EP0985248B1 - Antenna for high frequency radio signal transmission - Google Patents
Antenna for high frequency radio signal transmission Download PDFInfo
- Publication number
- EP0985248B1 EP0985248B1 EP98916829A EP98916829A EP0985248B1 EP 0985248 B1 EP0985248 B1 EP 0985248B1 EP 98916829 A EP98916829 A EP 98916829A EP 98916829 A EP98916829 A EP 98916829A EP 0985248 B1 EP0985248 B1 EP 0985248B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- antenna
- antenna according
- waveguide
- lens
- outer shell
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q15/00—Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
- H01Q15/02—Refracting or diffracting devices, e.g. lens, prism
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q19/00—Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
- H01Q19/06—Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using refracting or diffracting devices, e.g. lens
- H01Q19/062—Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using refracting or diffracting devices, e.g. lens for focusing
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/007—Details of, or arrangements associated with, antennas specially adapted for indoor communication
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/42—Housings not intimately mechanically associated with radiating elements, e.g. radome
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q15/00—Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
- H01Q15/02—Refracting or diffracting devices, e.g. lens, prism
- H01Q15/08—Refracting or diffracting devices, e.g. lens, prism formed of solid dielectric material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q15/00—Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
- H01Q15/14—Reflecting surfaces; Equivalent structures
- H01Q15/16—Reflecting surfaces; Equivalent structures curved in two dimensions, e.g. paraboloidal
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q19/00—Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
- H01Q19/06—Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using refracting or diffracting devices, e.g. lens
Definitions
- the invention is based on an antenna for radiating high-frequency radio signals according to the genus of the main claim.
- Sven Zimmermann "Investigations of antennas for an indoor wideband communication system at 60 GHz ", IEEE Workshop Mobile Millimeter Communications (MMMCOM), Technical University Dresden, May 12-13, 1997, pages 89-92, is known Antennas for communication between a base station and several mobile stations in a closed room as Training lens antenna.
- the aim of this antenna is to a system for high bit rate data transmission in Frequency range of 60 GHz radio connections from one below base station attached to the ceiling to multiple in one to set up enclosed mobile stations.
- the high-frequency signal at the input of an antenna the base station is connected to the antenna radiated supplying room.
- the radiation pattern the antenna enables uniform coverage of the entire room area at a defined working height. Under other mobile stations are further away with supplies more transmission power than mobile stations in short distances below the transmitting antenna are located.
- the signal directly perpendicular to the floor has a lower power level than the signal that is radiated against the boundary walls of the room. At the signal transmission between base station and mobile station reflections caused by multipath propagation should be avoided become. Otherwise, some overlap at the receiving location Waves, so that depending on the phase position until extinction due to interference of the total field strength.
- the proposed antenna for radiating the high frequency Base station signal consists of a lenticular Plexiglass shape, which is fed by a waveguide.
- the Geometry of the outer shell of the lens is attached to the Adapted to the conditions of the room with the high frequency Signal should be supplied.
- the radiated radio signals are linearly polarized. Due to the geometry of the outer Shell of the lens creates reflection losses in the transition between lens material and air.
- the antennas of mobile subscribers are aligned so that they can suitably receive linearly polarized signals.
- the antenna according to the invention with the characteristic features of the main claim has the advantage that the inner shell of the dielectric lens one to the room has adapted geometry, while the outer shell a hemisphere. This makes it easier to do to apply an anti-reflective layer and reflection losses at the transition from lens material to air avoid.
- a primary radiator which consists of a waveguide with a helical antenna, it is possible to design lenses with a low ⁇ r in small dimensions. This makes it possible, for example, to manufacture the lens material from polyethylene. Such an advantage can also be achieved if the primary radiator is formed from a waveguide with a patch antenna.
- the use of such primary radiators is advantageous circular polarization of the radio signals reached. This means that it is no longer necessary for the antennas of the mobile stations have a certain orientation. By using radio signals with circular polarization the effects of multipath propagation are also mitigated. This minimizes interference effects reachable.
