Nothing Special   »   [go: up one dir, main page]

EP0848409B1 - Tube hyperfréquence à interaction longitudinale à cavité à sortie au delà du collecteur - Google Patents

Tube hyperfréquence à interaction longitudinale à cavité à sortie au delà du collecteur Download PDF

Info

Publication number
EP0848409B1
EP0848409B1 EP97402974A EP97402974A EP0848409B1 EP 0848409 B1 EP0848409 B1 EP 0848409B1 EP 97402974 A EP97402974 A EP 97402974A EP 97402974 A EP97402974 A EP 97402974A EP 0848409 B1 EP0848409 B1 EP 0848409B1
Authority
EP
European Patent Office
Prior art keywords
collector
tube according
microwave tube
microwave
window
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP97402974A
Other languages
German (de)
English (en)
Other versions
EP0848409A1 (fr
Inventor
Georges Faillon
Jean-Luc Piquet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales Electron Devices SA
Original Assignee
Thales Electron Devices SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales Electron Devices SA filed Critical Thales Electron Devices SA
Publication of EP0848409A1 publication Critical patent/EP0848409A1/fr
Application granted granted Critical
Publication of EP0848409B1 publication Critical patent/EP0848409B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J23/00Details of transit-time tubes of the types covered by group H01J25/00
    • H01J23/36Coupling devices having distributed capacitance and inductance, structurally associated with the tube, for introducing or removing wave energy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J23/00Details of transit-time tubes of the types covered by group H01J25/00
    • H01J23/02Electrodes; Magnetic control means; Screens
    • H01J23/027Collectors

