Nothing Special   »   [go: up one dir, main page]

EP0864664A1 - Process for producing a superelastic article from an alloy of nickel and titanium - Google Patents

Process for producing a superelastic article from an alloy of nickel and titanium Download PDF

Info

Publication number
EP0864664A1
EP0864664A1 EP98420004A EP98420004A EP0864664A1 EP 0864664 A1 EP0864664 A1 EP 0864664A1 EP 98420004 A EP98420004 A EP 98420004A EP 98420004 A EP98420004 A EP 98420004A EP 0864664 A1 EP0864664 A1 EP 0864664A1
Authority
EP
European Patent Office
Prior art keywords
temperature
nickel
alloy
annealing
work hardening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP98420004A
Other languages
German (de)
French (fr)
Inventor
Bernard Prandi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Memometal Industries
Original Assignee
Memometal Industries
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Memometal Industries filed Critical Memometal Industries
Publication of EP0864664A1 publication Critical patent/EP0864664A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/006Resulting in heat recoverable alloys with a memory effect

Definitions

  • the invention relates to a method for manufacturing a superelastic part made of nickel and titanium alloy.
  • the method of the invention aims, on the contrary, to produce a truly superelastic part thanks to a reasoned choice of the composition of the titanium and nickel alloy and a martensite platelet generation heat treatment in this alloy.
  • This object is achieved by the process of the invention which is characterized in that it consists in producing an ingot from of a mixture of nickel and titanium comprising 55.6% ⁇ 0.4% in weight of nickel and to carry out a heat treatment of generation of martensite wafers by subjecting said part at a temperature between 480 and 520 ° C during a duration between 1 and 60 minutes.
  • the ingot produced has a transition temperature at the end of the appearance of austenite A f of less than 20 ° C. under stress, so that the material is really superelastic under normal temperature conditions.
  • the martensite platelet generation heat treatment facilitates the movements of these platelets inside the material, which corresponds to the superelastic nature.
  • the process also includes a step of flash annealing, this annealing flash being carried out at a temperature between 600 ° and 800 ° C for a period of between 10 and 30 seconds, this duration being a function of the transverse dimensions of the part.
  • This flash annealing partially anneals the surface of the part, which increases its ductility without harming its elasticity.
  • the process includes a crystallization annealing step prior to platelet generation heat treatment of martensite, this crystallization annealing being carried out at a temperature between 700 and 800 ° C, preferably between 720 and 780 ° C for a period greater than two minutes.
  • the temperature range chosen for crystallization annealing achieves true crystallization without precipitation phases of the alloy rich in nickel and without embrittlement of the alloy by grain enlargement.
  • the process includes a work hardening step prior to treatment thermal generation of martensite wafers, this work hardening being between 15 and 28%, preferably between 20 and 27%.
  • the purpose of work hardening is to break the structure of annealing and creating dislocations serving as sites of germination to deformation martensite.
  • this work hardening is cold or lukewarm, i.e. at a temperature less than 500 ° C.
  • work hardening can be performed with intermediate annealing, at a temperature between 400 and 550 ° C.
  • An alloy is really superelastic when the deformation martensite created under a stress ⁇ is not stable.
  • the alloy should not be in the martensitic state in this temperature range. In other words, an alloy is sought whose temperature M s is less than -20 ° C.
  • the temperature difference separating M s and A f is of the order of 40 ° C for titanium and nickel alloys, so that, to comply with the condition previously stated, it is necessary to '' have an alloy whose temperature A f under stress is less than 20 ° C.
  • the effect of a stress on an alloy of titanium and nickel influences the temperatures identified above, to the point that these can be shifted upwards by approximately 30 ° C. This is why, when it is desired to have a temperature A f of less than 20 ° C under stress, it is necessary to provide an alloy composition such that A f is less than -10 ° C in the absence of stress.
  • condition A f below -10 ° C corresponds to an alloy of titanium and nickel rich in nickel, that is to say comprising nickel in a proportion of 55.6% ⁇ 0.4% by weight with, optionally, conventional addition elements such as iron, copper or vanadium, these elements replacing nickel according to rules known to those skilled in the art.
  • Particularly interesting results have been obtained in the case where the percentage of nickel is between 55.8 and 56% by weight.
  • the process of the invention thus begins with a step 1 of mixture of nickel and titanium in the chosen proportions.
  • Stage 1 is followed by a fusion 2, at a temperature of the order of 1300 to 1500 ° C., leading to a first transformation of the ingot when hot, ie at a temperature of between 900 and 1000 ° C., represented by stage 3.
  • a fusion 2 at a temperature of the order of 1300 to 1500 ° C., leading to a first transformation of the ingot when hot, ie at a temperature of between 900 and 1000 ° C., represented by stage 3.
  • Several stages of work hardening 4 and several stages of successive annealing 5 of the ingot can be provided, which is represented by the looping arrow F 1 in FIG. 3.
  • the martensite platelet generation heat treatment included in the process of the invention which is represented by step 12 in FIG. 3, must not have a negative influence on the transition temperature A f, that is to say - say increase this temperature.
  • the heat treatment may have the effect of precipitating TiNi 3 , Ti 2 Ni 3 or Ti 2 Ni 4 .
  • this precipitation corresponds to a decrease in the relative value of nickel in the alloy, so that the transition temperature is displaced according to arrow F in FIG. 2 and that it increases in the unwanted direction. It is therefore important to avoid as much as possible the formation of TiNi 3 or other similar compounds during the heat treatment. It has been determined experimentally that little or no TiNi 3 is formed when the heat treatment is carried out at a temperature above 480 ° C.
  • the process also includes a step 11 of flash annealing prior to platelet generation heat treatment martensite.
  • This step 11 could also be later at treatment 12.
  • This flash annealing is carried out at a temperature between 600 and 800 ° C for a period between 10 and 30 seconds. This duration depends on transverse dimensions of the wire, that is to say of its diameter.
  • the purpose of the flash treatment is to improve the ductility, that is to say the fatigue resistance of the part, without harming with a superelastic effect. This is achieved if a fraction corresponding to approximately 10% of the mass of the part is annealed near the surface of it.
  • this flash annealing can be carried out at a temperature included between 720 ° and 780 ° C.
  • a step 6 of annealing treatment of crystallization is also planned before the heat treatment generation of martensite platelets.
  • This annealing of crystallization must bring a real recrystallization of the whole piece, that is to say that the grains elongated during rolling must be able to be broken to form grains smaller.
  • crystallization annealing must be long enough to bring the whole room to the desired temperature. For a small diameter wire, this is done after two about minutes. For a large piece or a coil complete with wire, crystallization annealing may take longer of one hour.
  • the treatment of annealing tends to weaken the alloy by magnifying the grains or even burns when the annealing temperature reaches 900 ° C. This is why, for safety, we limit the annealing temperature at about 800 ° C.
  • a step 8 work hardening is also provided in the process in order to break the annealing structure and create dislocations serving as a germination site for deformation martensite. Practical tests have shown that when this work hardening is limited to 15%, “annealed” austenite remains inside material and the superelastic effect is not optimal. We speak in this case of "soft" component of the material.
  • This work hardening can be carried out in one or more stages, which is represented by the looping arrow F 2 in FIG. 3, cold or lukewarm, that is to say at a temperature below 500 ° C.
  • an intermediate annealing step 9 can be provided at a temperature between 400 and 550 ° C so not to generate a new recrystallization of the alloy.
  • This intermediate annealing allows, in particular, a setting easier workpiece shape while improving elongation elastic obtainable.
  • the wire is calibrated in a shaping step 10.
  • a superelastic part obtained by the process of the invention finds many applications.
  • the process can be used for the manufacture of threads, the diameter is between 0.5 and 5 mm and which can serve as glasses frame, but also bra frame, cell phone antenna, needle, prosthetic piece or for ancillary equipment intended for the installation of prostheses in the medical field.
  • the cross section of these wires can be round, square, rectangular or other, as desired the user.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Articles (AREA)
  • Materials For Medical Uses (AREA)
  • Adornments (AREA)

