EP0839220B1 - Verfahren zum abtasten eines fadens und fadenabzugssensor - Google Patents
Verfahren zum abtasten eines fadens und fadenabzugssensor Download PDFInfo
- Publication number
- EP0839220B1 EP0839220B1 EP96927547A EP96927547A EP0839220B1 EP 0839220 B1 EP0839220 B1 EP 0839220B1 EP 96927547 A EP96927547 A EP 96927547A EP 96927547 A EP96927547 A EP 96927547A EP 0839220 B1 EP0839220 B1 EP 0839220B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- yam
- pulses
- signal
- thread
- acceptance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title claims description 26
- 230000008569 process Effects 0.000 title claims description 5
- 238000004804 winding Methods 0.000 claims description 60
- 238000001914 filtration Methods 0.000 claims description 18
- 230000004044 response Effects 0.000 claims description 11
- 230000035945 sensitivity Effects 0.000 claims description 11
- 238000009941 weaving Methods 0.000 claims description 8
- 238000003780 insertion Methods 0.000 claims description 6
- 230000037431 insertion Effects 0.000 claims description 6
- 230000001133 acceleration Effects 0.000 claims description 4
- 230000001419 dependent effect Effects 0.000 claims description 2
- 238000010586 diagram Methods 0.000 description 17
- 239000003990 capacitor Substances 0.000 description 6
- 230000008859 change Effects 0.000 description 5
- 238000011109 contamination Methods 0.000 description 5
- 239000012535 impurity Substances 0.000 description 5
- 239000000356 contaminant Substances 0.000 description 3
- 238000001514 detection method Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000010276 construction Methods 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- D—TEXTILES; PAPER
- D03—WEAVING
- D03D—WOVEN FABRICS; METHODS OF WEAVING; LOOMS
- D03D47/00—Looms in which bulk supply of weft does not pass through shed, e.g. shuttleless looms, gripper shuttle looms, dummy shuttle looms
- D03D47/34—Handling the weft between bulk storage and weft-inserting means
- D03D47/36—Measuring and cutting the weft
-
- D—TEXTILES; PAPER
- D03—WEAVING
- D03D—WOVEN FABRICS; METHODS OF WEAVING; LOOMS
- D03D47/00—Looms in which bulk supply of weft does not pass through shed, e.g. shuttleless looms, gripper shuttle looms, dummy shuttle looms
- D03D47/34—Handling the weft between bulk storage and weft-inserting means
- D03D47/36—Measuring and cutting the weft
- D03D47/361—Drum-type weft feeding devices
- D03D47/367—Monitoring yarn quantity on the drum
-
- D—TEXTILES; PAPER
- D03—WEAVING
- D03D—WOVEN FABRICS; METHODS OF WEAVING; LOOMS
- D03D47/00—Looms in which bulk supply of weft does not pass through shed, e.g. shuttleless looms, gripper shuttle looms, dummy shuttle looms
- D03D47/34—Handling the weft between bulk storage and weft-inserting means
Definitions
- the invention relates to a method according to the preamble of claim 1 and a thread take-off sensor according to Preamble of claim 6.
- the invention has for its object a method of type mentioned and a thread take-off sensor for Perform the procedure to indicate with which to build and evaluation-technically simple way with a measuring delivery device Avoid shots that are too short or too long.
- the thread take-off sensor In the thread take-off sensor according to claim 6 with the two different selective filter modes of at least first thread pulse and especially the fast thread pulses slow or weak interference pulses distinguishable.
- the second selective filter mode does not accept interference pulses that are slower or weaker than the strong thread pulses.
- fluff tufts mostly have a greater extension in Passing direction under the trigger sensor and also an optical have a different appearance, so that the glitch is not only due to the lower speed of movement of such Contamination, e.g. a tuft of lint, as slower or is detected weaker, but also due to the larger Extension and of the other character, e.g. lower density.
- the procedure according to claim 2 is such that in a bandpass filter device from a first filter mode is switched to a second filter mode as soon as the first thread pulse has led to the first winding signal.
- the subsequent thread pulses are so fast and strong that they are accepted in the second filter mode while "slow or weak" interference pulses are not accepted.
- a particularly expedient process variant is based on claim 3 out.
- the thread pulse acceptance for a weak Thread pulse set before following with the winding signal the thread pulse acceptance back to the thread pulse acceptance for faster and strong thread pulses is changed.
- the thread pulse acceptance for faster and strong thread pulses become slow or weak Interference pulses prevented from causing a winding signal. Further is achieved that even with one of the rare slow Entries which reliably lead thread pulses to winding signals, because before each thread pulse the thread acceptance for the weak Thread pulses is set, and that one following the thread Contamination does not lead to a wrong turn signal, because then the thread acceptance for strong winding signals is set is.
- the control technology simply time using the time window, so to speak faded out, within which a weak glitch occurs nurtures.
- the time window is, for example, 3ms set, a period of time that is shorter than that shortest time interval between two successive turn signals of the entry, typically at least 10ms.
- Winding signal is the superscript signal to the filter arrangement submitted so that this for the further thread pulses the second filter mode works. If necessary, that will Superscript signal generated with a time delay.
- the downshift in the first filter mode takes place after elapse of the time window and before the next thread pulse and by means of Suppression of the superscript signal.
- the filter device with a bandpass filter arrangement two different bandwidths, the lower one Limit a bandwidth to the speed of the thread pulses and set the slowness or weakness of the interference pulses is to be able to make a separation between them.
