjusting the reaction time and the relative amount of ethylene oxide used in the reaction.
- Dimethyl sulfate (Aldrich, 3.8g, 0.030 mol) is added all at once to the rapidly stirring solution, which is then stoppered and stirred at room temperature overnight.
- acetonitrile is evaporated on the rotary evaporator at ⁇ 60°C, followed by a Kugelrohr apparatus (Aldrich) at ⁇ 80°C to afford ⁇ 220g of the desired material as a dark brown viscous liquid.
- a 13 C-NMR (D 2 O) spectrum shows the absence of a peak at ⁇ 58ppm corresponding to dimethyl sulfate.
- a 1 H-NMR (D 2 O) spectrum shows the partial shifting of the peak at 2.5ppm (methylenes attached to unquaternized nitrogens) to ⁇ 3.0ppm.
- poly(ethyleneimine) MW 1800 which has been ethoxylated to a degree of 7, and ⁇ 4.7% quaternized with dimethyl sulfate (121.7g, -0.32 mol oxidizeable nitrogen, prepared as in Synthesis Example 2), hydrogen peroxide (Aldrich, 40g of a 50 wt% solution in water, 0.588 mol), and water (109.4g).
- Aldrich 40g of a 50 wt% solution in water, 0.588 mol
- water 109.4g
- the resonances ascribed to methylene protons adjacent to unoxidized nitrogens have shifted from the original position at ⁇ 2.5 ppm to ⁇ 3.5 ppm.
- To the reaction solution is added approximately 5 g of 0.5% Pd on alumina pellets, and the solution is allowed to stand at room temperature for approximately 3 days. The solution is tested and found to be negative for peroxide by indicator paper.
- the material as obtained is suitably stored as a 51.1% active solution in water.
- Step A and B Vacuum is continuously applied while the autoclave is cooled to about 50 °C while introducing 376 g of a 25% sodium methoxide in methanol solution (1.74 moles, to achieve a 10% catalyst loading based upon PEI nitrogen functions).
- the methoxide solution is sucked into the autoclave under vacuum and then the autoclave temperature controller setpoint is increased to 130 °C.
- a device is used to monitor the power consumed by the agitator. The agitator power is monitored along with the temperature and pressure.
- Agitator power and temperature values gradually increase as methanol is removed from the autoclave and the viscosity of the mixture increases and stabilizes in about 1 hour indicating that most of the methanol has been removed.
- the mixture is further heated and agitated under vacuum for an additional 30 minutes. Vacuum is removed and the autoclave is cooled to 105 °C while it is being charged with nitrogen to 250 psia and then vented to ambient pressure. The autoclave is charged to 200 psia with nitrogen. Ethylene oxide is again added to the autoclave incrementally as before while closely monitoring the autoclave pressure, temperature, and ethylene oxide flow rate while maintaining the temperature between 100 and 110 °C and limiting any temperature increases due to reaction exotherm.
- PEI 1200 E2, PEI 1200 E3, PEI 1200 E15 and PEI 1200 E20 can be prepared by the above method by adjusting the reaction time and the relative amount of ethylene oxide used in the reaction.
- the corresponding amine oxide of the above ethoxylated PEI can also be prepared following synthesis Example 4.
- acetonitrile is evaporated on the rotary evaporator at ⁇ 60°C, followed by a Kugelrohr apparatus (Aldrich) at ⁇ 80°C to afford -220g of the desired material as a dark brown viscous liquid.
- a 13 C-NMR (D 2 O) spectrum shows the absence of a peak at ⁇ 58ppm corresponding to dimethyl sulfate.
- a 1 H-NMR (D 2 O) spectrum shows the partial shifting of the peak at 2.5ppm (methylenes attached to unquaternized nitrogens) to ⁇ 3.0ppm.
- the flask is stoppered, and after an initial exotherm the solution is stirred at room temperature overnight.
- a 1 H-NMR (D 2 O) spectrum shows the total shifting of the methylene peaks at 2.5-3.0ppm to ⁇ 3.5ppm.
- compositions A, D, I, J, N, O, R and S are in accordance with the present invention.
- Compositions F, G, H, K, L, M, B, C, Q, E and P are not in accordance with the invention.
- compositions T, U, W and X for use as dryer-added sheets are in accordance with the invention.
- Compositions Y, Z, V, AA and BB are not in accordance with the invention.