Abstract

Procédé de fabrication d'une pièce superélastique en alliage de nickel et de titane, caractérisé en ce qu'il consiste à réaliser un lingot (1, 2, 3) à partir d'un mélange de nickel et de titane comprenant 55,6% ± 0,4% en poids de nickel et à procéder à un traitement thermique (12) de génération de plaquettes de martensite en soumettant ledit lingot à une température comprise entre 480 et 520°C pendant une durée comprise entre 5 et 45 minutes. Le procédé permet d'obtenir un matériau réellement superélastique à température ambiante. <IMAGE>Method of manufacturing a superelastic piece of nickel and titanium alloy, characterized in that it consists in producing an ingot (1, 2, 3) from a mixture of nickel and titanium comprising 55.6% ± 0.4% by weight of nickel and carrying out a heat treatment (12) to generate martensite wafers by subjecting said ingot to a temperature between 480 and 520 ° C for a period of between 5 and 45 minutes. The process provides a truly superelastic material at room temperature. <IMAGE>

Description

L'invention a trait à un procédé de fabrication d'une pièce superélastique en alliage de nickel et de titane.The invention relates to a method for manufacturing a superelastic part made of nickel and titanium alloy.

Il est connu de baptiser "matériaux superélastiques " des alliages de nickel et de titane ayant subi un traitement thermique et/ou un écrouissage. Sur un alliage martensitique à température ambiante, un écrouissage peut conduire à la formation de ce que l'on dénomme "martensite écrouie" qui confère une élasticité de l'ordre de 4%. Ceci ne permet pas de qualifier l'alliage obtenu de "superélastique".It is known to baptize "superelastic materials" nickel and titanium alloys which have been treated thermal and / or work hardening. On a martensitic alloy with room temperature, work hardening can lead to formation of what is called "hardened martensite" which gives an elasticity of the order of 4%. This does not allow qualify the alloy obtained as "superelastic".

Le procédé de l'invention vise au contraire à réaliser une pièce réellement superélastique grâce à un choix raisonné de la composition de l'alliage de titane et de nickel et à un traitement thermique de génération de plaquettes de martensite dans cet alliage.The method of the invention aims, on the contrary, to produce a truly superelastic part thanks to a reasoned choice of the composition of the titanium and nickel alloy and a martensite platelet generation heat treatment in this alloy.

Ce but est atteint grâce au procédé de l'invention qui est caractérisé en ce qu'il consiste à réaliser un lingot à partir d'un mélange de nickel et de titane comprenant 55,6% ± 0,4% en poids de nickel et à procéder à un traitement thermique de génération de plaquettes de martensite en soumettant ladite pièce à une température comprise entre 480 et 520°C pendant une durée comprise entre 1 et 60 minutes.This object is achieved by the process of the invention which is characterized in that it consists in producing an ingot from of a mixture of nickel and titanium comprising 55.6% ± 0.4% in weight of nickel and to carry out a heat treatment of generation of martensite wafers by subjecting said part at a temperature between 480 and 520 ° C during a duration between 1 and 60 minutes.

Grâce au procédé de l'invention, le lingot réalisé a une température de transition de fin d'apparition d'austénite Af inférieure à 20°C sous contrainte, de sorte que le matériau est réellement superélastique dans les conditions de température normales. Le traitement thermique de génération de plaquettes de martensite facilite les mouvements de ces plaquettes à l'intérieur du matériau, ce qui correspond au caractère superélastique.Thanks to the process of the invention, the ingot produced has a transition temperature at the end of the appearance of austenite A f of less than 20 ° C. under stress, so that the material is really superelastic under normal temperature conditions. The martensite platelet generation heat treatment facilitates the movements of these platelets inside the material, which corresponds to the superelastic nature.

