EP0961033B1 - Radial compressor - Google Patents
Radial compressor Download PDFInfo
- Publication number
- EP0961033B1 EP0961033B1 EP98810486A EP98810486A EP0961033B1 EP 0961033 B1 EP0961033 B1 EP 0961033B1 EP 98810486 A EP98810486 A EP 98810486A EP 98810486 A EP98810486 A EP 98810486A EP 0961033 B1 EP0961033 B1 EP 0961033B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- compressor
- separating gap
- rear wall
- impeller
- cooling medium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000002826 coolant Substances 0.000 claims description 46
- 238000001816 cooling Methods 0.000 claims description 15
- 238000000034 method Methods 0.000 claims description 12
- 238000007789 sealing Methods 0.000 claims description 12
- 230000000149 penetrating effect Effects 0.000 claims description 5
- 238000011144 upstream manufacturing Methods 0.000 claims description 3
- 230000035515 penetration Effects 0.000 claims description 2
- 238000007906 compression Methods 0.000 claims 1
- 238000000926 separation method Methods 0.000 description 30
- 239000003570 air Substances 0.000 description 8
- 239000012530 fluid Substances 0.000 description 5
- 239000000243 solution Substances 0.000 description 4
- 239000012080 ambient air Substances 0.000 description 3
- 238000002485 combustion reaction Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000005192 partition Methods 0.000 description 2
- 238000010276 construction Methods 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000009304 pastoral farming Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C18/00—Rotary-piston pumps specially adapted for elastic fluids
- F04C18/02—Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/58—Cooling; Heating; Diminishing heat transfer
- F04D29/582—Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps
- F04D29/584—Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps cooling or heating the machine
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M39/00—Arrangements of fuel-injection apparatus with respect to engines; Pump drives adapted to such arrangements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M55/00—Fuel-injection apparatus characterised by their fuel conduits or their venting means; Arrangements of conduits between fuel tank and pump F02M37/00
- F02M55/02—Conduits between injection pumps and injectors, e.g. conduits between pump and common-rail or conduits between common-rail and injectors
- F02M55/025—Common rails
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/26—Rotors specially for elastic fluids
- F04D29/28—Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
- F04D29/284—Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for compressors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2220/00—Application
- F05D2220/40—Application in turbochargers
Definitions
- the invention relates to a method for operating a radial compressor, according to the preamble of claim 1 and a corresponding radial compressor, according to the preamble of claim 6.
- turbomachinery Seals especially labyrinth seals, are widely used.
- fluid flow Separation gap between rotating and standing parts occurs as a result of forming flow boundary layers on a high friction. Thereby there is a heating of the fluid in the separation gap and thus also a heating the components surrounding the separation gap.
- the high material temperatures have a reduction in the lifespan of the corresponding components Episode.
- Exhaust gas turbochargers have an axial thrust of the exhaust gas turbine, depending on their design which counteracts or rectifies that of the radial compressor like this one.
- the resulting pressure in the separation gap must be between the rotating rear wall of the compressor wheel and the neighboring one, stationary compressor housing can be dismantled. That is why there are such gaps tolerated very closely.
- they usually have a non-contact Poetry.
- the redirection and swirling of the working fluid flowing through the separation gap at the throttle points of the seal to a constantly new mixing of the working fluid with a high momentum and heat exchange.
- Must be downstream of the throttle the working fluid on the rotating component is again accelerated in the circumferential direction be, whereby the friction and thus the heat development in this area continues to rise.
- EP 0 518 027 B1 describes a cooling device for radial compressors on the Rear wall of the compressor wheel, between this and the compressor housing, sealing elements arranged in the separating gap are known. It will be a cold one Gas with a higher than that prevailing at the outlet of the compressor wheel Pressure is passed through the seal. This gas bounces the rear wall of the compressor wheel and at the same time acts as sealing air a flow of hot compressor air from the outlet through the labyrinth gap of the compressor wheel. This can reduce the service life of such, with a sealing geometry provided compressor wheel can be increased significantly. It proves to be disadvantageous It is with this solution that the specially trained seal entire construction and assembly of the compressor complicated and expensive. Because the clear width of the separation gap is also in the tenths of a millimeter range there is always a latent risk of rubbing against the rotating compressor wheel on the compressor housing.
- the invention tries to avoid all these disadvantages. It is based on the task a method for operating a simply constructed, in the field of Rear wall of the compressor wheel without sealing elements in the separating gap of the compressor wheel as well as creating a compressor housing equipped with a radial compressor, which increases the service life of the radial compressor.
- a device be provided to carry out the method.
- this is achieved in that in a method according to the preamble of claim 1, downstream of the leakage flow of the working medium a cooling medium is introduced into the separation gap and the cooling medium after heat exchange is finally discharged again.
- a cooling medium is introduced into the separation gap and the cooling medium after heat exchange is finally discharged again.
- the cooling medium can be advantageous both with a higher than also with a lower pressure than the pressure of the main flow of the working medium be introduced into the separation gap.
- This is upstream of the back wall a sealing element of the compressor wheel is arranged in the separating gap.
- the exhaustion of the used cooling medium takes place through the compressor housing, either outwards or into the main flow of the working medium of the radial compressor, why the discharge channel for the cooling medium either into the ambient air or opens into the flow channel of the radial compressor.
- the supply channel of the cooling medium is approximately parallel or approximately diagonal to the shaft of the compressor wheel or approximately tangential to the rear wall of the compressor wheel arranged in the separating gap.
- the cooling medium is supplied Impact cooling implemented. This can be particularly vulnerable areas of the rear wall of the compressor wheel can be cooled directly and effectively.
- a radial Feeding the cooling medium realizes film cooling, with the help of which larger areas of the rear wall of the compressor wheel can also be cooled.
- the diagonal feed of the cooling medium combines the advantages of the previous ones described solutions with lower cooling effectiveness.
- at least one of the feed channels takes up into the separation gap protruding and aligned to the rear wall of the compressor wheel Tubes on.
- Each of the tubes opens particularly advantageously in the region of the radially outer wall part of the rear wall of the compressor wheel into the separation gap. Because the greatest temperature load can be recorded in this area thus an effective use of the cooling medium can be achieved.
- a plurality of feed channels are arranged in the compressor housing are opposite the rear wall of the compressor wheel to the separation gap open annular space or at least a partial annular space formed in the compressor housing is and the feed channels with the annular space or at least two of each Feed channels are connected to a partial annulus. This allows a more even The supply of the cooling medium is reached over the circumference of the compressor wheel regardless of the number, design and arrangement of the feed channels.
- the exhaust gas turbocharger shown only partially in FIG. 1 consists of a radial compressor 1 and an exhaust gas turbine, not shown, which in a Bearing housing 2 supported shaft 3 are interconnected.
- the radial compressor 1 has a machine axis 4 lying in the shaft 3. He is with equipped with a compressor housing 5 in which a compressor wheel 6 rotates with the shaft 3 is connected.
- the compressor wheel 6 has one with a variety of Blades 7 occupied hub 8. Between the hub 8 and the compressor housing 5, a flow channel 9 is formed. Downstream of the blades 7 connects to the flow channel 9 a radially arranged, bladed diffuser 10 on, which in turn opens into a spiral 11 of the radial compressor 1.
- the Compressor housing 5 mainly consists of an air inlet housing 12, one Air outlet housing 13, a diffuser plate 14 and an intermediate wall 15 to the bearing housing 2.
