Nothing Special   »   [go: up one dir, main page]

EP0985248B1 - Antenna for high frequency radio signal transmission - Google Patents

Antenna for high frequency radio signal transmission Download PDF

Info

Publication number
EP0985248B1
EP0985248B1 EP98916829A EP98916829A EP0985248B1 EP 0985248 B1 EP0985248 B1 EP 0985248B1 EP 98916829 A EP98916829 A EP 98916829A EP 98916829 A EP98916829 A EP 98916829A EP 0985248 B1 EP0985248 B1 EP 0985248B1
Authority
EP
European Patent Office
Prior art keywords
antenna
antenna according
waveguide
lens
outer shell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98916829A
Other languages
German (de)
French (fr)
Other versions
EP0985248A1 (en
Inventor
Guido Villino
Friedrich Landstorfer
Marcus Maier
Hans-Oliver Ruoss
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP0985248A1 publication Critical patent/EP0985248A1/en
Application granted granted Critical
Publication of EP0985248B1 publication Critical patent/EP0985248B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/02Refracting or diffracting devices, e.g. lens, prism
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/06Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using refracting or diffracting devices, e.g. lens
    • H01Q19/062Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using refracting or diffracting devices, e.g. lens for focusing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/007Details of, or arrangements associated with, antennas specially adapted for indoor communication
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/42Housings not intimately mechanically associated with radiating elements, e.g. radome
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/02Refracting or diffracting devices, e.g. lens, prism
    • H01Q15/08Refracting or diffracting devices, e.g. lens, prism formed of solid dielectric material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/14Reflecting surfaces; Equivalent structures
    • H01Q15/16Reflecting surfaces; Equivalent structures curved in two dimensions, e.g. paraboloidal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/06Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using refracting or diffracting devices, e.g. lens

