Nothing Special   »   [go: up one dir, main page]

EP0996848B1 - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
EP0996848B1
EP0996848B1 EP98921490A EP98921490A EP0996848B1 EP 0996848 B1 EP0996848 B1 EP 0996848B1 EP 98921490 A EP98921490 A EP 98921490A EP 98921490 A EP98921490 A EP 98921490A EP 0996848 B1 EP0996848 B1 EP 0996848B1
Authority
EP
European Patent Office
Prior art keywords
heat exchanger
exchanger according
partial elements
pipe
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98921490A
Other languages
German (de)
French (fr)
Other versions
EP0996848A1 (en
Inventor
Walter Krenkel
Martin Nedele
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Deutsches Zentrum fuer Luft und Raumfahrt eV
Original Assignee
Deutsches Zentrum fuer Luft und Raumfahrt eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Deutsches Zentrum fuer Luft und Raumfahrt eV filed Critical Deutsches Zentrum fuer Luft und Raumfahrt eV
Publication of EP0996848A1 publication Critical patent/EP0996848A1/en
Application granted granted Critical
Publication of EP0996848B1 publication Critical patent/EP0996848B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/0008Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one medium being in heat conductive contact with the conduits for the other medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/04Constructions of heat-exchange apparatus characterised by the selection of particular materials of ceramic; of concrete; of natural stone
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/007Auxiliary supports for elements
    • F28F9/013Auxiliary supports for elements for tubes or tube-assemblies
    • F28F9/0131Auxiliary supports for elements for tubes or tube-assemblies formed by plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2275/00Fastening; Joining
    • F28F2275/02Fastening; Joining by using bonding materials; by embedding elements in particular materials

Definitions

  • the present invention relates to a heat exchanger, the at least a first Pipe for passing a first fluid to be cooled, which emits heat and at least one second tube for passing a heat absorbing second Fluid, wherein at least the first tube, made of a fluid-tight, corrosion-resistant and oxidation-resistant material, in one of several individual Supporting elements formed from sub-elements made of SiC-containing material in a bore the sub-elements is held.
  • Such a heat exchanger is known from EP-A1 0 479 657.
  • This heat exchanger is made up of a bundle of first tubes that are spaced apart by means of a Support structure are held, built.
  • the supporting structure consists of individual Plates.
  • a first fluid, which is cooled, is passed through the first tubes shall be.
  • the entire support structure is from a second tube, i.e. a cladding tube, surrounded, which has an inlet and outlet, via which a second fluid to the the first pipes is passed to the heat given off by the first pipes dissipate.
  • the first pipes and the supporting structure that fixes the first pipes consist of silicon carbide.
  • the support plates are first produced as green bodies with appropriate Holes into which the first silicon carbide tubes are to be inserted. This is followed by sintering at temperatures between 1900 to 2500 ° C, around the Support plates with the first tubes firmly, i.e. immovable to connect. Thereby, that the individual first tubes are kept at a distance from one another, the second fluid flows well from all sides to remove the heat.
  • Such an arrangement poses problems in particular in that if a single one of the first pipes is defective, the entire heat exchanger is unusable is because a separation of its individual components is practically impossible is.
  • the present one is now Invention, the object of a heat exchanger from a corrosion and oxidation resistant material to create a high mechanical Strength that withstands high temperature cycling cycles, one high efficiency, i.e. good heat exchange between the two fluids enables, and in addition, simple, despite the materials to be used is buildable and with regard to defective parts an easy exchange of such parts enables.
  • This task is solved, starting from a heat exchanger with the characteristics of the preamble of claim 1, characterized in that the support structure from stacked and connected to one another via a SiC-containing connecting layer plate or disc-shaped partial elements made of a carbon and / or ceramic fiber reinforced composite is built that at least an expansion compensation layer between the first tube and the supporting structure is made of ceramic material and / or carbon and that at least a second tube adjacent to the at least one first tube in one the sub-elements introduced hole is held.
  • the heat exchanger according to the invention is characterized on the one hand in that it is made up of individual, plate-shaped or disc-shaped partial elements which Have cavities and are stacked on top of one another and contain a silicon carbide Connection layer are interconnected.
  • the first pipes carrying the first fluid are then inserted into the support structure, such that an expansion compensation layer between the first tubes and the support structure is arranged from ceramic material and / or carbon.
  • the support structure and the tubes are, at least those Pipes that carry the first fluid are mechanically decoupled. Only when a fluid is passed through the heat exchanger at high temperature Expansion of the first pipes, so that these, when the heat exchanger is in operation, are firmly anchored to the supporting structure. Due to the stretch compensation layer it is possible to operate the heat exchanger at working temperatures that are even higher than 1400 ° C; In addition, an internal pressure can be applied to the first pipes be provided. The high working temperature and the high internal pressure lead to a higher efficiency.
  • fluid in the description and the claims, in the sense of the explanations, this includes not only liquid media, but also gaseous media or mixtures of liquid and gaseous media that pass through the tubes of the heat exchanger are passed through, which also contain solid particles can carry along.
  • the supporting structure is made up of individual plates or panes, you can use prefabricated, standardized parts of any length heat exchanger structures such individual plates or disks are built up with the corresponding ones Cavities or holes into which the pipes that carry the fluids are inserted become. Due to the expansion compensation layer made of ceramic material and / or Carbon is obtained from the pipes that are in the operating state of the heat exchanger are firmly fixed in the supporting structure, are released when the heat exchanger is out of order so that there are no voltages at the transitions be saved and it is also possible to have individual, possibly defective pipes the heat exchanger, without special measures, and by others Replace pipes. Due to the inventive design of the support structure and of the pipes will only be low when the pipes are subjected to internal pressure Train claims what a safe and trouble-free operation of a heat exchanger is an essential advantage.
  • the first pipes made of a fluid-tight, corrosion or oxidation resistant Material can be commercially available pipes, which are preferably made of monolithic Ceramic, are formed from silicon carbide, silicon nitride, cordierite or mullite.
  • a monolithic ceramics will always be beneficial when gas tightness is primary is required, while the first tubes made of silicon carbide and silicon nitride are then used should be when under particularly high temperatures with low material expansion and high temperature changes. Cordierite or mullite should then be used for the first pipes if on the one hand work under high temperatures, on the other hand a good oxidation and corrosion resistance is required.
  • the materials specified above can also be used for the second tubes be used for the passage of the second fluid over which the heat of the first fluid is removed in exchange.
  • the second fluid which is separated from the first fluid in terms of flow, that is precisely defined and therefore no high demands on the second pipes provides, in contrast to the first pipes through which the fluid to be cooled is passed becomes.
  • silicon carbide is used at least for the first tubes, it should preferably a silicon-infiltrated silicon carbide (SiSiC) or a act sintered silicon carbide (SSiC).
  • SiSiC silicon-infiltrated silicon carbide
  • SSiC act sintered silicon carbide
  • this expansion compensation layer is preferred formed from a ceramic powder or from carbon powder.
  • Farther are expansion compensation layers, which are essentially made of ceramic and / or Carbon fibers are formed, which moreover with the respective materials can be filled in powder form.
  • the fibers in the area of the expansion compensation layer a preferred orientation is given such that it is circumferential the pipes are oriented.
  • Such expansion compensation layers can simple and thin.
  • Typical outside diameter of pipes, around which the strain compensation layer is formed are in the range of 10 to 100 mm with a wall thickness depending on the diameter of 3 to 15 mm.
  • the strain compensation layer should have thermal stresses in the area prevent the pipes and therefore, in the order of 0.1 to 0.5 mm in the cooled Condition of the pipes around them.
  • boron nitride and / or aluminum nitride powders are particularly suitable. Boron nitride powder and aluminum nitride powder are preferred if one high heat conduction on the one hand, good mechanical decoupling between the Pipes and the expansion compensation layer are required.
  • the fiber reinforcement in the sub-elements made of two-dimensional fabrics, fiber rovings or Fabric tapes formed.
  • a carbon fiber reinforced composite material is used, whose carbon fibers are embedded in silicon carbide. This silicon carbide is by infiltrating liquid silicon into a crack structure under the action of heat and reaction with carbon formed.
  • the sub-elements from which the support structure is built should be in the fiber course their carbon and / or ceramic fibers are oriented so that a possible high heat flow between the first pipes that carry the heated fluid, to the second pipes that carry the cooling fluid or to the outside of the heat exchanger is guaranteed. This can also be done by choosing of the fiber volume in the support structure as well as the fiber type can be achieved.
  • Around To achieve this heat flow through the fiber orientation should be at least 50% of the fibers, preferably at least 90% of the fibers, in the sub-elements in parallel to the plate or disc level of the partial elements designed as plates or discs run, i.e. the fibers are radially outward with a high proportion seen from the tube axes of the first and / or the second tubes, in each case oriented.