Definitions

  • the present invention relates to microwave tubes with longitudinal interaction, also called "0" type, with cavity.
  • Longitudinal interaction microwave tube means a tube using a magnetic field focusing substantially parallel to the path of the beam electrons. These tubes call for the interaction of beam electrons in collective motion with a wave microwave.
  • These tubes can be klystrons or wave tubes progressive with coupled cavities and their derivatives.
  • a classic klystron has an electron gun that produces a long and thin electron beam through a succession of cavities interconnected by sliding tubes. At the end of the last cavity the electrons are collected in a coaxial collector with the beam. This collector heats up, it is cooled, for example, by making circulate at its periphery a coolant.
  • a focusing device surrounds the cavities, it prevents the electron beam to diverge.
  • This focusing device is often formed of an electromagnet in the shape of a hollow cylinder.
  • a microwave wave to be amplified is introduced into the cavity closest to the cannon.
  • the outlet cavity or cavity closest to the collector is intended to be connected to a member of use by via a transmission line, this transmission line conveying the amplified microwave wave towards the member of use.
  • This transmission line is a rectangular, circular or coaxial.
  • This waveguide is generally arranged transversely to the electron beam.
  • the coupling between the output cavity and the waveguide is made through at least one orifice in the side wall of the cavity.
  • a window can block the coupling hole. It is intended for let the extracted microwave wave pass while maintaining the vacuum thrust that reigns inside the cavity.
  • the transmission line being connected to a side wall of the output cavity, the focusing device must take account of this connection and have an indentation there.
  • the magnetic field is reduced and asymmetrical at the exit cavity while this is where we need it the most. As a result the electron beam is defocused.
  • This transverse transmission line also causes a significant difficulty during the positioning of the tube. You have to slide the barrel-cavity-manifold assembly in the focusing device and adjust the relative position of the assembly and the device to fix the line of transmission. This operation is very delicate because of the masses put at stake and the fragility of the bond.
  • the barrel-cavity-manifold assembly can weigh several hundred kilograms.
  • the present invention aims to produce a microwave tube with longitudinal interaction with cavity which has neither asymmetry of the field magnetic, nor collector of limited size and which is very simple to assemble and reduced cost.
  • the present invention proposes to make cohabit in the collector the microwave wave to extract and the electrons of the beam.
  • the present invention relates to a microwave tube with longitudinal interaction with at least one directed electron beam along an axis, crossing a so-called outlet cavity in which it interacts with a microwave wave, this cavity having a terminal wall which separates from a collector, the electron beam entering the collector by at least one opening in the end wall, characterized in that the end wall further comprises at least one coupling member for couple the output cavity to the collector, the microwave wave in front circulate in the collector before being extracted therefrom.
  • the coupling member can be an iris or a loop of coupling, for example.
  • At least one obstacle can be provided in the collector microwave.
  • the collector has a end opposite to the outlet cavity fitted with a junction flange intended to be connected to a transmission line to convey the wave microwave out of the collector.
  • a microwave window is placed in the collector. She may be substantially transverse to the axis of the electron beam or else substantially parallel to the electron beam.
  • the collector may contain successive partitions mounted in a baffle, in upstream of the window.
  • Two successive partitions may have opposite portions. These portions can be edges or be larger.
  • the window can have one of its faces covered with a material slightly conductive such as titanium, so as to allow the flow of electrical charges due to electronic bombardment.
  • the collector can be externally equipped with means producing a magnetic field aimed at deflecting electrons before they don't reach the window.
  • the collector may include a bent portion so that that the microwave wave is extracted substantially transversely.
  • the window can be placed downstream of the angled portion of so as to be protected from electronic bombardment and to be accessible if cleaning is required.
  • the collector can have a transition so that the cross section of the elements placed downstream is different from that of the part of the collector upstream.
  • a section of waveguide attached to the collector can help form the bent portion, a bent waveguide can also be used.
  • the collector can have a non-circular section as very often, but rectangular.
  • the collector can be externally equipped with a cooling.
  • Figure 1a shows a longitudinal section of a tube microwave according to the invention.
  • Figure 1b is a section transverse along the axis AA.
  • the tube shown is a klystron. It behaves so classic, a gun 1 producing a long and thin axis 2 electron beam XX '.
  • the electron beam 2 crosses a succession of cavities C1, C2, C3, C4, C5. They are aligned along the axis XX '. They are separated by sliding tubes 3.
  • the cavities C1, C2, C3, C4, C5 are surrounded by a focusing device 4.
  • the cavity C1 closest to the barrel 1 is called the inlet cavity and the cavity C5 furthest from the barrel 1 is called the outlet cavity.
  • a wave microwave to be amplified is introduced into the input cavity C1 using a coupling device 5. It will interact with the electrons who will give him part of their energy.
  • the electrons in beam 2 after passing through the cavity of output C5 are collected in a collector 6.
  • the collector 6 generally in the form of a hollow cylinder is shown substantially coaxial with the axis XX '.
  • the collector 6 is externally equipped with a device for cooling 7. In the example described, this device operates by fluid circulation.
  • the outlet cavity C5 has an end wall 8 which la separates from the collector 6. This end wall 8 has an orifice passage 11 for electrons.
  • the manifold 6 and the output cavity C5 are coupled electromagnetically using at least one coupling member 9 located in the end wall 8 but separate from the passage orifice 11 for the electrons.
  • the microwave wave propagates in the collector 6 where it then coexists with the electrons of beam 2.
  • the coupling member 9 is an orifice or iris in the end wall 8 of the outlet cavity C5.
  • the coupling is electrical between the output cavity C5 and the collector 6.
  • the iris 9 cuts the current lines in the output cavity C5.
  • An electric field is induced at the level of the iris and this field excites the electrical component of the propagation mode in the collector 6.
  • This mode is preferably the TE11 circular fundamental mode because it propagates alone over a wide frequency range. It is possible to have use of other modes in collector 6, in particular using several orifices for coupling or at least one member for coupling a other type, for example a loop.
  • FIGS. 1a, 1b a corner 12 is visible in the manifold 6 downstream of the end wall 8, it is opposite to the coupling member 9 relative to the orifice 11 for the passage of the electrons.
  • a pawn a series of steps for example could be used to corner place.
  • the depth of the collector 6 is conventionally fixed by the expansion of the electron beam 2 when the magnetic field reduced.
  • the end wall 8 of the cavity of outlet in magnetic material, soft iron for example, the field magnetic then falls strongly in the collector 6 compared to what it was in the outlet cavity C5.
  • the tubes of sliding are in non-magnetic material, copper for example.
  • Figure 1c shows the equivalent electrical diagram of the coupling between the outlet cavity C5 and the manifold 6.