- the hub 8 has a rear wall 16 on the turbine side and a fastening sleeve 17 for the shaft 3, the latter and the fastening sleeve 17 together are connected.
- the fastening sleeve 17 is of the intermediate wall 15 of the Compressor housing 5 added.
- another suitable one Compressor wheel-shaft connection can be selected.
- the use is also the same of a non-bladed diffuser possible.
- a first gap area 19 runs parallel to the machine axis 4 and is with both the outlet of the compressor wheel 6 and one predominantly radial in the area of the rear wall 16 of the compressor wheel 6 extending, second gap region 20 connected.
- the second gap area 20 goes into a formed between the fastening sleeve 17 and the intermediate wall 15 and also third, parallel to the machine axis 4 Gap area 21 over. The latter in turn communicates with one that is not shown Discharge.
- the rear wall 16 of the compressor wheel 6 has a radially inner one Wall part 22 and a radially outer wall part 23.
- the second gap area 20 of the separation gap 18 opens parallel to the shaft 3 of the compressor wheel 6 a plurality of the intermediate wall 15 of the compressor housing 5 penetrating supply channels 24 for a gaseous cooling medium 25.
- the mouths lie in the region of the radially outer wall part 23 of the rear wall 16 of the compressor wheel 6, while also the intermediate wall 15 of the compressor housing 5 penetrating discharge channel 26 for the cooling medium 25 in the area of the radially inner wall part 22 is arranged.
- the compressor wheel 6 When the exhaust gas turbocharger is operating, the compressor wheel 6 sucks as the working medium 27 ambient air, which acts as a main flow 28 via the flow channel 9 and the diffuser 10 arrives in the spiral 11, further compressed there and finally for charging a not shown, connected to the exhaust gas turbocharger Internal combustion engine is used. On their way from the flow channel 9 to the diffuser 10 acts on the main flow heated in the radial compressor 1 28 of the working medium 27 as the leakage flow 29 also the first gap area 19 and thus the separation gap 18. At the same time, however, via the feed channels 24 the gaseous cooling medium 25 with a higher pressure than that Pressure of the main flow 28 of the working medium 27 in the second gap area 20 of the separation gap 18 introduced. For example, air from not shown outlet of the charge air cooler of the internal combustion engine used become. Of course, the use of other cooling media is also one external supply of these cooling media possible.
- the cooling medium 25 hits the rear wall 16 of the compressor wheel 6 and causes it an impact cooling in its particularly stressed, radially outer wall part 23.
- the cooling medium 25 is then distributed in the separation gap 18 and diluted the hot leakage flow 29. Most of the cooling medium 25 and Leakage flow 29 is then via the discharge channel 26 from the Separation gap 18 passed.
- the supply channels 24 for the cooling medium open out 25 also parallel to the shaft 3 of the compressor wheel 6 in the radial outer wall part 23 of the rear wall 16 of the compressor wheel 6 in the separation gap 18.
- the feed channels 24 interconnecting and open to the separation gap 18 Annulus 30 formed (Fig. 2). This can result in a relatively even application the rear wall 16 can be reached with the cooling medium 25.
- the annular space 30 also several partial annular spaces in the intermediate wall 15 of the compressor housing 5, which are each at least Connect two adjacent feed channels 24 to one another (not shown).
- the Discharge channel 26 is arranged in the diffuser plate 14 of the compressor housing 5, so that the cooling medium 25 almost completely via the flow channel 9 of the Radial compressor 1 is discharged. In operation, the leakage flow is 29 the cooling medium 25 is almost completely shut off. Because of the repatriation of the cooling medium 25 in the flow channel 9 also the volumetric efficiency improved.
- the feed channels 24 open diagonally to the shaft 3 of the compressor wheel 6 in the separation gap 18.
- the feed channels take 24 each projecting into the separation gap 18 and onto the radial one outer wall part 23 of the rear wall 16 of the compressor wheel 6 aligned Tube 31 on (Fig. 3).
- the cooling medium 25 hits targeted to the areas of the rear wall 16 which have the greatest temperature load exhibit.
- the cooling medium 25 acts due to its diagonal introduction initially as impingement cooling. It can also move towards the first Apply a cooling film to the rear wall 16 of the gap area 19.
- the derivation of the Cooling medium 25 in turn takes place via the discharge channel 26.
- analog the second embodiment also a feedback of the cooling medium 25 in the flow channel 9 of the radial compressor 1 (not shown).
- the feed channels 24 are the diffuser plate 14 arranged penetrating and open into the compressor wheel 6th facing area tangential to the rear wall 16 of the compressor wheel 6 in the Separation gap 18 (Fig. 4).
- the discharge channel 26 for the cooling medium 25 is in the Intermediate wall 15 of the compressor housing 5 is arranged.
- the cooling medium 25 is discharged only through the discharge channel 26.
- the diffuser plate 14 can its radially inner end can also be slotted. In this case, flow out the feed channels 24 into the slot of the diffuser plate 14, not shown.
- the rear wall 16 of the compressor wheel is upstream 6 a sealing element 32 in the separation gap 18, i.e. in its first gap area 19, arranged (Fig. 5).
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
Description
Die Erfindung betrifft ein Verfahren zum Betreiben eines Radialverdichters, gemäss
dem Oberbegriff des Anspruchs 1 sowie einen entsprechenden Radialverdichter,
gemäss dem Oberbegriff des Anspruchs 6.The invention relates to a method for operating a radial compressor, according to
the preamble of
Zur Abdichtung rotierender Systeme sind im Turbomaschinenbau berührungsfreie Dichtungen, insbesondere Labyrinthdichtungen weit verbreitet. Im fluiddurchströmten Trennspalt zwischen rotierenden und stehenden Teilen tritt infolge der sich ausbildenden Strömungsgrenzschichten eine hohe Reibleistung auf. Dadurch kommt es zu einer Erwärmung des Fluids im Trennspalt und damit auch zur Erwärmung der den Trennspalt umgebenden Bauteile. Die hohen Materialtemperaturen haben eine Reduktion der Lebensdauer der entsprechenden Bauteile zur Folge.To seal rotating systems, non-contact is used in turbomachinery Seals, especially labyrinth seals, are widely used. In fluid flow Separation gap between rotating and standing parts occurs as a result of forming flow boundary layers on a high friction. Thereby there is a heating of the fluid in the separation gap and thus also a heating the components surrounding the separation gap. The high material temperatures have a reduction in the lifespan of the corresponding components Episode.
Abgasturbolader weisen je nach ihrer Auslegung einen Axialschub der Abgasturbine auf, welcher dem des Radialverdichters entgegenwirkt oder gleichgerichtet wie dieser ist. Im letzteren Fall muss der resultierende Druck im Trennspalt zwischen der rotierenden Rückwand des Verdichterrades und dem benachbarten, stillstehenden Verdichtergehäuse abgebaut werden. Deshalb sind solche Trennspalte sehr eng toleriert. Ausserdem verfügen sie zumeist über eine berührungsfreie Dichtung. In solchen engen Trennspalten ist eine besonders hohe Reibleistung zu verzeichnen. Zudem führen die Umlenkung und die Verwirbelung des durch den Trennspalt strömenden Arbeitsfluids an den Drosselstellen der Dichtung zu einer immer wieder neuen Durchmischung des Arbeitsfluids, verbunden mit einem hohen Impuls- und Wärmeaustausch. Stromab der Drosselstelle muss das Arbeitsfluid am rotierenden Bauteil jeweils von neuem in Umfangsrichtung beschleunigt werden, wodurch die Reibleistung und damit die Wärmeentwicklung in diesem Bereich weiter steigt.Exhaust gas turbochargers have an axial thrust of the exhaust gas turbine, depending on their design which counteracts or rectifies that of the radial compressor like this one. In the latter case, the resulting pressure in the separation gap must be between the rotating rear wall of the compressor wheel and the neighboring one, stationary compressor housing can be dismantled. That is why there are such gaps tolerated very closely. In addition, they usually have a non-contact Poetry. There is a particularly high level of friction in such narrow separation gaps to be recorded. In addition, the redirection and swirling of the working fluid flowing through the separation gap at the throttle points of the seal to a constantly new mixing of the working fluid with a high momentum and heat exchange. Must be downstream of the throttle the working fluid on the rotating component is again accelerated in the circumferential direction be, whereby the friction and thus the heat development in this area continues to rise.
