Nothing Special   »   [go: up one dir, main page]

EP0815455A1 - Aktives optisches strommess-system - Google Patents

Aktives optisches strommess-system

Info

Publication number
EP0815455A1
EP0815455A1 EP96905675A EP96905675A EP0815455A1 EP 0815455 A1 EP0815455 A1 EP 0815455A1 EP 96905675 A EP96905675 A EP 96905675A EP 96905675 A EP96905675 A EP 96905675A EP 0815455 A1 EP0815455 A1 EP 0815455A1
Authority
EP
European Patent Office
Prior art keywords
sensor
measuring system
active optical
point
current measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP96905675A
Other languages
English (en)
French (fr)
Other versions
EP0815455B1 (de
Inventor
Dieter Eckardt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0815455A1 publication Critical patent/EP0815455A1/de
Application granted granted Critical
Publication of EP0815455B1 publication Critical patent/EP0815455B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/22Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using light-emitting devices, e.g. LED, optocouplers

Definitions

  • the invention relates to an active optical current measuring system.
  • the intermediate circuit voltages in large converters are already around 5 kV with a tendency towards 10 kV and 20 kV. Such high intermediate circuit voltages also place high demands on the insulation strength of the current and voltage transformers used.
  • the partial discharge resistance is the decisive dimension for the insulation resistance. At 5 kV DC link voltage, a partial discharge resistance of 20 kV must be required.
  • the transformer systems used today are compensating current transformers. In order to maintain the required partial discharge resistance, these converters have to go through special manufacturing processes which make the converters very expensive.
  • An active optical current measuring system is known from the article "Optical current transformers - first field test successful in the 380 kV network", printed in the DE magazine “ABBtechnik", volume 3, 1994, pages 12 to 18. This article presents various optical current transformers that have been tested under real conditions in a German 380 kV network.
  • the active current transformer essentially works on the principle of a conventional current measurement, supplemented by a digital optical transmission path.
  • the system consists of an air core coil including a load, an analog-digital converter and a transmitter unit with a light-emitting diode at high potential.
  • An optical fiber establishes the connection to the interface device on earth potential.
  • the electronics with high voltage potential, built as a low-energy CMOS circuit has less than 150 ⁇ W power consumption.
  • a laser diode which sends energy between two data telegrams via the same optical waveguide is sufficient as the energy supply.
  • a parallel optical waveguide is required for energy supply because of the higher transmission power.
  • the interface device consists of a receiver, a limit value circuit, a detector, a buffer and a pulse generator, a transmitter and a light switch. Since the active current transformer uses an air core coil with a load for current measurement, only alternating currents can be detected with this active current transformer.
  • a current sensor that can also detect direct currents and itself does not require an energy supply is a measuring resistor or shunt. Since the measurement signals of the shunt must be kept small in the interest of a low power loss, sensor electronics should be arranged in the immediate vicinity of the shunt in order to largely rule out interference. The operation of this electronics then takes place in an electromagnetically harsh environment, that is to say it is acted upon by strong and, under certain circumstances, rapidly changing electrical and magnetic fields. In addition, the electronics are usually exposed to relatively high temperatures.
  • a disadvantage of the measuring resistor is that it has to be machined for an adjustment.
  • the invention is based on the object of specifying an active optical current measuring system with which direct currents are also possible can be detected and the sensor electronics are protected against interference.
  • the senor consists of two parts, which in the assembled state have a cavity in which the sensor electronics are housed and a measuring resistor is provided as the sensor, this measuring resistor forms
  • the sensor electronics in the interior of the shunt are linked on the input side to two measuring points which are spatially close together, the first measuring point being a point on the inside of the sensor and the second measuring point being insulated along the inside of the sensor ⁇ guided line is connected to a further point on the inside of the sensor, this further point being selected such that the second measuring point and this further measuring point are spatially relatively far apart.
  • the potential at the further point at the shunt is transmitted to the second measuring point with low inductance. In this way, the voltage obtained is always exactly the voltage which corresponds to the voltage drop at the closed conductor loop caused by the current along the path of the measuring line.
  • the second measuring point is connected to the further point on the inside of the sensor by means of a plurality of lines which are insulated along the inside of the sensor and form a cage.
  • This configuration of the several measuring lines to form a cage significantly increases the immunity to interference from external interference fields.
  • the sensor electronics have electronically controllable potentiometers. This enables electronic offset and gain adjustment.
  • the shunt can initially be manufactured, the electronics can be used and the current measurement system can be adjusted without mechanical processing.
  • the respective loop positions of the electronically controllable potentiometers are stored. When the active optical current measuring system is switched on, the stored position is automatically read out again and the potentiometers are adjusted.
  • the signals for adjusting the electronically controllable potentiometers can be transmitted both via a shunt-attached connector and also by the fact that the transmitter of the evaluation electronics transmits to earth potential
  • Light is modulated and the information on the sensor electronics is recovered.
  • the adjustment can be carried out fully automatically.
  • FIG. 1 shows the construction of the current measuring system according to the invention
  • the Figure 2 shows the block diagram of the sensor electronics of the
  • FIG. 1 shows the construction of the active optical current measuring system 2 according to the invention, which consists of a sensor 4 and sensor electronics 6.
  • a measuring resistor shunt
  • sensor 4 consists of two parts 8 and 10. These parts 8 and 10 are each provided on the end face with a power connection rail 12 or 14.
  • these shunt parts 8 and 10 are designed such that the shunt 4 has a cavity 16 in the assembled state.
  • the sensor electronics 6 are arranged in this cavity 16.
  • the shunt 4 practically forms the housing for the sensor electronics 6, the block diagram of which is shown in more detail in FIG.