  • the outlet cavity is equivalent to an R, L, C circuit in parallel.
  • the coupling member 9 is equivalent to a first transformer and the microwave obstacle 12 to one second transformer.
  • the collector 6 is designed to be connected to a line of transmission 10 at its end opposite the outlet cavity C5.
  • This transmission line 10 is intended to convey the wave microwave extracted from the output cavity C5 and which has passed through the collector 6 to a user device (not shown).
  • the line of transmission 10 is arranged in the extension of the manifold 6 substantially along the axis XX '.
  • the manifold 6 ends with a flange of junction 14 to which the transmission line 10 is fixed.
  • the transmission line transmission 10 can be a circular, rectangular or even waveguide coaxial. Exciting the circular fundamental mode in the collector has another advantage, it easily converts to TE10 mode rectangular which can be used in transmission line 10 if it is formed of a rectangular guide.
  • a microwave tube operates under vacuum. Generally the user device and the transmission line are not working at the same pressure as the tube, they can operate at pressure atmospheric or at a higher pressure. A microwave window 15 of dielectric material is then used to maintain the vacuum at inside the tube while letting the microwave pass through the transmission line 10.
  • the window 15 is placed in the collector 6, at its end opposite to the outlet cavity C5, upstream of the flange of junction 14. It is substantially transverse to the axis XX '.
  • the microwave window 15 can be made of alumina and be soldered to the collector 6. Its shape depends on its environment. Here, it is adapted to the cross section of the manifold 6, it is a disc and the collector is a cylinder of revolution.
  • the electrons striking window 15 have several origins, there are those who entering the manifold 6 near the axis XX 'have not been deflected, those which are reflected by the collector wall as well as the electrons secondary emitted after an impact between a so-called primary electron and the wall of the collector. This bombardment causes an accumulation of charges on the window.
  • the collector 6 has at its end opposite the outlet cavity C5, a transition 20 then is extended by a waveguide portion 21 welcoming the window 15 and ends with the junction flange 14.
  • the window 15 is always substantially transverse to axis XX 'and the transmission line (not shown) always directed along axis XX '.
  • the waveguide portion 21 accommodating the window can have a different shape of cross section than that of manifold 6 and / or of different dimensions.
  • the transition can transform, for example a circular guide into a rectangular guide, a rectangular guide into circular guide and / or carry out a reduction or a increase.
  • the transition 20 transforms a circular guide into a rectangular guide.
  • the collector 6 is externally equipped with means 22 producing a transverse magnetic field upstream of the window 15 of way to deflect the electrons passing through this area so that they do not reach window 15.
  • Magnets 22 are located on the periphery of the waveguide portion 21.
  • This variant requires heavy magnets or even electromagnets and a power supply which increases the cost of equipment.
  • Figures 3a, 3b show a manifold 6 of a tube along the invention equipped with two partitions 30. These partitions 30 are adapted to the shape of the collector 6. In the example shown, they have portions in vis-à-vis, these portions are edges 31 in the central part of the collector 6. It is also conceivable that two successive partitions 30 have larger portions opposite.
  • partitions 30 are arranged towards the end of the manifold 6 opposite the outlet cavity C5, upstream of the window 15, in an area where the current of the electron beam is already well attenuated. These partitions 30 intercept electrons not yet collected regardless of their origin.
  • the space between two successive partitions 30 will preferably be less than ⁇ g / 4, ⁇ g representing the length of the guided microwave wave in the manifold.
  • partitions 30 can also serve as adaptation to the assembly collector 6 - window 15 - transmission line if necessary.
  • the collector 6 contains, as microwave obstacle 12 a pawn instead of a corner.
  • the coupling device 9 instead of being an iris is a conductive loop.
  • Figure 3c shows an alternative positioning of the loop one end of which is connected to the wall of the manifold 6, the other to the wall of the outlet cavity C5 and which crosses without touching the wall terminal 8.
  • the manifold 6 has at its opposite end at the outlet cavity C5, as in FIGS. 2, a transition 20 followed by a portion 21 of waveguide on which the junction flange 14 is fixed.
  • the manifold 6 is equipped with two partitions 30 in baffle. The partitions have facing portions 32. Window 15 is placed upstream of the transition 20 but downstream of the partitions 30.
  • the transmission line 10 can be placed substantially transversely to this axis.
  • the fragility of the bond is no longer a problem in this configuration.
  • Figures 5a to 5f show various variants of collectors 6 ending with a junction flange 14 substantially transverse to the axis XX '.
  • the transmission line will be mounted substantially transversely but the window 15 may be substantially transverse to the axis XX 'or substantially parallel.
  • the manifold 6 is fitted with partitions 30 in chicane. It is understood that it could be fitted with magnets and / or that the window could be covered with a slightly conductive material. These three characteristics could be used alone or two by two or all together.
  • the collector 6 extends at its end opposite the outlet cavity by a bent portion 50 and ends in the junction flange 14 to which is intended to be fixed the line of transmission (not shown).
  • Window 15 is now located beyond the bent portion 50, upstream of the junction flange 14 and is substantially parallel to the axis XX '.
  • the bent portion 50 is here a bent waveguide.
  • the manifold 6, the angled guide 50, the window 15 and the junction flange 14 have the same cross-section, for example, cylindrical or rectangular.
  • the manifold 6 is extended with a bend 50 and ends with a junction flange 14, a transition 51 is inserted between the angled guide 50 and the junction flange 14.
  • the transition 51 modifies the cross section of the manifold 6 downstream of the bent guide 50.
  • the collector 6 is for example circular or rectangular, the angled guide 50 keeps the same shape, the transition 51 ensures a passage circular / rectangular or rectangular / circular or even retaining the same shape, reduce or increase the cross section.
  • Figures 5c and 5d show yet another variant of a collector 6. It has a bent guide 50 followed by a transition 51 and is ends with a junction flange 14. The window 15 is located between the transition 51 and flange 14.
  • the manifold 6 has a rectangular cross section, that the bent guide 50 is rectangular, that the transition 51 reduces the cross section of the bent guide 50 while remaining rectangular and that the flange 14 is also rectangular.
  • Figure 5d which is a cross section along the axis CC 'on can see iris 9, pin 12 and edges of partitions 30, all of these are arranged in the same direction.
  • the window 15 placed downstream of a transition reducing has a reduced dimension which has the advantage of lowering the costs.
  • This section 500 of waveguide ends, in FIG. 5e, by a junction flange 14 intended to be connected to a transmission line (not shown).
  • the window 15 is placed in this section 500 of waveguide.
  • the waveguide section 500 has one of its walls which is an extension of the end of the manifold 6 to the opposite of the output cavity C5. This end is closed by a wall 501 substantially transverse to the axis XX '.
  • the window 15 is placed upstream of the transition 503. In order to reduce costs it could be downstream.
  • the invention is not limited as regards the portions cubits, transitions, window position, to the examples shown.