Definitions

  • the invention is based on an antenna for radiating high-frequency radio signals according to the genus of the main claim.
  • Sven Zimmermann "Investigations of antennas for an indoor wideband communication system at 60 GHz ", IEEE Workshop Mobile Millimeter Communications (MMMCOM), Technical University Dresden, May 12-13, 1997, pages 89-92, is known Antennas for communication between a base station and several mobile stations in a closed room as Training lens antenna.
  • the aim of this antenna is to a system for high bit rate data transmission in Frequency range of 60 GHz radio connections from one below base station attached to the ceiling to multiple in one to set up enclosed mobile stations.
  • the high-frequency signal at the input of an antenna the base station is connected to the antenna radiated supplying room.
  • the radiation pattern the antenna enables uniform coverage of the entire room area at a defined working height. Under other mobile stations are further away with supplies more transmission power than mobile stations in short distances below the transmitting antenna are located.
  • the signal directly perpendicular to the floor has a lower power level than the signal that is radiated against the boundary walls of the room. At the signal transmission between base station and mobile station reflections caused by multipath propagation should be avoided become. Otherwise, some overlap at the receiving location Waves, so that depending on the phase position until extinction due to interference of the total field strength.
  • the proposed antenna for radiating the high frequency Base station signal consists of a lenticular Plexiglass shape, which is fed by a waveguide.
  • the Geometry of the outer shell of the lens is attached to the Adapted to the conditions of the room with the high frequency Signal should be supplied.
  • the radiated radio signals are linearly polarized. Due to the geometry of the outer Shell of the lens creates reflection losses in the transition between lens material and air.
  • the antennas of mobile subscribers are aligned so that they can suitably receive linearly polarized signals.
  • the antenna according to the invention with the characteristic features of the main claim has the advantage that the inner shell of the dielectric lens one to the room has adapted geometry, while the outer shell a hemisphere. This makes it easier to do to apply an anti-reflective layer and reflection losses at the transition from lens material to air avoid.
  • a primary radiator which consists of a waveguide with a helical antenna, it is possible to design lenses with a low ⁇ r in small dimensions. This makes it possible, for example, to manufacture the lens material from polyethylene. Such an advantage can also be achieved if the primary radiator is formed from a waveguide with a patch antenna.
  • the use of such primary radiators is advantageous circular polarization of the radio signals reached. This means that it is no longer necessary for the antennas of the mobile stations have a certain orientation. By using radio signals with circular polarization the effects of multipath propagation are also mitigated. This minimizes interference effects reachable.
  • the electrical is advantageously Anti-glare treatment by appropriate measures. This will advantageously a ⁇ / 4 layer from a suitable Dielectric applied or achieved by scoring.
  • Figure 1 shows a base station 1 and several mobile stations 2, which communicate with each other via radio signals.
  • the mobile stations 2 are in a closed Space that is delimited by a wall 4 and a ceiling 3.
  • the radio signals emitted by the base station are closed a radiation cone 5 shaped.
  • the radiation cone is shaped so that possible reflections on the wall 4 are avoided.
  • the transmission power is different within the radiation cone, it is higher in the mantle region of the cone Provide more distant mobile stations with transmission power to be able to and decreases in the middle of the radiation cone.
  • FIG. 2 shows the antenna 6 according to the invention, which consists of a Primary radiator 13 and a dielectric lens 12 is made.
  • the primary radiator 13 consists of a waveguide 7 on which a helical antenna 8 is attached.
  • the primary radiator protrudes into the inner shell of the dielectric lens 12.
  • the Outer shell 10 of dielectric lens 12 is hemispherical educated. On the hemispherical surface of the outer shell 10 is the anti-reflective layer 11.
  • the antenna of the base station consists of a primary radiator and the dielectric lens.
  • the primary radiator 13 is excited directly by the waveguide, so that no transitions and additional interfaces are necessary.
  • the primary radiator generates a 60 ° wide radiation diagram with circular polarization, which is shaped by the dielectric lens 12 to form the target diagram.
  • the shape of the dielectric lens depends on the spatial geometry and can be adapted to any room situation. Since the outer and inner shell of the lens can be used for beam shaping, there are two degrees of freedom. In order to be able to implement the simple anti-reflection layer, it is necessary that the wave fronts of the high-frequency signal emerge from the material of the outer shell 10 as parallel as possible to the lens surface. Therefore the hemispherical geometry is chosen for the outer shell.
  • the inner, rotationally symmetrical shell 9 can be adapted to different spatial situations.
  • a ⁇ / 4 anti-reflection layer for the dielectric-air transition grooves are screwed symmetrically into the material of the lens. These grooves must be smaller than the wavelength in the substrate.
  • These grooves of suitable depth and in a suitable duty cycle make a simple anti-reflective layer possible without the additional application of a layer. For example, with a duty cycle of 1: 1, grooves 0.5 mm wide and 1 mm deep are cut into the lens. This avoids reflection losses and improves the efficiency of the antenna. In addition, the radiation characteristics of the antenna are smoothed.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Aerials With Secondary Devices (AREA)