- the bandpass filter device converted by the microprocessor as soon as the at least first or each winding signal has been generated is.
- the filter arrangement constantly back and forth between the two filter modes switched in such a way that before the occurrence of a thread pulse the filter mode with acceptance even a slow weak Thread pulse is set, however, after the occurrence of Winding signal and over the period of the time window Filter mode set with acceptance of only strong thread pulses remains. This allows interference pulses to be filtered out and left especially a very rare slow entry into the weaving machine without detection errors.
- the embodiment according to claim 10 is particularly useful because an active amplifier and bandpass filter arrangement to uniformly strong and meaningful winding signals leads and avoids loss of performance when filtering.
- the bandpass filter arrangement with a response designed that a high pass filter mode and one seamless subsequent low-pass filter mode. So that results up to frequencies, e.g. a meaningful value below 1.0 kHz DC level up to higher frequencies around 100 kHz remains approximately constant.
- the low pass filter mode lets ineffective to change the response so that frequencies of e.g. well below 10 kHz or a frequency of approx. 1.0 kHz to no significant DC level lead more, but only more frequencies between about 10 kHz and just below 100 kHz at similarly high or higher DC voltage levels lead as with effective low-pass filter mode.
- the bandpass filter arrangement has a response behavior, initially over a relatively wide frequency range leads to a meaningful DC level, but if necessary temporarily by disabling the low-pass filter mode to a narrower frequency range near the upper cut-off frequency is restricted so that only higher frequencies lead to usable DC voltage levels.
- ineffective Low pass filter mode allows the interference pulses to be lower Filter out frequencies because only the thread pulses with the correspondingly high frequencies to high DC voltage levels to lead.
- bandpass filters are used switched depending on whether the thread with moving at low speed or high speed or depending on whether the thread has passed the take-off sensor or not yet.
- the trigger sensor is used to control the stop device to the thread length exactly to measure.
- the receiver is located just behind the Stop device to get the proper one as early as possible To report passage of the thread.
- the receiver in the axial direction of the storage drum with respect to the stop element the stopping device, expediently on the the thread supply side of the stop element to at indented stop element a thread geometry with oblique To get thread, after the disengagement of the Stop element passes a certain time until the thread happens to the recipient. Through this passing time and due to the strong acceleration at the start of the entry, the Passage speed at the receiver is already so high that a relatively strong first thread pulse is formed.
- any turn signal is generated from two successive thread pulses. This also allows the direction of rotation of the trigger to be changed.
- the trigger sensor adapt to the respective thread quality, with a undesirable interaction between changing the Acceptance or changeover between the filter modes and the Sensitivity setting avoided by decoupling becomes. Adjusting the sensitivity is necessary because different thread qualities different thread pulses can result, e.g. because of different reflection properties or densities.
- the trigger sensor expediently works on optoelectric Path. But it is also conceivable with ultrasound, on a capacitive, or inductive or piezoelectric path the thread to be touched or touched. requirement is that the receiver is able to use thread pulses a certain pulse shape or a certain rise ramp course to create.
- a weft delivery device F is schematically known Construction indicated, the intermittent weft Y. and with exactly the same length for a shed H of a weaving machine L, e.g. a jet loom, supplies (measuring delivery device).
- the thread Y is not one deducted supply spool shown, by a motor housing 1st performed and in a turn 3 on a storage drum 2 wound, of which he is under a stop device 4th and overhead by means of an insertion device 6, e.g. one Entry nozzle, is withdrawn.
- the stop device 4 is with a stop element on a trigger area of the storage drum 2 aligned.
- the stop element 5 is used to measure the thread length engaged by means of a control device C and disengaged.
- the thread Y When the stop element 5 is engaged, the thread Y captured. With the stop element 5 disengaged Unwind thread Y freely from the winding supply 3. The coil stock 3 is done by winding the thread in the usual way supplemented with a drive, not shown, of the delivery device F. With a trigger sensor S, the Y thread through a scanning area below the take-off sensor S generates a turn signal. The turn signals are counted until the predetermined thread length is reached. Then the stop element 5 is engaged again. For exact setting The thread length can be the circumferential length of the storage drum be changeable.
- Fig. 2 is a plan view of the delivery device F of Pull-off sensor S in the direction of movement of the thread Y when pulling off (Arrow) arranged very shortly behind the stop element 5, expediently opposite in the axial direction of the storage drum 2 the stop element 5, e.g. by about 1cm to a receiver R of the trigger sensor S always a relatively high passage speed of the Y thread.
- the string Y extends from the last turn of the turn supply 3 obliquely to the stop device 4, is when the stop element is engaged 5 deflected at this and extends on the trigger side away approximately in the axial direction.
- thread speeds result from the entry up to 100 m / s or more.
- the thread Y only after disengaging the stop device 4, 5 can be accelerated to the maximum thread speed.
- the Thread Y the trigger sensor S at least for the first time relatively low speed of something, for example more than 2 m / s happens, but with the next pass under the trigger sensor S already a much higher speed (in the direction of the arrow).
- impurities such as tufts of fluff arise in the thread supply, which are carried away when the thread is unwound and if necessary, the scanning area under the trigger sensor S. happen.
- these contaminants move more slowly than the thread or they are slower by the take-off sensor S. registered as the thread. It can also hang from the thread Thread components are taken along, however, too cause weak interference pulses.
- Fig. 3 indicates a modified embodiment of a delivery device F on, on both sides of the stop device 4 in each case a trigger sensor S is arranged at a short distance.
- the two withdrawal sensors S form, for example, a winding signal from the two thread passages.