  • the two parts 8 and 10 of the shunt 4 are preferably made of manganin, whereas the power connection rails 12 and 14 are made of copper.
  • the current connection rails 12 and 14 are, for example, brazed to the parts 10 and 8, respectively. These power connection rails 12 and 14 serve on the one hand to connect the two shunt parts 8 and 10 and on the other hand for fastening in a busbar, for example a busbar of an intermediate circuit of a large converter. To connect the two shunt parts 8 and 10, the power connection rails 12 and 14 are screwed to one another or riveted to one another or welded to one another.
  • the sensor 4 is also provided with two fiber optic connections, which are not illustrated in more detail in this illustration.
  • the two optical fibers 18 and 20 are inserted into these optical waveguide connections, the optical waveguide 18 for the transmission of the data stream or the mixed signal, consisting of a PWM signal and a data signal, and the optical waveguide 20 is responsible for the transmission of energy for the sensor electronics 6.
  • This structure of the active optical current measuring system ensures the mechanical protection of the sensor electronics 6 and prevents high-frequency interference from acting on the sensor electronics 6, since the shunt 4 acts as an electromagnetic shield.
  • the block diagram of the sensor electronics 6 is shown in more detail in FIG.
  • This sensor electronics 6 consists of an energy converter 22, a measuring unit 24, processing electronics 26 and a digital mixing device 28.
  • the measuring unit 24, which serves to regulate the supply voltage of the processing electronics 26, has a reference value transmitter 30, a voltage divider 32, a comparator 34 and a PWM modulator 36.
  • Optical fiber 20 passes energy in the form of laser light to the energy converter 22, which converts this light back into electrical energy.
  • the voltage built up by the energy converter 22 is used directly, that is to say without additional voltage regulation on site, for the power supply of the
  • Processing electronics 26 which is linked on the input side to the sensor 4. So that the supply voltage of the processing electronics 26 can nevertheless be kept constant, this voltage is measured and compared with a reference voltage. The difference is pulse-width-modulated and, with the aid of the mixing device 28, in particular a multiplexer, together with the data stream supplied by the processing electronics 26, is transmitted to the evaluation electronics of the interface module at ground potential. There the actual measurement signal and the PWM signal are separated again.
  • the PWM signal is applied as an input signal to a controller which changes the power of the transmitter so that the voltage which the energy converter 22 builds up is kept constant.
  • the actual sensor signals are tapped on the inside 38 of the shunt 4. Due to the mechanical opening, the voltage drop across a shunt 4 can only be tapped between two spatially relatively far apart points A and C (FIG. 3).
  • the measuring voltage In order to be able to process the measuring voltage in electronics 6, which is not shown in this illustration for reasons of clarity, the measuring voltage must be fed to an amplifier, the connections of which are generally spatially close to one another. The measuring voltage must therefore be conducted via a line 40.
  • This line 40 is laid insulated close to the inside 38 of the shunt 4. This line 40 serves to transmit the potential at point A at the shunt to a point B with low inductance.
  • the measuring point B is arranged close to the measuring point C.
  • the actual sensor signal can be tapped between these two points B and C and fed to the sensor electronics 6.
  • this interference compensation is linked to a condition, because an interference field which penetrates the outer conductor loop and induces a current in it, penetrates also the measuring conductor loop and also induces a circulating current in this conductor loop.
  • a complete compensation of the external interference field therefore only results if the ratio of the partial resistances of the conductor loop and the measuring conductor loop are the same. Only in this case are the voltage drops caused by the induced currents in the outer conductor loop (inside 38 of the shunt) and the measuring conductor loop the same and cancel each other out.
  • Measuring line 40 may be provided, which is connected at point A to the first measuring line 40 and to the shunt 4 and to the first measuring line 40 at point B (FIG. 4). Since the shunt 4 is three-dimensional, the interference fields can act on the shunt 4 in any spatial direction and induce corresponding eddy currents. The measuring conductor loop must therefore also be designed in three dimensions. This now takes the form of a cage 42 according to FIG. 4, which nestles against the inside 38 of the shunt, but is isolated from it. Ideally, the cage 42 forms a closed housing. Already with a symmetrical cage 42 consisting of only six individual conductors 40, interference compensation of approximately 90% is achieved compared to a single conductor loop. As indicated in FIG.
  • the individual conductors 40 of the cage 42 run in the direction of the external current flow. Although no eddy currents can be compensated for transversely to the direction of current flow, in a first approximation they do not contribute to falsifying the measuring voltage of the shunt 4.
  • the processing electronics 26 which consists of an amplifier circuit on the input side and an analog-digital converter on the output side, is designed in such a way that an electronic offset and gain comparison is made possible.
  • the shunt 4 can first be manufactured, the sensor electronics 6 used and the active optical current measuring system stem 2 can be adjusted without mechanical processing.
  • the electronic adjustment of the current measuring system 2 there are 26 electronically controllable potentiometers in the amplifier circuit of the processing electronics. The respective grinder position is saved at the end of the adjustment.
  • the stored wiper position is automatically read out again and the potentiometer is adjusted.
  • the signals for adjusting the potentiometer can be transmitted both via a plug connection attached to the shunt and by the fact that the light received by the energy converter 22 is modulated and the information in the sensor electronics 6 is recovered. The adjustment can be carried out fully automatically.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

Die Erfindung bezieht sich auf ein aktives optisches Strommeßsystem (2). Erfindungsgemäß besteht dieses Strommeßsystem (2) aus einem mit Strom-Anschlußschienen (12, 14) und einem Lichtwellenleiter-Anschluß versehenen Sensor (4), der aus zwei Teilen (8, 10) besteht, die zusammengesetzt einen Hohlraum (16) aufweisen, und einer Sensorelektronik (6), die in diesem Hohlraum (16) untergebracht ist und ausgangsseitig mit dem Lichtwellenleiter-Anschluß verknüpft ist, wobei als Sensor (4) ein Meßwiderstand vorgesehen ist. Somit erhält man ein Strommeßsystem (2), mit dem auch Gleichströme erfaßt werden können, wobei dessen Sensorelektronik (6) mechanisch geschützt und elektromagnetisch abgeschirmt ist.