- T U V W X Y Z AA BB DOEQA 40 40 25 - - - - - - - DHEQA - - - 20 20 - - - - DTDMAMS - - - - - - 20 20 12 60 SDASA 30 30 30 30 20 20 30 30 30 20 - Glycosperse S-20 - - - 10 10 - - - - Glycerol Monostearate - - - - - - 20 20 10 - Clay 4 4 4 3 3 4 4 4 - Perfume 0.7 0.7 1.1 0.7 0.7 1.6 1.6 2.6 1.4 PEI 1800 E4 - - 5 - - - - - PEI 1200 E1 - - -
- liquid detergent formulation was prepared: FF C25AS 13 C25E3S 2 TFAA 6 C12-14 alkyl dimethylhydroxy ethyl ammonium chloride 1 Cationic ester 1.5 TPKFA 15 Citric acid 1 Ethanol 2 1,2 Propanediol 8 NaOH up to pH 7.5 DTPMP 1.2 Savinase 0.5 Termamyl (300 KNU/g) 0.15 Boric acid 1.5 Softening clay of the bentonite type 4 Suspending clay SD3 0.3 PEI 1200 E7 1 HEDP 0.2 Balance (Moisture and Miscellaneous) 100
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Emergency Medicine (AREA)
- Detergent Compositions (AREA)
- Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
Claims (14)
- Textilpflegezusammensetzung, umfassend ein polyaminfunktionelles Polymer; einen Kristallisationsverzögerer, wobei der Kristallisationsverzögerer ausgewählt ist aus organischer Monophosphonsäure, organischer Diphosphonsäure und Mischungen davon, wobei der Kristallisationsverzögerer in einer Menge von weniger als 1 Gew.-% der Zusammensetzung vorliegt; und einem kationischen Stoff, ausgewählt ausjede R-Einheit unabhängig voneinander Wasserstoff, C1-C6-Alkyl, C1-C6-Hydroxyalkyl und Mischungen davon ist, vorzugsweise Methyl oder Hydroxyalkyl;jede R1-Einheit unabhängig voneinander lineares oder verzweigtes C11-C22-Alkyl, lineares oder verzweigtes C11-C22-Alkenyl und Mischungen davon ist,R2 Wasserstoff, C1-C4-Alkyl, C1-C4-Hydroxyalkyl, und Mischungen davon ist;X ein Anion ist, das mit dem Stoffweichmacher kompatibel ist;der Index m 2 ist;der Index n von 1 bis 4, vorzugsweise 2, ist.
- Zusammensetzung nach Anspruch 1, wobei das Polymer ein lineares Polyamin, gemäß der folgenden Formel umfasst:
V(n+1)WmYnZ
oder
ein cyclisches Polyamin gemäß der Formel
V(n-k+1)WmYnY'kZ,
worin k kleiner oder gleich n ist, woriniv) Y'-Einheiten Verzweigungspunkt für eine Hauptkette oder einen Verzweigungsring mit der Formel sind:worin die die Hauptkette verbindenden R-Einheiten ausgewählt sind aus der Gruppe bestehend aus C2-C12-Alkylen, C4-C12-Alkenylen, C3-C12-Hydroxyalkylen, C4-C12-Dihydroxyalkylen, C8-C12-Dialkylarylen, -(R1O)xR1-,
-(R1O)xR5(OR1)x-, -(CH2CH(OR2)CH2O)2(R1O)yR1(OCH2CH(OR2)CH2)w-, -C(O)(R4)rC(O)-, -H2CH(OR2)CH2- und Mischungen davon; worin R1 ausgewählt ist aus der Gruppe bestehend aus C2-C6-Alkylen und Mischungen davon;