Landscapes

  • Microwave Tubes (AREA)
  • Waveguide Connection Structure (AREA)

Description

La présente invention est relative aux tubes hyperfréquences à interaction longitudinale, dits aussi de type "0", à cavité.
Par tube hyperfréquence à interaction longitudinale, on entend un tube utilisant un champ magnétique focalisant sensiblement parallèle à la trajectoire des électrons du faisceau. Ces tubes font appel à l'interaction des électrons du faisceau en mouvement collectif avec une onde hyperfréquence.
Ces tubes peuvent être des klystrons ou des tubes à ondes progressives à cavités couplées et leurs dérivés.
Un klystron classique comporte un canon à électrons qui produit un faisceau d'électrons long et fin à travers une succession de cavités reliées entre elles par des tubes de glissement. En sortie de la dernière cavité, les électrons sont recueillis dans un collecteur coaxial avec le faisceau. Ce collecteur s'échauffe, on le refroidit, par exemple, en faisant circuler à sa périphérie un fluide de refroidissement.
Un dispositif de focalisation entoure les cavités, il empêche le faisceau d'électrons de diverger. Ce dispositif de focalisation est souvent formé d'un électroaimant en forme de cylindre creux.
Une onde hyperfréquence à amplifier est introduite dans la cavité la plus proche du canon. La cavité de sortie ou cavité la plus proche du collecteur est destinée à être reliée à un organe d'utilisation par l'intermédiaire d'une ligne de transmission, cette ligne de transmission véhiculant l'onde hyperfréquence amplifiée vers l'organe d'utilisation. Cette ligne de transmission est un guide d'onde rectangulaire, circulaire ou coaxial.
Ce guide d'onde est généralement disposé transversalement au faisceau d'électrons. Le couplage entre la cavité de sortie et le guide d'onde se fait par au moins un orifice dans la paroi latérale de la cavité.
Une fenêtre peut obturer l'orifice de couplage. Elle est destinée à laisser passer l'onde hyperfréquence extraite tout en maintenant le vide poussé qui règne à l'intérieur de la cavité.
La ligne de transmission étant reliée à une paroi latérale de la cavité de sortie, le dispositif de focalisation doit tenir compte de cette liaison et comporter une échancrure à cet endroit. Le champ magnétique est réduit et dissymétrique au niveau de la cavité de sortie alors que c'est l'endroit où l'on en a le plus besoin. En conséquence le faisceau d'électrons est défocalisé.
Cette ligne de transmission transversale entraíne aussi une difficulté non négligeable pendant la mise en place du tube. Il faut glisser l'ensemble canon-cavités-collecteur dans le dispositif de focalisation et ajuster la position relative de l'ensemble et du dispositif pour fixer la ligne de transmission. Cette opération est très délicate en raison des masses mises en jeu et de la fragilité de la liaison. L'ensemble canon-cavités-collecteur peut peser plusieurs centaines de kilogrammes.
Il a déjà été proposé pour remédier à ces inconvénients au niveau du champ magnétique et pour simplifier le montage d'utiliser une ligne de transmission qui entoure le collecteur. Mais cette disposition a un inconvénient majeur. Le collecteur est limité en taille et peu accessible, son refroidissement est difficile à réaliser et donc coûteux. Cette configuration est réservée aux tubes peu puissants.
La présente invention vise à réaliser un tube hyperfréquence à interaction longitudinale à cavité qui ne possède ni dissymétrie du champ magnétique, ni collecteur de taille limitée et qui est très simple à monter et de coût réduit.
Pour atteindre ces buts la présente invention se propose de faire cohabiter dans le collecteur l'onde hyperfréquence à extraire et les électrons du faisceau.
La présente invention a pour objet un tube hyperfréquence à interaction longitudinale comportant au moins un faisceau d'électrons dirigé selon un axe, traversant une cavité dite de sortie dans laquelle il interagit avec une onde hyperfréquence, cette cavité ayant une paroi terminale qui la sépare d'un collecteur, le faisceau d'électrons pénétrant dans le collecteur par au moins une ouverture dans la paroi terminale, caractérisé en ce que la paroi terminale comporte en plus, au moins un organe de couplage pour coupler la cavité de sortie au collecteur, l'onde hyperfréquence devant circuler dans le collecteur avant d'en être extraite.
L'organe de couplage peut être un iris ou une boucle de couplage, par exemple.
Pour adapter l'impédance du collecteur à celle de la cavité de sortie, on peut prévoir dans le collecteur au moins un obstacle hyperfréquence.
Selon une autre caractéristique de l'invention, le collecteur a une extrémité opposée à la cavité de sortie équipée d'une bride de jonction destinée à être reliée à une ligne de transmission devant véhiculer l'onde hyperfréquence hors du collecteur.
De manière à maintenir un vide poussé à l'intérieur du collecteur, une fenêtre hyperfréquence est placée dans le collecteur. Elle peut être sensiblement transversale à l'axe du faisceau d'électrons ou bien sensiblement parallèle du faisceau d'électrons.
De manière à protéger la fenêtre du bombardement électronique, le collecteur peut contenir des cloisons successives montées en chicane, en amont de la fenêtre.
Deux cloisons successives peuvent avoir des portions en vis-à-vis. Ces portions peuvent être des arêtes ou être plus grandes.
La fenêtre peut avoir une de ses faces recouverte d'un matériau légèrement conducteur tel que le titane, de manière à permettre l'écoulement des charges électriques dues au bombardement électronique.
Le collecteur peut être équipé extérieurement de moyens produisant un champ magnétique visant à dévier les électrons avant qu'ils n'atteignent le fenêtre.
Le collecteur peut comporter une portion coudée de manière à ce que l'onde hyperfréquence soit extraite sensiblement transversalement.
La fenêtre peut être placée en aval de la portion coudée de manière à être protégée du bombardement électronique et à être accessible si un nettoyage est requis.
Le collecteur peut comporter une transition de manière à ce que la section droite des éléments placés en aval soit différente de celle de la partie du collecteur en amont.
Un tronçon de guide d'onde fixé au collecteur peut contribuer à former la portion coudée, un guide d'onde coudé peut aussi être utilisé.
Le collecteur peut présenter une section non circulaire comme bien souvent, mais rectangulaire.
Le collecteur peut être équipé extérieurement d'un dispositif de refroidissement.
D'autres caractéristiques et avantages de l'invention apparaítront à la lecture de la description d'exemples de tubes selon l'invention illustrée par les figures qui représentent :
  • la figure 1a une coupe longitudinale d'un tube selon l'invention ;
  • la figure 1b une coupe transversale du collecteur du tube de la figure 1a ;
  • la figure 1c le schéma électrique équivalent de la cavité de sortie couplée au collecteur du tube de la figure 1a ;
  • les figures 2a, 2b deux coupes longitudinales partielles de deux variantes de collecteur d'un tube selon l'invention ;
  • les figures 3a, 3b respectivement une coupe longitudinale et une coupe transversale d'une autre variante d'un collecteur d'un tube selon l'invention ;
  • la figure 3c le détail d'une variante de l'organe de couplage ;
  • la figure 4 une coupe longitudinale partielle d'un collecteur d'un tube selon l'invention ;
  • les figures 5a à 5f diverses représentations de collecteurs coudés de tubes selon l'invention.