Description

Beschreibung
Aktives optisches Strommeßsystem
Die Erfindung bezieht sich auf ein aktives optisches Strom¬ meßsystem.
Die Zwischenkreisspannungen in Großstromrichtern liegen heute bereits bei ca. 5 kV mit der Tendenz hin zu 10 kV und 20 kV. Derartig hohe Zwischenkreisspannungen stellen auch hohe An¬ forderungen an die Isolationsfestigkeit der verwendeten Strom- und Spannungswandler. Die Teilentladungsfestigkeit ist dabei die entscheidende Bemessungsgröße für die Isolationsfe¬ stigkeit. Bei 5 kV Zwischenkreisspannung muß eine Teilentla- dungsfestigkeit von 20 kV gefordert werden.
Die heute verwendeten WandlerSysteme sind kompensierende Stromwandler. Zur Einhaltung der geforderten Teilentladungs- festigkeit müssen diese Wandler jedoch spezielle Herstel- lungsprozesse durchlaufen, die die Wandler sehr verteuern.
Daz.u kommt, daß diese Wandler einen großen Bauraum beanspru¬ chen und die Leitungen zur Stromversorgung des Wandlers sowie zur Übertragung der Meßsignale unter Einhaltung der vorge¬ schriebenen Luft- und Kriechstrecken verlegt werden müssen, um eine sichere Trennung zu garantieren. Dadurch vergrößert sich der notwendige Bauraum weiter.
Da die Wandler bereits eine Teilentladungsfestigkeit von 20 kV bei einer Zwischenkreisspannung von 5 kV kaum mehr ga- rantieren können, scheint eine immer aufwendigere Isolation nicht der geeignete Weg zu sein, um die Wandlersysteme für noch höhere Zwischenkreisspannungen bei einem gleichzeitig niedrigen Preisniveau zu ertüchtigen. Ein grundsätzlich anderer Ansatz zur Lösung dieses Problems ist, die sichere Trennung mittels Lichtleiter durchzuführen. Das bedeutet allerdings, daß sensorseitig eine Elektronik notwendig ist, die zumindest die vom Sensor gelieferten Meß- Signale verstärkt und einen Lichtleitersender ansteuert. Die Energieversorgung dieser Elektronik muß dann aber ebenfalls über einen Lichtleiter erfolgen. Derartige Energieübertra¬ gungssysteme bestehen aus einem Laser, dem Lichtwellenleiter und einem Energiekonverter. Die übertragbare Leistung ist al- lerdings auf einige 100 mW beschränkt. Aus diesem Grunde kann in solchen lichtenergieversorgten Systemen kein kompensieren¬ der Stromwandler eingesetzt werden, da der Leistungsbedarf dieser Wandler aufgrund des Kompensationsstromes zu groß ist.
Aus dem Aufsatz "Optische Stromwandler - erster Feldversuch im 380-kV-Netz erfolgreich", abgedruckt in der DE-Zeitschrift "ABB Technik", Band 3, 1994, Seiten 12 bis 18, ist ein akti¬ ves optisches Strommeßsystem bekannt. Dieser Aufsatz stellt verschiedene optische Stromwandler vor, die unter realen Be- dingungen in einem deutschen 380 kV-Netz getestet wurden. Der aktive Stromwandler arbeitet im wesentlichen nach dem Prinzip einer konventionellen Strommessung, ergänzt durch eine digi¬ tale optische Übertragungsstrecke. Im einzelnen besteht das System aus einer Luftkernspule einschließlich Bürde, einem Analog-Digital-Wandler und einer Sendeeinheit mit lichtemit¬ tierender Diode auf hohem Potential. Ein Lichtwellenleiter stellt die Verbindung zum Schnittstellengerät auf Erdpotien- tal her. Die Elektronik auf hohem Spannungspotential, als Niederenergie CMOS-Schaltung aufgebaut, hat weniger als 150 μW Leistungsbedarf. Als Energieversorgung genüge eine La- serdiode, die zwischen zwei Datentelegrammen über den glei¬ chen Lichtwellenleiter Energie sendet. Bei größeren Entfer¬ nungen zwischen Sensor und Schnittstellengerät wird wegen der höheren Sendeleistung ein paralleler Lichtwellenleiter zur Energieversorgung benötigt. Im Aufsatz "EHV Series Capacitor Banks. A New Approach To Platform To Ground Signalling, Relay Protection and Supervi- sion", abgedruckt in der Zeitschrift IEEE Transactions on Po- wer Delivery, Vol. 4, No. 2, April 1989, Seiten 1369 bis 1378, wird die Verwendung des vorgestellten aktiven Strom¬ wandlers bei einem Serienkompensator beschrieben. Diesem Auf¬ satz ist neben dem Aufbau des aktiven Stromwandlers auch der Aufbau der Sensorelektronik und des Schnittstellengerätes auf Erdpotential zu entnehmen. Die Sensorelektronik besteht aus einem Filter, mehreren Spannungsteilern und einem Energiekon¬ verter. Das Schnittstellengerät besteht aus einem Empfänger, einer Grenzwertschaltung, einem Detektor, einem Puffer und aus einem Pulsgenerator, einem Sender und einer Lichtweiche. Da der aktive Stromwandler zur Strommessung eine Luftkern¬ spule mit Bürde verwendet, können mit diesem aktiven Strom¬ wandler nur Wechselströme erfaßt werden.