Selon un premier aspect avantageux de l'invention, le procédé comprend également une étape de recuit flash, ce recuit flash étant effectué à une température comprise entre 600° et 800°C pendant une durée comprise entre 10 et 30 secondes, cette durée étant fonction des dimensions transversales de la pièce. Ce recuit flash permet de recuire partiellement la surface de la pièce, ce qui augmente sa ductilité sans nuire à son élasticité.According to a first advantageous aspect of the invention, the process also includes a step of flash annealing, this annealing flash being carried out at a temperature between 600 ° and 800 ° C for a period of between 10 and 30 seconds, this duration being a function of the transverse dimensions of the part. This flash annealing partially anneals the surface of the part, which increases its ductility without harming its elasticity.

Selon un autre aspect avantageux de l'invention, le procédé comprend une étape de recuit de cristallisation antérieure au traitement thermique de génération de plaquettes de martensite, ce recuit de cristallisation étant effectué à une température comprise entre 700 et 800°C, de préférence entre 720 et 780°C pendant une durée supérieure à deux minutes. La gamme de températures choisie pour le recuit de cristallisation permet d'atteindre une vraie cristallisation sans précipitation des phases de l'alliage riche en nickel et sans fragilisation de l'alliage par grossissement des grains.According to another advantageous aspect of the invention, the process includes a crystallization annealing step prior to platelet generation heat treatment of martensite, this crystallization annealing being carried out at a temperature between 700 and 800 ° C, preferably between 720 and 780 ° C for a period greater than two minutes. The temperature range chosen for crystallization annealing achieves true crystallization without precipitation phases of the alloy rich in nickel and without embrittlement of the alloy by grain enlargement.

Selon un autre aspect avantageux de l'invention, le procédé comprend une étape d'écrouissage antérieure au traitement thermique de génération de plaquettes de martensite, cet écrouissage étant compris entre 15 et 28%, de préférence entre 20 et 27%. L'écrouissage a pour but de casser la structure de recuit et de créer des dislocations servant de sites de germination à la martensite de déformation.According to another advantageous aspect of the invention, the process includes a work hardening step prior to treatment thermal generation of martensite wafers, this work hardening being between 15 and 28%, preferably between 20 and 27%. The purpose of work hardening is to break the structure of annealing and creating dislocations serving as sites of germination to deformation martensite.

Selon le cas, on peut prévoir que cet écrouissage est effectué à froid ou à tiède, c'est-à-dire à une température inférieure à 500°C.Depending on the case, it can be provided that this work hardening is cold or lukewarm, i.e. at a temperature less than 500 ° C.

Selon un autre aspect avantageux de l'invention l'écrouissage peut être réalisé avec un recuit intermédiaire, à une température comprise entre 400 et 550°C.According to another advantageous aspect of the invention work hardening can be performed with intermediate annealing, at a temperature between 400 and 550 ° C.

L'invention sera mieux comprise et d'autres avantages de celle-ci apparaítront plus clairement à la lumière de la description qui va suivre d'un procédé de fabrication d'un fil de monture de lunettes conforme à son principe, donnée uniquement à titre d'exemple et faite en référence aux dessins annexés dans lesquels :

  • la figure 1 est une représentation schématique de la déformation obtenue en fonction de la température selon les phases présentes dans un alliage métallique ;
  • la figure 2 est une représentation schématique de la valeur de la température de transition de fin d'apparition d'austénite en fonction du pourcentage de nickel dans un alliage de nickel et de titane et
  • la figure 3 est un schéma blocs du procédé de l'invention.
The invention will be better understood and other advantages of it will appear more clearly in the light of the following description of a process for manufacturing a spectacle frame wire in accordance with its principle, given solely by way of example and made with reference to the accompanying drawings in which:
  • Figure 1 is a schematic representation of the deformation obtained as a function of the temperature according to the phases present in a metal alloy;
  • FIG. 2 is a schematic representation of the value of the transition temperature at the end of the appearance of austenite as a function of the percentage of nickel in a nickel and titanium alloy and
  • FIG. 3 is a block diagram of the method of the invention.

Pour la fabrication d'une pièce superélastique telle qu'un fil formant monture de lunettes, le choix de la composition de l'alliage est effectué en fonction d'une des quatre températures caractéristiques de la transition entre l'état martensitique et l'état austénitique. Ces températures caractéristiques sont les suivantes :

  • As est la température de début d'apparition d'austénite à partir de l'état martensitique ;
  • Af est la température de fin d'apparition d'austénite à partir de l'état martensitique ;
  • Ms est la température de début d'apparition de martensite à partir de l'état austénitique et
  • Mf est la température de fin d'apparition de martensite à partir de l'état austénitique.
For the manufacture of a superelastic piece such as a wire forming a spectacle frame, the choice of the composition of the alloy is made as a function of one of the four temperatures characteristic of the transition between the martensitic state and the state austenitic. These characteristic temperatures are as follows:
  • A s is the temperature at which austenite begins to appear from the martensitic state;
  • A f is the temperature at the end of the appearance of austenite from the martensitic state;
  • M s is the temperature at which martensite begins to appear from the austenitic state and
  • M f is the temperature at the end of the appearance of martensite from the austenitic state.

Un alliage est réellement superélastique lorsque la martensite de déformation créée sous une contrainte Σ n'est pas stable. Pour obtenir un matériau superélastique dans une gamme de températures correspondant à une utilisation commune, par exemple au-dessus de -20°C, il convient que l'alliage ne soit pas à l'état martensitique dans cette plage de températures. En d'autres termes, on recherche un alliage dont la température Ms est inférieure à -20°C.An alloy is really superelastic when the deformation martensite created under a stress Σ is not stable. To obtain a superelastic material in a temperature range corresponding to common use, for example above -20 ° C., the alloy should not be in the martensitic state in this temperature range. In other words, an alloy is sought whose temperature M s is less than -20 ° C.