  • such fiber rovings or fabric tapes are wound, preferably such that the individual layers are located radially around the axes of the later used pipes or the cavities in which the pipes are inserted, extend. This results in a high strength of the partial elements in the circumferential direction, from which the supporting structure is built.
  • intermediate cavities can be created during the construction of such wound partial elements be formed, especially when the holes in the individual sub-elements are alternately wrapped with an endless tape.
  • the intermediate cavities then form in the area of the crossing fibers.
  • Insert parts with a high directional value can then be inserted into such intermediate cavities Heat conduction can be used.
  • Such insert parts can also be retrofitted cavities introduced into the sub-elements are used.
  • ceramic or ceramicized carbon fiber reinforced composites are suitable.
  • Insert parts made of silicon carbide which are in the winding body are particularly preferred be embedded. Silicon carbide in particular has the advantage that it is of the same type Material for the tubes or the fiber ceramic can be used.
  • insert parts should be arranged in such a distributed manner and dimensioned in their volume be that the highest possible, directed heat conduction radially from the individual pipes that carry the working fluid to the pipes that carry the cooling fluid there.
  • first and second tubes are inserted through which the first and second Fluid is guided.
  • first and second tubes are inserted through which the first and second Fluid is guided.
  • first and second tubes are inserted through which the first and second Fluid is guided.
  • first and second tubes are inserted through which the first and second Fluid is guided.
  • first and second tubes are inserted through which the first and second Fluid is guided.
  • first and second tubes are inserted through which the first and second Fluid is guided.
  • first and second tubes are inserted through which the first and second Fluid is guided.
  • a first pipe through which the first fluid to be cooled is passed, centrally in the support structure is arranged while the second tubes are distributed radially around the first tube, through which the cooling fluid is passed.
  • a symmetrical is preferred Arranging the second tubes around the central first tube, moreover, an arrangement such that the axes of the respective tubes are parallel to each other.
  • the heat exchanger as described above in its various embodiments can serve as a module unit, in which case the cross-sectional shape of the Support structure (which then forms the module unit), is designed so that adjacent Module units lie flat against each other.
  • This is a cross-sectional shape the supporting structure as a polygon, preferably as a hexagon, to be preferred, so that at the respective side edges of such a support structure, another one Module unit is created.
  • the polygonal cross-sectional shape is the same Has side length, furthermore the polygon is a six-sided polygon (Hexagon), six additional module units can be added to a central module unit be applied so that there is a larger heat exchanger unit. Further Such module units can then be placed around this unit on the outside be added.
  • the fixing parts should be one with the support structure be of the same type to avoid different thermal expansions to evoke.
  • the outer surface the supporting structure with an appropriate protective layer are, preferably one made of silicon carbide and / or silicon dioxide and / or molybdenum disilicide is formed.
  • the supporting structure is made up of individual sub-elements built up. Each sub-element can in turn consist of several individual plates.
  • Each sub-element can in turn consist of several individual plates.
  • the heat exchanger as seen in the perspective view in FIG. 4 is comprised of a plurality of plate-shaped partial elements 1 and 2 Support structure 3.
  • This support structure 3 are a central first tube 4 and around Circumference of the central tube 4 distributed further second tubes 5 embedded. While the central, first tube 4 is used to pass a fluid to be cooled a second fluid, which serves as a cooling fluid, is passed through the second tube 5.
  • each sub-element 1, 2 is made of one with carbon and ceramic fibers reinforced composite material.
  • the sub-elements 1 and 2, as shown in Figure 1 can be seen, each differ in a different fiber orientation, as through the grain in the upper left corner of each sub-element 1, 2 is indicated.
  • any Partial element can be built from individual plates with a small thickness.
  • a plate part or a partial element 1, 2 is produced from a porous, carbon fiber reinforced carbon material (C / C) with so-called long fibers, or fibers that are endless in an orthotropic or quasi-isotropic orientation to the plate level.
  • Such fiberboard then initially become a sub-element 1 assembled, for example by gluing with a carbon-rich Paste.
  • the individual sub-elements 1, 2 are then also under each other Using this connection technique glued so that a preform results, as shown in Figure 2.
  • holes 6 introduced which is possible with relatively little effort, since this pre-body is easy to work with conventional drilling techniques. With this pre-body it is a porous structure, the pores possibly being defined can be trained.
  • a technique is preferably used for this, wherein the individual carbon fibers are embedded in a carbon-rich polymer are, with such a defined crack structure generated and defined under pyrolysis can be adjusted.
  • the pores or the crack structure of this supporting structure of the C / C body is then infiltrated with liquid silicon, which under the influence of heat Temperatures in the range of 1410 ° C to 1700 ° C converted to silicon carbide becomes.
  • the cross sections of the bores 6 can be set in a defined manner.
  • the first and second tubes 4 and 5 dimensioned, but in such a way that their diameter is slight is smaller than the free bore diameter, so that a gap arises when the tube is inserted. These spaces serve as a strain compensation area, the one with an expansion compensation layer 8 made of ceramic material and / or carbon is filled.
  • the expansion compensation layer 8 can thereby are formed that, before inserting the pipes into the holes, a layer is inserted from ceramic and / or carbon fibers or foils. Subsequently the pipes are inserted so that they comply with a defined Fill in the remaining space.
  • first drill into the holes the first and second pipes inserted and the space with a ceramic Powder material largely filled up. in the arrangement as shown in figure 4 can be seen, the first and second tubes 4, 5 are fixed in the support structure 3, however, not embedded in a force-fitting or form-fitting manner so that it cannot be moved would be.
  • FIG. 7 in turn a single sub-element 1, 2 of such Support structure 3 shows.
  • Several such sub-elements 1, 2 are then on top of each other glued, as indicated in Figure 8 with the adhesive or connecting layers 7 is.
  • the Pipes 4, 5 inserted into the bores, again with a ceramic intermediate layer, which serves as an expansion layer 8, as indicated in Figure 5.
  • the modular design of the heat exchanger can be manufactured with individual sub-elements 1, 2 heat exchangers of any length, what standardized parts are used for.
  • the support structure 3 as described above, in particular with a hexagonal cross-sectional shape that has sides of the same length Heat exchanger structures are constructed, as can be seen, for example, in FIG. 6 is.
  • a central heat exchanger unit further module units assigned a corresponding cross-sectional shape to each side surface, so that the middle, central heat exchanger module unit completely from outer module units is surrounded.
  • the tubes 4, 5 seen fixing grooves 9 formed, for example with a semicircular cross section, which is then in the construction of the heat exchanger 6 with the grooves of adjacent heat exchanger modules add to a hole into which, for example, locating pins or locating rods 10 can be used.
  • the individual module units corresponding to FIG. 6 can be connected with suitable connection techniques, for example Silicon carbide layers are suitable.
  • the respective tubes 4, 5 of the module units 6 can be connected to one another in a suitable manner in terms of flow be, so that there are two flow systems, the first flow system the first tubes 4 (light cross section in Figure 6), while the second pipe system (second pipes 5 - indicated dark in Figure 6) the second pipe system forms.
  • the fluid to be cooled is passed through the first pipe system during the second pipe system receives the cooling fluid.
  • module units such as they are shown in FIG. 5, other geometric structures can be produced, for example Heat exchangers that have a relatively large, medium cavity or complex heat exchanger structures, such as wall surfaces, which in their length and height are variable in order to adapt them to the requirements.
  • Heat exchangers that have a relatively large, medium cavity or complex heat exchanger structures, such as wall surfaces, which in their length and height are variable in order to adapt them to the requirements.
  • a support structure 3 which consists of fiber rovings or fabric tapes is wrapped. As from the indicated fiber course in the area of the front End faces of the wrapping structure can be seen, this support structure is in the Z direction building itself wrapped by alternating the individual fiber layers around the individual Bores 6, for the placeholder, not initially shown, during the Winding process can be used, wound. Through the crosswise course essentially around the corresponding placeholder for the one to be used inner tube 4 results in a high-strength structure. As continues to be seen is, the fibers or slivers are placed so that they are opposite each other Placeholders run and then to the neighboring placeholder be performed.
  • the inner tube 4 is formed or the bore 6 for the inner tube 4 adjacent triangular cavities, in which then has a corresponding insert 11 made of a good heat-conducting material, for example a fiber ceramic can be used.
  • the stretch compensation layer can initially with a structure as shown in FIG Placeholder moldings are placed around before the actual wrapping process he follows.
  • the stretch compensation layer can also be used during winding by applying fibers radially around a corresponding core or area respective prefabricated first and second pipes 4, 5, which, however, are not described in more detail in Figure 10 are shown to be built.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Ceramic Engineering (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