La figure 1a montre en coupe longitudinale un tube hyperfréquence conforme à l'invention. La figure 1b est une coupe transversale selon l'axe AA.
Le tube représenté est un klystron. Il comporte de manière classique, un canon 1 produisant un faisceau d'électrons 2 long et fin d'axe XX'. Le faisceau d'électrons 2 traverse une succession de cavités C1, C2, C3, C4, C5. Elles sont alignées selon l'axe XX'. Elles sont séparées par des tubes de glissement 3. Les cavités C1, C2, C3, C4, C5 sont entourées d'un dispositif de focalisation 4.
La cavité C1 la plus proche du canon 1 est dite cavité d'entrée et la cavité C5 la plus éloignée du canon 1 est dite cavité de sortie. Une onde hyperfréquence devant être amplifiée est introduite dans la cavité d'entrée C1 à l'aide d'un dispositif de couplage 5. Elle va interagir avec les électrons qui vont lui céder une partie de leur énergie.
Les électrons du faisceau 2 après avoir traversé la cavité de sortie C5 sont recueillis dans un collecteur 6. Le collecteur 6 généralement en forme de cylindre creux est représenté sensiblement coaxial avec l'axe XX'. Le collecteur 6 est équipé extérieurement d'un dispositif de refroidissement 7. Dans l'exemple décrit, ce dispositif fonctionne par circulation de fluide.
La cavité de sortie C5 possède une paroi terminale 8 qui la sépare du collecteur 6. Cette paroi terminale 8 comporte un orifice de passage 11 pour les électrons.
Le collecteur 6 et la cavité de sortie C5 sont couplés électromagnétiquement à l'aide d'au moins un organe de couplage 9 situé dans la paroi terminale 8 mais distinct de l'orifice de passage 11 pour les électrons. L'onde hyperfréquence se propage dans le collecteur 6 où elle cohabite alors avec les électrons du faisceau 2.
Sur l'exemple représenté à la figure 1a, l'organe de couplage 9 est un orifice ou iris dans la paroi terminale 8 de la cavité de sortie C5.
Le couplage est électrique entre la cavité de sortie C5 et le collecteur 6. L'iris 9 coupe les lignes de courant dans la cavité de sortie C5. Un champ électrique est induit au niveau de l'iris et ce champ excite la composante électrique du mode de propagation dans le collecteur 6. Ce mode est de préférence le mode fondamental circulaire TE11 car il se propage seul dans une grande plage de fréquences. Il est possible d'avoir recours à d'autres modes dans le collecteur 6, en utilisant notamment plusieurs orifices pour le couplage ou au moins un organe de couplage d'un autre type, par exemple une boucle.
Il est possible d'adapter l'impédance du collecteur 6, généralement de quelques centaines d'ohms, à celle de la cavité de sortie C5, généralement de quelques milliers d'ohms, à l'aide d'un ou plusieurs obstacles hyperfréquences 12. Sur les figures 1a, 1b, un coin 12 est visible dans le collecteur 6 en aval de la paroi terminale 8, il est à l'opposé de l'organe de couplage 9 par rapport à l'orifice de passage 11 des électrons. Un pion, une série de marches par exemple pourraient être utilisés à la place du coin.
La profondeur du collecteur 6 est fixée classiquement par l'expansion du faisceau d'électrons 2 lorsque le champ magnétique se réduit.
Il est classique de réaliser la paroi terminale 8 de la cavité de sortie en matériau magnétique, en fer doux par exemple, le champ magnétique chute alors fortement dans le collecteur 6 par rapport à ce qu'il était dans la cavité de sortie C5. Classiquement aussi les tubes de glissement sont en matériau amagnétique, du cuivre par exemple.
La figure 1c montre le schéma électrique équivalent du couplage entre la cavité de sortie C5 et le collecteur 6. La cavité de sortie est équivalente à un circuit R, L, C en parallèle. L'organe de couplage 9 est équivalent à un premier transformateur et l'obstacle hyperfréquence 12 à un second transformateur .
Le collecteur 6 est prévu pour être relié à une ligne de transmission 10 au niveau de son extrémité opposée à la cavité de sortie C5. Cette ligne de transmission 10 est destinée à acheminer l'onde hyperfréquence extraite de la cavité de sortie C5 et qui a transité dans le collecteur 6 vers un dispositif utilisateur (non représenté).
Dans l'exemple représenté sur la figure 1a, la ligne de transmission 10 est disposée dans le prolongement du collecteur 6 sensiblement selon l'axe XX'. Le collecteur 6 se termine par une bride de jonction 14 à laquelle vient se fixer la ligne de transmission 10. La ligne de transmission 10 peut être un guide d'onde circulaire, rectangulaire ou même coaxial. Le fait d'exciter le mode fondamental circulaire dans le collecteur présente un autre avantage, il se convertit facilement au mode TE10 rectangulaire qui peut être utilisé dans la ligne de transmission 10 si elle est formée d'un guide rectangulaire.
Un tube hyperfréquence fonctionne sous vide. Généralement le dispositif utilisateur et la ligne de transmission ne fonctionnent pas à la même pression que le tube, ils peuvent fonctionner à la pression atmosphérique ou à une pression supérieure. Une fenêtre hyperfréquence 15 en matériau diélectrique est alors utilisée pour maintenir le vide à l'intérieur du tube tout en laissant passer l'onde hyperfréquence dans la ligne de transmission 10.
Sur la figure 1a, la fenêtre 15 est placée dans le collecteur 6, à son extrémité opposée à la cavité de sortie C5, en amont de la bride de jonction 14. Elle est sensiblement transversale à l'axe XX'.
La fenêtre hyperfréquence 15 peut être réalisée en alumine et être brasée au collecteur 6. Sa forme est fonction de son environnement. Ici, elle est adaptée à la section droite du collecteur 6, c'est un disque et le collecteur est un cylindre de révolution.
Plus le tube est court, plus le collecteur 6 est compact et plus la fenêtre hyperfréquence 15 risque d'être bombardée par des électrons. Ce bombardement l'endommage voire risque de la briser ou de la percer. Les électrons percutant la fenêtre 15 ont plusieurs origines, il y a ceux qui pénétrant dans le collecteur 6 près de l'axe XX' n'ont pas été déviés, ceux qui sont réfléchis par la paroi du collecteur ainsi que les électrons secondaires émis après un impact entre un électron dit primaire et la paroi du collecteur. Ce bombardement provoque une accumulation de charges sur la fenêtre.
On peut éviter, mais seulement partiellement, cette accumulation en recouvrant la fenêtre d'une couche mince d'un matériau peu conducteur et ayant de préférence un faible coefficient d'émission secondaire tel que le titane. Les charges peuvent s'écouler vers les parois du collecteur 6.
Il est également possible de réduire le bombardement de la fenêtre en soumettant le collecteur 6 à un champ magnétique transversal en amont de la fenêtre 15 pour que les électrons soient déviés avant de l'atteindre. Cette variante est illustrée sur les figures 2a, 2b.
Dans cet exemple, le collecteur 6 comporte à son extrémité opposée à la cavité de sortie C5, une transition 20 puis se prolonge par une portion de guide d'onde 21 accueillant la fenêtre 15 et se termine par la bride de jonction 14. La fenêtre 15 est toujours sensiblement transversale à l'axe XX' et la ligne de transmission (non représentée) toujours dirigée selon l'axe XX'. Selon le type de la transition 20, la portion de guide d'onde 21 accueillant la fenêtre peut avoir une autre forme de section droite que celle du collecteur 6 et/ou des dimensions différentes. La transition peut transformer, par exemple un guide circulaire en guide rectangulaire, un guide rectangulaire en guide circulaire et/ou réaliser une réduction ou une augmentation. Dans l'exemple représenté la transition 20 transforme un guide circulaire en un guide rectangulaire.