Description

Stand der TechnikState of the art

Die Erfindung geht aus von einer Antenne zum Abstrahlen von hochfrequenten Funksignalen nach der Gattung des Hauptanspruchs. Aus der Veröffentlichung Sven Zimmermann: "Investigations of antennas for an indoor wideband communication System at 60 GHz", IEEE Workshop Mobile Millimeter Communications (MMMCOM), Technische Universität Dresden, 12-13.5. 1997, Seiten 89-92, ist bekannt, Antennen für die Kommunikation zwischen einer Basisstation und mehreren Mobilstationen in einem geschlossenen Raum als Linsenantenne auszubilden. Ziel dieser Antenne ist es, in einem System zur hochbitratigen Datenübertragung im Frequenzbereich von 60 GHz Funkverbindungen von einer unter der Decke angebrachten Basisstation zu mehreren in einem geschlossenen Raum befindlichen Mobilstationen aufzubauen. Das am Eingang einer Antenne anliegende hochfrequente Signal der Basisstation wird mit Hilfe der Antenne in den zu versorgenden Raum abgestrahlt. Die Strahlungscharakteristik der Antenne ermöglicht die gleichmäßige Versorgung der gesamten Raumfläche in einer definierten Arbeitshöhe. Unter anderem werden Mobilstationen in weiterer Entfernung mit mehr Sendeleistung versorgt, als Mobilstationen die sich in kurzen Entfernungen unterhalb der sendenden Antenne befinden. Das direkt senkrecht zum Boden gerichtete Signal besitzt einen kleineren Leistungspegel, als das Signal, das gegen die Begrenzungswände des Raumes abgestrahlt wird. Bei der Signalübertragung zwischen Basisstation und Mobilstation sollen Reflektionen durch Mehrwegeausbreitung vermieden werden. Ansonsten überlagern sich am Empfangsort einzelne Wellen, so daß es je nach Phasenlage bis zur Auslöschung durch Interferenzen der Gesamtfeldstärke kommt. Die vorgeschlagene Antenne für das Abstrahlen des hochfrequenten Signals der Basisstation besteht aus einer linsenförmigen Plexiglasform, die von einem Wellenleiter gespeist wird. Die Geometrie der äußeren Schale der Linse ist an die Gegebenheiten des Raumes angepaßt, der mit dem Hochfrequenz Signal versorgt werden soll. Die abgestrahlten Funksignale sind linear polarisiert. Durch die Geometrie der äußeren Schale der Linse entstehen Reflektionsverluste im Übergang zwischen Linsenmaterial und Luft. Zudem müssen die Antennen der mobilen Teilnehmer so ausgerichtet werden, daß sie die linear polarisierten Signale geeignet empfangen.The invention is based on an antenna for radiating high-frequency radio signals according to the genus of the main claim. From the publication Sven Zimmermann: "Investigations of antennas for an indoor wideband communication system at 60 GHz ", IEEE Workshop Mobile Millimeter Communications (MMMCOM), Technical University Dresden, May 12-13, 1997, pages 89-92, is known Antennas for communication between a base station and several mobile stations in a closed room as Training lens antenna. The aim of this antenna is to a system for high bit rate data transmission in Frequency range of 60 GHz radio connections from one below base station attached to the ceiling to multiple in one to set up enclosed mobile stations. The high-frequency signal at the input of an antenna the base station is connected to the antenna radiated supplying room. The radiation pattern the antenna enables uniform coverage of the entire room area at a defined working height. Under other mobile stations are further away with supplies more transmission power than mobile stations in short distances below the transmitting antenna are located. The signal directly perpendicular to the floor has a lower power level than the signal that is radiated against the boundary walls of the room. At the signal transmission between base station and mobile station reflections caused by multipath propagation should be avoided become. Otherwise, some overlap at the receiving location Waves, so that depending on the phase position until extinction due to interference of the total field strength. The proposed antenna for radiating the high frequency Base station signal consists of a lenticular Plexiglass shape, which is fed by a waveguide. The Geometry of the outer shell of the lens is attached to the Adapted to the conditions of the room with the high frequency Signal should be supplied. The radiated radio signals are linearly polarized. Due to the geometry of the outer Shell of the lens creates reflection losses in the transition between lens material and air. In addition, the antennas of mobile subscribers are aligned so that they can suitably receive linearly polarized signals.

Vorteile der ErfindungAdvantages of the invention

Die erfindungsgemäße Antenne mit den kennzeichnenden Merkmalen des Hauptanspruchs hat dem gegenüber den Vorteil, daß die innere Schale der dielektrischen Linse eine an den Raum angepaßte Geometrie aufweist, während die äußere Schale aus einer Halbkugel besteht. Dadurch ist es einfacher möglich eine Antireflektionsschicht aufzubringen und Reflektionsverluste beim Übergang von Linsenmaterial und Luft zu vermeiden.The antenna according to the invention with the characteristic features of the main claim has the advantage that the inner shell of the dielectric lens one to the room has adapted geometry, while the outer shell a hemisphere. This makes it easier to do to apply an anti-reflective layer and reflection losses at the transition from lens material to air avoid.

Durch die in den Unteransprüchen aufgeführten Maßnahmen ist eine vorteilhafte Weiterbildung und Verbesserung der im Hauptanspruch angegebenen Antenne möglich.By the measures listed in the subclaims an advantageous training and improvement of the Main claim specified antenna possible.