Die vorliegende Erfindung betrifft einen Wärmetauscher, der mindestens ein erstes Rohr zum Hindurchleiten eines zu kühlenden, Wärme abgebenden ersten Fluids und mindestens ein zweites Rohr zum Hindurchleiten eines Wärme aufnehmenden zweiten Fluids aufweist, wobei zumindest das erste Rohr, aus einem fluiddichten, korrosions- und oxidationsbeständigen Werkstoff gebildet, in einer aus mehreren einzelnen Teilelementen gebildeten Tragstruktur aus SiC-haltigem Werkstoff in einer Bohrung der Teilelemente gehalten ist.The present invention relates to a heat exchanger, the at least a first Pipe for passing a first fluid to be cooled, which emits heat and at least one second tube for passing a heat absorbing second Fluid, wherein at least the first tube, made of a fluid-tight, corrosion-resistant and oxidation-resistant material, in one of several individual Supporting elements formed from sub-elements made of SiC-containing material in a bore the sub-elements is held.

Ein derartiger Wärmetauscher ist aus der EP-A1 0 479 657 bekannt. Dieser Wärmetauscher ist aus einem Bündel erster Rohre, die auf Abstand zueinander mittels einer Tragstruktur gehalten werden, aufgebaut. Die Tragstruktur besteht aus einzelnen Platten. Durch die ersten Rohre wird ein erstes Fluid hindurchgeführt, das gekühlt werden soll. Die gesamte Tragstruktur ist von einem zweiten Rohr, d.h. einem Hüllrohr, umgeben, das einen Zu- und Ablauf aufweist, über die ein zweites Fluid an den ersten Rohren vorbeigeführt wird, um die von den ersten Rohren abgegebene Wärme abzuführen. Die ersten Rohre sowie die Tragstruktur, die die ersten Rohre fixiert, bestehen aus Siliciumcarbid. Um die Tragstruktur mit den ersten Rohren aufzubauen, werden die Trageplatten zunächst als Grünkörper hergestellt mit entsprechenden Bohrungen, in die die ersten Rohre aus Siliciumcarbid eingesteckt werden sollen. Danach erfolgt eine Sinterung bei Temperaturen zwischen 1900 bis 2500°C, um die Trageplatten mit den ersten Rohren fest, d.h. unverrückbar, zu verbinden. Dadurch, daß die einzelnen ersten Rohre mit Abstand zueinander gehalten sind, können sie- gut von allen Seiten von dem zweiten Fluid umströmt werden, um die Wärme abzuführen. Eine solche Anordnung bringt Probleme insbesondere dann mit sich, daß, falls ein einzelnes der ersten Rohre defekt ist, der gesamte Wärmetauscher unbrauchbar wird, da eine Trennung seiner einzelnen Bauteile praktisch nicht möglich ist.Such a heat exchanger is known from EP-A1 0 479 657. This heat exchanger is made up of a bundle of first tubes that are spaced apart by means of a Support structure are held, built. The supporting structure consists of individual Plates. A first fluid, which is cooled, is passed through the first tubes shall be. The entire support structure is from a second tube, i.e. a cladding tube, surrounded, which has an inlet and outlet, via which a second fluid to the the first pipes is passed to the heat given off by the first pipes dissipate. The first pipes and the supporting structure that fixes the first pipes, consist of silicon carbide. To build the support structure with the first pipes, the support plates are first produced as green bodies with appropriate Holes into which the first silicon carbide tubes are to be inserted. This is followed by sintering at temperatures between 1900 to 2500 ° C, around the Support plates with the first tubes firmly, i.e. immovable to connect. Thereby, that the individual first tubes are kept at a distance from one another, the second fluid flows well from all sides to remove the heat. Such an arrangement poses problems in particular in that if a single one of the first pipes is defective, the entire heat exchanger is unusable is because a separation of its individual components is practically impossible is.

Ausgehend von dem vorstehend angegebenen Stand der Technik liegt nun der vorliegenden Erfindung die Aufgabe zugrunde, einen Wärmetauscher aus einem korrosions- und oxidationsbeständigen Werkstoff zu schaffen, der eine hohe mechanische Festigkeit aufweist, der hohen Temperaturwechselzyklen standhält, der einen hohen Wirkungsgrad, d.h. einen guten Wärmeaustausch zwischen den beiden Fluiden ermöglicht, und der darüberhinaus, trotz der einzusetzenden Werkstoffe, einfach aufbaubar ist und in Bezug auf defekte Teile einen leichten Austausch solcher Teile ermöglicht.Based on the prior art specified above, the present one is now Invention, the object of a heat exchanger from a corrosion and oxidation resistant material to create a high mechanical Strength that withstands high temperature cycling cycles, one high efficiency, i.e. good heat exchange between the two fluids enables, and in addition, simple, despite the materials to be used is buildable and with regard to defective parts an easy exchange of such parts enables.

Gelöst wird diese Aufgabe, ausgehend von einem Wärmetauscher mit den Merkmalen des Oberbegriffs des Anspruchs 1, dadurch, daß die Tragstruktur aus aufeinandergestapelten und über eine SiC-haltige Verbindungsschicht miteinander verbundenen platten- oder scheibenförmigen Teilelementen aus einem mit Kohlenstoff- und/ oder Keramik-Fasern verstärkten Verbundwerkstoff aufgebaut ist, daß zumindest zwischen dem ersten Rohr und der Tragstruktur eine Dehnungsausgieichsschicht aus keramischem Werkstoff und/oder Kohlenstoff angeordnet ist und daß das mindestens eine zweite Rohr dem mindestens einen ersten Rohr benachbart in einer in den Teilelementen eingebrachten Bohrung gehalten ist.This task is solved, starting from a heat exchanger with the characteristics of the preamble of claim 1, characterized in that the support structure from stacked and connected to one another via a SiC-containing connecting layer plate or disc-shaped partial elements made of a carbon and / or ceramic fiber reinforced composite is built that at least an expansion compensation layer between the first tube and the supporting structure is made of ceramic material and / or carbon and that at least a second tube adjacent to the at least one first tube in one the sub-elements introduced hole is held.

Der erfindungsgemäße Wärmetauscher ist zum einen dadurch charakterisiert, daß er aus einzelnen, platten- oder scheibenförmigen Teilelementen aufgebaut ist, die Hohlräume aufweisen und übereinandergestapelt sind und die über eine Siliciumcarbid-haltige Verbindungsschicht miteinander verbunden sind. In diese so gebildete Tragstruktur werden dann die ersten Rohre, die das erste Fluid führen, eingesteckt, derart, daß zwischen den ersten Rohren und der Tragstruktur eine Dehnungsausgleichsschicht aus keramischem Werkstoff und/oder Kohlenstoff angeordnet ist. Durch diesen Aufbau sind die Tragstruktur und die Rohre, zumindest diejenigen Rohre, die das erste Fluid führen, mechanisch entkoppelt. Erst dann, wenn ein Fluid mit hoher Temperatur durch den Wärmetauscher hindurchgeführt wird, erfolgt eine Ausdehnung der ersten Rohre, so daß diese dann, im Betrieb des Wärmetauschers, fest mit der Tragstruktur verankert sind. Durch die Dehnungsausgleichsschicht ist es möglich, den Wärmetauscher bei Arbeitstemperaturen zu betreiben, die sogar höher als 1400°C liegen; außerdem kann eine Innendruckbeaufschlagung der ersten Rohre vorgesehen werden. Die hohe Arbeitstemperatur und der hohe Innendruck führen zu einem höheren Wirkungsgrad.The heat exchanger according to the invention is characterized on the one hand in that it is made up of individual, plate-shaped or disc-shaped partial elements which Have cavities and are stacked on top of one another and contain a silicon carbide Connection layer are interconnected. In this way The first pipes carrying the first fluid are then inserted into the support structure, such that an expansion compensation layer between the first tubes and the support structure is arranged from ceramic material and / or carbon. Due to this structure, the support structure and the tubes are, at least those Pipes that carry the first fluid are mechanically decoupled. Only when a fluid is passed through the heat exchanger at high temperature Expansion of the first pipes, so that these, when the heat exchanger is in operation, are firmly anchored to the supporting structure. Due to the stretch compensation layer it is possible to operate the heat exchanger at working temperatures that are even higher than 1400 ° C; In addition, an internal pressure can be applied to the first pipes be provided. The high working temperature and the high internal pressure lead to a higher efficiency.

Soweit in der Beschreibung und den Ansprüchen der Begriff "Fluid" verwendet wird, fallen hierunter, im Sinne der Ausführungen, nicht nur flüssige Medien, sondern auch gasförmige Medien oder Gemische aus flüssigen und gasförmigen Medien, die durch die Rohre des Wärmetauschers hindurchgeführt werden, die auch Feststoffpartikel mitführen können.Insofar as the term "fluid" is used in the description and the claims, In the sense of the explanations, this includes not only liquid media, but also gaseous media or mixtures of liquid and gaseous media that pass through the tubes of the heat exchanger are passed through, which also contain solid particles can carry along.

Da die Tragstruktur aus einzelnen Platten oder Scheiben aufgebaut ist, können mit vorgefertigten, standardisierten Teilen beliebig lange Wärmetauscherstrukturen aus solchen einzelnen Platten oder Scheiben aufgebaut werden mit den entsprechenden Hohlräumen bzw. Bohrungen, in die die Rohre, die die Fluide führen, eingesteckt werden. Aufgrund der Dehnungsausgleichsschicht aus keramischem Werkstoff und/oder Kohlenstoff wird erreicht, daß die Rohre, die im Betriebszustand des Wärmetauschers fest in der Tragstruktur fixiert sind, jeweils freigegebenen werden, wenn der Wärmetauscher außer Betrieb ist, so daß keine Spannungen an den Übergängen gespeichert werden und es auch möglich ist, einzelne, eventuell defekte Rohre dem Wärmetauscher, ohne besondere Maßnahmen, zu entnehmen und durch andere Rohre zu ersetzen. Durch die erfindungsgemäße Ausbildung der Tragstruktur und der Rohre werden auch bei Innendruckbelastungen der Rohre diese nur gering auf Zug beansprucht, was für einen sicheren und störungsfreien Betrieb eines Wärmetauschers von wesentlichem Vorteil ist.Since the supporting structure is made up of individual plates or panes, you can use prefabricated, standardized parts of any length heat exchanger structures such individual plates or disks are built up with the corresponding ones Cavities or holes into which the pipes that carry the fluids are inserted become. Due to the expansion compensation layer made of ceramic material and / or Carbon is obtained from the pipes that are in the operating state of the heat exchanger are firmly fixed in the supporting structure, are released when the heat exchanger is out of order so that there are no voltages at the transitions be saved and it is also possible to have individual, possibly defective pipes the heat exchanger, without special measures, and by others Replace pipes. Due to the inventive design of the support structure and of the pipes will only be low when the pipes are subjected to internal pressure Train claims what a safe and trouble-free operation of a heat exchanger is an essential advantage.