Ein Stromsensor, der auch Gleichströme erfassen kann und selbst keine Energieversorgung benötigt, ist ein Meßwider¬ stand oder Shunt. Da die Meßsignale des Shunts im Interesse einer niedrigen Verlustleistung klein gehalten werden müssen, sollte eine Sensorelektronik in unmittelbarer Umgebung des Shunts angeordnet werden, um Störungen weitgehend auszu- schließen. Der Betrieb dieser Elektronik findet dann in elek¬ tromagnetisch rauher Umgebung statt, das heißt, sie wird von starken und unter Umständen schnell veränderlichen elektri¬ schen und magnetischen Feldern beaufschlagt. Daneben ist die Elektronik in der Regel relativ hohen Temperaturen ausge- setzt. Ein Nachteil des Meßwiderstandes besteht darin, daß dieser für einen Abgleich mechanisch bearbeitet werden muß.
Der Erfindung liegt nun die Aufgabe zugrunde, ein aktives optisches Strommeßsystem anzugeben, mit dem auch Gleichströme erfaßt werden können und dessen Sensorelektronik gegen Stö¬ rungen geschützt ist.
Diese Aufgabe wird erfindungsgemäß gelost mit den Merkmalen des Anspruchs 1.
Dadurch, daß der Sensor aus zwei Teilen besteht, die im zu¬ sammengesetzten Zustand einen Hohlraum aufweisen, in dem die Sensorelektronik untergebracht ist, und als Sensor einen Meß- widerstand vorgesehen ist, bildet dieser Meßwiderstand
(Shunt) das Gehäuse für die Sensorelektronik. Dieser Aufbau gewährleistet den mechanischen Schutz der Elektronik und ver¬ hindert, daß hochfrequente Störungen auf die Elektronik ein¬ wirken können, da der Shunt als elektromagnetische Abschir- mung wirkt. Die eigentlichen Sensorsignale werden an der In¬ nenseite des Shunts abgegriffen.
Bei einer vorteilhaften Ausführungsform des aktiven optischen Strommeßsystems ist die Sensorelektronik im Inneren des Shunts eingangsseitig mit zwei räumlich dicht beiemanderlie- genden Meßpunkten verknüpft, wobei der erste Meßpunkt ein Punkt der Innenseite des Sensors ist und der zweite Meßpunkt mittels einer entlang der Innenseite des Sensors isoliert ge¬ führten Leitung mit einem weiteren Punkt der Innenseite des Sensors verbunden ist, wobei dieser weitere Punkt derart ge¬ wählt ist, daß der zweite Meßpunkt und dieser weitere Me߬ punkt räumlich relativ weit auseinanderliegen. Mittels dieser isoliert geführten Leitung wird das am weiteren Punkt anlie¬ gende Potential am Shunt niederinduktiv an den zweiten Meß- punkt übertragen. Auf diese Art und Weise erhält man als Me߬ spannung immer genau die Spannung, die dem durch den Strom hervorgerufenen Spannungsabf ll an der geschlossenen Leiter- schleife entlang des Weges der Meßleitung entsprich . Bei einer besonders vorteilhaften Ausführungsform ist der zweite Meßpunkt mittels mehrerer entlang der Innenseite des Sensors isoliert geführter Leitungen mit dem weiteren Punkt der Innenseite des Sensors verbunden, die einen Käfig bilden. Durch diese Ausgestaltung der mehreren Meßleitungen zu einem Käfig wird die Störsicherheit gegenüber äußeren Störfeldern wesentlich erhöht.
Bei einer weiteren vorteilhaften Ausführungsform weist die Sensorelektronik elektronisch steuerbare Potentiometer auf. Dadurch wird ein elektronischer Offset- und Verstärkungsab- gleich ermöglicht. Dadurch kann der Shunt zunächst gefertigt, die Elektronik eingesetzt und das Strommeßsystem ohne mecha¬ nische Bearbeitung abgeglichen werden. Die jeweiligen Schlei- fenpositionen der elektronisch steuerbaren Potentiometer wer¬ den abgespeichert. Beim Einschalten des aktiven optischen S rommeßsystems wird die gespeicherte Position automatisch wieder ausgelesen und die Potentiometer werden justiert.
Der Abgleich dieses Strommeßsystems erfolgt hinsichtlich
Nullpunkt und Verstärkung bzw. Übertragungsbeiwert. Die Über¬ tragung der Signale zum Verstellen der elektronisch steuer¬ baren Potentiometer können sowohl über einem Shunt angebrach- -te- Steckverbindung erfolgen als auch dadurch, daß das vom Sender der Auswerteelektronik auf Erdpotential gesendete
Licht moduliert und die Information auf der Sensorelektronik zurückgewonnen wird. Der Abgleich läßt sich vollautomatisch durchführen.