Le collecteur 6 est équipé extérieurement de moyens 22 produisant un champ magnétique transversal en amont de la fenêtre 15 de manière à dévier les électrons passant dans cette zone pour qu'ils n'atteignent pas la fenêtre 15. Des aimants 22 sont situés à la périphérie de la portion 21 de guide d'onde.
Cette variante nécessite des aimants lourds ou même des électroaimants et une alimentation en courant ce qui augmente le coût de l'équipement.
Pour éviter le bombardement, il est également possible de placer dans le collecteur 6, en amont de la fenêtre 15 des cloisons en chicane.
Les figures 3a, 3b montrent un collecteur 6 d'un tube selon l'invention équipé de deux cloisons 30. Ces cloisons 30 sont adaptées à la forme du collecteur 6. Dans l'exemple représenté, elles ont des portions en vis-à-vis, ces portions sont des arêtes 31 dans la partie centrale du collecteur 6. Il est aussi envisageable que deux cloisons 30 successives aient des portions plus grandes en vis-à-vis.
Ces cloisons 30 sont disposées vers l'extrémité du collecteur 6 opposée à la cavité de sortie C5, en amont de la fenêtre 15, dans une zone où le courant du faisceau d'électrons est déjà bien atténué. Ces cloisons 30 interceptent les électrons non encore collectés quelle que soit leur origine.
Il est possible d'utiliser plus de deux cloisons successives. L'espace entre deux cloisons 30 successives sera de préférence inférieur à λg/4, λg représentant la longueur de l'onde hyperfréquence guidée dans le collecteur.
Ces cloisons 30 peuvent aussi servir d'adaptation à l'ensemble collecteur 6 - fenêtre 15 - ligne de transmission si nécessaire.
Sur la figure 3a, on remarque que le collecteur 6 contient, comme obstacle hyperfréquence 12 un pion au lieu d'un coin. L'organe de couplage 9 au lieu d'être un iris est une boucle conductrice.
Sur la figure 3b qui est une coupe transversale du collecteur 6 selon l'axe BB', on voit que le pion 12 et les arrêtes 31 des cloisons ont sensiblement la même direction et cette direction est sensiblement normale au champ électrique existant dans le collecteur 6. Si l'organe de couplage 9 était un iris comme sur les figures 1, sa plus grande dimension aurait été dirigée selon cette direction.
La figure 3c montre une variante de positionnement de la boucle dont l'une des extrémités est reliée à la paroi du collecteur 6, l'autre à la paroi de la cavité de sortie C5 et qui traverse sans la toucher la paroi terminale 8.
Sur la figure 4, le collecteur 6 comporte à son extrémité opposée à la cavité de sortie C5, comme sur les figures 2 une transition 20 suivie par une portion 21 de guide d'onde sur laquelle est fixée la bride de jonction 14. Le collecteur 6 est équipé de deux cloisons 30 en chicane. Les cloisons ont des portions 32 en vis-à-vis. La fenêtre 15 est placée en amont de la transition 20 mais en aval des cloisons 30.
Au lieu d'être dirigée selon l'axe XX' du faisceau d'électrons, la ligne de transmission 10 peut être placée sensiblement transversalement à cet axe. La fragilité de la liaison n'est plus un problème dans cette configuration.
Les figures 5a à 5f montrent diverses variantes de collecteurs 6 se terminant par une bride de jonction 14 sensiblement transversale à l'axe XX'. La ligne de transmission sera montée sensiblement transversalement mais la fenêtre 15 peut être sensiblement transversale à l'axe XX' ou sensiblement parallèle.
Sur toutes ces figures le collecteur 6 est équipé de cloisons 30 en chicane. Il est bien entendu qu'il pourrait être équipé d'aimants et/ou que la fenêtre pourrait être recouverte d'un matériau légèrement conducteur. Ces trois caractéristiques pourraient être utilisées seules ou deux à deux ou toutes ensembles.
Sur la figure 5a, le collecteur 6 se prolonge à son extrémité opposée à la cavité de sortie par une portion coudée 50 et se termine par la bride de jonction 14 à laquelle est destinée à être fixée la ligne de transmission (non représentée).
La fenêtre 15 est maintenant située au-delà de la portion coudée 50, en amont de la bride de jonction 14 et est sensiblement parallèle à l'axe XX'. La portion coudée 50 est ici un guide d'onde coudé. On suppose que le collecteur 6, le guide coudé 50, la fenêtre 15 et la bride de jonction 14 ont la même section droite, par exemple, cylindrique ou rectangulaire.
De la même manière, sur la figure 5b, le collecteur 6 se prolonge par un coude 50 et se termine par une bride de jonction 14, une transition 51 est insérée entre le guide coudé 50 et la bride de jonction 14. La transition 51 modifie la section droite du collecteur 6 en aval du guide coudé 50.
Le collecteur 6 est par exemple circulaire ou rectangulaire, le guide coudé 50 conserve la même forme, la transition 51 assure un passage circulaire/rectangulaire ou rectangulaire/circulaire ou même en conservant la même forme, réduit ou augmente la section droite.
Les figures 5c et 5d montrent encore une autre variante d'un collecteur 6. Il comporte un guide coudé 50 suivi d'une transition 51 et se termine par une bride de jonction 14. La fenêtre 15 est située entre la transition 51 et la bride 14. On suppose que dans cet exemple, le collecteur 6 a une section droite rectangulaire, que le guide coudé 50 est rectangulaire, que la transition 51 réduit la section droite du guide coudé 50 tout en restant rectangulaire et que la bride 14 est également rectangulaire.
Sur la figure 5d qui est une coupe transversale selon l'axe CC' on peut voir l'iris 9, le pion 12 et les arêtes des cloisons 30, tous ces éléments sont disposés selon la même direction.
Dans cette variante, la fenêtre 15 placée en aval d'une transition réductrice a une dimension réduite ce qui a pour avantage d'abaisser les coûts.
L'avantage de placer la fenêtre 15 le plus près possible de la bride 14 est son accès aisé si un nettoyage est requis.
Au lieu d'utiliser un guide coudé 50 comme portion coudée, il est possible comme l'illustrent les figures 5e et 5f, de fixer directement sur le collecteur 6 un tronçon de guide d'onde 500 sensiblement transversal à l'axe XX'.
Ce tronçon 500 de guide d'onde se termine, sur la figure 5e, par une bride 14 de jonction destinée à être reliée à une ligne de transmission (non représentée).
La fenêtre 15 est placée dans ce tronçon 500 de guide d'onde.
Sur la figure 5e, le tronçon 500 de guide d'onde a une de ses parois qui se trouve dans le prolongement de l'extrémité du collecteur 6 à l'opposé de la cavité de sortie C5. Cette extrémité est fermée par une paroi 501 sensiblement transversale à l'axe XX'.
Au niveau du raccordement se trouve un coin 502 d'adaptation. En ce qui concerne les dimensions des deux sections droites elles peuvent être égales ou différentes. La principale différence entre la figure 5e et la figure 5f se situe au niveau du tronçon 500 de guide d'onde qui comporte une transition 503 en amont de la bride de jonction 14. Comme précédemment la transition 503 peut modifier la forme et/ou les dimensions du tronçon 500 de guide d'onde. Sur la figure 5f cette transition 503 assure une réduction de section sans modification de forme. Sur la figure 5f la paroi terminale 8 est visible et l'organe de couplage 9 entre la cavité de sortie C5 et le collecteur 6 est une sonde.
La fenêtre 15 est placée en amont de la transition 503. En vue de réduire les coûts elle pourrait être en aval.
L'invention n'est pas limitée en ce qui concerne les portions coudées, les transitions, la positon de la fenêtre, aux exemples représentés.