- the delivery device F can thanks to the two trigger sensors S, either one or operate with the other direction of rotation, whereby only in each case one of the two trigger sensors S can be used.
- FIGS. 4 illustrates the upper part of the diagram of the thread Y in Discharge sensor S of FIGS. 1 and 2 caused (electrical) thread pulses during an entry process.
- a first slow weak thread pulse is created YP1, whose speed by the latitude and a relatively flat ramp is represented.
- the others YP2 thread pulses are faster and stronger, which is reflected in their steeper rise ramp (higher frequency component or - content) and expresses its pointed shape.
- the dashed lines Interference pulses LP1 and LP2 originate from impurities or thread components that may be torn off when the trigger is pulled off and pass the scanning area after the thread.
- the first interference pulse LP1 is slower or weaker than the first Thread pulse YP1, such interference LP1 being very unlikely are there at the start of the deduction due to the low withdrawal speed of the thread and no pronounced air turbulence or dynamics hardly any impurities can be solved This Effect only occurs with higher thread speed.
- the further interference pulses LP2 are slower or weaker than the faster thread pulses YP2.
- the lower part of the diagram in FIG. 4 shows how from the Thread pulses YP1, YP2, YP2 'winding signals WP for the control device C are generated. Because of the first thread pulse YP1 a winding signal WP is generated, the passage of the Represents thread. As soon as the first winding signal WP is registered has been (or due to several first thread pulses), the trigger sensor S is switched so that it turns signals WP only from faster and stronger YP2 thread pulses, YP2 'generated. The changeover takes place at time X. After the changeover, the trigger sensor does not generate any turn signals WP from the slower or weaker interference pulses LP2. On in this way wrong turn signals are caused by Glitches avoided. On the other hand, the almost simultaneous unwinding of two adjacent turns (two strong thread pulses YP2, YP2 ') properly two winding signals WP and WP 'generated.
- Each thread pulse is generated electrically and in one electrical filter arrangement E (Fig. 6 and 7) processed.
- the filter arrangement contains, for example, bandpass filters, whose frequency bands are indicated in Fig. 5.
- fU1 corresponds, for example, to a minimum speed of Thread of 2 m / s.
- fO corresponds to a speed of 120 m / s of the thread (Vmax).
- the filter arrangement is raised to a different frequency band range f2, whose lower limit fU2 is higher than the lower limit fU1.
- fU2 corresponds e.g. a minimum speed of 10 m / s thread.
- the upper limit is fO with the second setting after time X the same as before.
- the trigger sensor By setting the trigger sensor before time X the at least first slow and weak thread pulse YP1 just accepted. After time X will be quick and strong thread pulses YP2, YP2 'accepted, however none slower or weaker interference pulses LP2.
- the first frequency band range fl set. After the first turn signal occurs WP is either using this winding signal, or possibly with the second one, or depending on the known one Increase in thread speed at time X on second frequency band range f2 changed. Will the stop device engaged again, then the filter assembly returned to the first area f1.
- adjusting or breaking in the thread delivery device can also change the trigger sensor from Be made by hand, then the automatic changeover, which are used in normal operation of the thread delivery device is neutralized.
- FIGS. 4A and 5A represent the method variant in which the filter mode fl is set before the occurrence of each winding signal WP and is switched to the further filter mode f2 when each winding signal WP occurs.
- a raising signal is generated which is maintained over a time window H, the time duration t F of which is uniformly predetermined, for example with 3 ms.
- the time window H is opened by means of the number or time element Z of FIG. 7, for example, by each winding signal WP, and when the raising signal FI is emitted at the time X.
- the filter mode fl is switched back to. If you switch between the filter modes during the entire entry, detection errors are avoided even with one of the rarely occurring slow entries.
- the time window H is only indicated schematically in FIG. 5A and not to scale. It should extend over a period of time within which contamination can be expected to pass.
- 8a to 8h are concrete functional diagrams of the trigger sensor S.
- the diagrams (DC voltage over the logarithmically represented 8a and 8b represent the response behavior the bandpass filter arrangement on thread pulses.
- 8a are a high pass filter mode and a low pass filter mode effective at the same time.
- the filter arrangement has a spread Response range at which frequencies of clearly already below 1.0 kHz to a DC voltage level of 0.6 V. or more, a DC voltage level of approx. 0.8 V above a frequency range from 1.0 kHz to approx. 20 kHz is reached, and even at the frequency of 100 kHz, a DC voltage level of approximately 0.6 V.
- Fig. 8b the low-pass filter mode is disabled that the response behavior in the diagram of the DC voltage over the frequency in the upper frequency range approximately as in Fig. 8a remains, but is different in the lower frequency range.
- a frequency of well below 10 kHz leads straight still to a DC voltage of. 0.6 V, carry frequencies between 10 kHz and 70 kHz to DC voltage levels of 0.8 V and more, and clearly give frequencies from 100 kHz to approx. 700 kHz DC voltage level below 0.6 V.
- FIG. 8c is the input signal to the bandpass filter device in the form of a DC level curve over time (ms) at the first thread passage clarifies that up to one DC voltage value of approx. -1.0 V is sufficient and approx. 0.5 ms lasts.
- the associated diagram of FIG. 8d represents this associated output signal of the bandpass filter arrangement after response on the signal in the diagram of Fig. 8c. It's closed see that in the response behavior according to FIG. 8a (low-pass filter mode and high pass filter mode effective) a powerful one Output signal with an absolute DC voltage value of almost 2.0 V occurs over approximately 0.5 ms.