En pratique, on a démontré que l'écart de température séparant Ms et Af est de l'ordre de 40°C pour les alliages de titane et de nickel, de sorte que, pour respecter la condition précédemment énoncée, il convient d'avoir un alliage dont la température Af sous contrainte est inférieure à 20°C. D'autre part, l'effet d'une contrainte sur un alliage de titane et de nickel influe sur les températures identifiées précédemment, au point que celle-ci peuvent être décalées vers le haut de 30°C environ. C'est pourquoi, lorsque l'on souhaite une température Af inférieure à 20°C sous contrainte, il est nécessaire de prévoir une composition d'alliage telle que Af soit inférieure à -10°C en l'absence de contrainte.In practice, it has been demonstrated that the temperature difference separating M s and A f is of the order of 40 ° C for titanium and nickel alloys, so that, to comply with the condition previously stated, it is necessary to '' have an alloy whose temperature A f under stress is less than 20 ° C. On the other hand, the effect of a stress on an alloy of titanium and nickel influences the temperatures identified above, to the point that these can be shifted upwards by approximately 30 ° C. This is why, when it is desired to have a temperature A f of less than 20 ° C under stress, it is necessary to provide an alloy composition such that A f is less than -10 ° C in the absence of stress.

Il a été déterminé de façon expérimentale que la condition Af inférieure à -10°C correspond à un alliage de titane et de nickel riche en nickel, c'est-à-dire comprenant du nickel dans une proportion de 55,6% ± 0,4% en poids avec, éventuellement, des éléments d'addition classiques tels que du fer, du cuivre ou du vanadium, ces éléments venant en substitution du nickel selon des règles connues de l'homme du métier. Des résultats particulièrement intéressants ont été obtenus dans le cas où le pourcentage de nickel est compris entre 55,8 et 56% en poids.It has been experimentally determined that the condition A f below -10 ° C corresponds to an alloy of titanium and nickel rich in nickel, that is to say comprising nickel in a proportion of 55.6% ± 0.4% by weight with, optionally, conventional addition elements such as iron, copper or vanadium, these elements replacing nickel according to rules known to those skilled in the art. Particularly interesting results have been obtained in the case where the percentage of nickel is between 55.8 and 56% by weight.

D'autre part, des essais sur un alliage dont la température Af est égale à 20°C ont montré que l'alliage est bien élastique à 20°C, mais de façon limite. En effet, à 15°C, l'alliage présente une composante "molle", signe que la martensite est stable, alors qu'à 25°C, l'alliage est parfaitement élastique. Ceci démontre que la limite fixée grâce à Af correspond à une réalité physique relative à l'utilisation du matériau.On the other hand, tests on an alloy whose temperature A f is equal to 20 ° C have shown that the alloy is very elastic at 20 ° C, but in a limiting manner. Indeed, at 15 ° C, the alloy has a "soft" component, a sign that the martensite is stable, while at 25 ° C, the alloy is perfectly elastic. This demonstrates that the limit set with A f corresponds to a physical reality relating to the use of the material.

Le procédé de l'invention débute ainsi par une étape 1 de mélange de nickel et de titane dans les proportions choisies.The process of the invention thus begins with a step 1 of mixture of nickel and titanium in the chosen proportions.

L'étape 1 est suivie d'une fusion 2, à une température de l'ordre de 1300 à 1500°C, conduisant à une première transformation du lingot à chaud, soit à une température comprise entre 900 et 1000°C, représentée par l'étape 3. Plusieurs étapes d'écrouissage 4 et plusieurs étapes de recuit 5 successifs du lingot peuvent être prévues, ce qui est représenté par la flèche de bouclage F1 à la figure 3.Stage 1 is followed by a fusion 2, at a temperature of the order of 1300 to 1500 ° C., leading to a first transformation of the ingot when hot, ie at a temperature of between 900 and 1000 ° C., represented by stage 3. Several stages of work hardening 4 and several stages of successive annealing 5 of the ingot can be provided, which is represented by the looping arrow F 1 in FIG. 3.

Le traitement thermique de génération de plaquettes de martensite compris dans le procédé de l'invention, qui est représenté par l'étape 12 à la figure 3, ne doit pas influer de façon négative sur la température de transition Af c'est-à-dire augmenter cette température. Or, dans les traitements thermiques effectués à une température inférieure à environ 450°C, le traitement thermique peut avoir pour effet la précipitation de TiNi3, de Ti2Ni3 ou de Ti2Ni4. Compte tenu du nombre relatif d'atomes de nickel et d'atomes de titane dans chaque molécule de TiNi3, de Ti2Ni3 ou de Ti2Ni4, cette précipitation correspond à une diminution de la valeur relative de nickel dans l'alliage, de sorte que la température de transition est déplacée selon la flèche F à la figure 2 et qu'elle augmente dans le sens non désiré. Il importe donc d'éviter le plus possible la formation de TiNi3 ou d'autres composés similaires lors du traitement thermique. On a pu déterminer expérimentalement qu'il ne se forme pas ou peu de TiNi3 lorsque le traitement thermique est effectué à une température supérieure à 480°C.The martensite platelet generation heat treatment included in the process of the invention, which is represented by step 12 in FIG. 3, must not have a negative influence on the transition temperature A f, that is to say - say increase this temperature. However, in heat treatments carried out at a temperature below about 450 ° C., the heat treatment may have the effect of precipitating TiNi 3 , Ti 2 Ni 3 or Ti 2 Ni 4 . Given the relative number of nickel atoms and titanium atoms in each molecule of TiNi 3 , Ti 2 Ni 3 or Ti 2 Ni 4 , this precipitation corresponds to a decrease in the relative value of nickel in the alloy, so that the transition temperature is displaced according to arrow F in FIG. 2 and that it increases in the unwanted direction. It is therefore important to avoid as much as possible the formation of TiNi 3 or other similar compounds during the heat treatment. It has been determined experimentally that little or no TiNi 3 is formed when the heat treatment is carried out at a temperature above 480 ° C.

Par ailleurs, un traitement au-delà de 550°C commence à recuire la structure de l'alliage et conduit à des possibilités de plasticité. L'expérience a démontré que ce phénomène se produit dès 530°C. Compte tenu de ce qui précède, on limite donc la température du traitement thermique à 520°C. Ainsi, le traitement thermique de génération de plaquettes de martensite ne perturbe pas la composition et la structure de l'alliage de la pièce en cours de traitement.In addition, treatment above 550 ° C begins annealing the alloy structure and leads to possibilities plasticity. Experience has shown that this phenomenon occurs produces from 530 ° C. In view of the above, we limit therefore the temperature of the heat treatment at 520 ° C. So the martensite platelet generation heat treatment does not disturb the composition and structure of the alloy the part being processed.