Die ersten Rohre aus einem fluiddichten, korrosions- oder oxidationsbeständigen Werkstoff können handelsübliche Rohre sein, die vorzugsweise aus monolithischer Keramik, aus Siliciumcarbid, Siliciumnitrid, Cordierit oder Mullit gebildet sind. Eine monolithische Keramik wird immer dann von Vorteil sein, wenn Gasdichtheit primär gefordert ist, während erste Rohre aus Siliciumcarbid und Siliciumnitrid dann eingesetzt werden sollten, wenn unter besonders hohen Temperaturen bei niedriger Materialausdehnung und hohen Temperaturwechselbeanspruchungen gearbeitet wird. Cordierit oder Mullit sollten dann für die ersten Rohre verwendet werden, wenn einerseits unter hohen Temperaturen gearbeitet wird, andererseits eine gute Oxidations- und Korrosionsbeständigkeit gefordert ist.The first pipes made of a fluid-tight, corrosion or oxidation resistant Material can be commercially available pipes, which are preferably made of monolithic Ceramic, are formed from silicon carbide, silicon nitride, cordierite or mullite. A monolithic ceramics will always be beneficial when gas tightness is primary is required, while the first tubes made of silicon carbide and silicon nitride are then used should be when under particularly high temperatures with low material expansion and high temperature changes. Cordierite or mullite should then be used for the first pipes if on the one hand work under high temperatures, on the other hand a good oxidation and corrosion resistance is required.

Die vorstehend angegebenen Materialien können auch für die zweiten Rohre eingesetzt werden, die zum Hindurchleiten des zweiten Fluids, über das die Wärme des ersten Fluids im Austausch abgeführt wird, dienen. Allerdings kann das zweite Fluid, das strömungsmäßig getrennt von dem ersten Fluid geführt wird, ein solches sein, das genau definiert wird und somit keine hohen Ansprüche an die zweiten Rohre stellt, im Gegensatz zu den ersten Rohren, durch die das zu kühlende Fluid hindurchgeführt wird.The materials specified above can also be used for the second tubes be used for the passage of the second fluid over which the heat of the first fluid is removed in exchange. However, the second fluid, which is separated from the first fluid in terms of flow, that is precisely defined and therefore no high demands on the second pipes provides, in contrast to the first pipes through which the fluid to be cooled is passed becomes.

Falls zumindest für die ersten Rohre Siliciumcarbid verwendet wird, so sollte es sich hierbei vorzugsweise um ein Silicium-infiltriertes Siliciumcarbid (SiSiC) oder ein gesintertes Siliciumcarbid (SSiC) handeln. Zur Fertigung der Rohre aus gesintertem Siliciumcarbid wird reines Siliciumcarbidpulver als Schlicker bereitgestellt und gegossen. Solche Rohre sind gasdicht und sollten dann, wenn unter sehr hohen Temperaturen gearbeitet wird, in den Wärmetauscher eingebaut werden.If silicon carbide is used at least for the first tubes, it should preferably a silicon-infiltrated silicon carbide (SiSiC) or a act sintered silicon carbide (SSiC). For the production of pipes from sintered Silicon carbide is made available as pure slip and cast in pure silicon carbide powder. Such pipes are gas-tight and should be used when at very high temperatures is worked, are installed in the heat exchanger.

Um die Dehnungsausgleichsschicht definiert zu bilden, darüberhinaus im Bereich dieser Schicht einen guten Wärmeübergang zu der Tragstruktur und damit zu den zweiten Rohren hin zu gewährleisten, wird diese Dehnungsausgleichsschicht bevorzugt aus einem keramischen Pulver oder aus Kohlenstoffpulver gebildet. Weiterhin eignen sich Dehnungsausgleichsschichten, die im wesentlichen aus Keramik- und/oder Kohlenstoff-Fasern gebildet sind, die darüberhinaus noch mit den jeweiligen Materialien in Pulverform gefüllt sein können. Den Fasern im Bereich der Dehnungsausgleichsschicht wird eine bevorzugte Orientierung gegeben derart, daß sie in Umfangsrichtung der Rohre orientiert sind. Solche Dehnungsausgleichsschichten können einfach und dünn hergstellt werden. Typische Außendurchmesser von Rohren, um die die Dehnungsausgleichsschicht herum gebildet wird, liegen im Bereich von 10 bis 100 mm mit einer Wandstärke in Abhängigkeit vom Durchmesser von 3 bis 15 mm. Die Dehnungsausgleichsschicht sollte thermische Spannungen im Bereich der Rohre verhindern und daher, in der Größenordnung von 0,1 bis 0,5 mm im abgekühlten Zustand der Rohre um diese herum liegen.In order to form the strain compensation layer in a defined manner, furthermore in the area this layer has a good heat transfer to the supporting structure and thus to the To ensure second pipes, this expansion compensation layer is preferred formed from a ceramic powder or from carbon powder. Farther are expansion compensation layers, which are essentially made of ceramic and / or Carbon fibers are formed, which moreover with the respective materials can be filled in powder form. The fibers in the area of the expansion compensation layer a preferred orientation is given such that it is circumferential the pipes are oriented. Such expansion compensation layers can simple and thin. Typical outside diameter of pipes, around which the strain compensation layer is formed are in the range of 10 to 100 mm with a wall thickness depending on the diameter of 3 to 15 mm. The strain compensation layer should have thermal stresses in the area prevent the pipes and therefore, in the order of 0.1 to 0.5 mm in the cooled Condition of the pipes around them.

Für das vorstehend angesprochene keramische Pulver im Bereich der Dehnungsausgleichsschicht eignen sich insbesondere Bornitrid- und/oder Aluminiumnitrid-Pulver. Bornitrid-Pulver und Aluminiumnitrid-Pulver sind dann zu bevorzugen, wenn eine hohe Wärmeleitung einerseits, eine gute mechanische Entkopplung zwischen den Rohren und der Dehnungsausgleichsschicht gefordert sind.For the ceramic powder mentioned above in the area of the expansion compensation layer boron nitride and / or aluminum nitride powders are particularly suitable. Boron nitride powder and aluminum nitride powder are preferred if one high heat conduction on the one hand, good mechanical decoupling between the Pipes and the expansion compensation layer are required.

Um eine hohe Festigkeit und gute Wärmeleitung zu erreichen, wird die Faserverstärkung in den Teilelementen aus zweidimensionalen Geweben, Faser-Rovings oder Gewebe-Bändern gebildet. Um eine Tragstruktur, aufgebaut aus den einzelnen Teilelementen, zu erreichen, die sehr hohen Temperaturen standhält und eine sehr hohe Festigkeit aufweist, wird ein Kohlenstoff-faserverstärkter Verbundwerkstoff eingesetzt, dessen Kohlenstoff-Fasern in Siliciumcarbid eingebettet werden. Dieses Siliciumcarbid wird durch Infiltrieren von flüssigem Silicium in eine Rißstruktur unter Wärmeeinwirkung und Reaktion mit Kohlenstoff gebildet.To achieve high strength and good heat conduction, the fiber reinforcement in the sub-elements made of two-dimensional fabrics, fiber rovings or Fabric tapes formed. Around a supporting structure, made up of the individual sub-elements, to achieve that withstands very high temperatures and a very high Has strength, a carbon fiber reinforced composite material is used, whose carbon fibers are embedded in silicon carbide. This silicon carbide is by infiltrating liquid silicon into a crack structure under the action of heat and reaction with carbon formed.

Die Teilelemente, aus denen die Tragstruktur aufgebaut ist, sollten in dem Faserverlauf ihrer Kohlenstoff- und/oder Keramik-Fasern so orientiert werden, daß ein möglichst hoher Wärmefluß zwischen den ersten Rohren, die das erwärmte Fluid führen, zu den zweiten Rohren, die das Kühlfluid führen bzw. zu der Außenseite des Wärmetauschers hin, gewährleistet ist. Dies kann darüberhinaus sowohl durch die Wahl des Faservolumens in der Tragstruktur als auch des Fasertyps erreicht werden. Um diesen Wärmefluß über die Faserorientierung zu erreichen, sollten mindestens 50% der Fasern, vorzugsweise mindestens 90% der Fasern, in den Teilelementen parallel zur Platten- oder Scheibenebene der als Platten oder Scheiben ausgebildeten Teilelemente verlaufen, d.h. die Fasern sind mit einem hohen Anteil radial nach außen von den Rohrachsen der ersten und/oder der zweiten Rohre aus gesehen, jeweils orientiert. The sub-elements from which the support structure is built should be in the fiber course their carbon and / or ceramic fibers are oriented so that a possible high heat flow between the first pipes that carry the heated fluid, to the second pipes that carry the cooling fluid or to the outside of the heat exchanger is guaranteed. This can also be done by choosing of the fiber volume in the support structure as well as the fiber type can be achieved. Around To achieve this heat flow through the fiber orientation should be at least 50% of the fibers, preferably at least 90% of the fibers, in the sub-elements in parallel to the plate or disc level of the partial elements designed as plates or discs run, i.e. the fibers are radially outward with a high proportion seen from the tube axes of the first and / or the second tubes, in each case oriented.

Für einen einfachen Aufbau werden solche Faser-Rovings oder Gewebe-Bänder gewickelt, vorzugsweise derart, daß sich die einzelnen Lagen radial um die Achsen der später eingesetzten Rohre bzw. der Hohlräume, in die die Rohre eingesetzt werden, erstrecken. Hierdurch ergibt sich in Umfangsrichtung eine hohe Festigkeit der Teilelemente, aus denen die Tragstruktur aufgebaut wird.For a simple construction, such fiber rovings or fabric tapes are wound, preferably such that the individual layers are located radially around the axes of the later used pipes or the cavities in which the pipes are inserted, extend. This results in a high strength of the partial elements in the circumferential direction, from which the supporting structure is built.