- FIGS. 8e and 8f are diagrams (DC voltage over the Time) that the input signal to and the output signal out represent the bandpass filter arrangement, namely in the 8b (low-pass filter mode ineffective made) and with the same input signal as in Fig. 8c, i.e. when passing through a pulse with a pulse the thread pulse. Because the signal curve in Fig. 8e is due to their not very steep waste or not very steep Increase contains only relatively few frequency components itself as the output signal of the bandpass filter device in 8f only a level of less than 0.1 V, which ignores is and does not lead to a usable turn signal.
- FIG. 8g and 8h represent the response of the bandpass filter arrangement for a faster thread pulse YP2, which is in the diagram of Fig. 8g (voltage versus time) as strong Signal up to -1.0 V over a period of approx. 0.1 ms and with practically vertical drop and vertical rise, i.e. high frequency component.
- This is the input signal the bandpass filter arrangement from which in the bandpass filter arrangement the output signal of FIG. 8h is generated itself as a clear winding signal WP with a voltage level of approximately 1.0 V and a subsequent drop to almost -1.0 V results and clearly compared to the essential distinguish weaker signal of Fig. 8f for an interference pulse LP2 leaves.
- FIG. 6 schematically illustrates an embodiment of a Circuit D of the trigger sensor S between a receiver R and the controller C or a microprocessor MP.
- the from Thread pulse R generated is an operational amplifier 7 supplied, behind which two in this embodiment Bandpass filters 8a and 8b are arranged in parallel, each of which Subordinate elements 9a, 9b for generating the winding signals are.
- the two bandpass filters 8a and 8b have different ones Frequency band ranges f1, f2.
- a switching device 10 is via a line 11 to the controller C or the Microprocessor MP connected and between two switch positions convertible to either one branch or the other Activate branch of the filter arrangement.
- the superscript (and Reset) is carried out by a raise signal (or reset signal) from the controller or the microprocessor C, MP and either when the at least first winding signal occurs or depending on the measured in the usual way Thread speed, i.e. when reaching a predetermined Thread speed which is representative of that the thread passed the take-off sensor for the first time must, or with each turn signal (Fig. 4A, 5A).
- Fig. 7 shows a circuit with a bandpass filter arrangement E and a sensitivity adjustment device G, with which the take-off sensor S to the respective thread quality and the working conditions is customizable.
- the receiver R is at one positive input 27 of an operational amplifier 12 connected, a feedback loop 30 from its output 29 its negative input 28 leads.
- a resistor R21 is included in the feedback loop 30 .
- a connection 31 of an analog switching component 13 is connected, which is virtually grounded at Vvg.
- a sensitivity setting signal AMP can be applied, e.g. a high or a low voltage level (digital 1 or 0) on a line 22 from the microprocessor MP is provided.
- Capacitor C14 Downstream of the output 29 of the operational amplifier 12 are on Capacitor C14 and a resistor R17 are provided behind the there is a virtually grounded node 33. Behind it are parallel capacitors and resistors C12, R5 and C13, R4, R18, R5 provided.
- the capacitor C12 is directly with connected to a winding signal output 20, and additionally via the resistor R5 to an input 17 of a further operational amplifier 16 connected.
- the input of the capacitor C13 is connected to terminal 25 via resistor R18 further analog switching component 14 connected, the virtual is grounded and has a terminal 26 to which a Superscript signal FI can be applied, typically a voltage level, via a line 21 from the microprocessor MP, e.g. after receiving the first or a respective turn signal WP, is provided.
- the output of the capacitor C13 is also connected to the negative input 17 of the operational amplifier 16, the output 19 of which is connected to the winding signal output 20.
- the positive input 18 of the operational amplifier 16 is virtually grounded (Vvg).
- a further analog switching component 15 is arranged between the negative input 17 of the operational amplifier 16 and the line running from the capacitor C12 to the winding signal output 20, a resistor R4 being inserted between its connection 22 and the negative input 17.
- a terminal 24 of the analog switching component 15 can be fed with the raising signal FI, which is provided by the microprocessor 20 via a line 21.
- the microprocessor MP can have a timer or counter Z in order to maintain the raising signal FI over a predetermined time period (t F in FIG.
- the time period t F is shorter than the time interval between two winding signals WP at the highest take-off speed (for example 10 ms), and preferably and for safety reasons even shorter than half this time interval.
- the sensitivity adjustment signal AMP is either a low one or a high voltage level.
- the raising signal FI is generated as a high voltage level (digital 1 or 0).
- the frequency band range fl is thus selected or the low-pass filter mode is activated.
- From the at least first Thread pulse creates a winding signal that the microprocessor MP receives. Thereupon a "digital 1" is used as the superscript signal FI generated.
- the circuit is on the second Frequency band range f2 changed (low-pass filter mode disabled or ineffective), causing the analog switching components 14, 15 change the resistance behavior of the resistors R4, R18.
- the switching components 13, 15, 14 is grounded and node 33 is also grounded to ensure that the respective DC level is not drifts as soon as you switch. In this way, one Reaction on the sensitivity adjustment device G avoided.
- Sensitivity setting signal AMP a digital "0", then for example the gain factor "1”.
- Lies as AMP a digital "1”, then the gain factor 1 + R21: R22. If the thread comes to a standstill after the entry or receives the microprocessor MP over a longer period of time no more winding signal or the time window H in Fig. 4A, 5A expired, then the circuit D over the line 21 reset to the setting of the first frequency band range f1.