Selon un premier aspect avantageux de l'invention, le procédé comprend également une étape 11 de recuit flash antérieure au traitement thermique de génération de plaquettes de martensite. Cette étape 11 pourrait également être postérieure au traitement 12. Ce recuit flash est effectué à une température comprise entre 600 et 800°C pendant une durée comprise entre 10 et 30 secondes. Cette durée est fonction des dimensions transversales du fil, c'est-à-dire de son diamètre. Le traitement flash a pour but d'améliorer la ductibilité, c'est-à-dire la résistance à la fatigue de la pièce, sans nuire à l'effet superélastique. Ceci est atteint si une fraction correspondant à environ 10% de la masse de la pièce est recuite à proximité de la surface de celle-ci. En pratique, et pour être cohérent avec d'autres étapes du procédé de l'invention, on peut réaliser ce recuit flash à une température comprise entre 720° et 780°C.According to a first advantageous aspect of the invention, the process also includes a step 11 of flash annealing prior to platelet generation heat treatment martensite. This step 11 could also be later at treatment 12. This flash annealing is carried out at a temperature between 600 and 800 ° C for a period between 10 and 30 seconds. This duration depends on transverse dimensions of the wire, that is to say of its diameter. The purpose of the flash treatment is to improve the ductility, that is to say the fatigue resistance of the part, without harming with a superelastic effect. This is achieved if a fraction corresponding to approximately 10% of the mass of the part is annealed near the surface of it. In practice, and for be consistent with other steps of the process of the invention, this flash annealing can be carried out at a temperature included between 720 ° and 780 ° C.

Avantageusement, une étape 6 de traitement de recuit de cristallisation est aussi prévue avant le traitement thermique de génération des plaquettes de martensite. Ce recuit de cristallisation doit apporter une vraie recristallisation de toute la pièce, c'est-à-dire que les grains allongés au cours du laminage doivent pouvoir être cassés pour former des grains plus petits.Advantageously, a step 6 of annealing treatment of crystallization is also planned before the heat treatment generation of martensite platelets. This annealing of crystallization must bring a real recrystallization of the whole piece, that is to say that the grains elongated during rolling must be able to be broken to form grains smaller.

Ce recuit de cristallisation doit être suffisamment long pour amener l'ensemble de la pièce à la température souhaitée. Pour un fil de faible diamètre, ceci est réalisé après deux minutes environ. Pour une pièce volumineuse ou une bobine complète de fil, le recuit de cristallisation peut prendre plus d'une heure. This crystallization annealing must be long enough to bring the whole room to the desired temperature. For a small diameter wire, this is done after two about minutes. For a large piece or a coil complete with wire, crystallization annealing may take longer of one hour.

Comme précédemment, il est nécessaire d'éviter de précipiter des phases riches en nickel, du type TiNi3, ce qui aurait pour conséquence d'appauvrir l'alliage en nickel et conduirait à une augmentation de la valeur de la température de transition Af selon la flèche F à la figure 2. En pratique, il s'est avéré que l'on peut éviter la précipitation de TiNi3 lorsque la température du recuit de recristallisation 6 est maintenue supérieure à 700°C. En effet, des essais ont été effectués à environ 680°C et il a été démontré que la température Af est décalée d'environ 10°C, ce qui n'est pas acceptable. Pour plus de sécurité, on peut choisir de réaliser le recuit à une température supérieure à 720°C.As before, it is necessary to avoid precipitating nickel-rich phases, of the TiNi 3 type, which would have the consequence of depleting the nickel alloy and would lead to an increase in the value of the transition temperature A f according to arrow F in FIG. 2. In practice, it has been found that the precipitation of TiNi 3 can be avoided when the temperature of the recrystallization annealing 6 is maintained above 700 ° C. Indeed, tests have been carried out at around 680 ° C and it has been shown that the temperature A f is offset by around 10 ° C, which is not acceptable. For more security, one can choose to carry out the annealing at a temperature higher than 720 ° C.

Il est à noter que la limite à 700°C envisagée ci-dessus n'est pas significative pour le recuit flash dans la mesure où sa très courte durée ne permet pas une précipitation effective de TiNi3 ou d'autres composés de titane et de nickel. C'est pourquoi le recuit flash peut avoir lieu à une température supérieure à 600°C seulement.It should be noted that the limit at 700 ° C. envisaged above is not significant for flash annealing since its very short duration does not allow effective precipitation of TiNi 3 or other titanium compounds and nickel. This is why flash annealing can take place at a temperature above 600 ° C only.

Par ailleurs, au-delà de 850°C environ, le traitement de recuit a tendance à fragiliser l'alliage par grossissement des grains, voire même par brûlure lorsque la température de recuit atteint 900°C. C'est pourquoi, par sécurité, on limite la température de recuit à environ 800°C.Furthermore, above about 850 ° C, the treatment of annealing tends to weaken the alloy by magnifying the grains or even burns when the annealing temperature reaches 900 ° C. This is why, for safety, we limit the annealing temperature at about 800 ° C.

Des résultats particulièrement satisfaisants ont été obtenus lorsque la température de recuit est maintenue entre 720 et 780°C.Particularly satisfactory results have been obtained when the annealing temperature is maintained between 720 and 780 ° C.

On peut en particulier prévoir qu'à l'issue du traitement de recuit, un échantillon est prélevé dans une étape 7 pour vérifier que la température Af demeure inférieure à -10°C.One can in particular provide that at the end of the annealing treatment, a sample is taken in a step 7 to verify that the temperature A f remains below -10 ° C.

