EP0982973B2 - Sensor for cooking vessel detection - Google Patents
Sensor for cooking vessel detection Download PDFInfo
- Publication number
- EP0982973B2 EP0982973B2 EP99123892A EP99123892A EP0982973B2 EP 0982973 B2 EP0982973 B2 EP 0982973B2 EP 99123892 A EP99123892 A EP 99123892A EP 99123892 A EP99123892 A EP 99123892A EP 0982973 B2 EP0982973 B2 EP 0982973B2
- Authority
- EP
- European Patent Office
- Prior art keywords
- sensor
- loop
- radiant heater
- sensor loop
- heater according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B3/00—Ohmic-resistance heating
- H05B3/68—Heating arrangements specially adapted for cooking plates or analogous hot-plates
- H05B3/74—Non-metallic plates, e.g. vitroceramic, ceramic or glassceramic hobs, also including power or control circuits
- H05B3/746—Protection, e.g. overheat cutoff, hot plate indicator
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B2213/00—Aspects relating both to resistive heating and to induction heating, covered by H05B3/00 and H05B6/00
- H05B2213/05—Heating plates with pan detection means
Definitions
- the invention relates to an electric radiant heater with an active sensor for detecting the positioning of a cooking vessel on a heating plate covering the cooking plate, in particular a glass ceramic plate.
- the mentioned one-wind pot detection loop is from the DE 37 11 589 A1 known. It is a passive short-circuit loop, which is arranged between the heating elements and a glass ceramic plate. It is acted upon externally by a magnetic field transmitter arranged below the heating elements. By periodic short-circuiting and a corresponding Bedämpfungsunk the evaluation circuit is applied. The introduction of such a system in practice fails because of the great effort and especially the required large height to accommodate the magnetic encoder.
- the aforementioned multi-winding coils in the outer edge region pose thermal problems and, as has been recognized according to the invention and as will be explained later, are less suitable for sharp signal generation and detection.
- a circuit arrangement g has become known for a pan detection system with a drip detection sensor which operates in the manner of a passive quadrupole.
- the type of transmitter and receiver antennas operating sensor is applied to the underside of the hot plate as a printed circuit and has a generally spiral arrangement.
- the EP 0 469 189 A describes a control method for the heating elements of a cooker with a designed as an air coil with only a few turns sensor, on the arrangement and design of the rest, no information is provided.
- the object of the invention is to provide a radiant heater with an active sensor that provides a simple and robust design as concise as possible signal to control the radiator.
- the sensor which is part of an inductively, preferably by means of oscillating circuit detuning resonant circuit of a control, is arranged as a loop of electrically conductive material in the region of the heating zone and this at least partially arranged across.
- the signal is significantly more meaningful for the coverage of the heating zone and thus for the detection of a sensor circulating in the edge region of the radiator more concise.
- This is unusual in that it should be assumed that the associated cooking vessel size would be detected particularly accurately by a sensor arranged at the edge, because the signal size in the form of the relative frequency shift in the edge region is particularly large and then drops sharply (parabolically) towards the center.
- edge coil can hardly distinguish between a relatively small pot, which is still to effect a switch, and a large, but shifted to the heating pot pot, which should cause no intervention.
- edge coils due to the fact that radiant heaters are usually arranged in a metal plate whose bottom and especially its edge strongly damped the resonant circuit. The field thus extends to a very narrow edge region, which provides an evaluable signal at all.
- the sensor loop should therefore have its effective diameter in the range of the minimum diameter, advantageously something above it, namely around the area of the magnetic field "hose". As a result of the distance to the outer edge there is no significant attenuation by this, which would simulate a pot, so to speak.
- the invention therefore advantageously allows the sensor loop in the immediate area of the heating zone, i. Immediately exposed to the radiant heat, because in such a coil with a winding with air gap in between an insulation is not necessary.
- It consists of a shape-stable, self-supporting and temperature-resistant conductive material, preferably of a tube or solid, strong wire.
- the material used is a material such as a high alloy steel, e.g. a FeCrNi alloy in question.
- the formation of non-ferromagnetic material is expedient because with a ferromagnetic material due to the high temperature occurring, the Curie point would be exceeded and the magnetic properties changing in this point would give rise to a signal completely different from the desired determination of a cooking vessel position is independent and therefore the result would be distorted.
- the sensor loop and the controller can be advantageously designed for cooking vessel size detection.
- the sensor loop may have different effective ranges at a radial distance from each other, e.g. in different peripheral regions substantially in the circumferential direction extending loop portions which are interconnected by radial connecting portions.
- a sensor loop with a circular or polygonal shape with omega-shaped bulges can result. This cloverleaf has been recognized as particularly effective.
- the characteristic curve "frequency deviation / diametrical coverage by the cooking vessel" has, in contrast to the parabolic curve, a stage progression with a steep portion displaced more towards the interior of the heating zone, which can have two diameter stages in two-circuit radiators.
- the waveform can be more adapted to the ideal shape. This would be the radiator with only one heating zone, a flat waveform in the edge region, the steepest possible drop in the range of the diameter of a smallest possible pot, which should still lead to an intervention, and then a shallow, the lowest possible course to Schuzonenmitte out.
- the robust, self-supporting sensor loop can be easily arranged in any radiator configurations. These usually have an outer edge made of insulating material and two-ring radiators possibly an intermediate wall. On this, the sensor loop can rest, for which recesses may be provided in order to establish a system of sensor and insulating edge on the plate or a certain, but only small distance thereto. Even with existing radiator designs, retrofitting with pan detection is possible.
- the Fig. 1 and 2 show an electric radiant heater 11, which is arranged under a glass ceramic plate 12 of an electric cooktop or other Strahlungskochös. It has a flat sheet metal plate 13, the bottom 14 and edge 15 receive a bottom layer 16 and a rim 17 of electrically and thermally insulating and insulating heat-resistant insulating material. It is preferably a microporous, pressed from bulk material fumed silica airgel.
- the outer edge 17 is made separately because of improved mechanical strength and consists of a pressed or wet-formed and then dried ceramic fiber with binders, etc.
- the sheet edge 15 is not quite up to the glass ceramic plate 12 zoom, but probably the insulating edge 17 which is pressed from below to the glass ceramic plate by the heater 11 is pressed by a pressure spring, not shown, upwards.
- the radiant heater has two mutually concentric heating zones 18, 19, which are delimited from one another by an intermediate wall 20, but which does not reach up to the glass ceramic plate.
- electrical heating elements 21 are arranged in the form of thin, wavy deformed bands which are arranged standing upright on the surface 22 of the insulator 16 and anchored in this formed with feet on its underside, due to the curl of the band have a spade shape. They cover the two heating zones 18, 19 uniformly, with the exception of an unheated central zone 59, in which an upwardly directed projection 43 of the insulating floor 16 is located.
- Fig. 2 shows the arrangement of the heating elements in meandering ring tracks. They are connected via Schuelementan Why 23 to a temperature monitor 24 and a separate connection block 25 so that the outer heating zone 19 of the constantly activated during operation of the radiator heating zone 18 can be switched on.
- the temperature monitor 24 has a rod-shaped sensor 26, which acts on a temperature monitor / contact to maintain a permissible maximum temperature on the glass ceramic underside and a hot-alarm contact for signaling the hot condition of the radiator in a temperature monitor head 27.
- the sensor 26 protrudes through the Isolier Sciencesrand 17 and through the intermediate wall 20 therethrough and extends in a plane above the heating elements 21, but mostly in an area free of heating elements lane 28th
- the radiator has a sensor in the form of a loop 30, which is part of a control 31 for detecting the positioning of a cooking vessel on the radiator covering the cooking plate 12.
- the sensor loop 30 forms an inductance of a resonant circuit 32, which is excited at a relatively high frequency of, for example, 1 MHz to 5 MHz.
- the damping of the sensor loop 30 and thus the frequency of the resonant circuit 32 changes. This is evaluated in the controller 31 and depending on mechanical or electronic switches 33, 33 a are controlled in the control, the heating zones 18, 19 for Switch on operation.
- a power control unit 34 (often referred to as an energy regulator) is also provided, which can be adjusted via a knob 35 to a certain power. It can also be provided a temperature controller. Control or control is usually a cycling power release, i. to a suspension control or control.
- the power controller 34 may be thermo-mechanical, i. be designed as a bimetal switch or, preferably, as an electronic component that may optionally be integrated into the controller 31.
- the line between the actual sensor loop 30 and the other elements of the resonant circuit should be kept as short as possible. A shielding of the cables is possible. Possibly.
- the component 36 of the control which contained the actual cooking vessel detection, could also be arranged separately from the rest of the radiator control, spatially close to the radiant heater 11.
- the sensor loop 30 consists of a relatively thick round wire with a diameter between 1 and 4 millimeters, preferably about 2 millimeters, of a heat-resistant and non-magnetizable material.
- This can be, for example, a high-alloy steel such as an iron-chromium-nickel alloy. Suitable materials are e.g. a steel with the material no. 1.4876 or a Schuleitermaterial with the material no. 2.4869.
- the sensor can be grounded on one side. To achieve a low grounding resistance (preferably less than 0.1 ohms), and the required for this very low resistance of the sensor, this can be made correspondingly thick. However, because of the skin effect, only its surface is effective for its function as a pot detection sensor with Hochfrequenzbeetzung, so that they could also be designed as a tube. Because of the low ohmic resistance, this could then also be filled with copper or another highly conductive material, while the jacket material ensures temperature resistance and scaling resistance. Particularly advantageous is an embodiment with a highly electrically conductive galvanic coating, for example made of silver, or an embodiment of good conductive solid material with, for example, galvanic, scale-resistant coating. The very rigid design of the sensor loop 30 ensures that is not to be expected even at high thermal stresses with a drop to the heating elements 21.