- the electrical is advantageously Anti-glare treatment by appropriate measures. This will advantageously a ⁇ / 4 layer from a suitable Dielectric applied or achieved by scoring.
- Figure 1 shows a base station 1 and several mobile stations 2, which communicate with each other via radio signals.
- the mobile stations 2 are in a closed Space that is delimited by a wall 4 and a ceiling 3.
- the radio signals emitted by the base station are closed a radiation cone 5 shaped.
- the radiation cone is shaped so that possible reflections on the wall 4 are avoided.
- the transmission power is different within the radiation cone, it is higher in the mantle region of the cone Provide more distant mobile stations with transmission power to be able to and decreases in the middle of the radiation cone.
- FIG. 2 shows the antenna 6 according to the invention, which consists of a Primary radiator 13 and a dielectric lens 12 is made.
- the primary radiator 13 consists of a waveguide 7 on which a helical antenna 8 is attached.
- the primary radiator protrudes into the inner shell of the dielectric lens 12.
- the Outer shell 10 of dielectric lens 12 is hemispherical educated. On the hemispherical surface of the outer shell 10 is the anti-reflective layer 11.
- the antenna of the base station consists of a primary radiator and the dielectric lens.
- the primary radiator 13 is excited directly by the waveguide, so that no transitions and additional interfaces are necessary.
- the primary radiator generates a 60 ° wide radiation diagram with circular polarization, which is shaped by the dielectric lens 12 to form the target diagram.
- the shape of the dielectric lens depends on the spatial geometry and can be adapted to any room situation. Since the outer and inner shell of the lens can be used for beam shaping, there are two degrees of freedom. In order to be able to implement the simple anti-reflection layer, it is necessary that the wave fronts of the high-frequency signal emerge from the material of the outer shell 10 as parallel as possible to the lens surface. Therefore the hemispherical geometry is chosen for the outer shell.
- the inner, rotationally symmetrical shell 9 can be adapted to different spatial situations.
- a ⁇ / 4 anti-reflection layer for the dielectric-air transition grooves are screwed symmetrically into the material of the lens. These grooves must be smaller than the wavelength in the substrate.
- These grooves of suitable depth and in a suitable duty cycle make a simple anti-reflective layer possible without the additional application of a layer. For example, with a duty cycle of 1: 1, grooves 0.5 mm wide and 1 mm deep are cut into the lens. This avoids reflection losses and improves the efficiency of the antenna. In addition, the radiation characteristics of the antenna are smoothed.
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Aerials With Secondary Devices (AREA)
Description
Die Erfindung geht aus von einer Antenne zum Abstrahlen von hochfrequenten Funksignalen nach der Gattung des Hauptanspruchs. Aus der Veröffentlichung Sven Zimmermann: "Investigations of antennas for an indoor wideband communication System at 60 GHz", IEEE Workshop Mobile Millimeter Communications (MMMCOM), Technische Universität Dresden, 12-13.5. 1997, Seiten 89-92, ist bekannt, Antennen für die Kommunikation zwischen einer Basisstation und mehreren Mobilstationen in einem geschlossenen Raum als Linsenantenne auszubilden. Ziel dieser Antenne ist es, in einem System zur hochbitratigen Datenübertragung im Frequenzbereich von 60 GHz Funkverbindungen von einer unter der Decke angebrachten Basisstation zu mehreren in einem geschlossenen Raum befindlichen Mobilstationen aufzubauen. Das am Eingang einer Antenne anliegende hochfrequente Signal der Basisstation wird mit Hilfe der Antenne in den zu versorgenden Raum abgestrahlt. Die Strahlungscharakteristik der Antenne ermöglicht die gleichmäßige Versorgung der gesamten Raumfläche in einer definierten Arbeitshöhe. Unter anderem werden Mobilstationen in weiterer Entfernung mit mehr Sendeleistung versorgt, als Mobilstationen die sich in kurzen Entfernungen unterhalb der sendenden Antenne befinden. Das direkt senkrecht zum Boden gerichtete Signal besitzt