Aus der EP 0 518 027 B1 ist eine Kühlvorrichtung für Radialverdichter mit auf der Rückwand des Verdichterrades, zwischen diesem und dem Verdichtergehäuse, im Trennspalt angeordneten Dichtungselementen bekannt. Dabei wird ein kaltes Gas, welches mit einem höheren als dem am Auslass des Verdichterrades herrschenden Druck ausgestattet ist, durch die Dichtung geführt. Dieses Gas prallt auf die Rückwand des Verdichterrades und wirkt dort gleichzeitig als Sperrluft gegen eine Durchströmung des Labyrinthspaltes mit heisser Verdichterluft vom Austritt des Verdichterrades. Dadurch kann die Standzeit eines solchen, mit einer Dichtgeometrie versehenen Verdichterrades deutlich erhöht werden. Als nachteilig erweist es sich bei dieser Lösung, dass die besonders ausgebildete Dichtung die gesamte Konstruktion sowie die Montage des Verdichters kompliziert und verteuert. Weil zudem die lichte Weite des Trennspaltes im Zehntelmillimeter-Bereich liegt, besteht stets auch eine latente Streifgefahr des rotierenden Verdichterrades am Verdichtergehäuse.EP 0 518 027 B1 describes a cooling device for radial compressors on the Rear wall of the compressor wheel, between this and the compressor housing, sealing elements arranged in the separating gap are known. It will be a cold one Gas with a higher than that prevailing at the outlet of the compressor wheel Pressure is passed through the seal. This gas bounces the rear wall of the compressor wheel and at the same time acts as sealing air a flow of hot compressor air from the outlet through the labyrinth gap of the compressor wheel. This can reduce the service life of such, with a sealing geometry provided compressor wheel can be increased significantly. It proves to be disadvantageous It is with this solution that the specially trained seal entire construction and assembly of the compressor complicated and expensive. Because the clear width of the separation gap is also in the tenths of a millimeter range there is always a latent risk of rubbing against the rotating compressor wheel on the compressor housing.
Im Gegensatz dazu ist bei einem dem Radialverdichter entgegenwirkenden Axialschub der Abgasturbine kein Druckabbau im Trennspalt erforderlich, so dass dessen lichte Weite im Millimeter-Bereich liegt und die Notwendigkeit der Abdichtung des Trennspaltes im Bereich der Rückwand des Verdichterrades entfällt. Ein Radialverdichter ohne solche Dichtungselemente ist aus der DE 195 48 852 bekannt. Er ist einfach aufgebaut und daher kostengünstig zu fertigen. Eine Streifgefahr des rotierenden Verdichterrades am Verdichtergehäuse besteht nicht. Dennoch sorgt auch hier die infolge von Strömungsscherschichten an der Rückwand des Verdichterrades entstehende Reibungswärme für eine Erwärmung des Verdichterrades und damit für eine Reduktion seiner Lebensdauer. Eine Lösung zur Verminderung der Wärmeentwicklung bei Radialverdichtern ohne Dichtungselemente im Bereich der Rückwand des Verdichterrades ist nicht bekannt.In contrast, there is an axial thrust counteracting the radial compressor the exhaust gas turbine requires no pressure reduction in the separation gap, so that clear width is in the millimeter range and the need for sealing the separation gap in the area of the rear wall of the compressor wheel is eliminated. A radial compressor without such sealing elements is known from DE 195 48 852. It has a simple structure and is therefore inexpensive to manufacture. A risk of grazing of the rotating compressor wheel on the compressor housing does not exist. Yet also ensures the result of flow shear layers on the rear wall of the Frictional heat generated for the compressor wheel to heat the compressor wheel and thus for a reduction in its lifespan. A reduction solution the heat development in radial compressors without sealing elements in the The area of the rear wall of the compressor wheel is not known.
Die Erfindung versucht alle diese Nachteile zu vermeiden. Ihr liegt die Aufgabe zugrunde, ein Verfahren zum Betreiben eines einfach aufgebauten, im Bereich der Rückwand des Verdichterrades ohne Dichtungselemente im Trennspalt von Verdichterrad sowie Verdichtergehäuse ausgestatteten Radialverdichters zu schaffen, welches die Standzeit des Radialverdichters erhöht. Zudem soll eine Vorrichtung zur Durchführung des Verfahrens bereitgestellt werden.The invention tries to avoid all these disadvantages. It is based on the task a method for operating a simply constructed, in the field of Rear wall of the compressor wheel without sealing elements in the separating gap of the compressor wheel as well as creating a compressor housing equipped with a radial compressor, which increases the service life of the radial compressor. In addition, a device be provided to carry out the method.
Erfindungsgemäss wird dies dadurch erreicht, dass bei einem Verfahren gemäss
dem Oberbegriff des Anspruchs 1, stromab der Leckageströmung des Arbeitsmediums
ein Kühlmedium in den Trennspalt eingeleitet und das Kühlmedium nach
erfolgtem Wärmetausch schliesslich wieder abgeführt wird. Bei einer Vorrichtung
gemäss dem Oberbegriff des Anspruchs 5 sind dazu im Verdichtergehäuse zumindest
ein dieses durchdringender, im Bereich der Rückwand des Verdichterrades
in den Trennspalt mündender und auf die Rückwand ausgerichteter Zuführkanal
für ein gasförmiges Kühlmedium sowie zumindest ein Abführkanal für das
Kühlmedium angeordnet.According to the invention, this is achieved in that in a method according to
the preamble of
Aufgrund dieses Verfahrens und der entsprechenden Ausbildung des Radialverdichters kann die Rückwand des Verdichterrades mittels des gasförmigen Kühlmediums effektiv gekühlt und damit die Standzeit des Radialverdichters erhöht werden. Weil dazu bereits ein Abkühlen der heissen Leckageströmung des Arbeitsmediums durch das Kühlmedium ausreicht, muss das Eindringen der Leckageströmung in den Trennspalt nicht verhindert werden. Daher reicht bereits die Zugabe relativ kleiner Mengen des Kühlmediums aus, so dass eine einfache Zuführung verwendet werden kann. Because of this method and the corresponding design of the radial compressor can the rear wall of the compressor wheel by means of the gaseous Cooling medium effectively cooled and thus increases the service life of the radial compressor become. Because the cooling of the hot leakage flow of the Sufficient working medium through the cooling medium, the penetration of the Leakage flow in the separation gap cannot be prevented. So that's enough the addition of relatively small amounts of the cooling medium, making it easy Feeder can be used.