Claims (20)

  1. Tube hyperfréquence à interaction longitudinale comportant au moins un faisceau d'électrons (2) dirigé selon un axe (XX'), traversant une cavité dite de sortie (C5) dans laquelle il interagit avec une onde hyperfréquence, cette cavité (C5) ayant une paroi terminale (8) qui la sépare d'un collecteur (6), le faisceau d'électrons (2) pénétrant dans le collecteur (6) par au moins une ouverture (11) dans la paroi terminale (8), caractérisé en ce que la paroi terminale (8) comporte en plus, au moins un organe de couplage (9) pour coupler la cavité de sortie (C5) au collecteur (6), l'onde hyperfréquence devant circuler dans le collecteur avant d'en être extraite.
  2. Tube hyperfréquence selon la revendication 1, caractérisé en ce que l'organe de couplage (9) est de type iris.
  3. Tube hyperfréquence selon la revendication 1, caractérisé en ce que l'organe de couplage (9) est une boucle conductrice.
  4. Tube hyperfréquence selon l'une des revendications 1 à 3, caractérisé en ce que le collecteur (6) comporte au moins un obstacle hyperfréquence (12) pour adapter l'impédance du collecteur (6) à celle de la cavité de sortie (C5).
  5. Tube hyperfréquence selon rune des revendications 1 à 4, caractérisé en ce que le collecteur (6) a une extrémité opposée à la cavité de sortie (C5) équipée par une bride de jonction (14) destinée à être reliée à une ligne de transmission (10) devant véhiculer l'onde hyperfréquence hors du collecteur (6).
  6. Tube hyperfréquence selon l'une des revendications 1 à 5, caractérisé en ce qu'une fenêtre hyperfréquence (16) est placée dans le collecteur (6) de manière à maintenir un vide poussé à l'intérieur du collecteur (6).
  7. Tube hyperfréquence selon la revendication 6, caractérisé en ce que la fenêtre (15) est dirigée sensiblement transversalement à l'axe (XX') du faisceau d'électrons (2).
  8. Tube hyperfréquence selon la revendication 6, caractérisé en ce que la fenêtre (15) est dirigée sensiblement parallèlement à l'axe (XX') du faisceau d'électrons (2).
  9. Tube hyperfréquence selon l'une des revendications 6 à 8, caractérisé en ce que le collecteur (6) contient des cloisons successives (30) montées en chicane, en amont de la fenêtre (15), visant à protéger la fenêtre (15) du bombardement électronique.
  10. Tube hyperfréquence selon la revendication 9, caractérisé en ce que deux cloisons (30) successives ont des portions en vis-à-vis.
  11. Tube hyperfréquence selon la revendication 10, caractérisé en ce que les portions en vis-à-vis sont des arêtes.
  12. Tube hyperfréquence selon l'une des revendications 6 à 11, caractérisé en ce que la fenêtre (15) a une de ses faces recouverte d'un matériau légèrement conducteur tel que le titane, de manière à permettre l'écoulement des charges électriques dues au bombardement électronique.
  13. Tube hyperfréquence selon l'un des revendications 1 à 12, caractérisé en ce que le collecteur (6) est équipé extérieurement de moyens produisant un champ magnétique visant à dévier les électrons avant qu'ils n'atteignent le fenêtre (15).
  14. Tube hyperfréquence selon l'une des revendications 1 à 13, caractérisé en ce que le collecteur (6) comporte une portion coudée (50). (14).
  15. Tube hyperfréquence selon l'une des revendications 1 à 14, caractérisé en ce que le collecteur comporte une transition (51).
  16. Tube hyperfréquence selon la revendication 15, caractérisé en ce que la transition (51) est placée en aval de la portion coudée (50).
  17. Tube hyperfréquence selon l'une des revendications 14 à 16, caractérisé en ce qu'un tronçon de guide d'onde (500) fixé au collecteur contribue à former la portion coudée.
  18. Tube hyperfréquence selon l'une des revendications 14 à 16, caractérisé en ce que la portion coudée (51) est un guide d'onde coudé.
  19. Tube hyperfréquence selon l'une des revendicateurs 14 à 18, caractérisé en ce que la fenêtre est placée en aval de la portion coudée.
  20. Tube hyperfréquence selon l'une des revendications 1 à 19, caractérisé en ce que le collecteur est équipé extérieurement d'un dispositif de refroidissement (7).
EP97402974A 1996-12-10 1997-12-09 Tube hyperfréquence à interaction longitudinale à cavité à sortie au delà du collecteur Expired - Lifetime EP0848409B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9615158 1996-12-10
FR9615158A FR2756970B1 (fr) 1996-12-10 1996-12-10 Tube hyperfrequence a interaction longitudinale a cavite a sortie au dela du collecteur

Publications (2)

Publication Number Publication Date
EP0848409A1 EP0848409A1 (fr) 1998-06-17
EP0848409B1 true EP0848409B1 (fr) 2003-07-02

Family

ID=9498510

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97402974A Expired - Lifetime EP0848409B1 (fr) 1996-12-10 1997-12-09 Tube hyperfréquence à interaction longitudinale à cavité à sortie au delà du collecteur

Country Status (4)

Country Link
US (1) US6025678A (fr)
EP (1) EP0848409B1 (fr)
JP (1) JPH10172447A (fr)
FR (1) FR2756970B1 (fr)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2780809B1 (fr) 1998-07-03 2003-11-07 Thomson Tubes Electroniques Tube electronique multifaisceau avec champ magnetique de correction de trajectoire des faisceaux
FR2803454B1 (fr) * 1999-12-30 2003-05-16 Thomson Tubes Electroniques Generateur d'impulsions hyperfrequences integrant un compresseur d'impulsions
US6488551B1 (en) * 2000-08-17 2002-12-03 Yazaki North America Press-fit junction box terminal
US9153960B2 (en) 2004-01-15 2015-10-06 Comarco Wireless Technologies, Inc. Power supply equipment utilizing interchangeable tips to provide power and a data signal to electronic devices
RU2518512C1 (ru) * 2012-12-27 2014-06-10 Федеральное государственное унитарное предприятие "Научно-производственное предприятие "Исток" (ФГУП "НПП "Исток") Электровакуумный свч прибор гибридного типа, истрон
CN103346053B (zh) * 2013-05-08 2015-09-16 南京三乐电子信息产业集团有限公司 一种2450MHz大功率连续波磁控管及其制备方法
CN104134598A (zh) * 2014-08-19 2014-11-05 中国科学院电子学研究所 一种多电子注感应输出管
CN104241064B (zh) * 2014-08-29 2016-08-24 南京三乐微波技术发展有限公司 一种20kW/2450MHz注入锁频磁控管
RU2576391C1 (ru) * 2014-11-18 2016-03-10 Федеральное государственное бюджетное учреждение науки Институт прикладной физики Российской академии наук (ИПФ РАН) Электронный свч прибор
RU2630251C1 (ru) * 2016-04-05 2017-09-06 Федеральное государственное бюджетное научное учреждение "Федеральный исследовательский центр Институт прикладной физики Российской академии наук" (ИПФ РАН) Электронный СВЧ прибор