Während des Aufbaus solcher gewickelten Teilelemente können definierte Zwischenhohlräume ausgebildet werden, insbesondere dann, wenn die Bohrungen in den einzelnen Teilelementen wechselweise mit einem endlosen Band umwickelt werden. Die Zwischenhohlräume bilden sich dann im Bereich der sich kreuzenden Fasern. In solche Zwischenhohlräume können dann Einsatzteile mit hoher gerichteter Wärmeleitung eingesetzt werden. Solche Einsatzteile können aber auch nachträglich in die Teilelemente eingebrachte Hohlräume eingesetzt werden. Für solche Einsatzteile eignen sich keramische oder keramisierte, kohlenstoff-faserverstärkte Verbundstoffe. Besonders bevorzugt sind Einsatzteile aus Siliciumcarbid, die in den Wickelkörper eingebettet werden. Gerade Siliciumcarbid bringt den Vorteil mit sich, daß artgleiches Material zu den Rohren bzw. der Faserkeramik verwendet werden kann.Defined intermediate cavities can be created during the construction of such wound partial elements be formed, especially when the holes in the individual sub-elements are alternately wrapped with an endless tape. The intermediate cavities then form in the area of the crossing fibers. Insert parts with a high directional value can then be inserted into such intermediate cavities Heat conduction can be used. Such insert parts can also be retrofitted cavities introduced into the sub-elements are used. For such insert parts ceramic or ceramicized, carbon fiber reinforced composites are suitable. Insert parts made of silicon carbide which are in the winding body are particularly preferred be embedded. Silicon carbide in particular has the advantage that it is of the same type Material for the tubes or the fiber ceramic can be used.

Solche Einsatzteile sollten aber so verteilt angeordnet und in ihrem Volumen dimensioniert werden, daß eine möglichst hohe, gerichtete Wärmeleitung radial von den einzelnen Rohren, die das Arbeitsfluid führen, zu den Rohren, die das Kühlfuid führen hin, erfolgt.However, such insert parts should be arranged in such a distributed manner and dimensioned in their volume be that the highest possible, directed heat conduction radially from the individual pipes that carry the working fluid to the pipes that carry the cooling fluid there.

Wie bereits vorstehend erwähnt ist, können in die jeweiligen Bohrungen, die definiert in den Teilelementen und in der daraus gebildeten Tragstruktur eingebracht sind, die ersten und zweiten Rohre eingeführt werden, durch die das erste und das zweite Fluid geführt wird. Bevorzugt wird jeweils benachbart zu einem ersten Rohr jeweils ein zweites Rohr angeordnet. Um einen hohen Wirkungsgrad im Wärmeaustausch zu erreichen, ist allerdings ein Aufbau zu bevorzugen, bei dem ein erstes Rohr, durch das das zu kühlende erste Fluid hindurchgeführt wird, zentral in der Tragstruktur angeordnet ist, während die zweiten Rohre radial um das erste Rohr verteilt werden, durch die das Kühl-Fluid hindurchgeführt wird. Zu bevorzugen ist eine symmetrische Anordnung der zweiten Rohre um das zentrale erste Rohr herum, darüberhinaus eine Anordnung derart, daß die Achsen der jeweiligen Rohre parallel zueinander verlaufen.As already mentioned above, the respective holes can be defined are introduced in the sub-elements and in the support structure formed therefrom first and second tubes are inserted through which the first and second Fluid is guided. Is preferred in each case adjacent to a first tube arranged a second pipe. To ensure high efficiency in heat exchange to achieve, however, a structure is preferred in which a first pipe, through which the first fluid to be cooled is passed, centrally in the support structure is arranged while the second tubes are distributed radially around the first tube, through which the cooling fluid is passed. A symmetrical is preferred Arranging the second tubes around the central first tube, moreover, an arrangement such that the axes of the respective tubes are parallel to each other.

Der Wärmetauscher, wie er vorstehend in seinen verschiedenen Ausführungsformen beschrieben ist, kann als Moduleinheit dienen, wobei dann die Querschnittsform der Tragstruktur (die dann die Moduleinheit bildet), so ausgeführt ist, daß aufeinandergrenzende Moduleinheiten flächig aneinanderliegen. Hierzu ist eine Querschnittsform der Tragstruktur als Polygon, vorzugsweise als Hexagon, zu bevorzugen, so daß an die jeweiligen Seitenkanten einer solchen Tragstruktur jeweils eine weitere Moduleinheit angelegt wird. Falls die polygonförmige Querschnittsform eine gleiche Seitenlänge aufweist, darüberhinaus das Polygon ein sechsseitiges Polygon (Hexagon) ist, können um eine zentrale Moduleinheit sechs weitere Moduleinheiten angelegt werden, so daß sich eine größere Wärmeaustauschereinheit ergibt. Weitere solcher Moduleinheiten können dann beliebig um diese Einheit herum an der Außenseite angefügt werden. Für die Verbindung der einzelnen Moduleinheiten sind vorzugsweise in den Außenoberflächen Fixiernuten vorgesehen, in die Fixierteile wie Stäbe, eingelegt werden können. Solche Fixierteile sollten ein mit der Tragstruktur artgleiches Material sein, um keine unterschiedlichen Wärmedehnungen hervorzurufen.The heat exchanger as described above in its various embodiments can serve as a module unit, in which case the cross-sectional shape of the Support structure (which then forms the module unit), is designed so that adjacent Module units lie flat against each other. This is a cross-sectional shape the supporting structure as a polygon, preferably as a hexagon, to be preferred, so that at the respective side edges of such a support structure, another one Module unit is created. If the polygonal cross-sectional shape is the same Has side length, furthermore the polygon is a six-sided polygon (Hexagon), six additional module units can be added to a central module unit be applied so that there is a larger heat exchanger unit. Further Such module units can then be placed around this unit on the outside be added. For the connection of the individual module units are preferably provided in the outer surfaces fixing grooves in the fixing parts such as Rods that can be inserted. Such fixing parts should be one with the support structure be of the same type to avoid different thermal expansions to evoke.

Um den Wärmetauscher gegen Oxidation oder Korrosion zu schützen, kann die Außenoberfläche der Tragstruktur mit einer entsprechenden Schutzschicht versehen werden, vorzugsweise einer solchen, die aus Siliciumcarbid und/oder Siliciumdioxid und/oder Molybdändisilizid gebildet ist.To protect the heat exchanger against oxidation or corrosion, the outer surface the supporting structure with an appropriate protective layer are, preferably one made of silicon carbide and / or silicon dioxide and / or molybdenum disilicide is formed.

Wie eingangs beschrieben ist, wird die Tragstruktur aus einzelnen Teilelementen aufgebaut. Jedes Teilelement wiederum kann aus mehreren Einzelplatten bestehen. Um in Richtung der Längsachse des Wärmetauschers gesehen die Wärmeverteilung im Bereich der Tragstruktur zu homogenisieren und eventuelle Wärmegradienten abzubauen, werden Teilelemente oder Gruppen aus Teilelementen mit zueinander unterschiedlichen, allerdings dennoch definierten Faserorientierungen bereitgestellt, die dann in einer definierten Reihenfolge zu der gesamten Tragstruktur zusammengesetzt und mittels der Siliciumcarbid-haltigen Verbindungsschicht verbunden werden. As described at the beginning, the supporting structure is made up of individual sub-elements built up. Each sub-element can in turn consist of several individual plates. To see the heat distribution in the direction of the longitudinal axis of the heat exchanger homogenize in the area of the supporting structure and reduce any thermal gradients, are sub-elements or groups of sub-elements with mutually different, however provided defined fiber orientations that then assembled in a defined order to form the entire supporting structure and are connected by means of the silicon carbide-containing connecting layer.

Weitere Einzelheiten der Erfindung ergeben sich aus der Beschreibung von Ausführungsbeispielen anhand der Zeichnungen. In den Zeichnungen zeigen

Figuren 1 bis 4
den schrittweisen Aufbau eines erfindungsgemäßen Wärmetauschers entsprechend einer ersten Ausführungsform,
Figur 5
einen Schnitt durch einen weiteren Wärmetauscher, der eine hexagonale Querschnittsstruktur aufweist,
Figur 6
einen Querschnitt durch einen weiteren Wärmetauscher, der aus mehreren Wärmetauscher-Modulen entsprechend Figur 5 aufgebaut ist,
Figuren 7 bis 9
den Wärmetauscher, wie er im Schnitt in Figur 5 dargestellt ist, in perspektivischer Darstellung in drei Verfahrensschritten seiner Herstellung, und
Figur 10
eine Tragestruktur vergleichbar mit derjenigen, die in Figur 8 dargestellt ist, die aus Faser-Rovings oder Gewebebändern gefertigt ist, wobei die einzelnen Faserstrukturen im vorderen Bereich angedeutet dargestellt sind.
Further details of the invention result from the description of exemplary embodiments with reference to the drawings. Show in the drawings
Figures 1 to 4
the step-by-step construction of a heat exchanger according to the invention in accordance with a first embodiment,
Figure 5
3 shows a section through a further heat exchanger which has a hexagonal cross-sectional structure,
Figure 6
3 shows a cross section through a further heat exchanger which is constructed from a plurality of heat exchanger modules in accordance with FIG. 5,
Figures 7 to 9
the heat exchanger, as shown in section in Figure 5, in a perspective view in three process steps of its manufacture, and
Figure 10
a support structure comparable to that shown in Figure 8, which is made of fiber rovings or fabric tapes, the individual fiber structures are shown indicated in the front area.

Der Wärmetauscher, wie er in der perspektivischen Darstellung der Figur 4 zu sehen ist, umfaßt eine aus mehreren plattenförmigen Teilelementen 1 und 2 aufgebaute Tragstruktur 3. In dieser Tragstruktur 3 sind ein zentrales erstes Rohr 4 und um den Umfang des zentralen Rohrs 4 verteilt weitere zweite Rohre 5 eingebettet. Während das zentrale, erste Rohr 4 dazu dient, ein zu kühlendes Fluid hindurchzuführen, wird durch das zweite Rohr 5 ein zweites Fiuid, das als Kühlfluid dient, geleitet.The heat exchanger as seen in the perspective view in FIG. 4 is comprised of a plurality of plate-shaped partial elements 1 and 2 Support structure 3. In this support structure 3 are a central first tube 4 and around Circumference of the central tube 4 distributed further second tubes 5 embedded. While the central, first tube 4 is used to pass a fluid to be cooled a second fluid, which serves as a cooling fluid, is passed through the second tube 5.