Indem der Druck der Leckageströmung des Arbeitsmediums bei deren Zuführung in den Trennspalt gegenüber dem Druck der Hauptströmung des Arbeitsmediums reduziert wird, kann das Kühlmedium vorteilhaft sowohl mit einem höheren als auch mit einem geringeren Druck als dem Druck der Hauptströmung des Arbeitsmediums in den Trennspalt eingeleitet werden. Dazu ist stromauf der Rückwand des Verdichterrades ein Dichtelement im Trennspalt angeordnet. Die Abführung des verbrauchten Kühlmediums erfolgt durch das Verdichtergehäuse, entweder nach aussen oder in die Hauptströmung des Arbeitsmediums des Radialverdichters, wozu der Abführkanal für das Kühlmedium entweder in die Umgebungsluft oder in den Strömungskanal des Radialverdichters mündet. Auf diese Weise ergeben sich zahlreiche Variationsmöglichkeiten zur Kühlung des Verdichterrades, welche eine optimale Anpassung des Radialverdichters an die bei dessen Einsatz herrschenden Bedingungen erlauben.By the pressure of the leakage flow of the working medium when it is supplied in the separation gap compared to the pressure of the main flow of the working medium is reduced, the cooling medium can be advantageous both with a higher than also with a lower pressure than the pressure of the main flow of the working medium be introduced into the separation gap. This is upstream of the back wall a sealing element of the compressor wheel is arranged in the separating gap. The exhaustion of the used cooling medium takes place through the compressor housing, either outwards or into the main flow of the working medium of the radial compressor, why the discharge channel for the cooling medium either into the ambient air or opens into the flow channel of the radial compressor. Surrender this way there are numerous possible variations for cooling the compressor wheel, which optimally adapts the radial compressor to that in use allow prevailing conditions.
Der Zuführkanal des Kühlmediums ist annähernd parallel oder annähernd diagonal zur Welle des Verdichterrades oder aber annähernd tangential zur Rückwand des Verdichterrades in den Trennspalt einmündend angeordnet. Bei einer parallel zur Ausrichtung der Welle erfolgenden Zuführung des Kühlmediums wird eine Prallkühlung realisiert. Damit können besonders gefährdete Stellen der Rückwand des Verdichterrades direkt und effektiv gekühlt werden. Dagegen wird bei einer radialen Einspeisung des Kühlmediums eine Filmkühlung realisiert, mit deren Hilfe auch grössere Bereiche der Rückwand des Verdichterrades gekühlt werden können. Die diagonale Einspeisung des Kühlmediums kombiniert die Vorteile der zuvor beschriebenen Lösungen bei allerdings geringerer Kühleffektivität. Um diesen Nachteil auszugleichen nimmt zumindest einer der Zuführkanäle ein in den Trennspalt hineinragendes und auf die Rückwand des Verdichterrades ausgerichtetes Röhrchen auf. Besonders vorteilhaft mündet jedes der Röhrchen im Bereich des radial äusseren Wandteils der Rückwand des Verdichterrades in den Trennspalt. Weil in diesem Bereich die grösste Temperaturbelastung zu verzeichnen ist, kann somit ein effektiver Einsatz des Kühlmediums erreicht werden. The supply channel of the cooling medium is approximately parallel or approximately diagonal to the shaft of the compressor wheel or approximately tangential to the rear wall of the compressor wheel arranged in the separating gap. With a parallel for the alignment of the shaft, the cooling medium is supplied Impact cooling implemented. This can be particularly vulnerable areas of the rear wall of the compressor wheel can be cooled directly and effectively. In contrast, a radial Feeding the cooling medium realizes film cooling, with the help of which larger areas of the rear wall of the compressor wheel can also be cooled. The diagonal feed of the cooling medium combines the advantages of the previous ones described solutions with lower cooling effectiveness. To this To compensate for the disadvantage, at least one of the feed channels takes up into the separation gap protruding and aligned to the rear wall of the compressor wheel Tubes on. Each of the tubes opens particularly advantageously in the region of the radially outer wall part of the rear wall of the compressor wheel into the separation gap. Because the greatest temperature load can be recorded in this area thus an effective use of the cooling medium can be achieved.
Ferner ist es vorteilhaft, wenn im Verdichtergehäuse mehrere Zuführkanäle angeordnet sind, gegenüber der Rückwand des Verdichterrades ein zum Trennspalt offener Ringraum oder zumindest ein Teilringraum im Verdichtergehäuse ausgebildet ist und die Zuführkanäle mit dem Ringraum bzw. zumindest jeweils zwei der Zuführkanäle mit einem Teilringraum verbunden sind. Dadurch kann eine gleichmässige Zufuhr des Kühlmediums über den Umfang des Verdichterrades erreicht werden, unabhängig von der Anzahl, der Ausbildung und der Anordnung der Zuführkanäle.It is also advantageous if a plurality of feed channels are arranged in the compressor housing are opposite the rear wall of the compressor wheel to the separation gap open annular space or at least a partial annular space formed in the compressor housing is and the feed channels with the annular space or at least two of each Feed channels are connected to a partial annulus. This allows a more even The supply of the cooling medium is reached over the circumference of the compressor wheel regardless of the number, design and arrangement of the feed channels.
In der Zeichnung sind mehrere Ausführungsbeispiele der Erfindung anhand des Radialverdichters eines Abgasturboladers dargestellt.In the drawing, several embodiments of the invention are based on the Radial compressor of an exhaust gas turbocharger shown.
Es zeigen:
- Fig. 1
- einen Teillängsschnitt durch den Radialverdichter, mit der erfindungsgemässen Zuführ- und Abführeinrichtung;
- Fig. 2
- eine Darstellung gemäss Fig. 1, jedoch in einem zweiten Ausführungsbeispiel;
- Fig. 3
- eine Darstellung gemäss Fig. 1, jedoch in einem dritten Ausführungsbeispiel;
- Fig. 4
- eine Darstellung gemäss Fig. 1, jedoch in einem nächsten Ausführungsbeispiel
- Fig. 5
- einen vergrösserten Ausschnitt der
Figur 4, welcher insbesondere den ersten Spaltbereich des Trennspaltes in einem weiteren Ausführungsbeispiel darstellt.
- Fig. 1
- a partial longitudinal section through the radial compressor, with the feed and discharge device according to the invention;
- Fig. 2
- a representation of Figure 1, but in a second embodiment.
- Fig. 3
- a representation of Figure 1, but in a third embodiment.
- Fig. 4
- a representation of FIG. 1, but in a next embodiment
- Fig. 5
- an enlarged section of Figure 4, which in particular shows the first gap area of the separation gap in a further embodiment.
Es sind nur die für das Verständnis der Erfindung wesentlichen Elemente gezeigt. Nicht dargestellt sind beispielsweise die Lagerpartie und die Turbinenseite des Abgasturboladers. Die Strömungsrichtung der Arbeitsmittel ist mit Pfeilen bezeichnet. Only the elements essential for understanding the invention are shown. The bearing section and the turbine side of the are not shown, for example Exhaust gas turbocharger. The direction of flow of the work equipment is indicated by arrows.