R2 ausgewählt ist aus der Gruppe bestehend aus Wasserstoff, -(R1O)xB und Mischungen davon; R4 ausgewählt aus der Gruppe bestehend aus C1-C12Alkylen, C4-C12-Alkenylen, C8-C12-Arylalkylen, C6-C10-Arylen und Mischungen davon; R5 ausgewählt ist aus der Gruppe bestehend aus C1-C12-Alkylen, C3-C12-Hydroxyalkylen, C4-C12-Dihydroxyatkylen, C8-C12-Dialkylarylen, -C(O)-, -C(O)NHR6NHC(O)-, -R1(OR1)-, -C(O)(R4)rC(O)-, -CH2CH(OH)CH2-, -CH2CH(OH)CH2O(R1O)yR1OCH2CH(OH)CH2- und Mischungen davon; R6 ausgewählt aus der Gruppe bestehend aus C2-C12-Alkylen oder C6-C12-Arylen; R'-Einheiten ausgewählt sind aus der Gruppe bestehend aus Wasserstoff, C1-C22-Alkyl, C3-C22-Alkenyl, C7-C22-Arylakyl, C2-C22-Hydroxyalkyl, -(CH2)pCO2M, -(CH2)qSO3M, -CH(CH2CO2M)CO2M, -(CH2)pPO3M, -(R1O)xB, -C(O)R3 und Mischungen davon; B ausgewählt ist aus der Gruppe bestehend aus Wasserstoff, C1-C6-Alkyl, -(CH2)qSO3M, -(CH2)pCO2M, -(CH2)q(CHSO3M)CH2SO3M, -(CH2)q-(CHSO2M)CH2SO3M, -(CH2)pPO3M, -PO3M und Mischungen davon; R3 ausgewählt aus der Gruppe bestehend aus C1-C18-Alkyl, C7-C12-Arylalkyl, alkylsubstituiertem C7-C12-Aryl, C6-C12-Aryl und Mischungen davon; M Wasserstoff oder ein wasserlösliches Kation in einer für den Ladungsausgleich ausreichenden Menge ist. X ein wasserlösliches Anion ist; m den Wert von 2 bis 700 hat; n den Wert von 0 bis 350 hat; p den Wert von 1 bis 6, q den Wert von 0 bis 6 hat; r den Wert von 0 oder 1 hat; w den Wert 0 oder 1 hat; x den Wert von 1 bis 100 hat; y den Wert von 0 bis 100 hat; z den Wert 0 oder 1 hat. - Zusammensetzung nach einem der Ansprüche 2 oder 3, wobei R'-Einheiten des aminofunktionellen Polymers ausgewählt sind aus der Gruppe bestehend aus Wasserstoff, C3-C22-Hydroxyalkyl, Benzyl, C1-C22-Alkyl, -(R1O)xB, -C(O)R3, -(CH2)pCO2 -M+, -(CH2)qSO3 -M+, -CH(CH2CO2M)CO2M und Mischungen davon, wobei R'-Einheiten vorzugsweise ausgewählt sind aus der Gruppe bestehend aus Wasserstoff, C1-C22-Alkyl, -(R1O)xB, -C(O)R3 und Mischungen davon, R'-Einheiten mehr bevorzugt -(R1O)xB sind.
- Zusammensetzung nach Anspruch 2 oder 4, worin x einen Wert hat, der im Bereich von 1 bis 20, vorzugsweise von 1 bis 10, liegt.
- Zusammensetzung nach einem der Ansprüche 1 bis 5, worin das Polymer in einer Menge von bis zu 90 Gew.-%, vorzugsweise von 0,01 Gew.-% bis 50 Gew.-% Wirkstoff, bevorzugter von 0,1 Gew.-% bis 20 Gew.-% und am bevorzugtesten von 0,5 % bis 15 Gew.-% der Zusammensetzung vorliegt.
- Zusammensetzung nach einem der Ansprüche 1 bis 6, worin der Kristallisationsverzögerer eine organische Diphosphonsäure ist.
- Zusammensetzung nach Anspruch 1, worin die Organomonophosphonsäure 2-Phosphonobutan-1,2,4-tricarbonsäure ist.
- Zusammensetzung nach Anspruch 7, worin die organische Diphosphonverbindung Hydroxyethan-1,1-diphosphonsäure ist.
- Zusammensetzung nach einem der Ansprüche 1 bis 8, worin der Kristallisationsverzögerer in einer Menge von 0,005 Gew.-% bis 0,50 Gew.-%, vorzugsweise von 0,1 Gew.-% bis 0,2 Gew.-% der Zusammensetzung vorliegt.
- Zusammensetzung nach einem der Ansprüche 1 bis 10, worin die Zusammensetzung darüber hinaus ein Farbfixiermittel umfasst.
- Zusammensetzung nach einem der Ansprüche 1 bis 11, wobei die Zusammensetzung in flüssiger Form ist.