Um einen solchen Wärmetauscher, wie er in Figur 4 dargestellt ist, herzustellen, werden zunächst die verschiedenen Teilelemente 1 und 2, wie in Figur 1 gezeigt ist, hergestellt. Jedes Teilelement 1, 2 wird aus einem mit Kohlenstoff- und Keramik-Fasern verstärkten Verbundwerkstoff aufgebaut. Die Teilelemente 1 und 2, wie sie in Figur 1 zu sehen sind, unterscheiden sich hierbei jeweils durch eine unterschiedliche Faserorientierung, wie durch den Faserverlauf in der oberen, linken Ecke jedes Teilelements 1, 2 angedeutet ist. Während in den Teilelementen 1 die Fasern im wesentlichen in der Ebene des jeweiligen Teilelements 1 und parallel zu den Seitenkanten des Teilelements ausgerichtet sind, sind die Fasern in den Teilelementen 2, die ebenfalls im wesentlichen in der Ebene des Teilelements liegen, 45° zu der Orientierung der Fasern in den ersten Teilelementen bzw. 45° zu den Seitenkanten des Teilelements 2 ausgerichtet. Wie anhand der Teilelemente 1 angedeutet ist, kann jedes Teileiement aus einzelnen Platten mit geringer Dicke aufgebaut werden.In order to manufacture such a heat exchanger as shown in FIG first the various sub-elements 1 and 2, as shown in FIG. 1, are produced. Each sub-element 1, 2 is made of one with carbon and ceramic fibers reinforced composite material. The sub-elements 1 and 2, as shown in Figure 1 can be seen, each differ in a different fiber orientation, as through the grain in the upper left corner of each sub-element 1, 2 is indicated. While in the sub-elements 1 the fibers essentially in the plane of the respective sub-element 1 and parallel to the side edges of the sub-element are aligned, the fibers in the sub-elements 2 are the also lie essentially in the plane of the sub-element, 45 ° to the orientation of the fibers in the first partial elements or 45 ° to the side edges of the partial element 2 aligned. As indicated by the sub-elements 1, any Partial element can be built from individual plates with a small thickness.

Die Herstellung eines Plattenteils bzw. eines Teilelements 1, 2 erfolgt aus einem porösen, kohlenstoff-faserverstärkten Kohlenstoffmaterial (C/C) mit sogenannten Langfasern, oder Fasern, die endlos sind, in orthotroper bzw. quasi-isotroper Orientierung zur Plattenebene. Solche Faserplatten werden dann zunächst zu einem Teilelement 1 zusammengefügt, beispielsweise durch Verkleben mit einer kohlenstoff-reichen Paste. Die einzelnen Teilelemente 1, 2 werden dann ebenfalls miteinander unter Heranziehung dieser Verbindungstechnik verklebt, so daß sich ein Vorkörper ergibt, wie er in Figur 2 dargestellt ist. Danach werden, wie in Figur 3 dargestellt, Bohrungen 6 eingebracht, was mit einem relativ geringen Aufwand möglich ist, da dieser Vorkörper leicht mit herkömmlichen Bohrtechniken bearbeitbar ist. Bei diesem Vorkörper handelt es sich um ein poröses Gebilde, wobei die Poren gegebenenfalls definiert ausgebildet werden können. Hierzu wird vorzugsweise eine Technik angewandt, wobei die einzelnen Kohlenstoff-Fasern in einem kohlenstoff-reichen Polymer eingebettet sind, wobei unter Pyrolyse eine solche definierte Rißstruktur erzeugt und definiert eingestellt werden kann. Die Poren bzw. die Rißstruktur dieser Tragstruktur des C/C-Körpers wird dann mit flüssigem Silicium infiltriert, das unter Wärmeeinwirkung bei Temperaturen im Bereich von 1410°C bis 1700°C zu Siliciumcarbid umgewandelt wird. Die Querschnitte der Bohrungen 6 können definiert eingestellt werden. Gleichzeitig mit dem Infiltrieren von flüssigem Silicium in die Porenstruktur wird im Bereich der Klebeflächen der flächig miteinander verklebten Teilelemente 1, 2 eine Siliciumcarbid-Verbindungsschicht gebildet, so daß die Klebeschicht durch eine Siliciumcarbidschicht ersetzt wird und sich eine homogene, hochfeste Tragstruktur 3 auch im Bereich der Fügestelle einzelner Teilelemente 1, 2 ergibt.A plate part or a partial element 1, 2 is produced from a porous, carbon fiber reinforced carbon material (C / C) with so-called long fibers, or fibers that are endless in an orthotropic or quasi-isotropic orientation to the plate level. Such fiberboard then initially become a sub-element 1 assembled, for example by gluing with a carbon-rich Paste. The individual sub-elements 1, 2 are then also under each other Using this connection technique glued so that a preform results, as shown in Figure 2. Then, as shown in Figure 3, holes 6 introduced, which is possible with relatively little effort, since this pre-body is easy to work with conventional drilling techniques. With this pre-body it is a porous structure, the pores possibly being defined can be trained. A technique is preferably used for this, wherein the individual carbon fibers are embedded in a carbon-rich polymer are, with such a defined crack structure generated and defined under pyrolysis can be adjusted. The pores or the crack structure of this supporting structure of the C / C body is then infiltrated with liquid silicon, which under the influence of heat Temperatures in the range of 1410 ° C to 1700 ° C converted to silicon carbide becomes. The cross sections of the bores 6 can be set in a defined manner. At the same time with the infiltration of liquid silicon into the pore structure becomes in the area the adhesive surfaces of the sub-elements 1, 2 which are glued flat to one another, a silicon carbide connecting layer formed so that the adhesive layer by a silicon carbide layer is replaced and a homogeneous, high-strength support structure 3 also in Area of the joint of individual sub-elements 1, 2 results.

Entsprechend den Bohrungsquerschnitten werden die einzusetzenden ersten und zweiten Rohre 4 und 5 dimensioniert, allerdings derart, daß deren Durchmesser geringfügig kleiner ist als der freie Bohrungsdurchmesser, so daß ein Zwischenraum bei eingelegtem Rohr entsteht. Diese Zwischenräume dienen als Dehnungsausgleichsbereich, der mit einer Dehnungsausgleichsschicht 8 aus keramischem Werkstoff und/oder Kohlenstoff gefüllt wird. Die Dehnungsausgleichsschicht 8 kann dadurch gebildet werden, daß, vor Einlegen der Rohre in die Bohrungen, eine Schicht aus Keramik- und/oder Kohlenstoff-Fasern oder -Folien eingefügt wird. Anschließend werden die Rohre eingesteckt, so daß diese unter Einhaltung eines definierten Spalts den verbleibenden Freiraum ausfüllen. Alternativ werden zunächst in die Bohrungen die ersten und zweiten Rohre eingelegt und der Zwischenraum mit einem keramischen Pulvermaterial weitgehendst aufgefüllt. in der Anordnung, wie sie in Figur 4 zu sehen ist, sind die ersten und zweiten Rohre 4, 5 in der Tragstruktur 3 zwar fixiert, allerdings nicht kraft- und formschlüssig so eingebettet, daß sie unverrückbar wären.The first and second tubes 4 and 5 dimensioned, but in such a way that their diameter is slight is smaller than the free bore diameter, so that a gap arises when the tube is inserted. These spaces serve as a strain compensation area, the one with an expansion compensation layer 8 made of ceramic material and / or carbon is filled. The expansion compensation layer 8 can thereby are formed that, before inserting the pipes into the holes, a layer is inserted from ceramic and / or carbon fibers or foils. Subsequently the pipes are inserted so that they comply with a defined Fill in the remaining space. Alternatively, first drill into the holes the first and second pipes inserted and the space with a ceramic Powder material largely filled up. in the arrangement as shown in figure 4 can be seen, the first and second tubes 4, 5 are fixed in the support structure 3, however, not embedded in a force-fitting or form-fitting manner so that it cannot be moved would be.

Während in Figur 4 ein Wärmetauscher schematisch dargestellt ist, der quer zur Längserstreckung der ersten und zweiten Rohre 4, 5 eine quadratische Struktur aufweist, ist in Figur 5 bzw. in Figur 9 ein Wärmetauscher-Modul gezeigt, das einen hexagonalen Querschnitt mit einer gleichen Seitenlänge aufweist. Prinzipiell ist ein solcher Wärmetauscher so aufgebaut, wie dies vorstehend anhand der Figuren 1 bis 4 erläutert ist, wobei die Figur 7 wiederum ein einzelnes Teilelement 1, 2 einer solchen Tragstruktur 3 zeigt. Mehrere solcher Teilelemente 1, 2 werden dann aufeinander verklebt, wie in Figur 8 mit den Klebe- bzw. Verbindungsschichten 7 angedeutet ist. Nach Keramisieren dieses Vorkörpers entsprechend der Figur 8 werden dann die Rohre 4, 5 in die Bohrungen eingesteckt, wiederum mit einer keramischen Zwischenschicht, die als Dehnungsschicht 8 dient, wie in Figur 5 angedeutet ist.While a heat exchanger is shown schematically in Figure 4, which is transverse to Longitudinal extension of the first and second tubes 4, 5 has a square structure, is shown in Figure 5 and in Figure 9, a heat exchanger module, the one has a hexagonal cross section with the same side length. In principle is a such a heat exchanger is constructed as described above with reference to FIGS. 1 to 4 is explained, FIG. 7 in turn a single sub-element 1, 2 of such Support structure 3 shows. Several such sub-elements 1, 2 are then on top of each other glued, as indicated in Figure 8 with the adhesive or connecting layers 7 is. After this pre-body has been ceramized in accordance with FIG. 8, the Pipes 4, 5 inserted into the bores, again with a ceramic intermediate layer, which serves as an expansion layer 8, as indicated in Figure 5.