Der in Figur 1 nur teilweise gezeigte Abgasturbolader besteht aus einem Radialverdichter
1 und einer nicht dargestellten Abgasturbine, welche über eine in einem
Lagergehäuse 2 abgestützte Welle 3 miteinander verbunden sind. Der Radialverdichter
1 weist eine in der Welle 3 liegende Maschinenachse 4 auf. Er ist mit
einem Verdichtergehäuse 5 ausgestattet, in dem ein Verdichterrad 6 drehbar mit
der Welle 3 verbunden ist. Das Verdichterrad 6 besitzt eine mit einer Vielzahl von
Laufschaufeln 7 besetzte Nabe 8. Zwischen der Nabe 8 und dem Verdichtergehäuse
5 ist ein Strömungskanal 9 ausgebildet. Stromab der Laufschaufeln 7
schliesst an den Strömungskanal 9 ein radial angeordneter, beschaufelter Diffusor
10 an, welcher seinerseits in eine Spirale 11 des Radialverdichters 1 mündet. Das
Verdichtergehäuse 5 besteht hauptsächlich aus einem Lufteintrittgehäuse 12, einem
Luftaustrittgehäuse 13, einer Diffusorplatte 14 und einer Zwischenwand 15
zum Lagergehäuse 2.The exhaust gas turbocharger shown only partially in FIG. 1 consists of a
Die Nabe 8 weist turbinenseitig eine Rückwand 16 sowie eine Befestigungsmuffe
17 für die Welle 3 auf, wobei letztere und die Befestigungsmuffe 17 miteinander
verbunden sind. Die Befestigungsmuffe 17 wird von der Zwischenwand 15 des
Verdichtergehäuses 5 aufgenommen. Natürlich kann auch eine andere geeignete
Verdichterrad-Wellen-Verbindung gewählt werden. Ebenso ist auch der Einsatz
eines unbeschaufelten Diffusors möglich.The
Zwischen dem rotierenden Verdichterrad 6 und der feststehenden Zwischenwand
15 des Verdichtergehäuses 5 ist ein aus verschiedenen Spaltbereichen bestehender
Trennspalt 18 ausgebildet. Ein erster Spaltbereich 19 verläuft parallel zur Maschinenachse
4 und ist sowohl mit dem Austritt des Verdichterrades 6 als auch mit
einem sich im Bereich der Rückwand 16 des Verdichterrades 6 vorwiegend radial
erstreckenden, zweiten Spaltbereich 20 verbunden. Der zweite Spaltbereich 20
geht in einen zwischen der Befestigungsmuffe 17 und der Zwischenwand 15 ausgebildeten
und ebenfalls parallel zur Maschinenachse 4 verlaufenden, dritten
Spaltbereich 21 über. Letzterer kommuniziert seinerseits mit einer nicht dargestellten
Abführleitung. Die Rückwand 16 des Verdichterrades 6 weist ein radial inneres
Wandteil 22 sowie ein radial äusseres Wandteil 23 auf.Between the
In den zweiten Spaltbereich 20 des Trennspaltes 18 münden parallel zur Welle 3
des Verdichterrades 6 mehrere die Zwischenwand 15 des Verdichtergehäuses 5
durchdringende Zuführkanäle 24 für ein gasförmiges Kühlmedium 25. Die Einmündungen
liegen im Bereich des radial äusseren Wandteils 23 der Rückwand 16
des Verdichterrades 6, während ein ebenfalls die Zwischenwand 15 des Verdichtergehäuses
5 durchdringender Abführkanal 26 für das Kühlmedium 25 im Bereich
des radial inneren Wandteils 22 angeordnet ist.The
Beim Betrieb des Abgasturboladers saugt das Verdichterrad 6 als Arbeitsmedium
27 Umgebungsluft an, die als eine Hauptströmung 28 über den Strömungskanal 9
sowie den Diffusor 10 in die Spirale 11 gelangt, dort weiter verdichtet und
schliesslich zur Aufladung einer nicht dargestellten, mit dem Abgasturbolader verbundenen
Brennkraftmaschine eingesetzt wird. Auf ihrem Weg vom Strömungskanal
9 zum Diffusor 10 beaufschlagt die im Radialverdichter 1 erhitzte Hauptströmung
28 des Arbeitsmediums 27 als Leckageströmung 29 auch den ersten Spaltbereich
19 und damit den Trennspalt 18. Gleichzeitig wird jedoch über die Zuführkanäle
24 das gasförmige Kühlmedium 25 mit einem höheren Druck als dem
Druck der Hauptströmung 28 des Arbeitsmediums 27 in den zweiten Spaltbereich
20 des Trennspaltes 18 eingeführt. Beispielsweise kann als Kühlmedium Luft vom
nicht dargestellten Auslass des Ladeluftkühlers der Brennkraftmaschine verwendet
werden. Natürlich ist sowohl der Einsatz anderer Kühlmedien als auch eine
externe Zuführung dieser Kühlmedien möglich.When the exhaust gas turbocharger is operating, the
Das Kühlmedium 25 trifft auf die Rückwand 16 des Verdichterrades 6 und bewirkt
in dessen besonders beanspruchten, radial äusseren Wandteil 23 eine Prallkühlung.
Daraufhin verteilt sich das Kühlmedium 25 im Trennspalt 18 und verdünnt
die heisse Leckageströmung 29. Der grösste Teil des Kühlmediums 25 und der
Leckageströmung 29 wird anschliessend über den Abführkanal 26 aus dem
Trennspalt 18 geleitet. Je nach den herrschenden Druckverhältnissen wird auch
ein bestimmter Teil des Kühlmediums 25 und der Leckageströmung 29 über den
ersten Spaltbereich 19 in den Strömungskanal 9 des Radialverdichters 1 eingeführt.The cooling medium 25 hits the
In einem zweiten Ausführungsbeispiel münden die Zuführkanäle 24 für das Kühlmedium
25 ebenfalls parallel zur Welle 3 des Verdichterrades 6 im Bereich des radial
äusseren Wandteils 23 der Rückwand 16 des Verdichterrades 6 in den Trennspalt
18. Jedoch ist zwischen den Zuführkanälen 24 und dem Trennspalt 18 ein
die Zuführkanäle 24 miteinander verbindender und zum Trennspalt 18 offener
Ringraum 30 ausgebildet (Fig. 2). Dadurch kann eine relativ gleichmässige Beaufschlagung
der Rückwand 16 mit dem Kühlmedium 25 erreicht werden. Natürlich
können alternativ zum Ringraum 30 auch mehrere Teilringräume in der Zwischenwand
15 des Verdichtergehäuses 5 ausgebildet sein, welche jeweils zumindest
zwei benachbarte Zuführkanäle 24 miteinander verbinden (nicht dargestellt). Der
Abführkanal 26 ist in der Diffusorplatte 14 des Verdichtergehäuses 5 angeordnet,
so dass das Kühlmedium 25 nahezu vollständig über den Strömungskanal 9 des
Radialverdichters 1 abgeführt wird. Im Betrieb wird die Leckageströmung 29 durch
das Kühlmedium 25 praktisch vollständig abgesperrt. Aufgrund der Rückführung
des Kühlmediums 25 in den Strömungskanal 9 wird zudem der volumetrische Wirkungsgrad
verbessert.In a second exemplary embodiment, the
Gemäss einem dritten Ausführungsbeispiel münden die Zuführkanäle 24 diagonal
zur Welle 3 des Verdichterrades 6 in den Trennspalt 18. Zudem nehmen die Zuführkanäle
24 jeweils ein in den Trennspalt 18 hineinragendes und auf das radial
äussere Wandteil 23 der Rückwand 16 des Verdichterrades 6 ausgerichtetes
Röhrchen 31 auf (Fig. 3). Mit Hilfe dieser Röhrchen 31 trifft das Kühlmedium 25
gezielt auf die Bereiche der Rückwand 16, welche die grösste Temperaturbelastung
aufweisen. Infolge seiner diagonalen Einleitung wirkt das Kühlmedium 25
dabei zunächst als Prallkühlung. Ausserdem kann sich in Richtung des ersten
Spaltbereiches 19 ein Kühlfilm an der Rückwand 16 anlegen. Die Ableitung des
Kühlmediums 25 erfolgt wiederum über den Abführkanal 26. Natürlich kann analog
dem zweiten Ausführungsbeispiel auch eine Rückspeisung des Kühlmediums
25 in den Strömungskanal 9 des Radialverdichters 1 erfolgen (nicht dargestellt).According to a third exemplary embodiment, the