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3097324A (en) * 1960-05-02 1963-07-09 Varian Associates Cavity resonator structure for klystrons
US3312857A (en) * 1963-04-19 1967-04-04 Itt Microwave amplifier utilizing multipaction to produce periodically bunched electrons
FR2153585A5 (fr) * 1971-09-16 1973-05-04 Thomson Csf
FR2191253B1 (fr) * 1972-06-27 1978-03-03 Thomson Csf
US4006073A (en) * 1975-04-03 1977-02-01 The United States Of America As Represented By The United States Energy Research And Development Administration Thin film deposition by electric and magnetic crossed-field diode sputtering
FR2363185A1 (fr) * 1976-08-27 1978-03-24 Thomson Csf Dispositif de couplage pour tube hyperfrequence et tube hyperfrequence comportant un tel dispositif
FR2430104A1 (fr) * 1978-06-29 1980-01-25 Thomson Csf Dispositif de selection de la frequence de resonance de cavites hyperfrequences, klystrons et filtres de frequences comportant un tel dispositif
US4189660A (en) * 1978-11-16 1980-02-19 The United States Of America As Represented By The United States Department Of Energy Electron beam collector for a microwave power tube
EP0058039B1 (fr) * 1981-02-10 1985-02-20 Thorn Emi-Varian Limited Gyrotron
US4388555A (en) * 1981-03-09 1983-06-14 Varian Associates, Inc. Gyrotron with improved stability
GB2096392B (en) * 1981-04-06 1985-04-03 Varian Associates Collector-output for hollow beam electron tubes
US4371854A (en) * 1981-04-27 1983-02-01 Varian Associates, Inc. Broadband high-power microwave window assembly
FR2542928B1 (fr) * 1983-03-18 1985-10-04 Thomson Csf Transformateur de modes de propagation hyperfrequence
FR2545646B1 (fr) * 1983-05-03 1985-12-27 Thomson Csf Klystron amplificateur de puissance apte a alimenter une charge variable
JPH0766749B2 (ja) * 1985-05-30 1995-07-19 株式会社東芝 超高周波電子管
FR2596199B1 (fr) * 1986-03-19 1994-03-18 Thomson Csf Circuit de sortie pour klystron et klystron comportant un tel circuit de sortie
FR2599565B1 (fr) * 1986-05-30 1989-01-13 Thomson Csf Lasertron a faisceaux multiples.
FR2599554A1 (fr) * 1986-05-30 1987-12-04 Thomson Csf Klystron a faisceaux multiples fonctionnant au mode tm02
JPS636725A (ja) * 1986-06-26 1988-01-12 Toshiba Corp ジヤイロトロン
US4897609A (en) * 1987-12-28 1990-01-30 Raytheon Company Axially coupled gyrotron and gyro TWTA
FR2625836B1 (fr) * 1988-01-13 1996-01-26 Thomson Csf Collecteur d'electrons pour tube electronique
JPH0777119B2 (ja) * 1988-04-28 1995-08-16 株式会社東芝 ジャイロトロン装置
FR2641899A1 (fr) * 1989-01-17 1990-07-20 Thomson Tubes Electroniques Canon a electrons muni d'un dispositif actif produisant un champ magnetique au voisinage de la cathode
FR2643507A1 (fr) * 1989-02-21 1990-08-24 Thomson Tubes Electroniques Canon a electrons a faisceau electronique module par un dispositif optique
FR2666169B1 (fr) * 1990-08-24 1992-10-16 Thomson Tubes Electroniques Klystron a bande passante instantanee elargie.
US5180944A (en) * 1991-01-25 1993-01-19 Varian Associates, Inc. Gyrotron with a mode convertor which reduces em wave leakage

Also Published As

Publication number Publication date
FR2756970A1 (fr) 1998-06-12
EP0848409A1 (fr) 1998-06-17
FR2756970B1 (fr) 2003-03-07
JPH10172447A (ja) 1998-06-26
US6025678A (en) 2000-02-15

Similar Documents

Publication Publication Date Title
EP0848409B1 (fr) Tube hyperfréquence à interaction longitudinale à cavité à sortie au delà du collecteur
EP3171451B1 (fr) Combineur spatial de puissance
EP0359774B1 (fr) Accelerateur d'electrons a cavite coaxiale
FR2499312A1 (fr) Dispositif d'attenuation de modes pour des cavites de gyrotrons
EP1095390B1 (fr) Tube electronique multifaisceau avec champ magnetique de correction de trajectoire des faisceaux
FR2691286A1 (fr) Tube d'amplification haute fréquence à pièces polaires d'un seul tenant pour des ondes millimétriques et son procédé de fabrication.
EP0368729A1 (fr) Fenêtre étanche pour tube électronique hyperfréquence, et tube à ondes progressives comportant cette fenêtre
EP0532411B1 (fr) Source d'ions à résonance cyclotronique électronique et à injection coaxiale d'ondes électromagnétiques
EP2936537B1 (fr) Générateur de microondes à cathode virtuelle oscillante et à réflecteurs ouverts
EP0440530A1 (fr) Tube hyperfréquence multifaisceau à sortie coaxiale
FR2658000A1 (fr) Tube hyperfrequence multifaisceau a groupes de cavites adjacentes.
EP0041877B1 (fr) Coupleur hyperfréquence à guide d'onde
EP1680799B1 (fr) Tube hyperfrequence a faible rayonnement parasite
FR2691287A1 (fr) Nouveau circuit de sortie à interaction étendue pour un klystron relativiste large bande.
EP1466343B1 (fr) Tube electronique a collecteur simplifie
EP1251544B1 (fr) Tube électronique amplificateur hyperfréquence avec fiche d'entrée miniature et procédé de fabrication
EP0482986A1 (fr) Collecteur pour tube hyperfréquence et tube hyperfréquence comportant un tel collecteur
EP0462863A1 (fr) Tube à ondes progressives muni d'un dispositif de couplage entre sa ligne à retard et un circuit hyperfréquence externe
EP0047684A1 (fr) Antenne pour missile et missile comprenant une telle antenne
FR2543368A1 (fr) Transformateur de modes
FR2485801A1 (fr) Dispositif de couplage entre la ligne a retard d'un tube a onde progressive et le circuit externe de transmission de l'energie du tube, et tube a onde progressive comportant un tel dispositif
FR2688342A1 (fr) Tube electronique hyperfrequence.
EP0301929A1 (fr) Gyrotron à ondes progressives protégé contre les modes indésirés
FR2882465A1 (fr) Ensemble magnetique perfectionne pour tube a faisceau rectiligne
FR2518802A1 (fr) Ligne a retard pour tube a onde progressive

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): FR GB

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 19980828

AKX Designation fees paid

Free format text: FR GB

RBV Designated contracting states (corrected)

Designated state(s): FR GB

REG Reference to a national code

Ref country code: DE

Ref legal event code: 8566

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THALES ELECTRON DEVICES S.A.

AK Designated contracting states

Designated state(s): FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20031025

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040405

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20041208

Year of fee payment: 8

Ref country code: FR

Payment date: 20041208

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051209

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20051209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060831

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20060831