Durch den Einsatz eines Primärstrahlers, der aus einem Hohlleiter mit einer Helixantenne besteht, ist es möglich Linsen mit niedrigem εr in kleinen Abmessungen zu gestalten. Es ist z.B. dadurch möglich, das Linsenmaterial aus Polyethylen herzustellen. Einen solchen Vorteil erreicht man auch wenn man den Primärstrahler aus einem Hohlleiter mit einer Patchantenne ausbildet.By using a primary radiator, which consists of a waveguide with a helical antenna, it is possible to design lenses with a low ε r in small dimensions. This makes it possible, for example, to manufacture the lens material from polyethylene. Such an advantage can also be achieved if the primary radiator is formed from a waveguide with a patch antenna.

Vorteilhafter Weise wird durch den Einsatz solcher Primärstrahler eine zirkulare Polarisation der Funksignale erreicht. Dadurch ist es nicht mehr nötig, daß die Antennen der mobilen Stationen eine bestimmte Ausrichtung aufweisen. Durch die Verwendung von Funksignalen mit zirkularer Polarisation wird auch der Effekte der Mehrwegeausbreitung entschärft. Es ist dadurch eine Minimierung von Interferenzeffekten erreichbar. Vorteilhafter Weise wird die elektrische Linse durch geeignete Maßnahmen entspiegelt. Dazu wird vorteilhafter Weise eine λ/4-Schicht aus einem geeigneten Dielektrikum aufgebracht oder durch eine Rillung erzielt.The use of such primary radiators is advantageous circular polarization of the radio signals reached. This means that it is no longer necessary for the antennas of the mobile stations have a certain orientation. By using radio signals with circular polarization the effects of multipath propagation are also mitigated. This minimizes interference effects reachable. The electrical is advantageously Anti-glare treatment by appropriate measures. This will advantageously a λ / 4 layer from a suitable Dielectric applied or achieved by scoring.

Zeichnungendrawings

Ein Ausführungsbeispiel ist in den Zeichnungen dargestellt und in der nachfolgenden Beschreibung näher erläutert. Es zeigt Figur 1 das Kommunikationssystem und Figur 2 die erfindungsgemäße Antenne.An embodiment is shown in the drawings and explained in more detail in the following description. It Figure 1 shows the communication system and Figure 2 shows the antenna according to the invention.

Beschreibung des AusführungsbeispielsDescription of the embodiment

Figur 1 zeigt eine Basisstation 1 und mehrere Mobilstationen 2, die über Funksignale miteinander kommunizieren. Die mobilen Stationen 2 befinden sich in einem geschlossenen Raum, der durch eine Wand 4 und eine Decke 3 begrenzt ist. Die von der Basisstation abgestrahlten Funksignale sind zu einem Abstrahlkegel 5 geformt. Figure 1 shows a base station 1 and several mobile stations 2, which communicate with each other via radio signals. The mobile stations 2 are in a closed Space that is delimited by a wall 4 and a ceiling 3. The radio signals emitted by the base station are closed a radiation cone 5 shaped.

Es ist zu erkennen, daß der Abstrahlkegel so geformt ist, daß möglichst Reflektionen an der Wand 4 vermieden werden. Die Sendeleistung ist innerhalb des Abstrahlkegels unterschiedlich, sie ist im Mantelbereich des Kegels höher, um weiter entfernte Mobilstationen mit Sendeleistung versorgen zu können und verringert sich in der Mitte des Abstrahlkegels.It can be seen that the radiation cone is shaped so that possible reflections on the wall 4 are avoided. The transmission power is different within the radiation cone, it is higher in the mantle region of the cone Provide more distant mobile stations with transmission power to be able to and decreases in the middle of the radiation cone.