Bei einem nächsten Ausführungsbeispiel sind die Zuführkanäle 24 die Diffusorplatte
14 durchdringend angeordnet und münden in deren dem Verdichterrad 6
zugewandten Bereich tangential zur Rückwand 16 des Verdichterrades 6 in den
Trennspalt 18 ein (Fig. 4). Der Abführkanal 26 für das Kühlmedium 25 ist in der
Zwischenwand 15 des Verdichtergehäuses 5 angeordnet. Durch die tangentiale
Einleitung des Kühfmediums 25 wird eine reine Filmkühlung der gesamten Rückwand
16 des Verdichterrades 6 realisiert. Die Ableitung des Kühlmediums 25 erfolgt
lediglich über den Abführkanal 26. Sowohl der Verdichterschub als auch die
mechanischen Verluste infolge der an der Rückwand 16 des Verdichterrades 6
entstehende Reibung sind bei dieser Anordnung geringer als bei einer achsparallelen
Einblasung des Kühlmediums 25. Natürlich kann die Diffusorplatte 14 an
ihrem radial inneren Ende auch geschlitzt ausgebildet sein. In diesem Fall münden
die Zuführkanäle 24 in den nicht dargestellten Schlitz der Diffusorplatte 14.In a next embodiment, the
In einem weiteren Ausführungsbeispiel ist stromauf der Rückwand 16 des Verdichterrades
6 ein Dichtelement 32 im Trennspalt 18, d.h. in dessen erstem Spaltbereich
19, angeordnet (Fig. 5). Mit Hilfe dieser für alle zuvor beschriebenen Ausführungsbeispiele
geeigneten Lösung ist es möglich, den Druck der verbleibenden
Leckageströmung 29 so weit herabzusetzen, dass der Druck des einströmenden
Kühlmediums 25 vorteilhaft sogar unter dem am Austritt des Verdichterrades 6
herrschenden Druck des Arbeitsmediums 27 liegen kann. Auf diese Weise kann
auch mit relativ geringen Mengen des Kühlmediums 25 eine effektive Kühlung des
Verdichterrades 6 gewährleistet werden.In a further exemplary embodiment, the
- 11
- Radialverdichtercentrifugal compressors
- 22
- Lagergehäuse bearing housing
- 33
- Wellewave
- 44
- Maschinenachsemachine axis
- 55
- Verdichtergehäusecompressor housing
- 66
- Verdichterradcompressor
- 77
- Laufschaufelblade
- 88th
- Nabehub
- 99
- Strömungskanalflow channel
- 1010
- Diffusordiffuser
- 1111
- Spiralespiral
- 1212
- LufteintrittgehäuseAir intake housing
- 1313
- LuftaustrittgehäuseAir outlet housing
- 1414
- Diffusorplattediffuser plate
- 1515
- Zwischenwandpartition
- 1616
- Rückwandrear wall
- 1717
- Befestigungsmuffemounting sleeve
- 1818
- Trennspaltseparating gap
- 1919
- Spaltbereich, ersterGap area, first
- 2020
- Spaltbereich, zweiterGap area, second
- 2121
- Spaltbereich, dritterGap area, third
- 2222
- Wandteil, radial inneresWall part, radially inner
- 2323
- Wandteil, radial äusseresWall part, radially outer
- 2424
- Zuführkanalfeed
- 2525
- Kühlmediumcooling medium
- 2626
- Abführkanaldischarge channel
- 2727
- Arbeitsmedium, UmgebungsluftWorking medium, ambient air
- 2828
- Hauptströmung, von 27Main flow, from 27
- 2929
- Leckageströmung, von 27Leakage flow, from 27
- 3030
- Ringraumannulus
- 3131
- Röhrchentube
- 3232
- Dichtelementsealing element
Claims (14)
- Method of operating a centrifugal compressor, in whicha) a working medium (27) is induced by a compressor impeller (6) arranged in a compressor casing (5) and equipped with a number of impeller vanes (7), is compressed and is led on to a consumption unit as a main flow (28),b) after the compression process which takes place between the impeller vanes (7), a leakage flow (29) of the working medium (27) branches off and this leakage flow (29) flows into a separating gap (18) formed between the compressor impeller (6) and the compressor casing (5),c) the separating gap (18) is not sealed against the penetration of the leakage flow (29) of the working medium (27) in the region of a rear wall (16) of the compressor impeller (6),
characterized in thatd) a cooling medium (25) is introduced into the separating gap (18) downstream of the leakage flow (29) of the working medium (27) and this cooling medium is finally removed again after the cooling process has taken place. - Method according to Claim 1, characterized in that the cooling medium (25) is introduced into the separating gap (18) at a pressure which is higher than the pressure of the main flow (28) of the working medium (27).
- Method according to Claim 2, characterized in that the cooling medium (25) is introduced into the main flow (28) of the working medium (27) after the cooling process has taken place.
- Method according to Claim 1, characterized in that the pressure of the leakage flow (29) of the working medium (27) is reduced, when it is supplied to the separating gap (18), relative to the pressure of the main flow (28) of the working medium (27).
- Method according to Claim 4, characterized in that the cooling medium (25) is introduced into the separating gap (18) at a pressure which is lower than the pressure of the main flow (28) of the working medium (27) .
- Centrifugal compressor having a compressor impeller (6), which is arranged on a shaft (3) and has a rear wall (16) extending mainly radially, having a compressor casing (5) enclosing the compressor impeller (6), having a flow duct (9) formed between the compressor impeller (6) and the compressor casing (5) for a working medium (27) of the centrifugal compressor (1) and having a separating gap (18), which is connected to the flow duct (9), between the compressor impeller (6) and the compressor casing (5), the separating gap (18) being configured without sealing elements in the region of the rear wall (16) of the compressor impeller (6), characterized in that at least one supply duct (24) for a gaseous cooling medium (25), said duct penetrating the compressor casing (5), opening into the separating gap (18) in the region of the rear wall (16) of the compressor impeller (6) and directed onto the rear wall (16), and at least one removal duct (26) for the cooling medium (25) are arranged in the compressor casing (5).
- Centrifugal compressor according to Claim 6, characterized in that the supply duct (24) opens into the separating gap (18) at least approximately parallel to the shaft (3) of the compressor impeller (6).
- Centrifugal compressor according to Claim 6, characterized in that the supply duct (24) opens into the separating gap (18) at least approximately diagonally to the shaft (3) of the compressor impeller (6).
- Centrifugal compressor according to Claim 7 or 8, characterized in that a plurality of supply ducts (24) are arranged in the compressor casing (5), in that an annular space (30) which is open towards the separating gap (18), or at least a partial annular space, is formed opposite to the rear wall (16) of the compressor impeller (6) in the compressor casing (5) and in that the supply ducts (24) are connected to the annular space (30) ar at least two of the supply ducts (24) are connected to each partial annular space.