- Verwendung eines Kristallisationsverzögerers, ausgewählt aus organischer Monophosphonsäure, organischer Diphosphonsäure und Mischungen davon; wobei der Kristallisationsverzögerer in einer Menge von weniger als 1 Gew.-% der Zusammensetzung vorliegt, um Zusamnensetzungen, die aminofunktionelles Polymer umfassen, zu stabilisieren, und eines kationischen Stoffweichmachers, ausgewählt ausjede R-Einheit unabhängig voneinander Wasserstoff, C1-C6-Alkyl, C1-C6-Hydroxyalkyl und Mischungen davon ist, vorzugsweise Methyl oder Hydroxyalkyl;jede R1-Einheit unabhängig voneinander lineares oder verzweigtes C11-C22-Alkyl, lineares oder verzweigtes C11-C22-Alkenyl und Mischungen davon ist,R2 Wasserstoff, C1-C4-Alkyl, C1-C4-Hydroxyalkyl, und Mischungen davon ist;X ein Anion ist, das mit dem Stoffweichmacher kompatibel ist;der Index m 2 ist;der Index n von 1 bis 4, vorzugsweise 2, ist.
- Verfahren, um farbigen Stoffen Pflege zu verleihen, das die Schritte des Inkontaktbringens der Stoffe mit einer Zusammensetzung nach einem der Ansprüche 1 bis 12 umfasst.
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP98202164A EP0924293B2 (de) | 1997-11-24 | 1998-06-27 | Verwendung eines Kristallwachstumsinhibitors zur Verminderung der Abreibung von Geweben |
EP98958669A EP1034244A1 (de) | 1997-11-24 | 1998-11-20 | Stabilisierte wäschepflegemittel |
JP2000522200A JP2001524618A (ja) | 1997-11-24 | 1998-11-20 | 安定化された布地柔軟化剤組成物 |
PCT/US1998/024838 WO1999027056A1 (en) | 1997-11-24 | 1998-11-20 | Stabilised fabric softening compositions |
BR9815004-9A BR9815004A (pt) | 1997-11-24 | 1998-11-20 | Composições estabilizadas de amaciamento de tecidos. |
US09/554,699 US6500796B1 (en) | 1997-11-24 | 1998-11-20 | Stabilized fabric softening compositions |
CN98813264A CN1284122A (zh) | 1997-11-24 | 1998-11-20 | 稳定的织物柔软组合物 |
CA002310434A CA2310434C (en) | 1997-11-24 | 1998-11-20 | Stabilised fabric softening compositions |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP97870187 | 1997-11-24 | ||
EP97870187 | 1997-11-24 | ||
EP98202164A EP0924293B2 (de) | 1997-11-24 | 1998-06-27 | Verwendung eines Kristallwachstumsinhibitors zur Verminderung der Abreibung von Geweben |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0924293A1 EP0924293A1 (de) | 1999-06-23 |
EP0924293B1 EP0924293B1 (de) | 2005-10-12 |
EP0924293B2 true EP0924293B2 (de) | 2009-11-11 |
Family
ID=26148309
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP98202164A Expired - Lifetime EP0924293B2 (de) | 1997-11-24 | 1998-06-27 | Verwendung eines Kristallwachstumsinhibitors zur Verminderung der Abreibung von Geweben |
EP98958669A Withdrawn EP1034244A1 (de) | 1997-11-24 | 1998-11-20 | Stabilisierte wäschepflegemittel |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP98958669A Withdrawn EP1034244A1 (de) | 1997-11-24 | 1998-11-20 | Stabilisierte wäschepflegemittel |
Country Status (6)
Country | Link |
---|---|
EP (2) | EP0924293B2 (de) |
JP (1) | JP2001524618A (de) |
CN (1) | CN1284122A (de) |
BR (1) | BR9815004A (de) |
CA (1) | CA2310434C (de) |
WO (1) | WO1999027056A1 (de) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0945500A1 (de) * | 1998-03-23 | 1999-09-29 | The Procter & Gamble Company | Flüssige Wäschewaschmittelzusammensetzungen mit HEDP und Polyamine |
TR200200530T2 (tr) * | 1999-09-02 | 2002-07-22 | Colgate-Palmolive Company | Polikarboksilat polimeri ve üreden türetilmiş bir bileşik içeren, çamaşır bakımı sağlayan bir bileşim. |
CN1382238A (zh) * | 1999-10-22 | 2002-11-27 | 宝洁公司 | 非反应性织物增效处理 |
GB0229557D0 (en) | 2002-12-19 | 2003-01-22 | Eastman Kodak Co | Partially oxidized polyalkyleneimine antioxidant for photographic developers |
US20040261194A1 (en) * | 2003-06-27 | 2004-12-30 | The Procter & Gamble Company | Fabric article treating system |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3577556A (en) † | 1968-01-05 | 1971-05-04 | Dow Chemical Co | Polyamines stabilized with aminocarboxylate chelants |
US4602108A (en) † | 1984-08-01 | 1986-07-22 | Ethyl Corporation | Alkyl amine color inhibitor |
WO1996011248A1 (en) † | 1994-10-07 | 1996-04-18 | The Procter & Gamble Company | Fabric softening composition containing chlorine scavengers |