Selon une variante avantageuse de l'invention, une étape 8 d'écrouissage est également prévue dans le procédé afin de casser la structure de recuit et de créer des dislocations servant de site de germination à la martensite de déformation. Les essais pratiques ont démontré que lorsque cet écrouissage est limité à 15%, de l'austénite "recuite" demeure à l'intérieur du matériau et que l'effet superélastique n'est pas optimal. On parle dans ce cas de composante "molle" du matériau. According to an advantageous variant of the invention, a step 8 work hardening is also provided in the process in order to break the annealing structure and create dislocations serving as a germination site for deformation martensite. Practical tests have shown that when this work hardening is limited to 15%, "annealed" austenite remains inside material and the superelastic effect is not optimal. We speak in this case of "soft" component of the material.

Par ailleurs, on a pu démontrer qu'un écrouissage supérieur à 30% n'apporte pas de meilleur résultat par rapport à un écrouissage à 28%. En outre, un écrouissage trop important influe de façon négative sur la dureté et la tenue en fatigue du matériau, de sorte qu'en pratique, on limite l'écrouissage à des valeurs comprises entre 15 et 28% et, pour plus de sécurité, on travaille généralement entre 20 et 27% d'écrouissage.In addition, one could demonstrate that a higher work hardening at 30% does not bring a better result compared to a 28% work hardening. In addition, too much work hardening negatively affects hardness and fatigue life of the material, so that in practice, we limit the work hardening at values between 15 and 28% and, for more than security, we generally work between 20 and 27% work hardening.

Cet écrouissage peut être réalisé en une ou plusieurs étapes, ce qui est représenté par la flèche de bouclage F2 à la figure 3, à froid ou à tiède, c'est-à-dire à une température inférieure à 500°C.This work hardening can be carried out in one or more stages, which is represented by the looping arrow F 2 in FIG. 3, cold or lukewarm, that is to say at a temperature below 500 ° C.

Eventuellement, une étape 9 de recuit intermédiaire peut être prévue à une température comprise entre 400 et 550°C afin de ne pas générer une nouvelle recristallisation de l'alliage. Ce recuit intermédiaire permet, en particulier, une mise en forme plus aisée de la pièce tout en améliorant l'allongement élastique pouvant être obtenu.Optionally, an intermediate annealing step 9 can be provided at a temperature between 400 and 550 ° C so not to generate a new recrystallization of the alloy. This intermediate annealing allows, in particular, a setting easier workpiece shape while improving elongation elastic obtainable.

Avant le traitement thermique 11, le fil est calibré dans une étape de mise en forme 10.Before the heat treatment 11, the wire is calibrated in a shaping step 10.

Une pièce superélastique obtenue grâce au procédé de l'invention trouve de nombreuses applications. En particulier, le procédé peut être utilisé pour la fabrication de fils dont le diamètre est compris en 0,5 et 5 mm et qui peuvent servir de monture de lunettes, mais aussi d'armature de soutien-gorge, d'antenne de téléphone portable, d'aiguille, de pièce prothétique ou pour le matériel ancillaire destiné à la pose de prothèses dans le domaine médical. La section de ces fils peut être ronde, carrée, rectangulaire ou autre, au choix de l'utilisateur.A superelastic part obtained by the process of the invention finds many applications. In particular, the process can be used for the manufacture of threads, the diameter is between 0.5 and 5 mm and which can serve as glasses frame, but also bra frame, cell phone antenna, needle, prosthetic piece or for ancillary equipment intended for the installation of prostheses in the medical field. The cross section of these wires can be round, square, rectangular or other, as desired the user.

Claims (8)

Procédé de fabrication d'une pièce superélastique en alliage de nickel et de titane, caractérisé en ce qu'il consiste à réaliser un lingot (1, 2, 3) à partir d'un mélange de nickel et de titane comprenant 55,6% ± 0,4% en poids de nickel et à procéder à un traitement thermique (12) de génération de plaquettes de martensite en soumettant ladite pièce à une température comprise entre 480 et 520°C pendant une durée comprise entre 5 et 60 minutes.Method for manufacturing a superelastic part in alloy of nickel and titanium, characterized in that it consists in producing an ingot (1, 2, 3) from a mixture of nickel and titanium comprising 55.6% ± 0.4% by weight of nickel and to carry out a generation heat treatment (12) martensite wafers by subjecting said part to a temperature between 480 and 520 ° C for a period between 5 and 60 minutes. Procédé selon la revendication 1, caractérisé en ce qu'il comprend une étape (11) de recuit flash, ledit recuit flash étant effectué à une température comprise entre 600 et 800°C, pendant une durée comprise entre 10 et 30 secondes, ladite durée étant fonction des dimensions transversales de ladite pièce.Method according to claim 1, characterized in that that it comprises a flash annealing step (11), said annealing flash being carried out at a temperature between 600 and 800 ° C, for a period of between 10 and 30 seconds, said duration being a function of the transverse dimensions of said piece. Procédé selon la revendication 1 ou 2, caractérisé en ce qu'il comprend une étape (6) de recuit de cristallisation antérieure audit traitement thermique (12) de génération de plaquettes de martensite, ledit recuit de cristallisation étant effectué à une température comprise entre 700 et 800°C, de préférence entre 720 et 780°C, pendant une durée supérieure à deux minutes.Method according to claim 1 or 2, characterized in what it includes a crystallization annealing step (6) prior to said heat treatment (12) for generating martensite wafers, said crystallization annealing being carried out at a temperature between 700 and 800 ° C, preferably between 720 and 780 ° C, for a period greater than two minutes. Procédé selon l'une des revendications 1 à 3, caractérisé en ce qu'il comprend une étape (8) d'écrouissage antérieure audit traitement thermique (12) de génération de plaquettes de martensite, ledit écrouissage étant compris entre 15 et 28%, de préférence entre 20 et 27%.Method according to one of claims 1 to 3, characterized in that it comprises a step (8) of previous work hardening said heat treatment (12) for generating martensite plates, said work hardening being between 15 and 28%, preferably between 20 and 27%. Procédé selon la revendication 3 et 4, caractérisé en ce que ladite étape (8) d'écrouissage est postérieure à ladite étape (6) de recuit de cristallisation.Method according to claim 3 and 4, characterized in that said step (8) of work hardening is subsequent to said crystallization annealing step (6). Procédé selon la revendication 4, caractérisé en ce que ledit écrouissage (8) est effectué à froid.Method according to claim 4, characterized in that said work hardening (8) is carried out cold. Procédé selon la revendication 4, caractérisé en ce que ledit écrouissage (8) est réalisé à tiède, c'est-à-dire à une température inférieure à 500°C.Method according to claim 4, characterized in that said work hardening (8) is carried out lukewarm, that is to say at a temperature below 500 ° C. Procédé selon la revendication 6 ou 7, caractérisé en ce que ledit écrouissage (8) est réalisé avec un recuit intermédiaire (9) à une température comprise entre 400 et 550°C.Method according to claim 6 or 7, characterized in that said work hardening (8) is carried out with annealing intermediate (9) at a temperature between 400 and 550 ° C.
EP98420004A 1997-01-16 1998-01-14 Process for producing a superelastic article from an alloy of nickel and titanium Withdrawn EP0864664A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9700598A FR2758338B1 (en) 1997-01-16 1997-01-16 METHOD FOR MANUFACTURING A SUPERELASTIC PART IN AN ALLOY OF NICKEL AND TITANIUM
FR9700598 1997-01-16