- the sensor loop forms a single-winding coil with outer circumferential sections 37 extending over the outer heating zone 19 but with a relatively large radial distance from the outer edge 17 and inner circumferential sections 38, again at a radial distance from the intermediate wall 20, above the heating zone 18.
- peripheral sections are in Fig. 2 Circular arc sections of different diameters, which are interconnected by connecting portions 39. Although these connecting portions extend substantially radially, but obliquely so that the sum of the angle of the outer and inner peripheral portions 37, 38 is greater than 360 °.
- the top view of the sensor loop 30 has the basic shape of a trilobal clover having a relatively large, nearly full-circle center region and three lateral "leaves" in the shape of a triangular sector or omega. Depending on the size and control requirements, more peripheral section sectors may be provided. On one of the peripheral portion sectors 40 are provided terminals 41 in the form of outwardly directed, mutually parallel portions of the loop material.
- the entire sensor loop 30 with the described shape is flat and self-supporting and dimensionally stable due to the relatively strong material. It lies in the present example, on the one hand in the region of the terminals 41 in shallow depressions of the insulator outer edge 17 and is supported in the rest with their connecting portions 39 on the intermediate wall 20, which does not quite come up to the glass ceramic plate. As a result, the sensor loop is arranged adjacent or at a small distance from the underside of the glass ceramic plate 12 and with a safety distance above the heating elements 21. It can be seen that the sensor 26 of the temperature monitor as a result of the arrangement shown, the sensor loop underpasses only once, in the area an inner peripheral portion 38.
- FIG. 2 shows a dual-circuit heater with two concentric heating zones 18, 19
- Fig. 4 a two-circuit radiator shown with a total oblong oval shape.
- This radiant heater 11 has the rest of the same basic structure a circular Haupttogetherzone 18, to which one side, delimited by an intermediate wall 20, an additional heating zone 19 connects, which has a half or quarter moon shape.
- a temperature monitor 24 is provided obliquely at the main heating zone 18 and its sensor 26 protrudes radially only about to the middle, where it rests on a central projection 43 in the unheated central zone 59 of the Isolier stressesteils 16.
- this radiant heater sensor loop 30 is made of the same material as that of the FIGS. 1 and 2 , It has the shape of a quadrangle, which consists of rectilinear peripheral portions which form parallel outgoing connections 41 in the region of the longitudinal center line 44 of the radiator.
- the lying in the transverse line 45 of the Haupttogetherzone 18 corners 46 of the rectangle lie in corresponding shallow depressions 47 of the insulating outer edge 17, but within the sheet shell rim 15.
- the peripheral portions 38 thus extend in the form of tendons with a significant distance from the outer edge over large surface sections of the radiator and thus have a lying in the region of the heating zone 18 effective diameter.
- the sensor loop 30 is thus located on a total of seven locations on the insulator, namely at the corners 46 and 48, at the terminals 41 and, with their inner corners 49 between the square legs 38 a and the connecting portions 39, on the intermediate wall 20.
- Your Basic form is about that of a stylized fish.
- FIGS. 5 to 10 schematically shown sensor loop shapes corresponds to the Fig. 9 about the post Fig. 2 but with straight peripheral portions 37, 38 instead of in Fig. 2 shown arcuate design.
- the peripheral portions 39 are largely directed radially and not as strongly recapturing as in Fig. 2 .
- This embodiment has a because of the deviation from the theoretical ideal shape of the circle (or the cup shape) slightly lower expression of the signal levels than Fig. 2 , but is easier. manufacture.
- FIGS. 5 to 7 The explanations after the FIGS. 5 to 7 are intended for Ein Vietnamese and always jointly operated heating zone 18.
- the sensor loop 30 in Fig. 5 has the shape of a square with supported on the edge 17 corners 46.
- the sensor 46 of the temperature monitor 24 projects substantially diagonally across the field defined by the sensor.
- Fig. 6 is an execution accordingly Fig. 5 but in which the sensor 26 of the temperature monitor 24 is flanked on both sides by straight sections of the sensor loop 30. Behind the free end of the temperature sensor 26, these are connected together. This makes it possible to guide the temperature sensor and the sensor loop in the same plane, which contributes to reducing the height with sufficient electrical distances.
- Fig. 7 shows a particularly preferred embodiment of the sensor loop 30, which, at a distance from the edge 17 extending, almost a full circle forming peripheral portions 37 which are interrupted only by the parallel led out terminals 41 and cat ears outwardly directed corners 46a, for the necessary support on the outer edge 17 provide.
- Fig. 8 shows a sensor loop 30 for a two-circuit heater, which lies in the region of the partition wall 20 between the main heating zone 18 and the surrounding additional heating zone 19.
- the substantially square design similar Fig. 5 The loop is much smaller and extends with the outer corners in the area of Rajhomzone, while the peripheral portions 38a sweep the outer of the Haupttogetherzone 18.
- Fig. 10 shows an embodiment of a two-circuit radiator, which forms a double loop in contrast to the other radiators, but which is connected in parallel.
- the shape is that of two nested squares, both of which are connected to the same terminals 41 and have circumferentially spaced peripheral portions only to increase their surface coverage, but electrically form a single loop.
- the inner of the two loops lies, as in Fig. 8 described on the intermediate wall 20, while the outer loop accordingly Fig. 5 with its corners on the outer edge 80 rests.
- the relative design solid, but elastic design of the sensor loop also makes it possible to set them safely, for example by snapping into recesses of the edge. A determination by plugging in the insulating material, eg by welded pins, is possible.
- an alternating electromagnetic field is generated around the wire of the sensor loop 30, whose properties determine the frequency of the resonant circuit.
- this magnetic field is changed, i. E. the sensor loop is attenuated, whereby the frequency of the resonant circuit 32 changes.
- This frequency change is evaluated in the pot detection element 36 and, when a preset threshold value is reached, activates one or both of the switches 33, 33a, so that the heating elements 21 are then current-flowed and heated accordingly.
- Fig. 3 shows the relative frequency response df across the diameter, ie the frequency change df in percent of the maximum frequency change in the measurement as a function of the diameter coverage of the cooking plate and thus the sensor loop through a cooking vessel.
- the cross section of the radiator 11 is corresponding Fig. 1 indicated.
- the diagram shows the following: using a conventional sensor coil arranged in the edge 17, the course of the frequency change across the diameter shown as a dotted line 52 would result.
- the signal value added over the circumference would be practically proportional to the coverage of the perimeter.
- An exactly centric attached large pot 51a (s. Fig. 1 ) would therefore give a good signal, but a slightly smaller pot despite exactly centric coverage no reasonably usable signal. If, for example, the switching threshold were now substantially less than 50% of the total signal magnitude set, so would the one hand, the signal noise, which is relatively large in such sensors and their arrangement, make a circuit unreliable and on the other could then an eccentric (shifted) pot (see double dashed line 51b in Fig. 2 ) already lead to an undesired activation.
- Fig. 3 shown by a solid line has two stages, namely the upper stage 54, which corresponds to the large, both heating zones 18, 19 covering pot 51a and the activation of both heating zones 18, 19 and 19 cause a lower stage 55, for example, at 50% of Frequency difference df .
- the region of this step which corresponds to the diameter of the small pot 51, only the central main heating zone 18 should be switched on alone, while at the left end of the step 55, which indicates the minimum pot diameter for the central heating zone, the signal should drop rapidly.
- the curve 56 generated by the sensor loop 30 approximates this theoretical ideal curve 53, while it generally has a largely linear course, that is, the signal magnitude is largely proportional to the covered diameter, but contains steps approximating the step shape of the ideal curve , This makes it possible to reliably distinguish large small pots with only one sensor and, above all, to distinguish between a displaced potted pot which is to effect a switch on and a small pail intended to set the central main heating zone in motion.
- the switching points 57, 58 are shown. At point 57 (signal level S1), only the middle heating zone 18 should be switched on and remain switched on until the switching point 58 (switch 33 "ON"). At switching point 58 (signal size S2), the outer heating zone 19 is then switched on (both switches 33 and 33a "ON"). In other words, the switching point 58 symbolizes the smallest size of the large pot 51a, which is to work with both heating zones, while the switching point 57 indicates the smallest size of a pot 51, which should still lead to an intervention.
- Fig. 1 shown cooking vessel 51 is a pot whose diameter corresponds to the central Hauptfilterzone 18. It covers the area of the heating zone 18 and the corresponding area of the sensor loop 30, that is to say mainly the inner circumferential sections 38. This results in a signal level approximately in the area of the first step 55 in the diagram Fig. 3 lies. This signal thus lies between the signal values S1 and S2 indicated there, so that only the central main heating zone 18 is switched on.
- the cooking operation is either power-controlled or temperature-controlled without any influence from the pot detection and is monitored by the temperature monitor 24, which protects the glass-ceramic plate against overheating.
- a radiant heater with a pan detection sensor which is not only particularly simple, robust and retrofittable, but also provides a sharp and useable for the circuit in a wide range signal. Above all, this can create several effective areas for pot detection, so that pots of different diameters trigger different heaters. It is possible with a sensor, a true cooking vessel size detection. It would also be possible, albeit with a larger construction cost, to do this e.g. in two-circuit radiators, to achieve with two sensors according to the invention, resulting in both structural and above all functional advantages over an arrangement of two conventional sensors in the outer and intermediate edge.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Electric Stoves And Ranges (AREA)
- Cookers (AREA)
- Resistance Heating (AREA)
- Control Of Resistance Heating (AREA)
Abstract
Description
Die Erfindung betrifft einen elektrischen Strahlungsheizkörper mit einem aktiven Sensor zur Erkennung der Positionierung eines Kochgefäßes auf einer den Heizkörper überdeckenden Kochplatte, insbesondere einer Glaskeramikplatte.The invention relates to an electric radiant heater with an active sensor for detecting the positioning of a cooking vessel on a heating plate covering the cooking plate, in particular a glass ceramic plate.