einen kleineren Leistungspegel, als das Signal, das gegen die Begrenzungswände des Raumes abgestrahlt wird. Bei der Signalübertragung zwischen Basisstation und Mobilstation sollen Reflektionen durch Mehrwegeausbreitung vermieden werden. Ansonsten überlagern sich am Empfangsort einzelne Wellen, so daß es je nach Phasenlage bis zur Auslöschung durch Interferenzen der Gesamtfeldstärke kommt. Die vorgeschlagene Antenne für das Abstrahlen des hochfrequenten Signals der Basisstation besteht aus einer linsenförmigen Plexiglasform, die von einem Wellenleiter gespeist wird. Die Geometrie der äußeren Schale der Linse ist an die Gegebenheiten des Raumes angepaßt, der mit dem Hochfrequenz Signal versorgt werden soll. Die abgestrahlten Funksignale sind linear polarisiert. Durch die Geometrie der äußeren Schale der Linse entstehen Reflektionsverluste im Übergang zwischen Linsenmaterial und Luft. Zudem müssen die Antennen der mobilen Teilnehmer so ausgerichtet werden, daß sie die linear polarisierten Signale geeignet empfangen.The invention is based on an antenna for radiating high-frequency radio signals according to the genus of the main claim. From the publication Sven Zimmermann: "Investigations of antennas for an indoor wideband communication system at 60 GHz ", IEEE Workshop Mobile Millimeter Communications (MMMCOM), Technical University Dresden, May 12-13, 1997, pages 89-92, is known Antennas for communication between a base station and several mobile stations in a closed room as Training lens antenna. The aim of this antenna is to a system for high bit rate data transmission in Frequency range of 60 GHz radio connections from one below base station attached to the ceiling to multiple in one to set up enclosed mobile stations. The high-frequency signal at the input of an antenna the base station is connected to the antenna radiated supplying room. The radiation pattern the antenna enables uniform coverage of the entire room area at a defined working height. Under other mobile stations are further away with supplies more transmission power than mobile stations in short distances below the transmitting antenna are located. The signal directly perpendicular to the floor has a lower power level than the signal that is radiated against the boundary walls of the room. At the signal transmission between base station and mobile station reflections caused by multipath propagation should be avoided become. Otherwise, some overlap at the receiving location Waves, so that depending on the phase position until extinction due to interference of the total field strength. The proposed antenna for radiating the high frequency Base station signal consists of a lenticular Plexiglass shape, which is fed by a waveguide. The Geometry of the outer shell of the lens is attached to the Adapted to the conditions of the room with the high frequency Signal should be supplied. The radiated radio signals are linearly polarized. Due to the geometry of the outer Shell of the lens creates reflection losses in the transition between lens material and air. In addition, the antennas of mobile subscribers are aligned so that they can suitably receive linearly polarized signals.
Die erfindungsgemäße Antenne mit den kennzeichnenden Merkmalen des Hauptanspruchs hat dem gegenüber den Vorteil, daß die innere Schale der dielektrischen Linse eine an den Raum angepaßte Geometrie aufweist, während die äußere Schale aus einer Halbkugel besteht. Dadurch ist es einfacher möglich eine Antireflektionsschicht aufzubringen und Reflektionsverluste beim Übergang von Linsenmaterial und Luft zu vermeiden.The antenna according to the invention with the characteristic features of the main claim has the advantage that the inner shell of the dielectric lens one to the room has adapted geometry, while the outer shell a hemisphere. This makes it easier to do to apply an anti-reflective layer and reflection losses at the transition from lens material to air avoid.
Durch die in den Unteransprüchen aufgeführten Maßnahmen ist eine vorteilhafte Weiterbildung und Verbesserung der im Hauptanspruch angegebenen Antenne möglich.By the measures listed in the subclaims an advantageous training and improvement of the Main claim specified antenna possible.