Publications (1)

Publication Number Publication Date
EP0864664A1 true EP0864664A1 (en) 1998-09-16

Family

ID=9502825

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98420004A Withdrawn EP0864664A1 (en) 1997-01-16 1998-01-14 Process for producing a superelastic article from an alloy of nickel and titanium

Country Status (3)

Country Link
US (1) US5958159A (en)
EP (1) EP0864664A1 (en)
FR (1) FR2758338B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2900694A1 (en) * 2006-05-05 2007-11-09 Sdgi Holdings Inc PROCESS FOR MAKING A CONNECTION BETWEEN AT LEAST TWO PARTS USING A CLAMPING PART, CLAMPING PART AND CONNECTION SYSTEM INCLUDING THE SAME

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6106642A (en) * 1998-02-19 2000-08-22 Boston Scientific Limited Process for the improved ductility of nitinol
US6057498A (en) * 1999-01-28 2000-05-02 Barney; Jonathan A. Vibratory string for musical instrument
US20030226441A1 (en) * 2000-01-28 2003-12-11 Barney Jonathan A. Tension regulator for stringed instruments
US7192496B2 (en) * 2003-05-01 2007-03-20 Ati Properties, Inc. Methods of processing nickel-titanium alloys
US7455737B2 (en) * 2003-08-25 2008-11-25 Boston Scientific Scimed, Inc. Selective treatment of linear elastic materials to produce localized areas of superelasticity
FR2884406B1 (en) 2005-04-14 2008-10-17 Memometal Technologies Soc Par INTRAMEDULAR OSTEOSYNTHESIS DEVICE OF TWO BONE PARTS, IN PARTICULAR HAND AND / OR FOOT
FR2913876B1 (en) 2007-03-20 2009-06-05 Memometal Technologies Soc Par OSTEOSYNTHESIS DEVICE
US8915916B2 (en) 2008-05-05 2014-12-23 Mayo Foundation For Medical Education And Research Intramedullary fixation device for small bone fractures
FR2935601B1 (en) 2008-09-09 2010-10-01 Memometal Technologies INTRAMEDULLARY IMPLANT RESORBABLE BETWEEN TWO BONE OR TWO BONE FRAGMENTS
US9724140B2 (en) 2010-06-02 2017-08-08 Wright Medical Technology, Inc. Tapered, cylindrical cruciform hammer toe implant and method
US9498273B2 (en) 2010-06-02 2016-11-22 Wright Medical Technology, Inc. Orthopedic implant kit
US8608785B2 (en) 2010-06-02 2013-12-17 Wright Medical Technology, Inc. Hammer toe implant with expansion portion for retrograde approach
US8475711B2 (en) 2010-08-12 2013-07-02 Ati Properties, Inc. Processing of nickel-titanium alloys
US8945232B2 (en) 2012-12-31 2015-02-03 Wright Medical Technology, Inc. Ball and socket implants for correction of hammer toes and claw toes
US9279171B2 (en) 2013-03-15 2016-03-08 Ati Properties, Inc. Thermo-mechanical processing of nickel-titanium alloys
US9724139B2 (en) 2013-10-01 2017-08-08 Wright Medical Technology, Inc. Hammer toe implant and method
US9474561B2 (en) 2013-11-19 2016-10-25 Wright Medical Technology, Inc. Two-wire technique for installing hammertoe implant
US9545274B2 (en) 2014-02-12 2017-01-17 Wright Medical Technology, Inc. Intramedullary implant, system, and method for inserting an implant into a bone
US9498266B2 (en) 2014-02-12 2016-11-22 Wright Medical Technology, Inc. Intramedullary implant, system, and method for inserting an implant into a bone
JP6235724B2 (en) 2014-09-18 2017-11-22 ライト メディカル テクノロジー インコーポレイテッドWright Medical Technology, Inc. Spider toe implant and tool
BR112017000207A2 (en) 2014-12-19 2018-01-16 Wright Medical Tech Inc intramedullary implant and method for surgical repair of an interphalangeal joint
US9757168B2 (en) 2015-03-03 2017-09-12 Howmedica Osteonics Corp. Orthopedic implant and methods of implanting and removing same
US10470807B2 (en) 2016-06-03 2019-11-12 Stryker European Holdings I, Llc Intramedullary implant and method of use
WO2018076010A1 (en) * 2016-10-21 2018-04-26 Confluent Medical Technologies, Inc. Materials having superelastic properties including related methods of fabrication and design for medical devices
CN111593231B (en) * 2020-05-09 2021-08-20 中国科学院金属研究所 Preparation method of high-purity NiTi alloy wire