Die automatische Ein- und Ausschaltung einer Kochstelle in direkter Abhängigkeit vom Aufstellen eines Kochgefäßes ist ein seit langem verfolgtes Ziel, das jedoch bisher nur unvollständig, mit großem technischen Aufwand und nicht mit der nötigen Zuverlässigkeit gelöst werden konnte, weswegen solche Systeme in der Praxis noch wenig eingeführt sind.The automatic switching on and off a hotplate in direct dependence on setting up a cooking vessel is a long-pursued goal, but so far only incomplete, could be solved with great technical effort and not with the necessary reliability, which is why such systems in practice little are introduced.
Die zu diesem Zwecke vorgeschlagenen Systeme beruhen auf den unterschiedlichsten Prinzipien, wobei meist die Art und Anordnung des Sensors entscheidend ist. So wurden mechanische, kapazitive, optische, resistive und induktive Sensoren vorgeschlagen. Bei induktiven Sensoren sind sowohl Spulen mit mehreren Windungen als auch mit nur einer Windung vorgeschlagen worden. Diese Spulen sind entweder kreisförmig und konzentrisch zur jeweiligen Kochzone angeordnet oder umrahmen diese im Fall unrund geformter Kochzonen. Dabei befinden sich diese Spulen üblicherweise im Bereich der Randisolation. (Siehe
Die erwähnte einwindige Topferkennungsschleife ist aus der
Die erwähnten vielwindigen Spulen im Außenrandbereich (oder in einer unbeheizten Mittelzone) bereiten thermische Probleme und sind, wie gemäß der Erfindung erkannt wurde und wie später noch erläutert wird, bzgl. einer scharfen Signalerzeugung und -erkennung weniger geeignet.The aforementioned multi-winding coils in the outer edge region (or in an unheated middle zone) pose thermal problems and, as has been recognized according to the invention and as will be explained later, are less suitable for sharp signal generation and detection.
Aus der
Die
Aus der
Aufgabe der Erfindung ist es, einen Strahlungsheizkörper mit einem aktiven Sensor zu schaffen, der bei einfachem und robustem Aufbau ein möglichst prägnantes Signal zur Steuerung des Heizkörpers liefert.The object of the invention is to provide a radiant heater with an active sensor that provides a simple and robust design as concise as possible signal to control the radiator.
Diese Aufgabe wird durch den Anspruch 1 gelöst.This object is achieved by
Der Sensor, der Teil eines induktiv, vorzugsweise mittels Schwingkreisverstimmung arbeitenden Schwingkreises einer Steuerung ist, ist als Schleife aus elektrisch leitfähigem Material im Bereich der Heizzone umlaufend und diese zumindest teilweise übergreifend angeordnet. Dadurch wird gegenüber einem im Randbereich des Heizkörpers umlaufenden Sensor das Signal wesentlich aussagekräftiger für die Überdeckung der Heizzone und damit für die Erkennung prägnanter. Dies ist insofern ungewöhnlich, als man annehmen sollte, daß durch einen am Rand angeordneten Sensor die zugehörige Kochgefäßgröße besonders genau erkannt werden würde, weil die Signalgröße in Form der relativen Frequenzverschiebung im Randbereich besonders groß ist und dann stark (parabolisch) zur Mitte hin abfällt. Das Problem ist hier jedoch, daß, wie festgestellt wurde, eine solche Randspule kaum zwischen einem relativ kleinen Topf, der noch eine Einschaltung bewirken soll, und einem großen, jedoch zur Heizfläche verschobenen Topf unterscheiden kann, der keine Einschaltung bewirken soll. Außerdem ergab sich bei den Randspulen stets ein Problem aufgrund der Tatsache, daß Strahlungsheizkörper üblicherweise in einem Blechteller angeordnet sind, dessen Boden und vor allem dessen Rand den Schwingkreis stark bedämpft. Das Feld erstreckt sich also auf einen ganz schmalen Randbereich, der überhaupt ein auswertbares Signale liefert.The sensor, which is part of an inductively, preferably by means of oscillating circuit detuning resonant circuit of a control, is arranged as a loop of electrically conductive material in the region of the heating zone and this at least partially arranged across. As a result, the signal is significantly more meaningful for the coverage of the heating zone and thus for the detection of a sensor circulating in the edge region of the radiator more concise. This is unusual in that it should be assumed that the associated cooking vessel size would be detected particularly accurately by a sensor arranged at the edge, because the signal size in the form of the relative frequency shift in the edge region is particularly large and then drops sharply (parabolically) towards the center. The problem here, however, that, as has been noted, such an edge coil can hardly distinguish between a relatively small pot, which is still to effect a switch, and a large, but shifted to the heating pot pot, which should cause no intervention. In addition, there was always a problem with the edge coils due to the fact that radiant heaters are usually arranged in a metal plate whose bottom and especially its edge strongly damped the resonant circuit. The field thus extends to a very narrow edge region, which provides an evaluable signal at all.
Überhaupt muß bei derartigen Strahlungsheizkörpern berücksichtigt werden, daß auch der Boden des Blechtellers eine Dämpfung des Magnetfeldes bewirkt, so daß sich dieses nur relativ kleinräumig als Schlauch um den eigentlichen Sensor-Leiter herum ausbilden kann.In general, in such radiant heaters must be taken into account that the bottom of the sheet metal plate causes a damping of the magnetic field, so that this can form relatively small-scale hose around the actual sensor conductor around.
Durch die Anordnung der Sensorschleife im Bereich der Heizzone kann eine möglichst große Überdeckung des Sensors in dem Bereich erzielt werden, bei dem der Topf eine Einschaltung bewirken soll, und eine möglichst geringe Überdeckung in dem Bereich, in dem das betreffende Heizelement ausgeschaltet sein soll. Daher bringt auch ein kleiner Topf bei ordnungsgemäßer zentrischer Anordnung ein großes Signal, während ein verschobener Topf nur ein davon deutlich zu unterscheidendes kleines Signal liefert. Die Sensorschleife sollte also ihren wirksamen Durchmesser im Bereich des Mindestdurchmessers haben, vorteilhaft etwas darüber, und zwar um den Bereich des Magnetfeld-"Schlauches". Infolge des Abstandes zum Außenrand findet keine nennenswerte Bedämpfung durch diesen statt, die sozusagen einen Topf vortäuschen würde. Dadurch ist es auch möglich, mit einer nur eine Windung aufweisenden Sensorschleife auszukommen, während früher meist die Anordnung einer Spule mit vielen Windungen für nötig gehalten wurde, um ein ausreichend großes Signal in Form einer Frequenzverschiebung im Meß-Schwingkreis zu erhalten.Due to the arrangement of the sensor loop in the In the area of the heating zone as large as possible coverage of the sensor can be achieved in the area in which the pot is to effect a switch, and the lowest possible coverage in the area in which the heating element in question should be turned off. Therefore, even a small pot with proper centric arrangement brings a big signal, while a shifted pot provides only one of them clearly distinguishable small signal. The sensor loop should therefore have its effective diameter in the range of the minimum diameter, advantageously something above it, namely around the area of the magnetic field "hose". As a result of the distance to the outer edge there is no significant attenuation by this, which would simulate a pot, so to speak. As a result, it is also possible to make do with a sensor loop having only one turn, whereas in the past the arrangement of a coil with many turns was usually considered necessary in order to obtain a sufficiently large signal in the form of a frequency shift in the measuring resonant circuit.
Die Erfindung ermöglicht es daher vorteilhaft, die Sensorschleife im unmittelbaren Bereich der Heizzone, d.h. unmittelbar der Strahlungswärme ausgesetzt anzuordnen, weil bei einer solchen Spule mit einer Windung mit Luftabstand dazwischen eine Isolation nicht nötig ist. Sie besteht aus einem gestaltfesten, selbsttragenden und temperaturbeständigen Leitmaterial, vorzugsweise aus einem Rohr oder massivem, starkem Draht. Als Werkstoff kommt ein Material wie ein hochlegierter Stahl, z.B. eine FeCrNi-Legierung in Frage. Die Ausbildung aus nicht-ferromagnetischem Material ist deswegen zweckmäßig, weil bei einem ferromagnetischem Material in Folge der auftretenden hohen Temperatur der Curiepunkt überschritten werden würde und die in diesem Punkt sich ändernden magnetischen Eigenschaften zu einem Signal führen würden, das von der gewünschten Ermittlung einer Kochgefäßposition völlig unabhängig ist und daher das Ergebnis verfälschen würde.The invention therefore advantageously allows the sensor loop in the immediate area of the heating zone, i. Immediately exposed to the radiant heat, because in such a coil with a winding with air gap in between an insulation is not necessary. It consists of a shape-stable, self-supporting and temperature-resistant conductive material, preferably of a tube or solid, strong wire. The material used is a material such as a high alloy steel, e.g. a FeCrNi alloy in question. The formation of non-ferromagnetic material is expedient because with a ferromagnetic material due to the high temperature occurring, the Curie point would be exceeded and the magnetic properties changing in this point would give rise to a signal completely different from the desired determination of a cooking vessel position is independent and therefore the result would be distorted.