Zur weiteren Erläuterung der Erfindung wird auf die Zeichnung Bezug genommen, in der ein Ausführungsbeispiel des aktiven optischen Strommeßsys ems schematiεch veranschaulicht ist.
Figur 1 zeigt den konstruktiven Aufbau des erfindungsgemäßen Strommeßsystems, die Figur 2 zeigt das Blockschaltbild der Sensorelektronik des
Strommeßsystems nach Figur 1, m Figur 3 ist die Ermittlung des Sensorsignals dargestellt und Figur 4 veranschaulicht den vereinfachten Kompensationskafig.
Die Figur 1 zeigt den konstruktiven Aufbau des erfindungsge¬ mäßen aktiven optischen Strommeßsystems 2, der aus einem Sen¬ sor 4 und einer Sensorelektronik 6 besteht. Als Sensor 4 ist ein Meßwiderstand (Shunt) vorgesehen, der aus zwei Teilen 8 und 10 besteht. Diese Teile 8 und 10 sind stirnseitig jeweils mit einer Strom-Anschlußschiene 12 bzw. 14 versehen. Außerdem sind diese Shuntteile 8 und 10 dermaßen ausgebildet, daß im zusammengebauten Zustand der Shunt 4 einen Hohlraum 16 aufweist. In diesem Hohlraum 16 ist die Sensorelektronik 6 angeordnet. Der Shunt 4 bildet praktisch das Gehäuse für die Sensorelektronik 6, deren Blockschaltbild in Figur 2 näher dargestellt ist. Die beiden Teile 8 und 10 des Shunts 4 be¬ stehen vorzugsweise aus Manganin, wogegen die Strom-Anschluß- schienen 12 und 14 aus Kupfer bestehen. Die Strom-Anschlu߬ schienen 12 bzw. 14 sind mit dem Teil 10 bzw. 8 beispiels¬ weise hartverlötet. Diese Strom-Anschlußschienen 12 und 14 dienen einerseits zur Verbindung der beiden Shuntteile 8 und 10 und andererseits zur Befestigung in einer Stromschiene, beispielsweise einer Stromschiene eines Zwischenkreises eines Großstromrichters. Zur Verbindung der beiden Shuntteile 8 und 10 werden die Strom-Anschlußschienen 12 und 14 miteinander verschraubt oder miteinander vernietet oder miteinander ver¬ schweißt. Der Sensor 4 ist außerdem mit zwei Lichtwellenlei- ter-Anschlussen versehen, die bei dieser Darstellung nicht naher veranschaulicht sind. In diese Lichtwellenleiter-An- schlüsse werden die beiden Lichtwellenleiter 18 und 20 ge¬ steckt, wobei der Lichtwellenleiter 18 für die Übertragung des Datenstromes bzw. des Mischsignals, bestehend aus einem PWM-Signal und einem Datensignal, und der Lichtwellenleiter 20 für die Übertragung der Energie für die Sensorelektronik 6 zuständig ist. Dieser Aufbau des aktiven optischen Stromme߬ systems gewährleistet den mechanischen Schutz der Sensorelek¬ tronik 6 und verhindert, daß hochfrequente Störungen auf die Sensorelektronik 6 einwirken können, da der Shunt 4 als elek¬ tromagnetische Abschirmung wirkt.
In der Figur 2 ist das Blockschaltbild der Sensorelektronik 6 näher dargestellt. Diese Sensorelektronik 6 besteht aus einem Energiekonverter 22, einer Meßeinheit 24, einer Verarbei¬ tungselektronik 26 und einer digitalen Mischeinrichtung 28. Die Meßeinheit 24, die zur Regelung der Versorgungsspannung der Verarbeitungselektronik 26 dient, weist einen Referen∑- wertgeber 30, einen Spannungsteiler 32, einen Vergleicher 34 und einen PWM-Modulator 36 auf. Mittels des
Lichtwellenleiters 20 gelangt Energie in Form von Laserlicht zum Energiekonverter 22, der dieses Licht wieder in elektrische Energie umwandelt. Die vom Energiekonverter 22 aufgebaute Spannung dient direkt, also ohne zusätzliche Spannungsregelung vor Ort, zur Stromversorgung der
Verarbeitungselektronik 26, die eingangsseitig mit dem Sensor 4 verknüpft ist. Damit dennoch die Versorgungs-spannung der Verarbeitungselektronik 26 konstant gehalten werden kann, wird diese Spannung gemessen und mit einer Referenzspannung verglichen. Die Differenz wird pulsbreiten-moduliert und mit Hilfe der Mischeinrichtung 28, insbesondere einem Multi- plexer, zusammen mit dem von der Verarbeitungselektronik 26 gelieferten Datenstrom an die Auswerteelektronik der Schnitt¬ stellenbaugruppe auf Erdpotential übertragen. Dort werden das eigentliche Meßsignal und das PWM-Signal wieder getrennt.
Während das Meßsignal an einen Prozessor weitergeleitet wird, wird das PWM-Signal als Eingangssignal an einen Regler ge¬ legt, der die Leistung des Senders so verändert, daß die Spannung, die der Energiekonverter 22 aufbaut, konstant ge- halten wird. Eine genaue Beschreibung dieser Sensorelektronik 6 und deren Funktionsweise ist einer parallel eingereichten deutschen Patentanmeldung zu entnehmen.