Durch den Einsatz eines Primärstrahlers, der aus einem Hohlleiter mit einer Helixantenne besteht, ist es möglich Linsen mit niedrigem εr in kleinen Abmessungen zu gestalten. Es ist z.B. dadurch möglich, das Linsenmaterial aus Polyethylen herzustellen. Einen solchen Vorteil erreicht man auch wenn man den Primärstrahler aus einem Hohlleiter mit einer Patchantenne ausbildet.By using a primary radiator, which consists of a waveguide with a helical antenna, it is possible to design lenses with a low ε r in small dimensions. This makes it possible, for example, to manufacture the lens material from polyethylene. Such an advantage can also be achieved if the primary radiator is formed from a waveguide with a patch antenna.
Vorteilhafter Weise wird durch den Einsatz solcher Primärstrahler eine zirkulare Polarisation der Funksignale erreicht. Dadurch ist es nicht mehr nötig, daß die Antennen der mobilen Stationen eine bestimmte Ausrichtung aufweisen. Durch die Verwendung von Funksignalen mit zirkularer Polarisation wird auch der Effekte der Mehrwegeausbreitung entschärft. Es ist dadurch eine Minimierung von Interferenzeffekten erreichbar. Vorteilhafter Weise wird die elektrische Linse durch geeignete Maßnahmen entspiegelt. Dazu wird vorteilhafter Weise eine λ/4-Schicht aus einem geeigneten Dielektrikum aufgebracht oder durch eine Rillung erzielt.The use of such primary radiators is advantageous circular polarization of the radio signals reached. This means that it is no longer necessary for the antennas of the mobile stations have a certain orientation. By using radio signals with circular polarization the effects of multipath propagation are also mitigated. This minimizes interference effects reachable. The electrical is advantageously Anti-glare treatment by appropriate measures. This will advantageously a λ / 4 layer from a suitable Dielectric applied or achieved by scoring.
Ein Ausführungsbeispiel ist in den Zeichnungen dargestellt und in der nachfolgenden Beschreibung näher erläutert. Es zeigt Figur 1 das Kommunikationssystem und Figur 2 die erfindungsgemäße Antenne.An embodiment is shown in the drawings and explained in more detail in the following description. It Figure 1 shows the communication system and Figure 2 shows the antenna according to the invention.
Figur 1 zeigt eine Basisstation 1 und mehrere Mobilstationen
2, die über Funksignale miteinander kommunizieren. Die
mobilen Stationen 2 befinden sich in einem geschlossenen
Raum, der durch eine Wand 4 und eine Decke 3 begrenzt ist.
Die von der Basisstation abgestrahlten Funksignale sind zu
einem Abstrahlkegel 5 geformt. Figure 1 shows a base station 1 and several
Es ist zu erkennen, daß der Abstrahlkegel so geformt ist, daß möglichst Reflektionen an der Wand 4 vermieden werden. Die Sendeleistung ist innerhalb des Abstrahlkegels unterschiedlich, sie ist im Mantelbereich des Kegels höher, um weiter entfernte Mobilstationen mit Sendeleistung versorgen zu können und verringert sich in der Mitte des Abstrahlkegels.It can be seen that the radiation cone is shaped so that possible reflections on the wall 4 are avoided. The transmission power is different within the radiation cone, it is higher in the mantle region of the cone Provide more distant mobile stations with transmission power to be able to and decreases in the middle of the radiation cone.
Figur 2 zeigt die erfindungsgemäße Antenne 6, die aus einem
Primärstrahler 13 und einer dielektrischen Linse 12 besteht.