WO1998012293A1 (en) † | 1996-09-19 | 1998-03-26 | The Procter & Gamble Company | Concentrated quaternary ammonium fabric softener compositions containing cationic polymers |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0112593B1 (de) * | 1982-12-23 | 1989-07-19 | THE PROCTER & GAMBLE COMPANY | Detergenszusammensetzungen ethoxylierte Amine mit Fleckenentfernungs- und Anti-Wiederabsetz-Eigenschaften enthaltend |
GB9013784D0 (en) * | 1990-06-20 | 1990-08-08 | Unilever Plc | Process and composition for treating fabrics |
ES2112531T3 (es) * | 1993-04-01 | 1998-04-01 | Unilever Nv | Briquetas detergentes solidas. |
WO1995027038A1 (en) * | 1994-03-30 | 1995-10-12 | The Procter & Gamble Company | Laundry detergent bars with improved whitening and dye transfer inhibition |
PE6995A1 (es) * | 1994-05-25 | 1995-03-20 | Procter & Gamble | Composicion que comprende un polimero de polialquilenoamina etoxilado propoxilado como agente de separacion de sucio |
US5726280A (en) * | 1994-08-24 | 1998-03-10 | Bayer Ag | Sulfonic acid group-containing polyaspartic acid derivatives, use thereof and prepartion thereof |
IL116638A0 (en) * | 1995-01-12 | 1996-05-14 | Procter & Gamble | Method and compositions for laundering fabrics |
WO1996027649A1 (en) * | 1995-03-03 | 1996-09-12 | The Procter & Gamble Company | Laundry composition containing dye fixatives and cellulase |
GB2303146A (en) * | 1995-07-08 | 1997-02-12 | Procter & Gamble | Detergent compositions |
GB9513990D0 (en) * | 1995-07-08 | 1995-09-06 | Procter & Gamble | Detergent compositions |
US5747440A (en) * | 1996-01-30 | 1998-05-05 | Procter & Gamble Company | Laundry detergents comprising heavy metal ion chelants |
CA2253399A1 (en) * | 1996-05-03 | 1997-11-13 | The Procter & Gamble Company | Fabric treatment compositions comprising modified polyamines |
US5968893A (en) * | 1996-05-03 | 1999-10-19 | The Procter & Gamble Company | Laundry detergent compositions and methods for providing soil release to cotton fabric |
-
1998
- 1998-06-27 EP EP98202164A patent/EP0924293B2/de not_active Expired - Lifetime
- 1998-11-20 BR BR9815004-9A patent/BR9815004A/pt not_active IP Right Cessation
- 1998-11-20 EP EP98958669A patent/EP1034244A1/de not_active Withdrawn
- 1998-11-20 JP JP2000522200A patent/JP2001524618A/ja active Pending
- 1998-11-20 CA CA002310434A patent/CA2310434C/en not_active Expired - Fee Related
- 1998-11-20 CN CN98813264A patent/CN1284122A/zh active Pending
- 1998-11-20 WO PCT/US1998/024838 patent/WO1999027056A1/en not_active Application Discontinuation
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3577556A (en) † | 1968-01-05 | 1971-05-04 | Dow Chemical Co | Polyamines stabilized with aminocarboxylate chelants |
US4602108A (en) † | 1984-08-01 | 1986-07-22 | Ethyl Corporation | Alkyl amine color inhibitor |
WO1996011248A1 (en) † | 1994-10-07 | 1996-04-18 | The Procter & Gamble Company | Fabric softening composition containing chlorine scavengers |
WO1998012293A1 (en) † | 1996-09-19 | 1998-03-26 | The Procter & Gamble Company | Concentrated quaternary ammonium fabric softener compositions containing cationic polymers |
Non-Patent Citations (1)
Title |
---|
AMJAD,Z: "The Influence of Polyphosphates, Phosphonates, and Poly(carboxilic acids) on the Crystal Growth of Hydroxyapatite", LANGMUIR, vol. 3, no. 6, 1987, pages 1063 - 1069 † |
Also Published As
Publication number | Publication date |
---|---|
JP2001524618A (ja) | 2001-12-04 |
WO1999027056A1 (en) | 1999-06-03 |
CN1284122A (zh) | 2001-02-14 |
EP1034244A1 (de) | 2000-09-13 |
EP0924293B1 (de) | 2005-10-12 |
CA2310434C (en) | 2005-11-15 |
EP0924293A1 (de) | 1999-06-23 |
BR9815004A (pt) | 2000-10-03 |
CA2310434A1 (en) | 1999-06-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0979861B1 (de) | Gewebepflegmittel | |
EP0924293B2 (de) | Verwendung eines Kristallwachstumsinhibitors zur Verminderung der Abreibung von Geweben | |
EP0918089A1 (de) | Gewebebehandlungsmittel | |
WO1999016811A1 (en) | Ethoxylated amino-functional polymers | |
US6500796B1 (en) | Stabilized fabric softening compositions | |
US6830593B1 (en) | Fabric care compositions | |
EP0864642A1 (de) | Gewebepflegemittel | |
EP1100857B1 (de) | vERWENDUNG VON OBERFLÄCHENAKTIVEN SUBSTANZEN ZUR SCUM-REDUZIERUNG IN GEWEBEPFLEGEMITTEL | |
US6692536B1 (en) | Use of a crystal growth inhibitor to reduce fabric abrasion | |
EP0924292B1 (de) | Verwendung eines Kristallwachstumsinhibitors zur Verminderung der Abreibung von Geweben | |
US6410503B1 (en) | Fabric care compositions | |
EP0918088A1 (de) | Verwendung eines Kristallwachstumsinhibitors zur Verminderung der Abreigung von Geweben | |