Figur 2 zeigt die erfindungsgemäße Antenne 6, die aus einem Primärstrahler 13 und einer dielektrischen Linse 12 besteht. Der Primärstrahler 13 besteht aus einem Hohlleiter 7, an dem eine Helixantenne 8 angebracht ist. Der Primärstrahler ragt in die innere Schale der dielektrischen Linse 12 hinein. Die äußere Schale 10 der dielektrischen Linse 12 ist halbkugelförmig ausgebildet. Auf der halbkugelförmigen Oberfläche der äußeren Schale 10 befindet sich die Antireflektionsschicht 11.FIG. 2 shows the antenna 6 according to the invention, which consists of a Primary radiator 13 and a dielectric lens 12 is made. The primary radiator 13 consists of a waveguide 7 on which a helical antenna 8 is attached. The primary radiator protrudes into the inner shell of the dielectric lens 12. The Outer shell 10 of dielectric lens 12 is hemispherical educated. On the hemispherical surface of the outer shell 10 is the anti-reflective layer 11.

Die Antenne der Basisstation besteht aus einem Primärstrahler und der dielektrischen Linse. Der Primärstrahler 13 wird direkt durch den Hohlleiter erregt, wodurch keine Übergänge und zusätzliche Schnittstellen notwendig sind. Der Primärstrahler erzeugt ein 60° breites Strahlungsdiagramm mit zirkularer Polarisation, das durch die dielektrische Linse 12 zum Solldiagramm geformt wird. Die Form der dielektrischen Linse richtet sich nach der räumlichen Geometrie und kann an jede Raumsituation angepaßt werden. Da zur Strahlformung die äußere und die innere Schale der Linse genutzt werden kann, sind zwei Freiheitsgrade vorhanden. Um die einfache Antireflektionsschicht realisieren zu können, ist es notwendig, daß die Wellenfronten des Hochfrequenzsignals möglichst parallel zur Linsenoberfläche aus dem Material der äußeren Schale 10 austreten. Deshalb wird für die äußere Schale die halbkugelförmige Geometrie gewählt. Die innere, rotationssymetrische Schale 9 kann an verschiedene Raumsituationen angepaßt werden. Die Linse selbst besteht aus einem dielektrischen Material, das einfach zu bearbeiten ist. Beispielsweise wird Polyethylen mit einem εr = 2,14 verwendet. Als λ/4-Antireflektionsschicht für den Übergang Dielektrikum-Luft werden in das Material der Linse symmetrisch Nuten eingedreht. Diese Nuten müssen kleiner als die Wellenlänge im Substrat sein. Durch diese Nuten geeigneter Tiefe und in einem geeigneten Tastverhältnis wird eine einfache Antireflexschicht ohne zusätzliches Aufbringen einer Schichtung möglich. Beispielsweise wird bei einem Tastverhältnis von 1:1 Nuten von 0,5 mm Breite und 1 mm Tiefe in die Linse geschnitten. Dadurch werden Reflektionsverluste vermieden und der Wirkungsgrad der Antenne verbessert. Zudem wird die Strahlungscharakteristik der Antenne geglättet.The antenna of the base station consists of a primary radiator and the dielectric lens. The primary radiator 13 is excited directly by the waveguide, so that no transitions and additional interfaces are necessary. The primary radiator generates a 60 ° wide radiation diagram with circular polarization, which is shaped by the dielectric lens 12 to form the target diagram. The shape of the dielectric lens depends on the spatial geometry and can be adapted to any room situation. Since the outer and inner shell of the lens can be used for beam shaping, there are two degrees of freedom. In order to be able to implement the simple anti-reflection layer, it is necessary that the wave fronts of the high-frequency signal emerge from the material of the outer shell 10 as parallel as possible to the lens surface. Therefore the hemispherical geometry is chosen for the outer shell. The inner, rotationally symmetrical shell 9 can be adapted to different spatial situations. The lens itself is made of a dielectric material that is easy to machine. For example, polyethylene with an ε r = 2.14 is used. As a λ / 4 anti-reflection layer for the dielectric-air transition, grooves are screwed symmetrically into the material of the lens. These grooves must be smaller than the wavelength in the substrate. These grooves of suitable depth and in a suitable duty cycle make a simple anti-reflective layer possible without the additional application of a layer. For example, with a duty cycle of 1: 1, grooves 0.5 mm wide and 1 mm deep are cut into the lens. This avoids reflection losses and improves the efficiency of the antenna. In addition, the radiation characteristics of the antenna are smoothed.