Die eigentlichen Sensorsignale werden an der Innenseite 38 des Shunts 4 abgegriffen. Aufgrund des mechanischen Auf aus ist der Spannungsabfall über einen Shunt 4 immer nur zwischen zwei räumlich relativ weit auseinanderliegenden Punkten A und C abgreifbar (Figur 3) . Um die Meßspannung in einer Elektro¬ nik 6, in dieser Darstellung wegen der Übersichtlichkeit nicht näher dargestellt, verarbeiten zu können, muß die Me߬ spannung aber einem Verstärker zugeführt werden, dessen An¬ schlüsse im allgemeinen räumlich dicht beieinander liegen. Somit muß die Meßspannung über eine Leitung 40 geführt wer¬ den. Diese Leitung 40 ist isoliert eng an der Innenseite 38 des Shunts 4 verlegt. Diese Leitung 40 dient dazu, das am Punkt A anliegende Potential am Shunt niederinduktiv an einen Punkt B zu übertragen. Der Meßpunkt B ist räumlich dicht bei dem Meßpunkt C angeordnet. Zwischen diesen beiden Punkten B und C kann das eigentliche Sensorsignal abgegriffen und der Sensorelektronik 6 zugeführt werden.
Zur Vermeidung eines Störeinflusses muß sichergestellt wer- den, daß zwischen der geschlossenen Leiterschleife (Innensei¬ te 38 des Shunts 4) und der Meßleitung 40 keine offene Lei¬ terschleife existiert. Diese Bedingung läßt sich nur durch eine geschlossene Meßleiterschleife erfüllen, die praktisch deckungsgleich mit der ersten Leiterschleife ist, aber iso- liert von dieser. Lediglich am Punkt A sind beide Leiter¬ schleifen miteinander verbunden.
Allerdings ist diese Störkompensation an e ne Bedingung ge¬ knüpft, denn ein Störfeld, das die äußere Leiterschleife durchsetzt und in dieser einen Strom induziert, durchdrmσt auch die Meßleiterschleife und induziert ebenfalls einen Kreisstrom in dieser Leiterschleife. Eine vollständige Kom¬ pensation des äußeren Störfeldes ergibt sich deshalb nur, wenn das Verhältnis der Teilwiderstände der Leiterschleife und der Meßleiterschleife gleich sind. Nur in diesem Fall sind die durch die induzierten Ströme hervorgerufenen Span¬ nungsabfälle in der äußeren Leiterschleife (Innenseite 38 des Shunts) und der Meßleiterschleife gleich und heben sich auf.
Damit man eine Meßleiterschleife erhält, muß eine weitere
Meßleitung 40 vorgesehen sein, die im Punkt A mit der ersten Meßleitung 40 und mit dem Shunt 4 und mit der ersten Meßlei¬ tung 40 am Punkt B verbunden ist (Figur 4) . Da der Shunt 4 dreidimensional ist, können die Störfelder in jeder Raumrich- tung auf den Shunt 4 einwirken und entsprechende Wirbelströme induzieren. Die Meßleiterschleife muß deshalb ebenfalls drei¬ dimensional gestaltet sein. Diese nimmt nun die Form eines Käfigs 42 an gemäß Figur 4, der sich an der Innenseite 38 des Shunts anschmiegt, aber von diesem isoliert ist. Im Idealfall bildet der Käfig 42 ein geschlossenes Gehäuse. Bereits mit einem symmetrischen, aus nur sechs Einzelleitern 40 bestehen¬ den Käfig 42 wird eine Störkompensation von ca. 90% gegenüber einer einzigen Leiterschleife erreicht. Wie in Figur 4 ange¬ deutet ist, verlaufen die einzelnen Leiter 40 des Käfigs 42 in Richtung des äußeren Stromflusses. Zwar können dadurch keine Wirbelströme quer zur Stromflußrichtung kompensiert werden, diese tragen aber in erster Näherung nicht zu einer Verfälschung der Meßspannung des Shunts 4 bei.
Die Verarbeitungselektronik 26, die aus einer eingangsseiti- gen Verstärkerschaltung und einem ausgangsseitigen Analog- Digital-Wandler besteht, ist so gestaltet, daß ein elektro¬ nischer Offset- und Verstärkungsabgleich ermöglicht wird. Da¬ durch kann der Shunt 4 zunächst gefertigt werden, die Sensor- elektronik 6 eingesetzt und das aktive optische Strommeßsy- stem 2 ohne mechanische Bearbeitung abgeglichen werden. Für den elektronischen Abgleich des St ommeßsystemε 2 befinden sich in der Verstärkerschaltung der Verarbeitungselektronik 26 elektronisch steuerbare Potentiometer. Die jeweilige Schleiferposition wird am Ende des Abgleichs abgespeichert. Beim Einschalten wird die gespeicherte Schleiferposition automatisch wieder ausgelesen und das Potentiometer justiert Die Übertragung der Signale zum Verstellen der Potentiometer kann sowohl über eine am Shunt angebrachte Steckverbindung erfolgen als auch dadurch, daß das vom Energiekonverter 22 empfangene Licht moduliert ist und die Information in der Sensorelektronik 6 zurückgewonnen wird. Der Abgleich läßt sich vollautomatisch durchführen.