Die Sensorschleife und die Steuerung kann vorteilhaft zur Kochgefäß-Größenerkennung ausgebildet sein. Zu diesem Zweck kann die Sensorschleife in radialem Abstand voneinander unterschiedliche Wirkbereiche aufweisen, z.B. in unterschiedlichen Umfangsbereichen im wesentlichen in Umfangsrichtung verlaufende Schleifenabschnitte, die durch radiale Verbindungsabschnitte miteinander verbunden sind. Dabei kann sich beispielsweise eine Sensorschleife mit einer Kreis- oder Mehreckform mit omega-förmigen Ausbuchtungen ergeben. Diese Kleeblattform ist als besonders wirkungsvoll erkannt worden.The sensor loop and the controller can be advantageously designed for cooking vessel size detection. For this purpose, the sensor loop may have different effective ranges at a radial distance from each other, e.g. in different peripheral regions substantially in the circumferential direction extending loop portions which are interconnected by radial connecting portions. For example, a sensor loop with a circular or polygonal shape with omega-shaped bulges can result. This cloverleaf has been recognized as particularly effective.
Da bei den vorliegenden Gegebenheiten die Signalgröße im wesentlichen dem Überdeckungsgrad der Sensorschleife durch ein Kochgefäß entspricht, hat die Kennlinie "Frequenzhub/diametrale Überdeckung durch das Kochgefäß" im Gegensatz zu dem parabolischen Verlauf einen stufigen Verlauf mit einem mehr zum Inneren der Heizzone verschobenen steilen Abschnitt, der bei Zweikreis-Heizkörpern zwei Durchmesserstufen haben kann. Auf diese Weise kann der Signalverlauf stärker der Idealform angepaßt werden. Diese wäre beim Heizkörper mit nur einer Heizzone ein flacher Signalverlauf im Randbereich, ein möglichst steiler Abfall im Bereich des Durchmessers eines kleinstmöglichen Topfes, der noch zu einer Einschaltung führen soll, und dann ein flacher, möglichst tiefer Verlauf bis zur Heizzonenmitte hin.Since, in the present conditions, the signal magnitude essentially corresponds to the degree of coverage of the sensor loop through a cooking vessel, the characteristic curve "frequency deviation / diametrical coverage by the cooking vessel" has, in contrast to the parabolic curve, a stage progression with a steep portion displaced more towards the interior of the heating zone, which can have two diameter stages in two-circuit radiators. In this way, the waveform can be more adapted to the ideal shape. This would be the radiator with only one heating zone, a flat waveform in the edge region, the steepest possible drop in the range of the diameter of a smallest possible pot, which should still lead to an intervention, and then a shallow, the lowest possible course to Heizzonenmitte out.
Bei einem Zweikreisheizkörper, bei dem in Abhängigkeit von der Kochgefäßgröße entweder nur die eine (mittlere) oder beide Heizzonen eingeschaltet werden sollen, kann durch die zwei Wirkbereiche aufweisende Form nur eines Sensors ein sehr prägnanter Signalverlauf mit zwei angenäherten Stufen erzielt werden, der zu einer differenzierten Einschaltung der beiden Heizzonen ausgewertet werden kann.In a two-circuit radiator, in which depending on the size of the cooking vessel, either only one (central) or both heating zones are turned on, can be achieved by two effective ranges having only one sensor a very succinct signal waveform with two approximate levels, the differentiated Switching the two heating zones can be evaluated.
Die robuste, selbsttragende Sensorschleife kann bei beliebigen Heizkörperkonfigurationen leicht angeordnet werden. Diese haben meist einen Außenrand aus Isoliermaterial und bei Zweikreisheizkörpern ggf. eine Zwischenwand. Auf diesem kann die Sensorschleife aufliegen, wofür darin Ausnehmungen vorgesehen sein können, um eine Anlage von Sensor und Isolierrand an der Platte oder einen gewissen, jedoch nur geringen Abstand dazu herzustellen. Auch bei vorliegenden Heizkörpergestaltungen ist eine nachträgliche Ausrüstung mit einer Topferkennung möglich.The robust, self-supporting sensor loop can be easily arranged in any radiator configurations. These usually have an outer edge made of insulating material and two-ring radiators possibly an intermediate wall. On this, the sensor loop can rest, for which recesses may be provided in order to establish a system of sensor and insulating edge on the plate or a certain, but only small distance thereto. Even with existing radiator designs, retrofitting with pan detection is possible.
Es hat sich gezeigt, daß durch die Form, Art und Anordnung der Sensorschleife das bei bisherigen Sensoren dieser Art sehr schlechte Sighal/Rauschverhältnis wesentlich verbessert werden kann.It has been found that the form, type and arrangement of the sensor loop can significantly improve the previous SIGAL / Rauschverhältnis in previous sensors of this kind.
Ein Ausführungsbeispiel der Erfindung ist in den Zeichnungen dargestellt und wird im folgenden näher erläutert. In den Zeichnungen zeigen:
- Fig. 1
- einen zentralen Schnitt durch einen Strahlungsheizkörper unter einer Glaskeramikplatte mit angedeuteten Kochgefäßen,
- Fig. 2
- eine Draufsicht auf den Strahlungsheizkörper nach
Fig. 1 , - Fig. 3
- eine Diagramm über den Frequenzgang bei einem Zweikreisheizkörper,
- Fig. 4
- eine Draufsicht auf eine Variante eines Strahlungsheizkörpers,
- Fig. 5-10
- Draufsichten auf weitere Varianten in schematischer Darstellung und
- Fig. 11
- eine Frequenzgang-Diagramm eines Sensors für einen Einkreisheizkörper (
Fig. 5 bis 7 ).
- Fig. 1
- a central section through a radiant heater under a glass ceramic plate with indicated cooking vessels,
- Fig. 2
- a plan view of the radiant heater after
Fig. 1 . - Fig. 3
- a diagram of the frequency response in a two-circuit radiator,
- Fig. 4
- a top view of a variant of a radiant heater,
- Fig. 5-10
- Top views of other variants in a schematic representation and
- Fig. 11
- a frequency response diagram of a sensor for a single-circuit heater (
Fig. 5 to 7 ).
Die
Der Blechrand 15 reicht nicht ganz bis an die Glaskeramikplatte 12 heran, wohl aber der Isolierrand 17, der von unten an die Glaskeramikplatte angedrückt ist, indem der Heizkörper 11 durch eine nicht dargestellte Andruckfeder nach oben gedrückt ist.The
Der Strahlungsheizkörper weist zwei zueinander konzentrische Heizzonen 18, 19 auf, die durch eine Zwischenwandung 20 voneinander abgegrenzt sind, die jedoch nicht bis an die Glaskeramikplatte heranreicht.The radiant heater has two mutually
In beiden Heizzonen 18, 19 sind elektrische Heizelemente 21 in Form von dünnen, wellenförmig verformten Bändern angeordnet, die aufrechtstehend auf der Oberfläche 22 des Isolierkörpers 16 stehend angeordnet sind und in diesem mit an ihrer Unterseite ausgeformten Füßen verankert sind, die infolge der Wellung des Bandes eine Spatenform haben. Sie bedecken die beiden Heizzonen 18, 19 gleichmäßig mit Ausnahme einer unbeheizten Mittelzone 59, in der ein nach oben gerichteter Vorsprung 43 des Isolierbodens 16 liegt.In both
Der Heizkörper weist einen Sensor in Form einer Schleife 30 auf, der Teil einer Steuerung 31 zur Erkennung der Positionierung eines Kochgefäßes auf der den Heizkörper überdeckenden Kochplatte 12 ist. Die Sensorschleife 30 bildet eine Induktivität eines Schwingkreises 32, der mit einer relativ hohen Frequenz von beispielsweise 1 MHz bis 5 MHz angeregt ist. Beim Aufsetzen eines Kochgefäßes ändert sich die Bedämpfung der Sensorschleife 30 und damit die Frequenz des Schwingkreises 32. Dies wird in der Steuerung 31 ausgewertet und in Abhängigkeit davon werden mechanische oder elektronische Schalter 33, 33a in der Steuerung angesteuert, die die Heizzonen 18, 19 zum Betrieb einschalten.The radiator has a sensor in the form of a
Zur Einstellung der jeweiligen freigegebenen Leistung ist ferner ein Energiesteuergerät 34 (oft auch als Energieregler bezeichnet) vorgesehen, der über einen Einstellknopf 35 auf eine bestimmte Leistung eingestellt werden kann. Es kann auch ein Temperaturregler vorgesehen sein. Bei der Regelung oder Steuerung handelt es sich meist um eine taktende Leistungsfreigabe, d.h. um eine Aussetzregelung oder -steuerung. Das Energiesteuergerät 34 kann thermo-mechanisch, d.h. als Bimetallschalter oder, bevorzugt, als elektronisches Bauteil ausgebildet sein, das ggf. auch in die Steuerung 31 integriert sein kann. Um Störeinflüsse vom Schwingkreis 32 möglichst fern zuhalten, sollte die Leitung zwischen der eigentlichen Sensorschleife 30 und den übrigen Elementen des Schwingkreises so kurz wie möglich gehalten werden. Auch eine Abschirmung der Leitungen ist möglich. Ggf. könnte der die eigentliche Kochgefäßerkennung enthaltene Bauteil 36 der Steuerung auch gesondert von der übrigen Heizkörpersteuerung getrennt räumlich nahe am Strahlungsheizkörper 11 angeordnet sein.To set the respective released power, a power control unit 34 (often referred to as an energy regulator) is also provided, which can be adjusted via a
Die Sensorschleife 30 besteht aus einem relativ dicken Runddraht mit einem Durchmesser zwischen 1 und 4 Millimetern, vorzugsweise etwa 2 Millimetern, aus einem wärmebeständigen und nicht magnetisierbaren Material. Dies kann beispielsweise ein hochlegierter Stahl wie eine Eisen-Chrom-Nickel-Legierung sein. Geeignete Werkstoffe sind z.B. ein Stahl mit der Werkstoff-Nr. 1.4876 oder ein Heizleitermaterial mit der Werkstoff-Nr. 2.4869.The