Der Primärstrahler 13 besteht aus einem Hohlleiter 7, an dem
eine Helixantenne 8 angebracht ist. Der Primärstrahler ragt
in die innere Schale der dielektrischen Linse 12 hinein. Die
äußere Schale 10 der dielektrischen Linse 12 ist halbkugelförmig
ausgebildet. Auf der halbkugelförmigen Oberfläche der
äußeren Schale 10 befindet sich die Antireflektionsschicht
11.FIG. 2 shows the
Die Antenne der Basisstation besteht aus einem Primärstrahler
und der dielektrischen Linse. Der Primärstrahler 13 wird
direkt durch den Hohlleiter erregt, wodurch keine Übergänge
und zusätzliche Schnittstellen notwendig sind. Der Primärstrahler
erzeugt ein 60° breites Strahlungsdiagramm mit
zirkularer Polarisation, das durch die dielektrische Linse
12 zum Solldiagramm geformt wird. Die Form der
dielektrischen Linse richtet sich nach der räumlichen
Geometrie und kann an jede Raumsituation angepaßt werden. Da
zur Strahlformung die äußere und die innere Schale der Linse
genutzt werden kann, sind zwei Freiheitsgrade vorhanden. Um
die einfache Antireflektionsschicht realisieren zu können,
ist es notwendig, daß die Wellenfronten des
Hochfrequenzsignals möglichst parallel zur Linsenoberfläche
aus dem Material der äußeren Schale 10 austreten. Deshalb
wird für die äußere Schale die halbkugelförmige Geometrie
gewählt. Die innere, rotationssymetrische Schale 9 kann an
verschiedene Raumsituationen angepaßt werden. Die Linse
selbst besteht aus einem dielektrischen Material, das
einfach zu bearbeiten ist. Beispielsweise wird Polyethylen
mit einem εr = 2,14 verwendet. Als λ/4-Antireflektionsschicht
für den Übergang Dielektrikum-Luft
werden in das Material der Linse symmetrisch Nuten
eingedreht. Diese Nuten müssen kleiner als die Wellenlänge
im Substrat sein. Durch diese Nuten geeigneter Tiefe und in
einem geeigneten Tastverhältnis wird eine einfache Antireflexschicht
ohne zusätzliches Aufbringen einer Schichtung
möglich. Beispielsweise wird bei einem Tastverhältnis von
1:1 Nuten von 0,5 mm Breite und 1 mm Tiefe in die Linse
geschnitten. Dadurch werden Reflektionsverluste vermieden
und der Wirkungsgrad der Antenne verbessert. Zudem wird die
Strahlungscharakteristik der Antenne geglättet.The antenna of the base station consists of a primary radiator and the dielectric lens. The
Claims (8)
- Antenna (6) for transmitting radio-frequency radio signals in an enclosed area, with the transmission lobe (5) being determined by a dielectric lens (12) which encloses a primary antenna element (13), with the dielectric lens (12) comprising an inner shell (9) and an outer shell (10), characterized in that the geometry of the inner shell (9) is matched to the characteristics of the area in such a manner as to form a radiation characteristic for the antenna (6) which results in the entire indoor area being supplied uniformly with transmitted power at a defined operating level, and in that the outer shell (10) has a hemispherical geometry.
- Antenna according to Claim 1, characterized in that the material of the dielectric lens is polyethylene.
- Antenna according to Claim 1 or 2, characterized in that the outer shell (10) has rotationally symmetrical grooves which form a λ/4 layer.
- Antenna according to Claim 1 or 2, characterized in that the outer antenna shell (10) has a dielectric coating.
- Antenna according to Claims 1 to 4, characterized in that the primary antenna element consists of a waveguide (7) with a helical antenna (8).
- Antenna according to Claims 1 to 4, characterized in that the primary antenna element consists of a waveguide (7) with a patch antenna (8).
- Antenna according to Claims 1 to 4, characterized in that the primary antenna element consists of a waveguide (7).