Claims

Patentansprüche
1. Aktives optisches Strommeßsystem (2), bestehend aus einem mit Strom-Anschlußschienen (12, 14) und einem Licht- wellenleiter-Anschluß versehenen Sensor (4), der aus zwei Teilen (8, 10) besteht, die zusammengesetzt einen Hohlraum (16) aufweisen, und einer Sensorelektronik (6), die in diesem Hohlraum (16) untergebracht ist und ausgangsseitig mit dem Lichtwellenleiter-Anschluß verknüpft ist, wobei als Sensor (4) ein Meßwiderεtand vorgesehen ist.
2. Aktives optisches Strommeßsystem (2) nach Anspruch 1, wobei die im Hohlraum (16) angeordnete Sensorelektronik (6) eingangsseitig mit zwei räumlich dicht beieinanderliegenden Meßpunkten (C, B) , an denen eine Meßspannung abgreifbar ist, verknüpft ist, wobei der erste Meßpunkt (C) ein Punkt der In¬ nenseite (38) des Sensors (4) ist und der zweite Meßpunkt (B) mittels einer entlang der Innenseite (38) des Sensors (4) isoliert geführten Leitung (40) mit einem weiteren Punkt (A) der Innenseite (38) des Sensors (4) verbunden ist, wobei die¬ ser weitere Punkt (A) derart gewählt ist, daß der zweite Me߬ punkt (B) und der Punkt (A) räumlich relativ weit auseinan¬ derliegen.
3. Aktives optisches Strommeßsystem (2) nach Anspruch 2, wobei der zweite Meßpunkt (B) mittels mehrerer entlang der Innenseite (48) des Sensors (4) isoliert geführter Leitungen (40) mit dem Punkt (A) der Innenseite (38) des Sensors (4) verbunden ist.
4. Aktives optisches Strommeßsystem (2) nach Anspruch 3, wobei die mehreren Leitungen (40) in Richtung des Sensor¬ stromes verlaufen und einen Käfig (42) bilden.
5. Aktives optisches Strommeßsystem (2) nach Anspruch 4, wobei der Käfig (42) ein geschlossenes Gehäuse bildet.
6. Aktives optisches Strommeßsystem (2) nach Anspruch 1, wobei die Sensorelektronik (6) elektronisch steuerbare Poten¬ tiometer aufweist.
7. Aktives optisches Strommeßεystem (2) nach Anspruch 1, wobei die Teile (8, 10) des Sensorε (4) jeweils mit Strom- Anschlußschienen (12,14) versehen sind.
8. Aktives optischeε Strommeßsystem (2) nach Anspruch 1, wobei als Material für den Sensor (4) Manganin vorgesehen ist .
9. Aktives optischeε Strommeßsystem (2) nach Anεpruch 7, wobei alε Material für die Strom-Anεchlußεchienen (12, 14) Kupfer vorgesehen ist.
10. Aktives optischeε Strommeßεyεtem (2) nach Anεpruch 1, wobei der Senεor (4) mit einem weiteren Lichtwellenleiter- Anεchluß verεehen ist.
EP96905675A 1995-03-23 1996-02-29 Aktives optisches strommess-system Expired - Lifetime EP0815455B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19510662A DE19510662C2 (de) 1995-03-23 1995-03-23 Aktives optisches Strommeßsystem
DE19510662 1995-03-23
PCT/DE1996/000358 WO1996029608A1 (de) 1995-03-23 1996-02-29 Aktives optisches strommess-system

Publications (2)

Publication Number Publication Date
EP0815455A1 true EP0815455A1 (de) 1998-01-07
EP0815455B1 EP0815455B1 (de) 2001-05-02

Family

ID=7757521

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96905675A Expired - Lifetime EP0815455B1 (de) 1995-03-23 1996-02-29 Aktives optisches strommess-system

Country Status (4)

Country Link
US (1) US6034521A (de)
EP (1) EP0815455B1 (de)
DE (2) DE19510662C2 (de)
WO (1) WO1996029608A1 (de)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9813982D0 (en) * 1998-06-30 1998-08-26 Mem Limited Residual current detection device
DE19854436A1 (de) * 1998-11-25 2000-06-15 Siemens Ag Einrichtung zum Messen eines in einem Leiter fließenden elektrischen Stromes
DE19906276A1 (de) * 1999-02-15 2000-09-21 Heusler Isabellenhuette Verfahren und Strommeßmodul zur Stromüberwachung in einem Stromversorgungssystem
US6826369B1 (en) * 1999-04-23 2004-11-30 System To Asic, Inc. Intelligent sensor platform
GB0000067D0 (en) * 2000-01-06 2000-02-23 Delta Electrical Limited Current detector and current measurement apparatus including such detector with temparature compensation
DE10047225C1 (de) * 2000-09-23 2002-06-06 Fraunhofer Ges Forschung Anordnung zur Messung von Messgrößen und Verfahren zum Betrieb der Anordnung
US20040036461A1 (en) * 2002-08-22 2004-02-26 Sutherland Peter Edward Switchgear and relaying configuration
DE102004007851B4 (de) * 2004-02-17 2006-03-16 Kromberg & Schubert Gmbh & Co. Kg Anschlussvorrichtung für eine Batterie
DE102004040575A1 (de) 2004-08-21 2006-02-23 Abb Patent Gmbh Einrichtung zum Messen von elektrischem Strom, Spannung und Temperatur an einem aus starrem Material bestehenden elektrischen Leiter
US7688022B2 (en) 2006-02-17 2010-03-30 Lear Corporation Energy management system for a vehicle
US7598724B2 (en) * 2007-01-19 2009-10-06 Admmicro Properties, Llc Flexible current transformer assembly
US8476864B2 (en) * 2007-06-13 2013-07-02 Lear Corporation Battery monitoring system
DE102007036837A1 (de) * 2007-08-02 2009-02-05 Siemens Ag Strommessverfahren in Niederspannungsleistungsschaltern mittels eines speziellen Messmoduls
US8570178B2 (en) * 2007-09-24 2013-10-29 Ppc Broadband, Inc. Coaxial cable connector with internal floating ground circuitry and method of use thereof
US8773255B2 (en) 2007-09-24 2014-07-08 Ppc Broadband, Inc. Status sensing and reporting interface
US8305034B2 (en) * 2008-07-23 2012-11-06 Lear Corporation Battery monitoring system
US8376774B2 (en) * 2008-11-17 2013-02-19 Rochester Institute Of Technology Power extracting device and method of use thereof
US8419464B2 (en) * 2008-11-17 2013-04-16 Ppc Broadband, Inc. Coaxial connector with integrated molded substrate and method of use thereof
US8414326B2 (en) * 2008-11-17 2013-04-09 Rochester Institute Of Technology Internal coaxial cable connector integrated circuit and method of use thereof
US8618944B2 (en) * 2009-12-03 2013-12-31 Ppc Broadband, Inc. Coaxial cable connector parameter monitoring system
US8604936B2 (en) 2010-12-13 2013-12-10 Ppc Broadband, Inc. Coaxial cable connector, system and method of use thereof
EP2737326B1 (de) 2011-07-28 2019-06-26 Continental Teves AG & Co. OHG Schaltung zum leiten eines elektrischen stromes
EP2568296A1 (de) * 2011-09-12 2013-03-13 Eaton Industries GmbH Kurzschlussstromgeschützter Messwiderstand
US9013189B2 (en) * 2012-11-07 2015-04-21 Eaton Corporation Electrical joint monitoring device and electrical joint monitoring system employing the same
DE102016204949A1 (de) * 2016-03-24 2017-09-28 Continental Automotive Gmbh Batteriesensor
BR112018072487A2 (pt) * 2016-05-04 2019-02-19 Safran Electrical & Power conjunto de sensor de corrente de barra coletora
HUE046303T2 (hu) * 2016-11-30 2020-02-28 Yuyang Dnu Co Ltd Összeállítás töltés/kisütés ciklusolóhoz
CN112305295B (zh) * 2020-11-11 2024-07-09 江苏常荣电器股份有限公司 一种复合电流传感器