Der Sensor kann einseitig geerdet sein. Zur Erzielung eines geringen Erdungswiderstandes (vorzugsweise kleiner als 0,1 Ohm), und dem hierfür erforderlichen sehr geringen ohmschen Widerstand des Sensors, kann dieser entsprechend dick ausgeführt werden. Für ihre Funktion als Topferkennungssensor mit Hochfrequenzbeaufschlagung ist allerdings wegen des Skin-Effektes nur ihre Oberfläche wirksam, so daß sie auch als Rohr ausgebildet sein könnte. Wegen des geringen ohmschen Widerstandes könnte dieses dann auch mit Kupfer oder einem anderen hochleitenden Material gefüllt sein, während das Mantelmaterial für Temperaturbeständigkeit und Zunderbeständigkeit sorgt. Besonders vorteilhaft ist eine Ausführung mit einem elektrisch hochleitfähigen galvanischen Überzug, z.B. aus Silber, oder eine Ausführung aus gut leitendem Vollmaterial mit z.B. galvanischem, zunderbeständigem Überzug. Die sehr steife Ausbildung der Sensorschleife 30 sorgt dafür, daß auch bei hohen thermischen Beanspruchungen nicht mit einem Absinken auf die Heizelemente 21 zu rechnen ist.The sensor can be grounded on one side. To achieve a low grounding resistance (preferably less than 0.1 ohms), and the required for this very low resistance of the sensor, this can be made correspondingly thick. However, because of the skin effect, only its surface is effective for its function as a pot detection sensor with Hochfrequenzbeaufschlagung, so that they could also be designed as a tube. Because of the low ohmic resistance, this could then also be filled with copper or another highly conductive material, while the jacket material ensures temperature resistance and scaling resistance. Particularly advantageous is an embodiment with a highly electrically conductive galvanic coating, for example made of silver, or an embodiment of good conductive solid material with, for example, galvanic, scale-resistant coating. The very rigid design of the
Wegen der Form der Sensorschleife 30 wird auf die Zeichnungen Bezug genommen. In
Diese Umfangsabschnitte sind in
Die gesamte Sensorschleife 30 mit der beschriebenen Form ist flach und aufgrund des relativ starken Materials selbsttragend und formstabil. Sie liegt im vorliegenden Beispiel einerseits im Bereich der Anschlüsse 41 in flachen Vertiefungen des Isolierkörper-Außenrandes 17 und stützt sich im übrigen mit ihren Verbindungsabschnitten 39 auf der Zwischenwand 20 ab, die nicht ganz bis an die Glaskeramikplatte heranreicht. Dadurch ist die Sensorschleife anliegend oder mit geringem Abstand von der Unterseite der Glaskeramikplatte 12 angeordnet und mit einem Sicherheitsabstand oberhalb der Heizelemente 21. Es ist zu erkennen, daß der Fühler 26 des Temperaturwächters infolge der dargestellten Anordnung die Sensorschleife nur einmal unterquert, und zwar im Bereich eines inneren Umfangsabschnittes 38. In diesem Bereich läuft er auch in der Gasse 28, so daß er ohne Gefahr einer Kollision mit den Heizelementen 21 etwas tiefer gelegt werden könnte. Es ist auch möglich, je einen der Anschlüsse 41 auf einer Seite des Temperaturfühlers 26 herauszuführen, so daß jede Kreuzung Fühler/Schleife vermieden wird. Fühler und Schleife können dann in gleicher Ebene liegen. Dadurch wird der die Bauhöhe des Strahlungsheizkörpers bestimmende Raum 42 zwischen dem die Heizelemente 21 tragenden Boden 16 und der Glaskeramikplatte 12 ideal genutzt und die Abstände für die Hochspannungsprüfung können eingehalten werden.The
Während
Die für diesen Strahlungsheizkörper vorgesehene Sensorschleife 30 ist aus gleichem Material hergestellt wie die nach den
Im Bereich des Schnittpunktes der Längsmittellinie 44 mit der Zwischenwand 20, d.h. an der den Anschlüssen gegenüberliegenden Ecke des Viereckes ist mit einer starken Biegung nach außen je ein Verbindungsabschnitt 39 angeschlossen, der bis zu Außenecken 48 reicht, die, wie die Ecken 46, auf dem Isolierkörperaußenrand 17 in entsprechenden Vertiefüngen aufliegen. Sie sind durch einen im Ausführungsbeispiel geraden Abschnitt 37a miteinander verbunden, der im wesentlichen zentral zur Zusatzheizzone 19 diese überquert und quer zur Längsmittellinie 44 verläuft. Dieser Abschnitt könnte auch entsprechend der Halbmondform der Zusatzheizzone 19 gerundet sein. Die Sensorschleife 30 liegt also an insgesamt sieben Stellen auf dem Isolierkörper auf, und zwar an den Ecken 46 und 48, an den Anschlüssen 41 und, mit ihren Innenecken 49 zwischen den Vierecksschenkeln 38a und den Verbindungsabschnitten 39, auf der Zwischenwand 20. Ihre Grundform ist etwa die eines stilisierten Fisches.In the region of the intersection of the
Von den in den
Die Ausführungen nach den
In
Das Verfahren, nach dem die Topferkennung arbeitet, wird anhand der
Wenn der Strahlungsheizkörper 11 in Betrieb genommen werden soll, wird am Einstellknopf 35 die gewünschte Leistungsstufe eingestellt und damit auch die Steuerung 31 einschließlich der Kochgefäßerkennung 36 in Betrieb genommen. Diese Kochgefäßerkennung arbeitet induktiv, d.h. der Schwingkreis 32 wird mit einer relativ hohen Frequenz zwischen 1 MHz und 5 MHz erregt und die nachfolgend in ihrem Ergebnis beschriebene Auswertung der Topferkennung ist in an sich bekannter Weise aufgebaut. Wegen Einzelheiten wird dazu auf die
Dementsprechend wird um den Draht der Sensorschleife 30 herum ein elektromagnetisches Wechselfeld erzeugt, dessen Eigenschaften die Frequenz des Schwingkreises mitbestimmt.Accordingly, an alternating electromagnetic field is generated around the wire of the
Wird jetzt ein Kochgefäß 51 auf die Platte 12 gestellt, so wird dieses Magnetfeld verändert, d.h. die Sensorschleife wird bedämpft, wodurch sich die Frequenz des Schwingkreises 32 ändert. Diese Frequenzänderung wird in dem Topferkennungsbauteil 36 ausgewertet und führt bei Erreichen eines voreingestellten Schwellwertes zu einer Einschaltung eines oder beider Schalter 33, 33a, so daß nun die Heizelemente 21 entsprechend stromdurchflossen und beheizt werden.Now, if a
Das Diagramm in
Das Diagramm zeigt folgendes: bei der Verwendung einer herkömmlichen Sensorspule, die im Rand 17 angeordnet ist, würde sich der als strichpunktierte Linie 52 gezeigte Verlauf der Frequenzänderung über den Durchmesser ergeben. Der über den Umfang aufaddierte Signalwert wäre praktisch proportional der Überdeckung der Umfangslinie. Ein genau zentrisch aufgesetzter großer Topf 51a (s.
Die in
Es ist zu erkennen, daß die von der Sensorschleife 30 erzeugte Kurve 56 sich dieser theoretischen Idealkurve 53 annähert, indem sie zwar generell einen weitgehend linearen Verlauf hat, also die Signalgröße dem überdeckten Durchmesser weitgehend proportional ist, sie jedoch der Stufenform der Idealkurve angenäherte Stufen enthält. Dadurch wird es möglich, mit nur einem Sensor zuverlässig große von kleinen Töpfen zu unterscheiden und vor allem auch eine Unterscheidung zwischen einem verschoben aufgesetzten Topf, der eine Einschaltung bewirken soll, und einem kleinen Topf zu erreichen, der die mittlere Hauptheizzone in Gang setzen soll.It can be seen that the
Im Diagramm
Es ist vor allem zu erkennen, daß im Bereich der Schaltpunkte 57, 58 die Steigung der Signalkurve 56 relativ groß ist, so daß eine zuverlässige Schaltung auch unter Berücksichtigung von Störfaktoren möglich ist. Gleichzeitig sieht man, daß dies bei der Kurve 52 einer konventionellen Sensorspule nicht möglich wäre.It can be seen above all that in the area of the switching points 57, 58, the slope of the
In bezug auf die Sensorspule geschieht folgendes: Bei dem in
Beim Aufsetzen des größeren Topfes 51a werden zusätzlich zu den inneren Umfangsabschnitten 38 auch die äußeren Umfangsabschnitte und die Verbindungsabschnitte 39 überdeckt, so daß sich eine stärkere Signaländerung ergibt. Die aus
Der Kochbetrieb verläuft im übrigen ohne jede Beeinflussung durch die Topferkennung entweder leistungs- oder temperaturgesteuert und unter der Überwachung des Temperaturwächters 24, der die Glaskeramikplatte vor Überhitzung schützt.Incidentally, the cooking operation is either power-controlled or temperature-controlled without any influence from the pot detection and is monitored by the
Bei der Ausführungsform nach
Bei einem in den
Es wird also durch die Erfindung ein Strahlungsheizkörper mit einem Topferkennungssensor geschaffen, der nicht nur besonders einfach, robust und nachrüstbar ist, sondern der auch ein scharfes und für die Schaltung in einem weiten Bereich nutzbares Signal liefert. Vor allem können dadurch mehrere Wirkbereiche für die Topferkennung geschaffen werden, so daß Töpfe unterschiedlichen Durchmessers unterschiedliche Beheizungen auslösen. Es wird mit einem Sensor eine echte Kochgefäß-Größenerkennung möglich. Es wäre, wenn auch mit größerem Bauaufwand, auch möglich, dies z.B. bei Zweikreis-Heizkörpern, mit zwei Sensoren nach der Erfindung zu erreichen, wobei sich gegenüber einer Anordnung zweier herkömmlicher Sensoren im Außen- und Zwischenrand sowohl bauliche als auch vor allem funktionelle Vorteile ergeben.It is thus created by the invention, a radiant heater with a pan detection sensor, which is not only particularly simple, robust and retrofittable, but also provides a sharp and useable for the circuit in a wide range signal. Above all, this can create several effective areas for pot detection, so that pots of different diameters trigger different heaters. It is possible with a sensor, a true cooking vessel size detection. It would also be possible, albeit with a larger construction cost, to do this e.g. in two-circuit radiators, to achieve with two sensors according to the invention, resulting in both structural and above all functional advantages over an arrangement of two conventional sensors in the outer and intermediate edge.