Wie zu erkennen ist, können aus dem modulartigen Aufbau des Wärmetauschers mit einzelnen Teilelementen 1, 2 Wärmetauscher beliebiger Längen hergestellt werden, wozu standardisierte Teile herangezogen werden. Mit einer polygonalen Querschnittsform der Tragstruktur 3, wie sie vorstehend beschrieben ist, insbesondere mit einer hexagonalen Querschnittsform, die Seiten mit gleicher Länge besitzt, können Wärmetauscherstrukturen aufgebaut werden, wie sie beispielsweise in Figur 6 zu sehen ist. Hierbei werden einer zentralen Wärmetauschereinheit weitere Moduleinheiten einer entsprechenden Querschnittsform jeder Seitenfläche zugeordnet, so daß die mittlere, zentrale Wärmetauscher-Moduleinheit vollständig von äußeren Moduleinheiten umgeben wird. In den Seitenflächen der Moduleinheiten sind, in Längsrichtung der Rohre 4, 5 gesehen, Fixierungsnuten 9 ausgebildet, beispielsweise mit einem halbkreisförmigen Querschnitt, die sich dann beim Aufbau des Wärmetauschers entsprechend der Figur 6 mit den Nuten angrenzender Wärmetauscher-Module zu einer Bohrung ergänzen, in die beispielsweise Fixierstifte oder Fixierstäbe 10 eingesetzt werden können. Die einzelnen Moduleinheiten entsprechend der Figur 6 können mit geeigneten Verbindungstechniken verbunden werden, wozu sich beispielsweise Siliciumcarbidschichten eignen. Die jeweiligen Rohre 4, 5 der Moduleinheiten der Figur 6 können in geeigneter Weise strömungsmäßig miteinander verbunden werden, so daß sich zwei Strömungssysteme ergeben, wobei das erste Strömungssystem die ersten Rohre 4 (heller Querschnitt in Figur 6) umfaßt, während das zweite Rohrsystem (zweite Rohre 5 - dunkel angedeutet in Figur 6) das zweite Rohrsystem bildet. Durch das erste Rohrsystem wird das zu kühlende Fluid geführt, während das zweite Rohrsystem das Kühlfluid aufnimmt.As can be seen, the modular design of the heat exchanger can be manufactured with individual sub-elements 1, 2 heat exchangers of any length, what standardized parts are used for. With a polygonal cross-sectional shape the support structure 3, as described above, in particular with a hexagonal cross-sectional shape that has sides of the same length Heat exchanger structures are constructed, as can be seen, for example, in FIG. 6 is. Here, a central heat exchanger unit further module units assigned a corresponding cross-sectional shape to each side surface, so that the middle, central heat exchanger module unit completely from outer module units is surrounded. In the side faces of the module units are, in the longitudinal direction the tubes 4, 5 seen, fixing grooves 9 formed, for example with a semicircular cross section, which is then in the construction of the heat exchanger 6 with the grooves of adjacent heat exchanger modules add to a hole into which, for example, locating pins or locating rods 10 can be used. The individual module units corresponding to FIG. 6 can be connected with suitable connection techniques, for example Silicon carbide layers are suitable. The respective tubes 4, 5 of the module units 6 can be connected to one another in a suitable manner in terms of flow be, so that there are two flow systems, the first flow system the first tubes 4 (light cross section in Figure 6), while the second pipe system (second pipes 5 - indicated dark in Figure 6) the second pipe system forms. The fluid to be cooled is passed through the first pipe system during the second pipe system receives the cooling fluid.

Wie weiterhin anhand der Figur 6 zu erkennen ist, können mit Moduleinheiten, wie sie in Figur 5 dargestellt sind, andere geometrische Gebilde hergestellt werden, beispielsweise Wärmetauscher, die einen relativ großen, mittleren Hohlraum aufweisen oder komplexe Wärmetauscherstrukturen, wie beispielsweise Wandflächen, die in ihrer Länge und Höhe variabel sind, um sie den Anforderungen jeweils anzupassen.As can also be seen from FIG. 6, module units such as they are shown in FIG. 5, other geometric structures can be produced, for example Heat exchangers that have a relatively large, medium cavity or complex heat exchanger structures, such as wall surfaces, which in their length and height are variable in order to adapt them to the requirements.

In Figur 10 ist eine Tragestruktur 3 gezeigt, die aus Faser-Rovings oder Gewebebändern gewickelt ist. Wie aus dem angedeuteten Faserverlauf im Bereich der vorderen Stirnflächen der Wickelstruktur zu erkennen ist, ist diese Tragestruktur in Z-Richtung sich aufbauend gewickelt, indem die einzelnen Faserlagen wechselweise um die einzelnen Bohrungen 6, für die zunächst nicht dargestellte Platzhalter während des Wickelvorgangs eingesetzt werden können, gewickelt. Durch den kreuzweisen Verlauf im wesentlichen jeweils um den entsprechenden Platzhalter für das einzusetzende innere Rohr 4 herum ergibt sich eine hochfeste Struktur. Wie weiterhin zu sehen ist, werden die Fasern oder Faserbänder so gelegt, daß sie jeweils zu gegenüberliegenden Platzhaltern verlaufen und dann zu dem jeweils benachbarten Platzhalter geführt werden. Während dieses Wickelvorgangs entstehen an das innere Rohr 4 bzw. die Bohrung 6 für das innere Rohr 4 angrenzend dreieckförmige Hohlräume, in die dann ein entsprechendes Einsatzteil 11 aus einem gut wärmeleitenden Material, beispielsweise einer Faserkeramik, eingesetzt werden kann. Die Dehnungsausgleichsschicht kann bei einem Aufbau, wie er in Figur 10 dargestellt ist, zunächst um Platzhalter-Formkörper herum angeordnet werden, bevor der eigentlichen Wickelvorgang erfolgt. Die Dehnungsausgleichsschicht kann aber auch während des Wickelns durch Aufbringen von Fasern radial um einen entsprechenden Kern oder Bereich die jeweiligen vorgefertigten ersten und zweiten Rohre 4, 5, die allerdings nicht näher in Figur 10 dargestellt sind, aufgebaut werden.In Figure 10, a support structure 3 is shown, which consists of fiber rovings or fabric tapes is wrapped. As from the indicated fiber course in the area of the front End faces of the wrapping structure can be seen, this support structure is in the Z direction building itself wrapped by alternating the individual fiber layers around the individual Bores 6, for the placeholder, not initially shown, during the Winding process can be used, wound. Through the crosswise course essentially around the corresponding placeholder for the one to be used inner tube 4 results in a high-strength structure. As continues to be seen is, the fibers or slivers are placed so that they are opposite each other Placeholders run and then to the neighboring placeholder be performed. During this winding process, the inner tube 4 is formed or the bore 6 for the inner tube 4 adjacent triangular cavities, in which then has a corresponding insert 11 made of a good heat-conducting material, for example a fiber ceramic can be used. The stretch compensation layer can initially with a structure as shown in FIG Placeholder moldings are placed around before the actual wrapping process he follows. The stretch compensation layer can also be used during winding by applying fibers radially around a corresponding core or area respective prefabricated first and second pipes 4, 5, which, however, are not described in more detail in Figure 10 are shown to be built.

Claims (29)