- Antenna according to Claims 1 to 7, characterized in that the radio signals are circular-polarized.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19722547 | 1997-05-30 | ||
DE19722547A DE19722547A1 (en) | 1997-05-30 | 1997-05-30 | Antenna for radiating high-frequency radio signals |
PCT/DE1998/000615 WO1998054788A1 (en) | 1997-05-30 | 1998-03-03 | Antenna for high frequency radio signal transmission |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0985248A1 EP0985248A1 (en) | 2000-03-15 |
EP0985248B1 true EP0985248B1 (en) | 2001-10-24 |
Family
ID=7830857
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP98916829A Expired - Lifetime EP0985248B1 (en) | 1997-05-30 | 1998-03-03 | Antenna for high frequency radio signal transmission |
Country Status (8)
Country | Link |
---|---|
US (1) | US6310587B1 (en) |
EP (1) | EP0985248B1 (en) |
JP (1) | JP2002500835A (en) |
KR (1) | KR100552258B1 (en) |
DE (2) | DE19722547A1 (en) |
ES (1) | ES2166599T3 (en) |
TW (1) | TW413965B (en) |
WO (1) | WO1998054788A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7301504B2 (en) | 2004-07-14 | 2007-11-27 | Ems Technologies, Inc. | Mechanical scanning feed assembly for a spherical lens antenna |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7142812B1 (en) * | 2000-06-13 | 2006-11-28 | Sony Deutschland Gmbh | Wireless transmission system |
JP3613147B2 (en) * | 2000-06-22 | 2005-01-26 | 日本電気株式会社 | Antenna device |
WO2004088793A1 (en) * | 2003-03-31 | 2004-10-14 | Bae Systems Plc | Low-profile lens antenna |
US6845279B1 (en) | 2004-02-06 | 2005-01-18 | Integrated Technologies, Inc. | Error proofing system for portable tools |
EP1657786A1 (en) * | 2004-11-16 | 2006-05-17 | BAE Systems PLC | Lens antenna |
FR2896057A1 (en) * | 2006-01-12 | 2007-07-13 | St Microelectronics Sa | Random number generating method for e.g. communication interface, involves generating oscillator signals at same median frequency and having distinct phase, and sampling state of each signal at appearance of binary signal |
US8009113B2 (en) * | 2007-01-25 | 2011-08-30 | Cushcraft Corporation | System and method for focusing antenna signal transmission |
US20080180336A1 (en) * | 2007-01-31 | 2008-07-31 | Bauregger Frank N | Lensed antenna methods and systems for navigation or other signals |
US7912449B2 (en) * | 2007-06-14 | 2011-03-22 | Broadcom Corporation | Method and system for 60 GHz location determination and coordination of WLAN/WPAN/GPS multimode devices |
JP4862883B2 (en) * | 2008-12-11 | 2012-01-25 | 株式会社デンソー | Dielectric loaded antenna |
WO2012002162A1 (en) * | 2010-06-29 | 2012-01-05 | シャープ株式会社 | Electronic device, wireless power transmission device |
DE102012003398B4 (en) | 2012-02-23 | 2015-06-25 | Krohne Messtechnik Gmbh | According to the radar principle working level gauge |
GB2510885B (en) * | 2013-02-18 | 2020-02-19 | Bae Systems Plc | Integrated lighting and network interface device |
EP2768074A1 (en) * | 2013-02-18 | 2014-08-20 | BAE Systems PLC | Integrated lighting and network interface device |
AU2014217640B2 (en) * | 2013-02-18 | 2017-10-05 | Bae Systems Plc | Integrated lighting and network interface device |
EP3616265A4 (en) * | 2017-04-24 | 2021-01-13 | Cohere Technologies, Inc. | Multibeam antenna designs and operation |
DE102019215718A1 (en) * | 2019-10-14 | 2021-04-15 | Airbus Defence and Space GmbH | Antenna device for a vehicle and a vehicle with an antenna device |
WO2024067990A1 (en) * | 2022-09-30 | 2024-04-04 | Huawei Technologies Co., Ltd. | Reconfigurable mimo sensor antenna |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3755815A (en) * | 1971-12-20 | 1973-08-28 | Sperry Rand Corp | Phased array fed lens antenna |
US4458249A (en) * | 1982-02-22 | 1984-07-03 | The United States Of America As Represented By The Secretary Of The Navy | Multi-beam, multi-lens microwave antenna providing hemispheric coverage |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2887684A (en) * | 1954-02-01 | 1959-05-19 | Hughes Aircraft Co | Dielectric lens for conical scanning |