Durch die Anordnung im Bereich der Heizzone selbst ergibt sich ein über den Durchmesser mit zur Schaltung brauchbaren Änderungen versehenes Ergebnis, das in grober Annäherung als linearisiert bezeichnet werden kann, jedoch vorteilhaft die in den Diagrammen
Claims (12)
- Electric radiant heater (11) having an active sensor for detecting the positioning of a cooking vessel (51) on a hotplate (12), particularly a glass ceramic plate, covering the heater (11), the sensor being a part of an inductively operating resonant circuit (32), preferably operating by resonant circuit detuning, of a control means (31) and the sensor being positioned as a loop (30) of electrically conductive material in the vicinity of at least one heating zone (18, 19) heated by electric radiant heating elements (21) and so as to at least partly overlap the same, characterized in that the sensor loop (30) is shape-stable, self-supporting and thermally stable, and has only one turn.
- Radiant heater according to claim 1, characterized in that the sensor loop (30) has a shape diverging from a concentricity with respect to the heating zone (18, 19).
- Radiant heater according to one of the preceding claims, characterized in that, radially spaced from one another, the sensor loop (30) has different, substantially circumferentially directed loop sections (37, 38), which are optionally interconnected by several radially directed connecting sections (39).
- Radiant heater according to one of the preceding claims, characterized in that the sensor loop (30) is made from solid, strong wire, which is in particular uninsulated.
- Radiant heater according to one of the preceding claims, characterized in that the sensor loop (30) is constructed as a tube.
- Radiant heater according to one of the preceding claims, characterized in that.the sensor loop (30) is made from a multilayer material, e.g. a tube of thermally stable, non-scaling material with a filling of a good conducting material, such as copper.
- Radiant heater according to one of the preceding claims, characterized in that the sensor loop (30) has a thermally stable coating.
- Radiant heater according to one of the preceding claims, characterized in that the coating is of electrically good conducting material.
- Radiant heater according to one of the preceding claims, characterized in that the sensor loop (30) is supported on an outer edge (17) made from insulating material and/or on an intermediate edge (20) bounding different heating zones (18, 19) and preferably radial connecting sections (39) and/or outwardly directed bends (46, 48) of the sensor loop (30) form support sections.
- Radiant heater according to one of the preceding claims, characterized in that the sensor loop (30) has a circular or polygonal shape with circumferential section sectors (40) in the form of omega-shaped convexities.
- Radiant heater according to one of the preceding claims, characterized in that the sensor loop (30) is made from a non-magnetizable material, such as a high-alloyed steel, e.g. an iron-chromium-nickel alloy.
- Radiant heater according to one of the preceding claims, characterized in that the sensor loop (30) is positioned just below the hotplate (12), optionally over a sensing device (26) of a thermostat (24) or in the same plane therewith with a significant spacing from the heating elements (21).
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE29724774U DE29724774U1 (en) | 1996-02-05 | 1997-01-18 | Electric radiant heater equipped with active sensor of cookery vessel - performs inductive detection of presence and size of vessel for automatic switching of appropriate heating zones under hotplate |
EP03022466A EP1379105A3 (en) | 1996-02-05 | 1997-01-18 | Sensor for cooking vessel detection |
DE29724662U DE29724662U1 (en) | 1996-02-05 | 1997-01-18 | Sensor for cooking vessel detection |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19603845A DE19603845B4 (en) | 1996-02-05 | 1996-02-05 | Electric radiant heater with an active sensor for cooking vessel detection |
DE19603845 | 1996-02-05 | ||
EP97100766A EP0788293B1 (en) | 1996-02-05 | 1997-01-18 | Electric radiant heater with active sensor for cooking vessel detection |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP97100766A Division EP0788293B1 (en) | 1996-02-05 | 1997-01-18 | Electric radiant heater with active sensor for cooking vessel detection |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP03022466A Division EP1379105A3 (en) | 1996-02-05 | 1997-01-18 | Sensor for cooking vessel detection |
EP03022466A Division-Into EP1379105A3 (en) | 1996-02-05 | 1997-01-18 | Sensor for cooking vessel detection |
Publications (4)
Publication Number | Publication Date |
---|---|
EP0982973A2 EP0982973A2 (en) | 2000-03-01 |
EP0982973A3 EP0982973A3 (en) | 2000-05-03 |
EP0982973B1 EP0982973B1 (en) | 2004-03-31 |
EP0982973B2 true EP0982973B2 (en) | 2009-02-11 |
Family
ID=7784387
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP99123892A Expired - Lifetime EP0982973B2 (en) | 1996-02-05 | 1997-01-18 | Sensor for cooking vessel detection |
EP03022466A Withdrawn EP1379105A3 (en) | 1996-02-05 | 1997-01-18 | Sensor for cooking vessel detection |
EP97100766A Expired - Lifetime EP0788293B1 (en) | 1996-02-05 | 1997-01-18 | Electric radiant heater with active sensor for cooking vessel detection |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP03022466A Withdrawn EP1379105A3 (en) | 1996-02-05 | 1997-01-18 | Sensor for cooking vessel detection |
EP97100766A Expired - Lifetime EP0788293B1 (en) | 1996-02-05 | 1997-01-18 | Electric radiant heater with active sensor for cooking vessel detection |
Country Status (6)
Country | Link |
---|---|
US (1) | US5893996A (en) |
EP (3) | EP0982973B2 (en) |
JP (1) | JPH09223572A (en) |
AT (2) | ATE263475T1 (en) |
DE (3) | DE19603845B4 (en) |
ES (2) | ES2218941T5 (en) |
Families Citing this family (62)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19700753C2 (en) * | 1997-01-11 | 2000-09-14 | Schott Glas | Hob with a non-metallic hotplate |
DE19907596A1 (en) * | 1999-02-22 | 2000-08-24 | Patrick Leidenberger | Device which detects position of cooking vessel and guarantees that cooking vessel and heating element automatically agree has heating element slid under cooking vessel or cooking vessel |
GB2349471B (en) * | 1999-04-27 | 2003-08-06 | Ceramaspeed Ltd | Electric heater assembly |
DE19930830A1 (en) * | 1999-07-03 | 2001-01-18 | Dold Gmbh Mes Und Regeltechnik | Sensor device and method for detecting and recording the size of a pan bottom's area over a heating area uses a wire loop integrated into a heating area in a radiated heating unit. |
DE19945297A1 (en) | 1999-09-22 | 2001-03-29 | Diehl Ako Stiftung Gmbh & Co | Pot detection |
US6184501B1 (en) * | 1999-09-23 | 2001-02-06 | Cherry Gmbh | Object detection system |
US6140617A (en) * | 1999-10-22 | 2000-10-31 | General Electric Company | Cooktop control and monitoring system including detecting properties of a utensil through a solid-surface cooktop |
US6737617B1 (en) | 2000-01-24 | 2004-05-18 | General Electric Company | Methods and apparatus for a signal distortion based detection system |
DE10023179C2 (en) * | 2000-05-11 | 2002-07-18 | Schott Glas | Device and its use Control of cooktops with glass ceramic cooktops |
DE10035745B4 (en) * | 2000-07-22 | 2004-02-05 | E.G.O. Elektrogerätebau GmbH | Temperature detection device for an electric radiant heater |
IT1319292B1 (en) * | 2000-11-08 | 2003-10-10 | Whirlpool Co | DEVICE TO DETECT THE PLACEMENT OF COOKING TOOLS ON A COOKING HOB WITH DISCRETE AND DISTRIBUTED HEATING ELEMENTS. |
US6350971B1 (en) | 2000-12-04 | 2002-02-26 | General Electric Company | Apparatus and method for detecting vessel movement on a cooktop surface |
US6452136B1 (en) | 2000-12-13 | 2002-09-17 | General Electric Company | Monitoring and control system and method for sensing of a vessel and other properties of a cooktop |
US6403932B1 (en) | 2001-01-09 | 2002-06-11 | Emerson Electric Co. | Controller for a heating unit in a cooktop and methods of operating same |
US6417496B1 (en) | 2000-12-22 | 2002-07-09 | Emerson Electric Co. | Modular heating unit for cooktops |
DE10129175A1 (en) * | 2001-06-12 | 2003-01-09 | Ego Elektro Geraetebau Gmbh | Electrical radiation heating body for cooker hobs has sensor for cooking pot detection in form of radiation heating element, preferably corrugated flat metal strip |
GB0115831D0 (en) * | 2001-06-28 | 2001-08-22 | Ceramaspeed Ltd | Radiant electric heater |
GB0116884D0 (en) * | 2001-07-11 | 2001-09-05 | Ceramaspeed Ltd | Temperature sensor assembly and radiant electric heater incorporating the same |