Claims (8)

  1. Antenna (6) for transmitting radio-frequency radio signals in an enclosed area, with the transmission lobe (5) being determined by a dielectric lens (12) which encloses a primary antenna element (13), with the dielectric lens (12) comprising an inner shell (9) and an outer shell (10), characterized in that the geometry of the inner shell (9) is matched to the characteristics of the area in such a manner as to form a radiation characteristic for the antenna (6) which results in the entire indoor area being supplied uniformly with transmitted power at a defined operating level, and in that the outer shell (10) has a hemispherical geometry.
  2. Antenna according to Claim 1, characterized in that the material of the dielectric lens is polyethylene.
  3. Antenna according to Claim 1 or 2, characterized in that the outer shell (10) has rotationally symmetrical grooves which form a λ/4 layer.
  4. Antenna according to Claim 1 or 2, characterized in that the outer antenna shell (10) has a dielectric coating.
  5. Antenna according to Claims 1 to 4, characterized in that the primary antenna element consists of a waveguide (7) with a helical antenna (8).
  6. Antenna according to Claims 1 to 4, characterized in that the primary antenna element consists of a waveguide (7) with a patch antenna (8).
  7. Antenna according to Claims 1 to 4, characterized in that the primary antenna element consists of a waveguide (7).
  8. Antenna according to Claims 1 to 7, characterized in that the radio signals are circular-polarized.
EP98916829A 1997-05-30 1998-03-03 Antenna for high frequency radio signal transmission Expired - Lifetime EP0985248B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19722547 1997-05-30
DE19722547A DE19722547A1 (en) 1997-05-30 1997-05-30 Antenna for radiating high-frequency radio signals
PCT/DE1998/000615 WO1998054788A1 (en) 1997-05-30 1998-03-03 Antenna for high frequency radio signal transmission

Publications (2)

Publication Number Publication Date
EP0985248A1 EP0985248A1 (en) 2000-03-15
EP0985248B1 true EP0985248B1 (en) 2001-10-24

Family

ID=7830857

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98916829A Expired - Lifetime EP0985248B1 (en) 1997-05-30 1998-03-03 Antenna for high frequency radio signal transmission

Country Status (8)

Country Link
US (1) US6310587B1 (en)
EP (1) EP0985248B1 (en)
JP (1) JP2002500835A (en)
KR (1) KR100552258B1 (en)
DE (2) DE19722547A1 (en)
ES (1) ES2166599T3 (en)
TW (1) TW413965B (en)
WO (1) WO1998054788A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7301504B2 (en) 2004-07-14 2007-11-27 Ems Technologies, Inc. Mechanical scanning feed assembly for a spherical lens antenna

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7142812B1 (en) * 2000-06-13 2006-11-28 Sony Deutschland Gmbh Wireless transmission system
JP3613147B2 (en) * 2000-06-22 2005-01-26 日本電気株式会社 Antenna device
WO2004088793A1 (en) * 2003-03-31 2004-10-14 Bae Systems Plc Low-profile lens antenna
US6845279B1 (en) 2004-02-06 2005-01-18 Integrated Technologies, Inc. Error proofing system for portable tools
EP1657786A1 (en) * 2004-11-16 2006-05-17 BAE Systems PLC Lens antenna
FR2896057A1 (en) * 2006-01-12 2007-07-13 St Microelectronics Sa Random number generating method for e.g. communication interface, involves generating oscillator signals at same median frequency and having distinct phase, and sampling state of each signal at appearance of binary signal
US8009113B2 (en) * 2007-01-25 2011-08-30 Cushcraft Corporation System and method for focusing antenna signal transmission
US20080180336A1 (en) * 2007-01-31 2008-07-31 Bauregger Frank N Lensed antenna methods and systems for navigation or other signals
US7912449B2 (en) * 2007-06-14 2011-03-22 Broadcom Corporation Method and system for 60 GHz location determination and coordination of WLAN/WPAN/GPS multimode devices
JP4862883B2 (en) * 2008-12-11 2012-01-25 株式会社デンソー Dielectric loaded antenna
WO2012002162A1 (en) * 2010-06-29 2012-01-05 シャープ株式会社 Electronic device, wireless power transmission device
DE102012003398B4 (en) 2012-02-23 2015-06-25 Krohne Messtechnik Gmbh According to the radar principle working level gauge
GB2510885B (en) * 2013-02-18 2020-02-19 Bae Systems Plc Integrated lighting and network interface device
EP2768074A1 (en) * 2013-02-18 2014-08-20 BAE Systems PLC Integrated lighting and network interface device
AU2014217640B2 (en) * 2013-02-18 2017-10-05 Bae Systems Plc Integrated lighting and network interface device
EP3616265A4 (en) * 2017-04-24 2021-01-13 Cohere Technologies, Inc. Multibeam antenna designs and operation
DE102019215718A1 (en) * 2019-10-14 2021-04-15 Airbus Defence and Space GmbH Antenna device for a vehicle and a vehicle with an antenna device
WO2024067990A1 (en) * 2022-09-30 2024-04-04 Huawei Technologies Co., Ltd. Reconfigurable mimo sensor antenna