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1939510C3 (de) * 1969-07-31 1974-08-29 Siemens Ag, 1000 Berlin Und 8000 Muenchen Meßeinrichtung für Ströme in Hochspannungsleitern
US4070572A (en) * 1976-12-27 1978-01-24 General Electric Company Linear signal isolator and calibration circuit for electronic current transformer
CH630466A5 (en) * 1978-08-31 1982-06-15 Sprecher & Schuh Ag Current measuring arrangement
DE4101859C1 (de) * 1991-01-23 1992-04-30 Abb Patent Gmbh, 6800 Mannheim, De
US5461307A (en) * 1994-03-03 1995-10-24 General Electric Company Electro-optical current sensing system and method for sensing and avoiding thermally induced measurement error therein

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9629608A1 *

Also Published As

Publication number Publication date
EP0815455B1 (de) 2001-05-02
DE19510662A1 (de) 1996-10-02
WO1996029608A1 (de) 1996-09-26
DE19510662C2 (de) 1998-08-06
US6034521A (en) 2000-03-07
DE59606851D1 (de) 2001-06-07

Similar Documents

Publication Publication Date Title
DE19510662C2 (de) Aktives optisches Strommeßsystem
DE69626431T2 (de) Lineare 2-Weg-Isolationsschaltung
EP3472629B1 (de) Messanordnung zur messung eines elektrischen stroms im hochstrombereich
EP0084098B1 (de) Empfänger für Tonfrequenz-Signale
DE69916299T2 (de) Verfahren und vorrichtung zur erdschlusslokalisierung eines elektrischen kabels
DE19523725C2 (de) Stromerfassungsgerät zur Anbringung an mindestens einem stromdurchflossenen Leiter
DE112007001098T5 (de) Datensignal-Isolationsvorrichtung
EP1664804B1 (de) Verfahren und vorrichtung zur spannungsmessung
DE212013000286U1 (de) Messsystem
DE10050476B4 (de) Vorrichtung zur Durchführung sowohl von Messungen als auch von Datenübertragung in elektrischen Energieverteilnetzen
DE69730167T2 (de) Ein gerät zur überwachung teilweiser entladungen in einem gerät mit elektrischer hochspannung oder in einer hochspannungsanlage
AT398134B (de) Messwandler
DE2125403A1 (de) Signalubertragungsleitung fur auto matische Meßuberwachungssysteme
DE4416966C2 (de) Schaltungsanordnung zur Ermittlung eines Erdschlusses in einem Energieübertragungskabel
DE19940284C1 (de) Vorrichtung zur Feldkompensation
DE102011052449A1 (de) Stromwandler sowie Lasttrenner mit einem solchen
DE19543363C2 (de) Meßwandleranordnung
DE10216330B4 (de) Messeinrichtung für die Prozesstechnik mit Zentralstromversorgung
EP3489696A1 (de) Strommessvorrichtung, baureihe von strommessvorrichtungen und verfahren zur strommessung
EP1366554B1 (de) Anordnung zur elektrischen energieversorgung eines verbrauchers mittels einer zweigeteilten übertragungsstrecke
DE3708731C1 (en) Electrical circuit arrangement for detecting noise pulses in high-voltage systems
DE19811366A1 (de) Stromsensor
DE3912506A1 (de) Teilentladungs-sensor
EP0239807B1 (de) Kapazitives Intrusionsschutzsystem
DE1765282B2 (de) Anordnung zum Schutz eines Fernmeldekabels gegen Fremdstrombeeinflussung durch Starkstromanlagen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19970918

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

17Q First examination report despatched

Effective date: 19981203

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20010502

REF Corresponds to:

Ref document number: 59606851

Country of ref document: DE

Date of ref document: 20010607

ITF It: translation for a ep patent filed
ET Fr: translation filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20090225

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20100212

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100228

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20110228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110228

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20140212

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20140417

Year of fee payment: 19

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59606851

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20151030

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150302