- Centrifugal compressor according to Claim 8, characterized in that at least one of the supply ducts (24) accommodates a tube (31) protruding into the separating gap (18) and directed onto the rear wall (16) of the compressor impeller (6).
- Centrifugal compressor according to Claim 10, characterized in that the rear wall (16) of the compressor impeller (6) has a radially inner wall part (22) and a radially outer wall part (23) and each tube (31) opens into the separating gap (18) in the region of the radially outer wall part (23).
- Centrifugal compressor according to one of Claims 6 to 11, characterized in that the removal duct (26) opens into the flow duct (9) of the centrifugal compressor (1).
- Centrifugal compressor according to Claim 6, characterized in that the supply duct (24) opens into the separating gap (18) at least approximately tangentially to the rear wall (16) of the compressor impeller (1).
- Centrifugal compressor according to one of Claims 6 to 13, characterized in that a sealing element (32) is arranged in the separating gap (18) upstream of the rear wall (16) of the compressor impeller (6).
Priority Applications (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP98810486A EP0961033B1 (en) | 1998-05-25 | 1998-05-25 | Radial compressor |
DE59809867T DE59809867D1 (en) | 1998-05-25 | 1998-05-25 | centrifugal compressors |
TW088107620A TW517138B (en) | 1998-05-25 | 1999-05-11 | Centrifugal compressor and method of operating the centrifugal compressor |
CZ19991779A CZ290965B6 (en) | 1998-05-25 | 1999-05-19 | Centrifugal compressor operating method and centrifugal compressor per se |
US09/316,066 US6190123B1 (en) | 1998-05-25 | 1999-05-21 | Centrifugal compressor |
KR1019990018501A KR100551523B1 (en) | 1998-05-25 | 1999-05-21 | Centrifugal compressor |
CN99107040A CN1118637C (en) | 1998-05-25 | 1999-05-25 | Centrifugal compressor |
CN99212100U CN2378560Y (en) | 1998-05-25 | 1999-05-25 | Centrifugal compressor |
JP11145285A JP2000054996A (en) | 1998-05-25 | 1999-05-25 | Radial compressor and its operation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP98810486A EP0961033B1 (en) | 1998-05-25 | 1998-05-25 | Radial compressor |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0961033A1 EP0961033A1 (en) | 1999-12-01 |
EP0961033B1 true EP0961033B1 (en) | 2003-10-08 |
Family
ID=8236107
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP98810486A Expired - Lifetime EP0961033B1 (en) | 1998-05-25 | 1998-05-25 | Radial compressor |
Country Status (8)
Country | Link |
---|---|
US (1) | US6190123B1 (en) |
EP (1) | EP0961033B1 (en) |
JP (1) | JP2000054996A (en) |
KR (1) | KR100551523B1 (en) |
CN (2) | CN2378560Y (en) |
CZ (1) | CZ290965B6 (en) |
DE (1) | DE59809867D1 (en) |
TW (1) | TW517138B (en) |
Families Citing this family (40)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10321572A1 (en) * | 2003-05-14 | 2004-12-02 | Daimlerchrysler Ag | Supercharging air compressor for internal combustion engine separates sub-stream of compressed air downstream of compressor wheel and passes via temperature reduction unit to produce cooling air |
US7252474B2 (en) * | 2003-09-12 | 2007-08-07 | Mes International, Inc. | Sealing arrangement in a compressor |
JP4043433B2 (en) * | 2003-11-14 | 2008-02-06 | 株式会社神戸製鋼所 | air compressor |
FR2904038A1 (en) * | 2006-07-19 | 2008-01-25 | Snecma Sa | Centrifugal compressor impeller downstream face cooling system for aircraft turbomachine e.g. turbojet and jet prop engines, has cylindrical passage and sheet guiding drawn ventilating air till neighborhood of downstream face of impeller |
FR2904035B1 (en) | 2006-07-19 | 2008-08-29 | Snecma Sa | SYSTEM FOR COOLING THE WHEEL OF A CENTRIFUGAL COMPRESSOR. |
FR2904036B1 (en) * | 2006-07-19 | 2008-08-29 | Snecma Sa | CENTRIFUGAL COMPRESSOR BEARING CAVITY VENTILATION SYSTEM |
EP2067999A1 (en) | 2007-12-06 | 2009-06-10 | Napier Turbochargers Limited | Liquid cooled turbocharger impeller and method for cooling an impeller |
EP2090788A1 (en) | 2008-02-14 | 2009-08-19 | Napier Turbochargers Limited | Impeller and turbocharger |
CN102016326B (en) * | 2008-03-13 | 2013-09-11 | Aaf-麦克维尔公司 | High capacity chiller compressor |
US8079805B2 (en) * | 2008-06-25 | 2011-12-20 | Dresser-Rand Company | Rotary separator and shaft coupler for compressors |
US8147178B2 (en) * | 2008-12-23 | 2012-04-03 | General Electric Company | Centrifugal compressor forward thrust and turbine cooling apparatus |
US8087249B2 (en) * | 2008-12-23 | 2012-01-03 | General Electric Company | Turbine cooling air from a centrifugal compressor |
AT508048B1 (en) * | 2009-03-23 | 2010-12-15 | Ge Jenbacher Gmbh & Co Ohg | INTERNAL COMBUSTION ENGINE WITH COMPACTION DEVICE |
DE102010037356B8 (en) * | 2010-09-06 | 2014-05-22 | Kompressorenbau Bannewitz Gmbh | Verdichterradkühlung |
JP5700999B2 (en) * | 2010-10-06 | 2015-04-15 | 三菱重工業株式会社 | Centrifugal compressor |
US9228497B2 (en) * | 2010-12-30 | 2016-01-05 | Rolls-Royce Corporation | Gas turbine engine with secondary air flow circuit |
ITFI20120124A1 (en) | 2012-06-19 | 2013-12-20 | Nuovo Pignone Srl | "CENTRIFUGAL COMPRESSOR IMPELLER COOLING" |
US8925317B2 (en) | 2012-07-16 | 2015-01-06 | General Electric Company | Engine with improved EGR system |
US9291089B2 (en) | 2012-08-31 | 2016-03-22 | Caterpillar Inc. | Turbocharger having compressor cooling arrangement and method |
ITFI20130237A1 (en) | 2013-10-14 | 2015-04-15 | Nuovo Pignone Srl | "SEALING CLEARANCE CONTROL IN TURBOMACHINES" |
US11377954B2 (en) | 2013-12-16 | 2022-07-05 | Garrett Transportation I Inc. | Compressor or turbine with back-disk seal and vent |
KR101765583B1 (en) * | 2014-07-29 | 2017-08-07 | 현대자동차 주식회사 | Cooling unit of air compressure |
FR3025260B1 (en) * | 2014-08-29 | 2019-08-30 | Safran Aircraft Engines | CENTRIFUGAL COMPRESSOR WITH IMPROVED RESISTANCE |
DE102014012764A1 (en) * | 2014-09-02 | 2016-03-03 | Man Diesel & Turbo Se | Radial compressor stage |
DE102014012765A1 (en) * | 2014-09-02 | 2016-03-03 | Man Diesel & Turbo Se | Radial compressor stage |
US10006341B2 (en) | 2015-03-09 | 2018-06-26 | Caterpillar Inc. | Compressor assembly having a diffuser ring with tabs |
US10066639B2 (en) | 2015-03-09 | 2018-09-04 | Caterpillar Inc. | Compressor assembly having a vaneless space |
DE102016200519A1 (en) * | 2016-01-18 | 2017-07-20 | Siemens Aktiengesellschaft | flow machine |