DE69831850T3 (de) | Verwendung eines Kristallwachstumsinhibitors zur Verminderung der Abreibung von Geweben | |
MXPA00005061A (en) | Stabilised fabric softening compositions | |
MXPA00005059A (en) | Use of a crystal growth inhibitor to reduce fabric abrasion | |
MXPA01001149A (en) | Fabric care compositions | |
MXPA01001323A (en) | Fabric care compositions | |
MXPA00005126A (es) | Composiciones para el cuidado de telas |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU NL PT SE |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
17P | Request for examination filed |
Effective date: 19991217 |
|
AKX | Designation fees paid |
Free format text: AT BE CH DE DK ES FI FR GB GR IE IT LI LU NL PT SE |
|
17Q | First examination report despatched |
Effective date: 20020910 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU NL PT SE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20051012 Ref country code: LI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20051012 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20051012 Ref country code: CH Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20051012 Ref country code: BE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20051012 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20051012 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060112 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060112 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060112 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060123 |
|
REF | Corresponds to: |
Ref document number: 69831850 Country of ref document: DE Date of ref document: 20060223 Kind code of ref document: P |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060313 |
|
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060627 |
|
ET | Fr: translation filed | ||
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
PLAX | Notice of opposition and request to file observation + time limit sent |
Free format text: ORIGINAL CODE: EPIDOSNOBS2 |
|
26 | Opposition filed |
Opponent name: UNILEVER PLC/ UNILEVER NV Effective date: 20060703 |
|
PLAF | Information modified related to communication of a notice of opposition and request to file observations + time limit |
Free format text: ORIGINAL CODE: EPIDOSCOBS2 |
|
PLAF | Information modified related to communication of a notice of opposition and request to file observations + time limit |
Free format text: ORIGINAL CODE: EPIDOSCOBS2 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PLAB | Opposition data, opponent's data or that of the opponent's representative modified |
Free format text: ORIGINAL CODE: 0009299OPPO |
|
R26 | Opposition filed (corrected) |
Opponent name: UNILEVER PLC/ UNILEVER NV Effective date: 20060703 |
|
PLAF | Information modified related to communication of a notice of opposition and request to file observations + time limit |
Free format text: ORIGINAL CODE: EPIDOSCOBS2 |
|
PLBB | Reply of patent proprietor to notice(s) of opposition received |
Free format text: ORIGINAL CODE: EPIDOSNOBS3 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060627 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20090622 Year of fee payment: 12 |
|
PUAH | Patent maintained in amended form |
Free format text: ORIGINAL CODE: 0009272 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: PATENT MAINTAINED AS AMENDED |
|
27A | Patent maintained in amended form |
Effective date: 20091111 |
|
AK | Designated contracting states |
Kind code of ref document: B2 Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU NL PT SE |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20060628 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100627 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20110603 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20110630 Year of fee payment: 14 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20130228 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 69831850 Country of ref document: DE Effective date: 20130101 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120702 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130101 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20170621 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: PE20 Expiry date: 20180626 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20180626 |