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3755815A (en) * 1971-12-20 1973-08-28 Sperry Rand Corp Phased array fed lens antenna
US4458249A (en) * 1982-02-22 1984-07-03 The United States Of America As Represented By The Secretary Of The Navy Multi-beam, multi-lens microwave antenna providing hemispheric coverage

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2887684A (en) * 1954-02-01 1959-05-19 Hughes Aircraft Co Dielectric lens for conical scanning
US3886561A (en) * 1972-12-15 1975-05-27 Communications Satellite Corp Compensated zoned dielectric lens antenna
US3917773A (en) * 1973-12-26 1975-11-04 Us Navy Method for fabricating a shaped dielectric antenna lens
US4179699A (en) * 1977-07-05 1979-12-18 The Boeing Company Low reflectivity radome
GB2029114B (en) * 1978-08-25 1982-12-01 Plessey Inc Dielectric lens
GB2251519B (en) * 1985-05-03 1992-11-25 British Aerospace Microwave/millimetric waveband array receivers
US4755820A (en) * 1985-08-08 1988-07-05 The Secretary Of State For Defence In Her Britannic Majesty's Government Of The United Kingdom Of Great Britain And Northern Ireland Antenna device
JPH0310407A (en) 1989-06-07 1991-01-18 Nippondenso Co Ltd Radome for planer antenna
US5017939A (en) 1989-09-26 1991-05-21 Hughes Aircraft Company Two layer matching dielectrics for radomes and lenses for wide angles of incidence
JPH03179805A (en) * 1989-12-07 1991-08-05 Murata Mfg Co Ltd Composite material for dielectric lens antenna
US5162806A (en) 1990-02-05 1992-11-10 Raytheon Company Planar antenna with lens for controlling beam widths from two portions thereof at different frequencies
US5121129A (en) * 1990-03-14 1992-06-09 Space Systems/Loral, Inc. EHF omnidirectional antenna
DE69205423T2 (en) * 1991-05-13 1996-05-30 Thomson Multimedia, Courbevoie ANTENNA SYSTEM FOR RADIO WAVES.
DE19530065A1 (en) 1995-07-01 1997-01-09 Bosch Gmbh Robert Monostatic FMCW radar sensor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3755815A (en) * 1971-12-20 1973-08-28 Sperry Rand Corp Phased array fed lens antenna
US4458249A (en) * 1982-02-22 1984-07-03 The United States Of America As Represented By The Secretary Of The Navy Multi-beam, multi-lens microwave antenna providing hemispheric coverage