  1. A heat exchanger comprising at least one first pipe (4) for passing a first heatemitting fluid to be cooled therethrough and at least one second pipe (5) for passing a second heat-absorbing fluid therethrough, at least the first pipe (4), which is formed from a fluid-tight, corrosion- and oxidation-resistant material, being held in a support structure (3) formed of several individual partial elements (1, 2) and consisting of SiC-containing material, in a bore (6) of said partial elements (1, 2), characterized in that the support structure (3) is composed of plate- or disk-shaped partial elements (1, 2) which are stacked one upon the other and interconnected via a SiC-containing connection layer (7) and are made from a composite material reinforced with carbon and/or ceramic fibers, that an expansion compensating layer (8) consisting of a ceramic material and/or carbon is arranged at least between the first pipe (4) and the support structure (3), and that the at least one second pipe (5) is held adjacent to the at least one first pipe (4) in a bore (6) formed in the partial elements (1, 2).
  2. The heat exchanger according to claim 1, characterized in that at least the first pipe (4) is formed from a monolithic ceramic material.
  3. The heat exchanger according to claim 2, characterized in that at least the first pipe (4) is formed from silicon carbide, silicon nitride, cordierite or mullite.
  4. The heat exchanger according to claim 3, characterized in that a silicon-infiltrated silicon carbide (SiSiC) or sintered silicon carbide (SSiC) is used as the silicon carbide.
  5. The heat exchanger according to claim 1, characterized in that the expansion compensating layer (8) is substantially formed from ceramic powder or carbon powder.
  6. The heat exchanger according to claim 1, characterized in that the expansion compensating layer (8) is substantially formed from ceramic and/or carbon fibers.
  7. The heat exchanger according to claim 6, characterized in that the fibers are preferably oriented in the circumferential direction of the pipes (4, 5).
  8. The heat exchanger according to claim 1, characterized in that the expansion compensating layer (8) is formed from a foil-like material, in particular graphite foil.
  9. The heat exchanger according to claim 1, characterized in that the expansion compensating layer (8) is formed from a mixture of fiber- and powder-like material.
  10. The heat exchanger according to claim 5, characterized in that the expansion compensating layer (8) is formed from boron-nitride and/or aluminum-nitride powder.
  11. The heat exchanger according to claim 1, characterized in that at least 50% of the fibers extend in the partial elements (1, 2) in parallel with the plate or disk plane of the partial elements (1, 2) which are formed as plates or disks.
  12. The heat exchanger according to claim 11, characterized in that at least 90% of the fibers extend in the partial elements in parallel with the plate or disk plane of the partial elements which are formed as plates or disks.
  13. The heat exchanger according to claim 1, characterized in that the partial elements (1, 2) are formed from carbon fiber-reinforced composite material, the carbon fibers being embedded in silicon carbide which by infiltration of liquid silicon and under thermal action with carbon is converted into silicon carbide.
  14. The heat exchanger according to claim 1, characterized in that the fiber reinforcement in the partial elements (1, 2) is formed from two-dimensional fabrics, fiber rovings or fabric bands.
  15. The heat exchanger according to claim 14, characterized in that the fiber reinforcement of the partial elements (1, 2) is formed from wound fiber rovings or fabric bands or knitted fiber rovings (Fig. 10).
  16. The heat exchanger according to claim 15, characterized in that intermediate cavities produced by the fiber winding have inserted thereinto or formed therein cavity-filling insertion members with a high directed heat conduction.
  17. The heat exchanger according to claim 16, characterized in that the insertion members are formed from ceramic or ceramized carbon fiber-reinforced composite material.
  18. The heat exchanger according to claim 17, characterized in that the insertion members are formed from SiC.
  19. The heat exchanger according to claim 1, characterized in that several second pipes (5) are arranged around a central first pipe (4).
  20. The heat exchanger according to claim 19, characterized in that the second pipes are symmetrically arranged around the central first pipe.
  21. The heat exchanger according to claim 19 or 20, characterized in that the axes of the first and second pipes (4, 5) extend in parallel with each other.
  22. The heat exchanger according to any one of claims 1 to 21, characterized in that as the heat-exchanger modular unit a plurality of modular units are combined to form a heat exchanger unit, the cross-sectional shape of the modular unit being designed such that adjoining modular units are in planar contact with one another.
  23. The heat exchanger according to claim 22, characterized in that the cross-sectional shape of the modular units is designed as a polygon, preferably as a hexagon.
  24. The heat exchanger according to claim 23, characterized in that the polygon has identical side lengths.
  25. The heat exchanger according to claim 24, characterized in that a further modular unit rests on each side of a central modular unit.
  26. The heat exchanger according to claim 1 or claim 22, characterized in that fixing grooves (9) are provided in the outer surface thereof.
  27. The heat exchanger according to claim 1 or claim 22, characterized in that the outer surface of the support structure (3) is provided with a protective layer against oxidation or corrosion.
  28. The heat exchanger according to claim 27, characterized in that the protective layer is formed from silicon carbide and/or silicon dioxide and/or molybdenum disilicide.
  29. The heat exchanger according to claim 1, characterized in that several partial elements (1, 2) are combined in the support structure (3) to form respective groups, and neighboring groups have a different fiber orientation
EP98921490A 1997-07-16 1998-04-25 Heat exchanger Expired - Lifetime EP0996848B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19730389 1997-07-16
DE19730389A DE19730389C2 (en) 1997-07-16 1997-07-16 heat exchangers
PCT/EP1998/002472 WO1999004213A1 (en) 1997-07-16 1998-04-25 Heat exchanger

Publications (2)

Publication Number Publication Date
EP0996848A1 EP0996848A1 (en) 2000-05-03
EP0996848B1 true EP0996848B1 (en) 2001-08-01

Family

ID=7835824

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98921490A Expired - Lifetime EP0996848B1 (en) 1997-07-16 1998-04-25 Heat exchanger

Country Status (3)

Country Link
EP (1) EP0996848B1 (en)
DE (2) DE19730389C2 (en)
WO (1) WO1999004213A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9382874B2 (en) 2010-11-18 2016-07-05 Etalim Inc. Thermal acoustic passage for a stirling cycle transducer apparatus
US9394851B2 (en) 2009-07-10 2016-07-19 Etalim Inc. Stirling cycle transducer for converting between thermal energy and mechanical energy

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7261146B2 (en) 2003-01-17 2007-08-28 Illinois Tool Works Inc Conductive heat-equalizing device
CN107487054B (en) * 2016-06-12 2023-08-08 中国科学院宁波材料技术与工程研究所 Multilayer composite film, method for the production thereof and use thereof as a joining material for fiber-reinforced composite materials
ES1295571Y (en) * 2022-06-28 2023-02-07 Univ Navarra Publica Cooling element made of electrically conductive ceramic material

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1100832A (en) * 1965-02-19 1968-01-24 Birwelco Ltd Improvements in or relating to heat exchangers
DE2758998C2 (en) * 1977-12-30 1980-02-21 Mtu Motoren- Und Turbinen-Union Muenchen Gmbh, 8000 Muenchen Recuperator for the heat exchange between two fluids of different temperatures
JPS6183897A (en) * 1984-09-28 1986-04-28 Asahi Glass Co Ltd Ceramic heat exchanging unit
US4768586A (en) * 1984-10-29 1988-09-06 The Babcock & Wilcox Company Ceramic heat exchangers
DE8600544U1 (en) * 1986-01-11 1987-03-12 Bommer, Rolf, Dipl.-Ing., 7700 Uberlingen Heat exchangers for furnaces, especially oil furnaces
DE3643749A1 (en) * 1986-12-20 1988-06-30 Hoechst Ag HEAT EXCHANGER MODULE FROM BURNED CERAMIC MATERIAL
DE3831812A1 (en) * 1988-09-19 1990-03-22 Interatom Process for producing complicated components of silicon-infiltrated silicon carbide
EP0479832A4 (en) * 1989-06-30 1993-01-07 The Broken Hill Proprietary Company Limited Steel composition for a composite roll and heat treatment thereof
DE3924411A1 (en) * 1989-07-24 1991-01-31 Hoechst Ceram Tec Ag RIB TUBE HEAT EXCHANGER
FR2667591B1 (en) 1990-10-04 1993-11-05 Ceramiques Composites PROCESS FOR ASSEMBLING SILICON CARBIDE OBJECTS AND ASSEMBLIES THUS OBTAINED.

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9394851B2 (en) 2009-07-10 2016-07-19 Etalim Inc. Stirling cycle transducer for converting between thermal energy and mechanical energy
US9382874B2 (en) 2010-11-18 2016-07-05 Etalim Inc. Thermal acoustic passage for a stirling cycle transducer apparatus

Also Published As

Publication number Publication date
DE19730389A1 (en) 1999-01-21
DE19730389C2 (en) 2002-06-06
EP0996848A1 (en) 2000-05-03
WO1999004213A1 (en) 1999-01-28
DE59801133D1 (en) 2001-09-06

Similar Documents

Publication Publication Date Title
DE4110141C2 (en) Ceramic composite structure and method for its production
WO2007110196A1 (en) Plate heat exchanger, method for its production, and its use
EP1757887B1 (en) Heat exchanger block
DE102005005509B4 (en) Block heat exchanger made of graphite
EP1544565A2 (en) Plate heat exchanger, process for manufacturing a plate heat exchanger, and ceramic fibre reinforced composite material, more particularly for plate heat exchanger
CH643349A5 (en) HEAT EXCHANGER MADE OF CERAMIC MATERIAL AND METHOD FOR THE PRODUCTION THEREOF.
EP0996848B1 (en) Heat exchanger
EP2647942B1 (en) Microfluidic component and procedure for its manufacture
WO2008034664A1 (en) Filter element, in particular for filtering exhaust gases of an internal combustion engine
DE19937812A1 (en) Composite heat exchanger, which uses materials that enable it to operate at high elevated temperatures, such as for in a nuclear fusion reactor
DE4343319A1 (en) Combustion chamber with a ceramic lining
EP0983452A1 (en) Solid construction friction unit, specially a brake disc with several friction bodies
DE3042557C2 (en) Heat exchangers, in particular for solar power plants
DE102004005832B4 (en) Composite heat exchanger
DE102005055955B3 (en) Solar receiver e.g. for solar radiation absorption, has carrier part which holds air-permeable absorber consisting of wire material and carrier part is housing made of steel sheet
DE19717931C1 (en) Heat exchangers for areas of application at temperatures greater than 200 ° C. to 1,600 ° C. and / or corrosive media
WO1998049427A1 (en) Heat insulation device for a steam turbine
EP2917032B1 (en) Layered composite material
DE3008079A1 (en) Heat exchanger for hot and/or corrosive media - using ceramic tubes located in ceramic chamber, esp. to reclaim heat from corrosive waste gas
EP2917672B1 (en) Honeycomb body made of ceramic material
DE102014112053A1 (en) Pipeline for hot gases and process for their production
DE102018125284A1 (en) Heat transfer device and method for manufacturing a heat transfer device
EP1447623B1 (en) Method of producing heat storage elements
DE8323129U1 (en) Ceramic heat exchanger
DE69107795T2 (en) Connecting device between two bodies with different expansion coefficients and method for producing the same.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19991015

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 20001211

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR IT

REF Corresponds to:

Ref document number: 59801133

Country of ref document: DE

Date of ref document: 20010906

EN Fr: translation not filed
RBV Designated contracting states (corrected)

Designated state(s): DE FR IT

EN Fr: translation not filed

Free format text: BO 01/52 PAGES: 283, IL Y A LIEU DE SUPPRIMER: LA MENTION DE LA NON REMISE. LA REMISE EST PUBLIEE DANS LE PRESENT BOPI.

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20070329

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20070609

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20070418

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081101

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20081231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080425