US3886561A (en) * | 1972-12-15 | 1975-05-27 | Communications Satellite Corp | Compensated zoned dielectric lens antenna |
US3917773A (en) * | 1973-12-26 | 1975-11-04 | Us Navy | Method for fabricating a shaped dielectric antenna lens |
US4179699A (en) * | 1977-07-05 | 1979-12-18 | The Boeing Company | Low reflectivity radome |
GB2029114B (en) * | 1978-08-25 | 1982-12-01 | Plessey Inc | Dielectric lens |
GB2251519B (en) * | 1985-05-03 | 1992-11-25 | British Aerospace | Microwave/millimetric waveband array receivers |
US4755820A (en) * | 1985-08-08 | 1988-07-05 | The Secretary Of State For Defence In Her Britannic Majesty's Government Of The United Kingdom Of Great Britain And Northern Ireland | Antenna device |
JPH0310407A (en) | 1989-06-07 | 1991-01-18 | Nippondenso Co Ltd | Radome for planer antenna |
US5017939A (en) | 1989-09-26 | 1991-05-21 | Hughes Aircraft Company | Two layer matching dielectrics for radomes and lenses for wide angles of incidence |
JPH03179805A (en) * | 1989-12-07 | 1991-08-05 | Murata Mfg Co Ltd | Composite material for dielectric lens antenna |
US5162806A (en) | 1990-02-05 | 1992-11-10 | Raytheon Company | Planar antenna with lens for controlling beam widths from two portions thereof at different frequencies |
US5121129A (en) * | 1990-03-14 | 1992-06-09 | Space Systems/Loral, Inc. | EHF omnidirectional antenna |
DE69205423T2 (en) * | 1991-05-13 | 1996-05-30 | Thomson Multimedia, Courbevoie | ANTENNA SYSTEM FOR RADIO WAVES. |
DE19530065A1 (en) | 1995-07-01 | 1997-01-09 | Bosch Gmbh Robert | Monostatic FMCW radar sensor |
-
1997
- 1997-05-30 DE DE19722547A patent/DE19722547A1/en not_active Withdrawn
-
1998
- 1998-03-03 KR KR1019997009981A patent/KR100552258B1/en not_active IP Right Cessation
- 1998-03-03 DE DE59801877T patent/DE59801877D1/en not_active Expired - Fee Related
- 1998-03-03 WO PCT/DE1998/000615 patent/WO1998054788A1/en active IP Right Grant
- 1998-03-03 EP EP98916829A patent/EP0985248B1/en not_active Expired - Lifetime
- 1998-03-03 ES ES98916829T patent/ES2166599T3/en not_active Expired - Lifetime
- 1998-03-03 US US09/424,736 patent/US6310587B1/en not_active Expired - Fee Related
- 1998-03-03 JP JP50007099A patent/JP2002500835A/en not_active Ceased
- 1998-04-04 TW TW087105128A patent/TW413965B/en not_active IP Right Cessation
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3755815A (en) * | 1971-12-20 | 1973-08-28 | Sperry Rand Corp | Phased array fed lens antenna |
US4458249A (en) * | 1982-02-22 | 1984-07-03 | The United States Of America As Represented By The Secretary Of The Navy | Multi-beam, multi-lens microwave antenna providing hemispheric coverage |
Non-Patent Citations (3)
Title |
---|
Fernandes, C.A.; Frances, P.O.; Barbosa, A.M.: "Shaped coverage of elongated cells at millimetrewaves using a dielectric lens antennas", Proceedings of the European Microwave Conference, GB, Swanley, Nexus Media, ISBN 1-899919-15-5, Vol.: Conf. 25, Veröffentlichungsdatum: 4.9.1995, Seiten 66-70, X * |
Johnson, R.C.; Jasik, H.: Antenna Engineering Handbook, 2. Auflage, McGraw-Hill Book Company, 1984, Kapitel 16-9 "Dome Antennas", Seiten 16-23 bis 16-25 * |
Sven Zimmermann: "Investigations of Antennas for an Indoor Wideband Communication System at 60 GHz", IEEE Workshop Mobile Millimeter Communications (MMMCOM), Dresden University of Technology, Commuincatons Laboratory, D-01062 Dresden, 12.-13.5.1997, Seiten 89-92 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7301504B2 (en) | 2004-07-14 | 2007-11-27 | Ems Technologies, Inc. | Mechanical scanning feed assembly for a spherical lens antenna |
Also Published As
Publication number | Publication date |
---|---|
KR100552258B1 (en) | 2006-02-15 |
TW413965B (en) | 2000-12-01 |
WO1998054788A1 (en) | 1998-12-03 |
US6310587B1 (en) | 2001-10-30 |
JP2002500835A (en) | 2002-01-08 |
EP0985248A1 (en) | 2000-03-15 |
ES2166599T3 (en) | 2002-04-16 |
DE19722547A1 (en) | 1998-12-03 |
KR20010020361A (en) | 2001-03-15 |
DE59801877D1 (en) | 2001-11-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0985248B1 (en) | Antenna for high frequency radio signal transmission | |
CN108701905B (en) | Horn antenna | |