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Fernandes, C.A.; Frances, P.O.; Barbosa, A.M.: "Shaped coverage of elongated cells at millimetrewaves using a dielectric lens antennas", Proceedings of the European Microwave Conference, GB, Swanley, Nexus Media, ISBN 1-899919-15-5, Vol.: Conf. 25, Veröffentlichungsdatum: 4.9.1995, Seiten 66-70, X *
Johnson, R.C.; Jasik, H.: Antenna Engineering Handbook, 2. Auflage, McGraw-Hill Book Company, 1984, Kapitel 16-9 "Dome Antennas", Seiten 16-23 bis 16-25 *
Sven Zimmermann: "Investigations of Antennas for an Indoor Wideband Communication System at 60 GHz", IEEE Workshop Mobile Millimeter Communications (MMMCOM), Dresden University of Technology, Commuincatons Laboratory, D-01062 Dresden, 12.-13.5.1997, Seiten 89-92 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7301504B2 (en) 2004-07-14 2007-11-27 Ems Technologies, Inc. Mechanical scanning feed assembly for a spherical lens antenna

Also Published As

Publication number Publication date
KR100552258B1 (en) 2006-02-15
TW413965B (en) 2000-12-01
WO1998054788A1 (en) 1998-12-03
US6310587B1 (en) 2001-10-30
JP2002500835A (en) 2002-01-08
EP0985248A1 (en) 2000-03-15
ES2166599T3 (en) 2002-04-16
DE19722547A1 (en) 1998-12-03
KR20010020361A (en) 2001-03-15
DE59801877D1 (en) 2001-11-29

Similar Documents

Publication Publication Date Title
EP0985248B1 (en) Antenna for high frequency radio signal transmission
CN108701905B (en) Horn antenna
CN107978858A (en) A kind of directional diagram reconstructable aerial for working in 60GHz frequency ranges
EP3477771B1 (en) Printed dipole antenna, array antenna, and communications device
KR20190036231A (en) Antenna apparatus including phase shifter
CN103594791B (en) Metamaterial board, reflector antenna system and reflection of electromagnetic wave control method
US20070109211A1 (en) Antennas Supporting High Density of Wireless Users in Specific Directions
Rahim et al. Design and analysis of ultra wide band planar monopole antenna
Khan et al. A Dual-Band Quad-Port Circularly Polarized MIMO Antenna Based on a Modified Jerusalem-Cross Absorber for Wireless Communication Systems
MXPA06001116A (en) Diversity reception slotted flat-plate antenna.
US11189939B2 (en) Dual-polarized wide-bandwidth antenna
CN209804904U (en) Antenna system and mobile terminal suitable for 5G communication
Marantis et al. The pattern selection capability of a printed ESPAR antenna
US7158090B2 (en) Antenna for a wireless network
CN209766653U (en) broadband panel antenna with low sidelobe and no grating lobe
WO2008055526A1 (en) Antenna device, antenna system and method of operation
DE10150086A1 (en) Group antenna for military or civil radar device has array of openings in first conductive body and aligned recesses in opposing surface of second conductive body
OBIANIME et al. Radiation efficiency of multiband antenna for wireless communication for improved signal gain using Friis transmission technique
Erni et al. Design and implementation of a 3D beam steering antenna for cellular frequencies
Chou et al. Design of shaped reflector antennas for the applications of outdoor base station antennas in LTE mobile communications
Cella et al. Mm-wave short range outdoor links with phased arrays
CN112350055A (en) X-waveband shaped beam antenna
KR102718701B1 (en) Vivaldi antenna for microwave wireless power transmission
Wei et al. An SIW Leaky-Wave Antenna With Electronically Controlled Beam Scanning Performance
Ranga Antennas for ultra-wideband systems

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19991230

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE ES FR GB IT LI SE

17Q First examination report despatched

Effective date: 20000804

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE ES FR GB IT LI SE

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SCINTILLA AG, DIREKTION

REF Corresponds to:

Ref document number: 59801877

Country of ref document: DE

Date of ref document: 20011129

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20020122

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2166599

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20090325

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20090324

Year of fee payment: 12

Ref country code: CH

Payment date: 20090325

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20090325

Year of fee payment: 12

Ref country code: IT

Payment date: 20090326

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20090318

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20090624

Year of fee payment: 12

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

EUG Se: european patent has lapsed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20100303

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20101130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100331

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101001

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100303

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100303

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20110419

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110404

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100304

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100304