DE10135270A1 (en) * | 2001-07-13 | 2003-01-23 | Ego Elektro Geraetebau Gmbh | Electric radiant heater with an active sensor for cooking vessel detection |
US6492627B1 (en) | 2001-07-26 | 2002-12-10 | Emerson Electric Co. | Heating unit and control system for cooktops having capability to detect presence of a pan and methods of operating same |
DE10232710B4 (en) * | 2001-08-28 | 2007-07-12 | Cherry Gmbh | Cooking area with cooking vessel detection system |
DE10150949A1 (en) * | 2001-10-10 | 2003-04-24 | Hubert Eric Walter | Identification system for pre-packaged food container module inserted in induction oven or refrigeration device coupled to control system for operation of latter |
US6894255B2 (en) * | 2002-03-22 | 2005-05-17 | Matsushita Electric Industrial Co., Ltd. | Induction heating apparatus |
DE10231122A1 (en) * | 2002-07-05 | 2004-01-22 | E.G.O. Elektro-Gerätebau GmbH | Method of measuring the temperature of a metal cooking vessel |
GB2392499B (en) * | 2002-08-24 | 2005-10-05 | Ceramaspeed Ltd | Electric heater |
GB0301164D0 (en) * | 2003-01-18 | 2003-02-19 | Ceramaspeed Ltd | Temperature-responsive device |
DE10305788A1 (en) * | 2003-02-06 | 2004-09-02 | E.G.O. Elektro-Gerätebau GmbH | Inductive sensor arrangement, especially for detecting pots on cooker hobs, has a control circuit connected to the sensors via MOSFET switches with low drain-source resistance |
GB0314929D0 (en) * | 2003-06-26 | 2003-07-30 | Ceramaspeed Ltd | Electric heater incorporating a device for detecting a cooking utensil |
ITMI20031602A1 (en) * | 2003-08-04 | 2005-02-05 | Whirlpool Co | COOKING PLAN WITH RANDOM PLACING WITH USER INTERFACE |
DE10337543A1 (en) * | 2003-08-05 | 2005-02-24 | E.G.O. Elektro-Gerätebau GmbH | Temperature measuring device for heater of hob has longitudinal sensor made from ferromagnetic material running along active region of heating device connected to evaluation unit |
DE102004003119A1 (en) * | 2004-01-21 | 2005-08-11 | BSH Bosch und Siemens Hausgeräte GmbH | Device for heating food by means of inductive coupling and device for transmitting energy |
DE102004011749A1 (en) * | 2004-03-02 | 2005-09-15 | E.G.O. Elektro-Gerätebau GmbH | A method for controlling heating zones of a hob unit has inductive heating elements and sensing elements to select a zone for use and a single heating level control switch for all zones |
DE102004059822B4 (en) * | 2004-12-03 | 2011-02-24 | E.G.O. Elektro-Gerätebau GmbH | Method for operating an induction hob |
DE102005041028A1 (en) * | 2005-08-23 | 2007-03-01 | E.G.O. Elektro-Gerätebau GmbH | Electronically controlled hob with several cooking zones and method for operating such a hob |
DE102005047186A1 (en) * | 2005-09-26 | 2007-03-29 | E.G.O. Elektro-Gerätebau GmbH | Switching arrangement for evaluating sensor state, has microcontroller arranged so that it forms oscillating circuit in capacitor and sensor to detect cooking vessel and another circuit in inductor and sensor to detect vessel contact |
FR2895639B1 (en) * | 2005-12-27 | 2008-02-29 | Brandt Ind Sas | VARIABLE SIZE INDUCTION COOKING FIREPLACE |
KR101261645B1 (en) * | 2006-12-14 | 2013-05-08 | 엘지전자 주식회사 | Cooker and control method of the same of |
EP1937032B1 (en) * | 2006-12-20 | 2020-11-04 | Electrolux Home Products Corporation N.V. | Household appliance |
KR20080068775A (en) * | 2007-01-20 | 2008-07-24 | 삼성전자주식회사 | Pan sensor and radiant heater having the same and heating cooker having the radiant heater and control method thereof |
ES2321467B1 (en) * | 2007-08-24 | 2010-03-04 | Bsh Electrodomesticos España, S.A. | COOKING DEVICE PROVISION. |
EP3840532B1 (en) * | 2008-03-10 | 2022-08-31 | Panasonic Holdings Corporation | Induction cooking device |
US20100147832A1 (en) * | 2008-12-16 | 2010-06-17 | Barker Iii Charles R | Induction cookware identifying |
DE102009034203A1 (en) | 2009-07-16 | 2011-01-20 | E.G.O. Elektro-Gerätebau GmbH | Method for operating a hob |
ES2382431B1 (en) * | 2009-07-29 | 2013-05-08 | BSH Electrodomésticos España S.A. | COOKING DEVICE WITH AT LEAST TWO HEATING AREAS |
US9006622B2 (en) | 2010-11-30 | 2015-04-14 | Bose Corporation | Induction cooking |
DE102012201236A1 (en) | 2011-02-25 | 2012-08-30 | BSH Bosch und Siemens Hausgeräte GmbH | Calibrating device for calibrating home appliance e.g. matrix induction hob, has control unit calibrating reference value of sensing unit designed as matrix sensor and controlling inductance characteristics of inductor in induction hob |
US20130175254A1 (en) * | 2012-01-10 | 2013-07-11 | General Electric Company | Cook top appliance having spill and boil-over detection and response |
DE102012200342B4 (en) | 2012-01-11 | 2017-03-23 | E.G.O. Elektro-Gerätebau GmbH | Method for controlling a plurality of gas burners of a gas hob |
DE102012215744A1 (en) | 2012-09-05 | 2014-03-06 | E.G.O. Elektro-Gerätebau GmbH | Operating procedure for a hob and hob |
DE102013201070A1 (en) | 2013-01-23 | 2014-02-06 | E.G.O. Elektro-Gerätebau GmbH | Method of controlling cooking appliance e.g. microwave oven, has controller to enable function unit in off state according to maximum time of cooking appliance for preparation of cooking material |
DE102013218339A1 (en) | 2013-09-12 | 2015-03-12 | E.G.O. Elektro-Gerätebau GmbH | Method for pot detection and gas hob |
US9470423B2 (en) | 2013-12-02 | 2016-10-18 | Bose Corporation | Cooktop power control system |
JP6219229B2 (en) * | 2014-05-19 | 2017-10-25 | 東京エレクトロン株式会社 | Heater feeding mechanism |
PL3001771T3 (en) * | 2014-09-29 | 2017-09-29 | E.G.O. Elektro-Gerätebau GmbH | Method for detecting the identity of a pot on a cooking point of a hob and system of a hob with a pot |
DE102015203316A1 (en) | 2015-02-24 | 2016-08-25 | E.G.O. Elektro-Gerätebau GmbH | Hob and method for positioning a heater on a hob |
US10228144B2 (en) | 2015-05-28 | 2019-03-12 | Whirlpool Corporation | Method of pan detection and cooktop adjustment for multiple heating sections |
EP3324163A1 (en) * | 2016-11-22 | 2018-05-23 | Whirlpool Corporation | Temperature probe for domestic oven and domestic oven using such probe |
US10323556B2 (en) * | 2016-12-16 | 2019-06-18 | Gates Corporation | Electric immersion heater for diesel exhaust fluid reservoir |
JP7216710B2 (en) * | 2018-03-23 | 2023-02-01 | 日本碍子株式会社 | multi zone heater |
CA3120205A1 (en) | 2018-11-29 | 2020-06-04 | Broan-Nutone Llc | Smart indoor air venting system |
GB2593468B (en) * | 2020-03-23 | 2022-04-13 | Equip Line Ltd | An apparatus for heating a pot of food or beverage |
US11598530B2 (en) | 2020-07-10 | 2023-03-07 | Haier Us Appliance Solutions, Inc. | Cooktop appliance and heating element having a thermostat |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4013859A (en) † | 1975-06-04 | 1977-03-22 | Environment/One Corporation | Induction cooking unit having cooking load sensing device and essentially zero stand-by power loss |
EP0553425A1 (en) † | 1992-01-28 | 1993-08-04 | Whirlpool Europe B.V. | Method and device for detecting the presence of a body, for example a saucepan, on a glass ceramic cooking hob in correspondence with a heating element associated with said hob |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3796850A (en) * | 1973-05-31 | 1974-03-12 | Westinghouse Electric Corp | Pan detector for induction heating cooking unit |
US4319109A (en) * | 1979-12-28 | 1982-03-09 | General Electric Company | Centered utensil sensor for induction surface units |
DE3007037A1 (en) * | 1980-02-26 | 1981-09-03 | Ego Elektro Blanc & Fischer | GLASS CERAMIC COOKER |
DE8133341U1 (en) * | 1980-11-17 | 1982-03-25 | Micropore International Ltd., Droitwich, Worcestershire | ELECTRIC RADIATION HEATER FOR COOKERS WITH GLASS CERAMIC COVER PANELS |
US4334135A (en) * | 1980-12-22 | 1982-06-08 | General Electric Company | Utensil location sensor for induction surface units |
DE3711589A1 (en) * | 1987-04-06 | 1988-10-27 | Kueppersbusch | Cooking appliance |
DE3733108C1 (en) * | 1987-09-30 | 1989-02-23 | Bosch Siemens Hausgeraete | Circuit arrangement for a pot (saucepan) recognition system with a pot recognition sensor |
IT1243760B (en) * | 1989-11-17 | 1994-06-23 | Eurodomestici Ind Riunite | DEVICE SUITABLE TO DETECT THE PRESENCE IN A COOKING CONTAINER FOR FOOD PLACED ON A COOKING HOB, FOR EXAMPLE IN CERAMIC GLASS. |
DE4004129A1 (en) * | 1990-02-10 | 1991-08-14 | Ego Elektro Blanc & Fischer | DEVICE FOR RECOGNIZING A COOKING VESSEL SET UP IN A HEATING ZONE OF A COOKING OR HEATING APPLIANCE |
DK0469189T3 (en) * | 1990-08-02 | 1996-01-29 | Oskar Locher Ag | Method and device for controlling heating elements in a stove |
DE4039501A1 (en) * | 1990-12-11 | 1992-06-17 | Ego Elektro Blanc & Fischer | ELECTRIC RADIATOR, IN PARTICULAR RADIANT RADIATOR |