- the trigger sensor S is not necessarily the same Radial plane arranged as the stop device.
- the trigger sensor S could also be in the axial direction on the winding stock facing away from the stop device e.g. in front of the storage drum 2.
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Looms (AREA)
- Filamentary Materials, Packages, And Safety Devices Therefor (AREA)
Description
- Fig.1
- eine schematische Seitenansicht einer Webmaschine mit einem Meß-Liefergerät,
- Fig.2
- eine schematische Draufsicht auf das Meß-Liefergerät von Fig. 1,
- Fig.3
- eine alternative Ausführungsform eines Meß-Liefergeräts,
- Fig.4 u.5
- zwei schematische Diagramme einer ersten Verfahrensform, wobei das obere Diagramm Faden- und Störpulse und aus den Fadenpulsen erzeugte Windungsignale repräsentiert, während das untere Diagramm bestimmten Fadengeschwindigkeitsbereichen zugeordnete Frequenzbandweiten andeutet,
- Fig.4Au.5A
- zwei den Fig. 4 und 5 entsprechende Diagramme einer zweiten Verfahrensvariante,
- Fig. 6
- ein schematisches Blockschaltbild einer vereinfachten Ausführungsform eines Schaltkreises eines Abzugssensors,
- Fig. 7
- ein detailliertes Blockschaltbild eines elektrischen Schaltkreises eines Abzugssensors, und
- Fig.8a-8h
- konkrete Funktions-Diagramme des Abzugs sensors.
Claims (18)
- Verfahren zum Abtasten eines aus einem Windungsvorrat (3) auf der Speichertrommel (2) eines Schußfaden-Liefergeräts (F) für Webmaschinen (L) intermittierend abgezogenen Fadens (Y) vorbestimmter Länge mit einem Abzugssensor (S), der bei Durchgang des Fadens innerhalb eines Eintrags wenigstens einen Fadenpuls (YP) und daraus in einem Schaltkreis (D) jeweils ein Windungssignal (WP) erzeugt und jedes Windungssignal (WP) an eine signalverarbeitende Einrichtung (C, MP) überträgt, dadurch gekennzeichnet, daß die eingestellte Fadenpuls-Akzeptanz einer im Schaltkreis (D) vorgesehenen Bandpaßfilteranordnung (E) auch für wenigstens den ersten, langsamen und schwachen Fadenpuls (YP1) mit zunehmender Fadengeschwindigkeit (V) und/oder Auftreten wenigstens des ersten Windungssignals (WP) auf eine Fadenpulsakzeptanz für weitere, ausschließlich schnelle und starke Fadenpulse (YP2, YP2') und Nichtakzeptanz von gegenüber den weiteren Fadenpulsen langsameren oder schwachen Störpulsen (LP2) geändert wird, um falsche Windungssignale aufgrund von Störpulsen passierender Verunreinigungen zu unterdrücken.
- Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß in einer Bandpaßfilteranordnung (E) mit zunehmender Fadengeschwindigkeit (V) von einem ersten Filtermodus (fl) mit Akzeptanz wenigstens eines ersten, langsamen und schwachen Fadenpulses (YP1) zu einem zweiten Filtermodus (f2) mit Akzeptanz schneller und starker Fadenpulse (YP2, YP2') hochgestellt wird, wobei der zweite Filtermodus (f2) derart vorbestimmt ist, daß auch gegenüber den weiteren schnelleren und starken Fadenpulsen (YP2, YP2') langsamere bzw. schwache Störpulse (LP2) herausgefiltert werden.
- Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß, zumindest über die anfängliche Beschleunigungsphase jedes Eintrags, vor jedem Windungssignal (WP) die Fadenpulsakzeptanz für einen schwachen Fadenpuls (YP1) eingestellt und nachfolgend mit dem Windungssignal (WP) die Fadenpulsakzeptanz wieder auf die Fadenpulsakzeptanz für schnellere und starke Fadenpulse (YP2, YP2') geändert wird.
- Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß die Fadenpulsakzeptanz für schnellere und starke Fadenpulse (YP2, YP2') über ein Zeitfenster eingestellt ist, das kürzer ist als die kürzeste Zeitdauer zwischen zwei aufeinanderfolgenden Windungssignalen (WP) des Eintrags.
- Verfahren nach den Ansprüchen 1 bis 4, dadurch gekennzeichnet, daß unter Ansprechen auf zumindest das erste Windungssignal ein Hochstellsignal (FI), vorzugsweise ein Spannungspegel, an die Bandpaß-Filteranordnung (E) abgegeben wird, und daß ggfs. das Hochstellsignal (FI) über die Dauer (tF) des Zeitfensters (H) aufrechterhalten wird.
- Abzugssensor (S),insbesondere für ein eine Speichertrommel (2) für einen Windungsvorrat (3) aufweisendes Schußfaden-Liefergerät (F) für intermittierende Fadenlieferung einer eingestellten Fadenlänge zu einer Webmaschine (L), mit wenigstens einem bei jedem Eintrag auf Durchgänge des Fadens (Y) mit Fadenpulsen (YP1, YP2, YP2') ansprechenden Empfänger (R), mit einem dem Empfänger (R) zugeordneten Schaltkreis (D), in dem aus Fadenpulsen Windungssignale (WP) erzeugbar sind, und mit einer mit dem Abzugssensor (S) verbundenen, die Windungssignale (WP) verarbeitenden Einrichtung (C, MP), dadurch gekennzeichnet, daß der Schaltkreis (D) eine Filteranordnung (E) mit zwei unterschiedlichen selektiven Filtermodii (f1, f2) aufweist, die sich hinsichtlich der Akzeptanz starker und schwacher Fadenpulse (YP1, YP2, YP2') unterscheiden, und daß die Filteranordnung (E) mit steigender Fadenabzugsgeschwindigkeit (V) bzw. nach dem wenigstens ersten Fadendurchgang von dem einen selektiven Filtermodus (f1) mit Akzeptanz wenigstens eines ersten langsamen und schwachen Fadenpulses auf zumindest einen weiteren Filtermodus (f2) mit Akzeptanz schneller und starker Fadenpulse und Nichtakzeptanz von Störpulsen (LPn2) umstellbar ist.