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2117001A (en) * 1982-02-27 1983-10-05 Tohoku Metal Ind Ltd Titanium-nickel alloy having reversible shape memory
EP0143580A1 (en) * 1983-11-15 1985-06-05 RAYCHEM CORPORATION (a Delaware corporation) Shape memory alloys
EP0161066A1 (en) * 1984-04-04 1985-11-13 RAYCHEM CORPORATION (a Delaware corporation) Nickel/titanium-base alloys
EP0167221A1 (en) * 1984-05-09 1986-01-08 Kyoto University Iron-nickel-titanium-cobalt alloy with shape memory effect and pseudo-elasticity, and method of producing the same
US4894100A (en) * 1987-01-08 1990-01-16 Tokin Corporation Ti-Ni-V shape memory alloy
EP0353816A1 (en) * 1988-08-01 1990-02-07 Matsushita Electric Works, Ltd. Shape memory alloy and electric path protective device utilizing the alloy
WO1995027092A1 (en) * 1994-03-31 1995-10-12 Besselink Petrus A Ni-Ti-Nb ALLOY PROCESSING METHOD AND ARTICLES FORMED FROM THE ALLOY

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2117001A (en) * 1982-02-27 1983-10-05 Tohoku Metal Ind Ltd Titanium-nickel alloy having reversible shape memory
EP0143580A1 (en) * 1983-11-15 1985-06-05 RAYCHEM CORPORATION (a Delaware corporation) Shape memory alloys
EP0161066A1 (en) * 1984-04-04 1985-11-13 RAYCHEM CORPORATION (a Delaware corporation) Nickel/titanium-base alloys
EP0167221A1 (en) * 1984-05-09 1986-01-08 Kyoto University Iron-nickel-titanium-cobalt alloy with shape memory effect and pseudo-elasticity, and method of producing the same
US4894100A (en) * 1987-01-08 1990-01-16 Tokin Corporation Ti-Ni-V shape memory alloy
EP0353816A1 (en) * 1988-08-01 1990-02-07 Matsushita Electric Works, Ltd. Shape memory alloy and electric path protective device utilizing the alloy
WO1995027092A1 (en) * 1994-03-31 1995-10-12 Besselink Petrus A Ni-Ti-Nb ALLOY PROCESSING METHOD AND ARTICLES FORMED FROM THE ALLOY

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2900694A1 (en) * 2006-05-05 2007-11-09 Sdgi Holdings Inc PROCESS FOR MAKING A CONNECTION BETWEEN AT LEAST TWO PARTS USING A CLAMPING PART, CLAMPING PART AND CONNECTION SYSTEM INCLUDING THE SAME
WO2007129154A1 (en) * 2006-05-05 2007-11-15 Warsaw Orthopedic, Inc. Method for making a connection between at least two parts using a clamping part, clamping part and connection system including the clamping part

Also Published As

Publication number Publication date
FR2758338A1 (en) 1998-07-17
US5958159A (en) 1999-09-28
FR2758338B1 (en) 1999-04-09

Similar Documents

Publication Publication Date Title
EP0864664A1 (en) Process for producing a superelastic article from an alloy of nickel and titanium
FR2532662A1 (en) PROCESS FOR PRODUCING BERYLLIUM COPPER ALLOY AND THE ALLOY
FR2941962A1 (en) PROCESS FOR MANUFACTURING A NICKEL-BASED SUPERALLIANCE WORKPIECE, AND A PRODUCT OBTAINED THEREBY
CA2984131C (en) Steel, product made of said steel, and manufacturing method thereof
EP3165622B1 (en) Method for manufacturing a gold alloy wire
FR2772790A1 (en) TITANIUM-BASED INTERMETAL ALLOYS OF THE Ti2AlNb TYPE WITH A HIGH ELASTICITY LIMIT AND HIGH RESISTANCE TO CREEP
FR2462484A1 (en) TITANIUM ALLOY OF THE TI3AL TYPE
FR2557145A1 (en) THERMOMECHANICAL TREATMENT PROCESS FOR SUPERALLOYS TO OBTAIN STRUCTURES WITH HIGH MECHANICAL CHARACTERISTICS
EP0863219B1 (en) Titanium aluminide usable at elevated temperatures
EP3601628A1 (en) Metastable titanium alloy, timepiece spring made from such an alloy and method for production thereof
FR2655057A1 (en) TITANIUM-ALUMINUM-VANADIUM ALLOYS AND METHOD FOR TREATING FORGED PARTS OF SUCH ALLOYS
FR2478675A1 (en) STAINLESS STEEL WITH SPRING, TYPING TYPE BY PRECIPITATION
CA2435938C (en) High-strength isotropic steel, method for making steel plates and resulting plates
WO1997032052A1 (en) Method for heat treating a nickel superalloy
CH715726B1 (en) Process for obtaining a functional component for a watch movement.
EP0382109B1 (en) Process for treating a work piece made from a metallic shape memory alloy offering two states of reversible shape memory
FR2691983A1 (en) Process for the thermal treatment of a nickel-based superalloy
EP0555124A1 (en) Nickel base single crystal superalloy with improved oxydation resistance and process for producing it
CH677677A5 (en)
FR2952559A1 (en) Manufacturing a titanium alloy part, which is useful in aeronautical industry, comprises performing N-successive treatment cycles of hot forging treatment at a specified temperature until the part obtains a uniform temperature
WO2023232938A1 (en) Method for manufacturing a timepiece or jewellery component, and said timepiece or jewellery component
CH719372B1 (en) Pivot axis for watch movement.
FR2643086A1 (en) Process for conditioning a component made of metal alloy with shape memory exhibiting two reversible shape memory states
CH715728B1 (en) Process for obtaining an 18 carat gold component for watchmaking and jewelery applications.
CH715727B1 (en) Process for obtaining a micromechanical component in 18 carat gold alloy.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR GB IT

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 19990312

AKX Designation fees paid

Free format text: DE ES FR GB IT

RBV Designated contracting states (corrected)

Designated state(s): DE ES FR GB IT

17Q First examination report despatched

Effective date: 20000331

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20020202