DE4235085A1 (en) * | 1991-10-20 | 1993-04-22 | Klaschka Ind Elektronik | Coil for inductive sensor or emitter esp. for detecting vessel on cooker hob - composed of high temp. resistant coil e.g. mica and individual high temp. resistant alloy wires e.g. nickel@-chromium@-silicon@ alloy |
DE4142872A1 (en) * | 1991-12-23 | 1993-06-24 | Thomson Brandt Gmbh | METHOD AND DEVICE FOR INDUCTIVE HEATING OF CONTAINERS OF DIFFERENT SIZES |
DE4224934C2 (en) * | 1992-07-28 | 2003-05-15 | Bsh Bosch Siemens Hausgeraete | Radiator with sensor technology for a pan detection system |
-
1996
- 1996-02-05 DE DE19603845A patent/DE19603845B4/en not_active Expired - Fee Related
-
1997
- 1997-01-18 DE DE59704217T patent/DE59704217D1/en not_active Expired - Lifetime
- 1997-01-18 AT AT99123892T patent/ATE263475T1/en not_active IP Right Cessation
- 1997-01-18 DE DE59711476T patent/DE59711476D1/en not_active Expired - Lifetime
- 1997-01-18 EP EP99123892A patent/EP0982973B2/en not_active Expired - Lifetime
- 1997-01-18 EP EP03022466A patent/EP1379105A3/en not_active Withdrawn
- 1997-01-18 EP EP97100766A patent/EP0788293B1/en not_active Expired - Lifetime
- 1997-01-18 ES ES99123892T patent/ES2218941T5/en not_active Expired - Lifetime
- 1997-01-18 ES ES97100766T patent/ES2162136T3/en not_active Expired - Lifetime
- 1997-01-18 AT AT97100766T patent/ATE204114T1/en not_active IP Right Cessation
- 1997-02-03 US US08/792,383 patent/US5893996A/en not_active Expired - Lifetime
- 1997-02-03 JP JP9032572A patent/JPH09223572A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4013859A (en) † | 1975-06-04 | 1977-03-22 | Environment/One Corporation | Induction cooking unit having cooking load sensing device and essentially zero stand-by power loss |
EP0553425A1 (en) † | 1992-01-28 | 1993-08-04 | Whirlpool Europe B.V. | Method and device for detecting the presence of a body, for example a saucepan, on a glass ceramic cooking hob in correspondence with a heating element associated with said hob |
Non-Patent Citations (1)
Title |
---|
J.C. WHITAKER: "The Electronics Handbook", TECHNICAL PRESS, INC., pages: 1343-44 † |
Also Published As
Publication number | Publication date |
---|---|
EP1379105A3 (en) | 2004-11-03 |
DE19603845A1 (en) | 1997-08-07 |
DE19603845B4 (en) | 2010-07-22 |
EP0982973A3 (en) | 2000-05-03 |
EP1379105A2 (en) | 2004-01-07 |
ATE263475T1 (en) | 2004-04-15 |
EP0788293B1 (en) | 2001-08-08 |
US5893996A (en) | 1999-04-13 |
EP0982973A2 (en) | 2000-03-01 |
ATE204114T1 (en) | 2001-08-15 |
ES2218941T5 (en) | 2009-06-01 |
DE59704217D1 (en) | 2001-09-13 |
ES2162136T3 (en) | 2001-12-16 |
EP0788293A2 (en) | 1997-08-06 |
DE59711476D1 (en) | 2004-05-06 |
EP0788293A3 (en) | 1998-01-07 |
ES2218941T3 (en) | 2004-11-16 |
EP0982973B1 (en) | 2004-03-31 |
JPH09223572A (en) | 1997-08-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0982973B2 (en) | Sensor for cooking vessel detection | |
DE10035745B4 (en) | Temperature detection device for an electric radiant heater | |
EP0124778B1 (en) | Electric cooking plate or hot plate | |
EP0103741B1 (en) | Heating element, especially radiant heating element for the heating of ceramic plates | |
EP0250880B2 (en) | Radiant heating element | |
DE2205132C3 (en) | Electric cooker | |
EP3088800B1 (en) | Heating device for heating liquids, evaporator for an electric cooking apparatus and method for operating a heating device | |
EP1152639B1 (en) | Electrical heating unit, particularly for liquid supports | |
DE68928596T2 (en) | Electric radiant heaters | |
EP3026981A1 (en) | Induction cooktop and method for controlling an induction cooktop | |
EP0542142B1 (en) | Radiant heating unit | |
EP0116861B2 (en) | Electric radiant heating element for heating cooking or hot plates, especially glass ceramic plates | |
DE69317063T2 (en) | Heater and sensor for a hob | |
EP0303854B1 (en) | Radiant heater | |
EP3764738B1 (en) | Food preparation device with ptc resistors in parallel | |
DE2916779A1 (en) | INDUCTION COIL FOR AN INDUCTION COOKER | |
DE69835197T2 (en) | COOKING MUZZLE WITH TOP PANICITY RECOGNITION | |
EP0619693B1 (en) | Induction cooking place | |
DE29724662U1 (en) | Sensor for cooking vessel detection | |
DE29724774U1 (en) | Electric radiant heater equipped with active sensor of cookery vessel - performs inductive detection of presence and size of vessel for automatic switching of appropriate heating zones under hotplate | |
DE4022292A1 (en) | ELECTRIC RADIATION HEATING ELEMENT | |
EP2943044B1 (en) | Heater for a cooking appliance and cooking appliance, in particular a hotplate | |
EP3352529B1 (en) | Hotplate | |
DE19526091A1 (en) | Sensor system limiting electric heater temp. esp. for ceramic glass electric cooker hob | |
EP0163106B1 (en) | Electric hot-plate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AC | Divisional application: reference to earlier application |
Ref document number: 788293 Country of ref document: EP |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT CH DE ES FR GB IT LI SE |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT CH DE ES FR GB IT LI SE |
|
RIC1 | Information provided on ipc code assigned before grant |
Free format text: 7H 05B 3/74 A, 7H 05B 1/02 B |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: PLATT, NILS Inventor name: GROSS, MARTIN |
|
17P | Request for examination filed |
Effective date: 20001004 |
|
AKX | Designation fees paid |
Free format text: AT CH DE ES FR GB IT LI SE |
|
TPAD | Observations filed by third parties |
Free format text: ORIGINAL CODE: EPIDOS TIPA |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AC | Divisional application: reference to earlier application |
Ref document number: 0788293 Country of ref document: EP Kind code of ref document: P |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT CH DE ES FR GB IT LI SE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20040331 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH Ref country code: CH Ref legal event code: EP |
|
REF | Corresponds to: |
Ref document number: 59711476 Country of ref document: DE Date of ref document: 20040506 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
GBV | Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed] |
Effective date: 20040331 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2218941 Country of ref document: ES Kind code of ref document: T3 |
|
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
PLBQ | Unpublished change to opponent data |
Free format text: ORIGINAL CODE: EPIDOS OPPO |
|
ET | Fr: translation filed | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050131 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050131 Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050131 |
|
PLAX | Notice of opposition and request to file observation + time limit sent |
Free format text: ORIGINAL CODE: EPIDOSNOBS2 |
|
26 | Opposition filed |
Opponent name: DIEHL AKO STIFTUNG & CO. KG. Effective date: 20041221 |
|
PLBB | Reply of patent proprietor to notice(s) of opposition received |
Free format text: ORIGINAL CODE: EPIDOSNOBS3 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PLAY | Examination report in opposition despatched + time limit |
Free format text: ORIGINAL CODE: EPIDOSNORE2 |
|
PLBC | Reply to examination report in opposition received |
Free format text: ORIGINAL CODE: EPIDOSNORE3 |
|
PUAH | Patent maintained in amended form |
Free format text: ORIGINAL CODE: 0009272 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: PATENT MAINTAINED AS AMENDED |
|
27A | Patent maintained in amended form |
Effective date: 20090211 |
|
AK | Designated contracting states |
Kind code of ref document: B2 Designated state(s): AT CH DE ES FR GB IT LI SE |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: RPEO |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: DC2A Date of ref document: 20090403 Kind code of ref document: T5 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20120201 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20120124 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20120124 Year of fee payment: 16 Ref country code: IT Payment date: 20120124 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20120124 Year of fee payment: 16 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: EUG |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20130930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130119 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130801 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 59711476 Country of ref document: DE Effective date: 20130801 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130118 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20140321 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130119 |