- Abzugssensor nach Anspruch 6, dadurch gekennzeichnet, daß die Filteranordnung (E) eine Bandpaßfilteranordnung aufweist, die im zweiten Filtermodus (f2) für relativ zu den schnelleren und starken Fadenpulsen (YP2, YP2') langsame oder schwache Störpulse (LP2) undurchlässig ist, und daß die Bandpaßfilteranordnung (E) in beiden Filtermodii bis zu einer vorbestimmten oberen Schnelligkeitsgrenze (fO, Vmax) durchlässig ist.
- Abzugssensor nach den Ansprüchen 6 und 7, dadurch gekennzeichnet, daß die Bandpaßfilteranordnung (E) an einen mit den Windungssignalen (WP) gespeisten Mikroprozessor (MP) angeschlossen ist, und daß im Mikroprozessor (MP) ein Hochstellsignal (FI) bereithaltbar ist, das vom Mikroprozessor nach Erhalt zumindest des oder der ersten Windungssignale (WP) an die Bandpaßfilteranordnung (E) übermittelbar ist.
- Abzugssensor nach wenigstens einem der Ansprüche 6 bis 8, dadurch gekennzeichnet, daß die Filteranordnung (E) mit jedem Windungssignal (WP), vorzugsweise zumindest innerhalb der anfänglichen Beschleunigungsphase des Eintrags, mit einem Hochstellsignal (FI) von dem selektiven Filtermodus (f1) mit Akzeptanz auch eines langsamen und schwachen Fadenpulses (YP1) auf den weiteren Filtermodus (f2) mit Akzeptanz schneller und starker Fadenpulse und Nichtakzeptanz von Störpulsen (LP2) umstellbar und jeweils über die Zeitdauer (tF) eines Zeitfensters (H) im Filtermodus (f2) haltbar ist, und daß für das Zeitfenser (H) ein, vorzugsweise einstellbares, Zeit- oder Zählglied (Z) vorgesehen ist, das mit Auftreten des Windungssignals (WP) in Gang setzbar ist.
- Abzugssensor nach den Ansprüchen 7 und 9, dadurch gekennzeichnet, daß der Schaltkreis (D) eine aktive Verstärker- und Bandpaßfilteranordnung (E) (RCA-Filter) enthält.
- Abzugssensor nach wenigstens einem der Ansprüche 6 bis 10, dadurch gekennzeichnet, daß die Bandpaßfilteranordnung (E, E1) mit einem Hochpaßfiltermodus und einem Tiefpaßfiltermodus ausgelegt ist, von denen der Tiefpaßfiltermodus mit dem Hochstellsignal (FI) unwirksam machbar ist, und daß in der Bandpaßfilteranordnung zwei parallel angeordnete, an Analog-Schaltkomponenten (14, 15) angeschlossene Widerstände (R4, R18) vorgesehen sind, deren Widerstandsverhalten durch Anlegen des Hochstellsignals (FI) an die Analogschaltkomponenten (14, 15) derart steuerbar ist, daß bei unwirksam gemachten Tiefpaßfiltermodus nur der Hochpaßfiltermodus wirksam ist.
- Abzugssensor nach wenigstens einem der Ansprüche 6 bis 11, dadurch gekennzeichnet, daß mit dem Hochstellsignal (FI) die untere Durchgangsfrequenz der Bandpaßfilteranordnung (E) von einem vorbestimmten Grundwert (fU1) auf einen vorbestimmten Maximalwert (fU2) anhebbar ist, z.B. von einem einer Fadengeschwindigkeit von ca. 2 m/s entsprechenden Grundwert auf einen einer Fadengeschwindigkeit von ca. 10 m/s entsprechenden Maximalwert, wobei jeweils die obere Durchgangsfrequenz (fO) bei einer ca. 120 m/s entsprechenden Frequenz liegt.
- Abzugssensor nach wenigstens einem der Ansprüche 6 bis 12, dadurch gekennzeichnet, daß die Bandpaßfilteranordnung (E) bei Stillstand des Fadens (Y)oder Verstreichen des Zeitfensters (H) in den ersten Filtermodus (f1) zurücksetzbar ist.
- Abzugssensor nach wenigstens einem der Ansprüche 6 bis 13, dadurch gekennzeichnet, daß die Bandpaßfilteranordnung (E) Frequenzbandfilter (8a, 8b) mit unterschiedlich hohen unteren Grenzfrequenzeinstellungen und eine in Abhängigkeit von der Fadenabzugsgeschwindigkeit (V) oder dem Auftreten wenigstens eines ersten oder jeden Windungssignals (WP) betätigbare Schaltvorrichtung (10) zum Umschalten aufweist (Fig. 6).