US10830144B2 (en) * | 2016-09-08 | 2020-11-10 | Rolls-Royce North American Technologies Inc. | Gas turbine engine compressor impeller cooling air sinks |
DK201770269A1 (en) * | 2017-04-18 | 2018-12-06 | Spx Flow Technology Danmark A/S | A pump for pumping heat-sensitive fluids |
CN107448417B (en) * | 2017-09-01 | 2020-01-17 | 西北工业大学 | Centrifugal compressor and impeller cooling device |
JP7074442B2 (en) * | 2017-09-15 | 2022-05-24 | 三菱重工コンプレッサ株式会社 | Compressor |
CN111601972B (en) | 2018-01-19 | 2022-09-23 | 概创机械设计有限责任公司 | Turbine with separate collector |
DE102018108828A1 (en) * | 2018-04-13 | 2019-10-17 | Trumpf Schweiz Ag | centrifugal blower |
CN108625917B (en) * | 2018-06-28 | 2024-05-24 | 西安交通大学 | Supercritical carbon dioxide Brayton cycle power component cooling, sealing and heat insulating system |
CN108952951B (en) * | 2018-07-27 | 2020-07-17 | 中车大连机车研究所有限公司 | Pressure gas balance system structure of turbocharger |
US11525393B2 (en) | 2020-03-19 | 2022-12-13 | Rolls-Royce Corporation | Turbine engine with centrifugal compressor having impeller backplate offtake |
CN112555020A (en) * | 2020-12-24 | 2021-03-26 | 潍坊富源增压器有限公司 | Turbocharger |
US11808177B1 (en) | 2022-07-26 | 2023-11-07 | GM Global Technology Operations LLC | Recessed compressor wheel for turbocharger oil leakage mitigation |
US11773773B1 (en) | 2022-07-26 | 2023-10-03 | Rolls-Royce North American Technologies Inc. | Gas turbine engine centrifugal compressor with impeller load and cooling control |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE403277C (en) * | 1924-09-30 | Bbc Brown Boveri & Cie | Device for cooling centrifugal compressors | |
US2260042A (en) * | 1940-01-18 | 1941-10-21 | Gen Electric | Ventilating system |
US3663117A (en) * | 1970-01-21 | 1972-05-16 | Cornell Mfg Co | Aeration pump |
US4170435A (en) * | 1977-10-14 | 1979-10-09 | Swearingen Judson S | Thrust controlled rotary apparatus |
EP0076668B1 (en) * | 1981-10-06 | 1986-08-27 | A/S Kongsberg Väpenfabrikk | Turbo-machines with bleed-off means |
JP2934530B2 (en) | 1991-06-14 | 1999-08-16 | 三菱重工業株式会社 | Centrifugal compressor |
DE4312078C2 (en) * | 1993-04-13 | 1995-06-01 | Daimler Benz Ag | Exhaust gas turbocharger for a supercharged internal combustion engine |
DE19548852A1 (en) | 1995-12-27 | 1997-07-03 | Asea Brown Boveri | Radial compressor for exhaust gas turbo-supercharger |
-
1998
- 1998-05-25 DE DE59809867T patent/DE59809867D1/en not_active Expired - Lifetime
- 1998-05-25 EP EP98810486A patent/EP0961033B1/en not_active Expired - Lifetime
-
1999
- 1999-05-11 TW TW088107620A patent/TW517138B/en not_active IP Right Cessation
- 1999-05-19 CZ CZ19991779A patent/CZ290965B6/en not_active IP Right Cessation
- 1999-05-21 US US09/316,066 patent/US6190123B1/en not_active Expired - Lifetime
- 1999-05-21 KR KR1019990018501A patent/KR100551523B1/en not_active Expired - Lifetime
- 1999-05-25 CN CN99212100U patent/CN2378560Y/en not_active Expired - Lifetime
- 1999-05-25 CN CN99107040A patent/CN1118637C/en not_active Expired - Lifetime
- 1999-05-25 JP JP11145285A patent/JP2000054996A/en active Pending
Also Published As
Publication number | Publication date |
---|---|
CN1239192A (en) | 1999-12-22 |
CZ9901779A3 (en) | 2000-11-15 |
CN1118637C (en) | 2003-08-20 |
US6190123B1 (en) | 2001-02-20 |
KR100551523B1 (en) | 2006-02-13 |
EP0961033A1 (en) | 1999-12-01 |
DE59809867D1 (en) | 2003-11-13 |
KR19990088488A (en) | 1999-12-27 |
CZ290965B6 (en) | 2002-11-13 |
CN2378560Y (en) | 2000-05-17 |
JP2000054996A (en) | 2000-02-22 |
TW517138B (en) | 2003-01-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0961033B1 (en) | Radial compressor | |
EP0961034B1 (en) | Radial compressor | |
EP2123860B1 (en) | Combined vortex reducer | |
EP1736635B1 (en) | Air transfer system between compressor and turbine of a gas turbine engine | |
DE4447507B4 (en) | Annular seal | |
DE3713923C2 (en) | Cooling air transmission device | |
EP0903468B1 (en) | Gap sealing device | |
DE60318792T2 (en) | Bleed air housing for a compressor | |
DE69409332T2 (en) | Seal in a gas turbine | |
DE60314476T2 (en) | Arrangement of a housing of a gas turbine and a rotor blade | |
DE3537043C2 (en) | Coolable sealing device for a stator assembly | |
EP2024606B1 (en) | Annular flow duct for a turbomachine through which a main flow can flow in the axial direction | |
DE69714536T2 (en) | Gas turbine engine with seal for storage chambers | |
DE60023681T2 (en) | COOLING THE HIGH PRESSURE BIN LEVEL OF A GAS TURBINE | |
DE2554010A1 (en) | DEVICE AND METHOD FOR SUPPLYING COOLING AIR TO TURBINE VANES | |
DE60203421T2 (en) | Split housing ring for gas turbines | |
DE2547229A1 (en) | DISTRIBUTION HEAD FOR BRANCH AIR | |
CH708795A2 (en) | Segment for an annular rotary machine Leitradbauteil. | |
EP0806548A1 (en) | Turbine of an exhaust turbocharger | |
DE2925941A1 (en) | DIFFERENTIAL FOR A FLUID DRIVE UNIT | |
EP1222400B1 (en) | Method and device for the indirect cooling of a flow regime in radial slits formed between the rotors and stators of turbomachines | |
DE102016124806A1 (en) | A turbine blade assembly for a gas turbine and method of providing sealing air in a turbine blade assembly | |
DE60020450T2 (en) | Rotating seal | |
DE19652754A1 (en) | Exhaust gas supercharger | |
DE19735172A1 (en) | Improved turbine disc entry prevention method and device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE FR GB |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: ABB TURBO SYSTEMS AG |
|
17P | Request for examination filed |
Effective date: 20000512 |
|
AKX | Designation fees paid |
Free format text: DE FR GB |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REF | Corresponds to: |
Ref document number: 59809867 Country of ref document: DE Date of ref document: 20031113 Kind code of ref document: P |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20040112 |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20040709 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 19 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20170523 Year of fee payment: 20 Ref country code: FR Payment date: 20170523 Year of fee payment: 20 Ref country code: GB Payment date: 20170519 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 59809867 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: PE20 Expiry date: 20180524 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20180524 |