CN107978858A (en) | A kind of directional diagram reconstructable aerial for working in 60GHz frequency ranges | |
EP3477771B1 (en) | Printed dipole antenna, array antenna, and communications device | |
KR20190036231A (en) | Antenna apparatus including phase shifter | |
CN103594791B (en) | Metamaterial board, reflector antenna system and reflection of electromagnetic wave control method | |
US20070109211A1 (en) | Antennas Supporting High Density of Wireless Users in Specific Directions | |
Rahim et al. | Design and analysis of ultra wide band planar monopole antenna | |
Khan et al. | A Dual-Band Quad-Port Circularly Polarized MIMO Antenna Based on a Modified Jerusalem-Cross Absorber for Wireless Communication Systems | |
MXPA06001116A (en) | Diversity reception slotted flat-plate antenna. | |
US11189939B2 (en) | Dual-polarized wide-bandwidth antenna | |
CN209804904U (en) | Antenna system and mobile terminal suitable for 5G communication | |
Marantis et al. | The pattern selection capability of a printed ESPAR antenna | |
US7158090B2 (en) | Antenna for a wireless network | |
CN209766653U (en) | broadband panel antenna with low sidelobe and no grating lobe | |
WO2008055526A1 (en) | Antenna device, antenna system and method of operation | |
DE10150086A1 (en) | Group antenna for military or civil radar device has array of openings in first conductive body and aligned recesses in opposing surface of second conductive body | |
OBIANIME et al. | Radiation efficiency of multiband antenna for wireless communication for improved signal gain using Friis transmission technique | |
Erni et al. | Design and implementation of a 3D beam steering antenna for cellular frequencies | |
Chou et al. | Design of shaped reflector antennas for the applications of outdoor base station antennas in LTE mobile communications | |
Cella et al. | Mm-wave short range outdoor links with phased arrays | |
CN112350055A (en) | X-waveband shaped beam antenna | |
KR102718701B1 (en) | Vivaldi antenna for microwave wireless power transmission | |
Wei et al. | An SIW Leaky-Wave Antenna With Electronically Controlled Beam Scanning Performance | |
Ranga | Antennas for ultra-wideband systems |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19991230 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): CH DE ES FR GB IT LI SE |
|
17Q | First examination report despatched |
Effective date: 20000804 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): CH DE ES FR GB IT LI SE |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: SCINTILLA AG, DIREKTION |
|
REF | Corresponds to: |
Ref document number: 59801877 Country of ref document: DE Date of ref document: 20011129 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
ET | Fr: translation filed | ||
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20020122 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2166599 Country of ref document: ES Kind code of ref document: T3 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20090325 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20090324 Year of fee payment: 12 Ref country code: CH Payment date: 20090325 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20090325 Year of fee payment: 12 Ref country code: IT Payment date: 20090326 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20090318 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20090624 Year of fee payment: 12 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
EUG | Se: european patent has lapsed | ||
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20100303 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20101130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100331 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20101001 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100303 Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100303 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20110419 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110404 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100304 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100304 |