- Abzugssensor nach wenigstens einem der Ansprüche 6 bis 13, dadurch gekennzeichnet, daß der Empfänger (R) in Bewegungsrichtung des Fadens (Y) beim Abziehen knapp hinter einer der Speichertrommel (2) zugeordneten, zwischen einer Stopstellung und einer Passivstellung für den Faden hin- und herbewegbaren Stopvorrichtung (4) zum zwangsweisen Bemessen der Fadenlänge im Liefergerät (F) angeordnet und über den Schaltkreis (D) zumindest mit einer Steuervorrichtung (C, MP) der Stopvorrichtung (4) verbunden ist.
- Abzugssensor nach Anspruch 15, dadurch gekennzeichnet, daß der Empfänger (R) in Axialrichtung der Speichertrommel (2) gegenüber dem Stopelement (4) der Stopvorrichtung (5) versetzt ist.
- Abzugssensor nach den Ansprüchen 15 und 16, dadurch gekennzeichnet, daß zwei Abzugssensoren (S) vorgesehen sind, wobei sich der eine in Bewegungsrichtung des Fadens (Y) knapp vor und der andere knapp hinter dem Stopelement (5) der Stopvorrichtung (4) befindet.
- Abzugssensor nach wenigstens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Schaltkreis (D) eine Einstellvorrichtung (G) für die fadenqualitätsabhängige Abtastsensitivität aufweist, und daß die Einstellvorrichtung (G) von der Bandpaßfilteranordnung (E) entkoppelt ist, z.B. durch Verwendung virtuell geerdeter Analog-Schaltkomponenten (12, 13, 14, 15) zum getrennten Einspeisen von Sensitivitäts- und Hochstellsignalpegeln.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19526216A DE19526216A1 (de) | 1995-07-18 | 1995-07-18 | Verfahren zum Abtasten eines Fadens und Fadenabzugssensor |
DE19526216 | 1995-07-18 | ||
PCT/EP1996/003177 WO1997004151A1 (de) | 1995-07-18 | 1996-07-18 | Verfahren zum abtasten eines fadens und fadenabzugssensor |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0839220A1 EP0839220A1 (de) | 1998-05-06 |
EP0839220B1 true EP0839220B1 (de) | 1999-09-29 |
Family
ID=7767157
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP96927547A Expired - Lifetime EP0839220B1 (de) | 1995-07-18 | 1996-07-18 | Verfahren zum abtasten eines fadens und fadenabzugssensor |
Country Status (7)
Country | Link |
---|---|
US (1) | US6068028A (de) |
EP (1) | EP0839220B1 (de) |
JP (1) | JP2877961B2 (de) |
KR (1) | KR100268051B1 (de) |
CN (1) | CN1046564C (de) |
DE (2) | DE19526216A1 (de) |
WO (1) | WO1997004151A1 (de) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SE9703369D0 (sv) * | 1997-09-16 | 1997-09-16 | Iro Ab | Verfahren zum zwischenspeichern von faden und liefergerät |
IT1307712B1 (it) * | 1999-04-27 | 2001-11-14 | Lgl Electronics Spa | Metodo di sorveglianza dell'inserzione di trama nei sistemi dialimentazione di telai a getto di fluido con premisuratore del filato |
US8096141B2 (en) * | 2005-01-25 | 2012-01-17 | Trane International Inc. | Superheat control by pressure ratio |
EP1961686B1 (de) * | 2007-02-20 | 2016-09-14 | Iro Ab | System zur Überwachung und Einstellung einer Garnspannung |
EP2058423A1 (de) * | 2007-10-10 | 2009-05-13 | Iro Ab | Webmaschine, Garnzufuhrvorrichtung und Verfahren zum Einsatz eines gewobenen Garns |
CN104717850B (zh) * | 2013-12-12 | 2017-12-12 | 深南电路有限公司 | 一种局部厚铜电路板的制作方法和局部厚铜电路板 |
CN107055189B (zh) * | 2017-05-11 | 2018-10-19 | 深圳怡化电脑股份有限公司 | 一种缠绕机构运行控制装置及控制方法 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH647999A5 (de) * | 1980-06-17 | 1985-02-28 | Rueti Ag Maschf | Fadenliefervorrichtung fuer textilmaschinen und verfahren zum betrieb der fadenliefervorrichtung. |
BE889255A (nl) * | 1981-06-17 | 1981-12-17 | Picanol Nv | Inslagvoorbereidingsinrichting voor luchtgetouwen |
US4768565A (en) * | 1984-09-27 | 1988-09-06 | Aktiebolaget Iro | Method for controlling a yarn storing, feeding and measuring device |
IT1201202B (it) * | 1987-01-26 | 1989-01-27 | Omv Off Mecc Vilminore | Dispositivo di autoregolazione di alimentazione di filati di trama in telai di tessitura ad aria |
DE3862670D1 (de) * | 1987-04-08 | 1991-06-13 | Sulzer Ag | Verfahren fuer den betrieb eines schussfadenspeichers fuer eine webmaschine. |
IT1267157B1 (it) * | 1994-11-22 | 1997-01-28 | Lgl Electronics Spa | Dispositivo e metodo perfezionati per la sorveglianza della riserva di filato negli apparecchi alimentatori di trama. |
-
1995
- 1995-07-18 DE DE19526216A patent/DE19526216A1/de not_active Withdrawn
-
1996
- 1996-07-18 CN CN96195577A patent/CN1046564C/zh not_active Expired - Lifetime
- 1996-07-18 JP JP9506300A patent/JP2877961B2/ja not_active Expired - Lifetime
- 1996-07-18 KR KR1019970710004A patent/KR100268051B1/ko not_active IP Right Cessation
- 1996-07-18 WO PCT/EP1996/003177 patent/WO1997004151A1/de active IP Right Grant
- 1996-07-18 US US08/983,365 patent/US6068028A/en not_active Expired - Fee Related
- 1996-07-18 DE DE59603237T patent/DE59603237D1/de not_active Expired - Fee Related
- 1996-07-18 EP EP96927547A patent/EP0839220B1/de not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
EP0839220A1 (de) | 1998-05-06 |
KR19990028681A (ko) | 1999-04-15 |
JPH10510598A (ja) | 1998-10-13 |
CN1046564C (zh) | 1999-11-17 |
US6068028A (en) | 2000-05-30 |
KR100268051B1 (ko) | 2000-10-16 |
DE59603237D1 (de) | 1999-11-04 |
JP2877961B2 (ja) | 1999-04-05 |
WO1997004151A1 (de) | 1997-02-06 |
CN1191000A (zh) | 1998-08-19 |
DE19526216A1 (de) | 1997-01-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE3224093C2 (de) | ||
DE2649779C3 (de) | Verfahren und Vorrichtung zum Feststellen periodischer Unregelmäßigkeiten eines Garns, insbesondere an einer Offenend-Spinnmaschine | |
CH649104A5 (de) | Verfahren zum eintrag eines schussfadens in das webfach einer webmaschine und webmaschine zur durchfuehrung des verfahrens. | |
DE60003895T2 (de) | Verfahren und vorrichtung zur garnüberwachung | |
EP0839220B1 (de) | Verfahren zum abtasten eines fadens und fadenabzugssensor | |
DE3889737T2 (de) | Fadenspulvorrichtung. | |
DE2605736C3 (de) | Verfahren und Vorrichtung zum Erkennen des fehlerhaften Arbeitens von Spinnaggregaten von Offen-End-Spinnmaschinen | |
EP1440193B1 (de) | Fadenverarbeitendes system | |
DE2813887A1 (de) | Verfahren und vorrichtung zum aufwickeln eines vorgarnes auf die voreilend angetriebene spule einer vorspinnmaschine mit konstanter spannung | |
DE1685886B1 (de) | Ueberwachungseinrichtung an textilmaschinen zur feststellung von unterbruechen an bewegten faserbaendern | |
DE3335656C2 (de) | Vorrichtung zur fotoelektrischen Überwachung einer Kettenwirkmaschine | |
EP0658507A1 (de) | Verfahren zum Ermitteln eines Fadenvorrats in einer Fadenspeicher- und -liefervorrichtung, und Fadenspeicher- und -liefervorrichtung | |
DE10059967B4 (de) | Verfahren und Anordnung zum Überwachen eines Fadenansetzers an einer Spinnmaschine | |
DE2803182A1 (de) | Elektronischer schussfadenwaechter fuer schuetzenlose webmaschinen | |
DE69106882T2 (de) | Kontrollsystem für das schussbehandlungssystem und die mess- und liefervorrichtung. | |
DE3834478C2 (de) | ||
DE2428898C3 (de) | Überwachungsvorrichtung für fehlerhafte Nadeln an Maschinen zur Herstellung von Maschenware | |
DE1710062A1 (de) | Verfahren zur Steuerung des Wechsels der Abwickelspule bei automatischen Kreuzspulmaschinen | |
DE2404136C3 (de) | Einrichtung zum Einstellen der Reinigungsgrenzen eines elektronischen Fadenreinigers | |
DE2200441C3 (de) | Schaltungsanordnung zum automatischen Einstellen richtiger Bezugsgrößen für Garnfehler an elektronischen Garnreiniger | |
DE60013951T2 (de) | Verfahren zur Funktionsüberwachung von Schussfadeneintrag in Fadenliefervorrichtungen von Düsenwebmaschinen mit Fadenmesseinheit | |
DE60013683T2 (de) | Verfahren und Vorrichtung zur Steuerung von Rotationssignale des Fadenzuführungsrohr in Fadenliefervorrichtungen für Webmaschinen | |
DE60008443T2 (de) | Verfahren und Vorrichtung zur Überwachung von Schussfaden in Webverfahren oder dergleichen | |
EP0544730B1 (de) | Verfahren zum steuern einer schussfadenliefer- und -messvorrichtung sowie schussfadenliefer- und -messvorrichtung | |
DE19926675A1 (de) | Verfahren zum Offenend-Spinnen und Offenend-Spinnvorrichtung |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19980105 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): BE CH DE FR GB IT LI NL SE |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
17Q | First examination report despatched |
Effective date: 19980922 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): BE CH DE FR GB IT LI NL SE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 19990929 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: BOVARD AG PATENTANWAELTE Ref country code: CH Ref legal event code: EP |
|
REF | Corresponds to: |
Ref document number: 59603237 Country of ref document: DE Date of ref document: 19991104 |
|
ITF | It: translation for a ep patent filed | ||
ET | Fr: translation filed | ||
GBV | Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed] |
Effective date: 19990929 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20020719 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20020723 Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030719 |
|
EUG | Se: european patent has lapsed | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040331 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20040727 Year of fee payment: 9 Ref country code: BE Payment date: 20040727 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20040802 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20040830 Year of fee payment: 9 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050731 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050731 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060201 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060201 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 20060201 |
|
BERE | Be: lapsed |
Owner name: *PICANOL N.V. Effective date: 20050731 Owner name: *IRO A.B. Effective date: 20050731 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20150728 Year of fee payment: 20 |