Nothing Special   »   [go: up one dir, main page]

EP0713069B1 - Process and plant for air separation - Google Patents

Process and plant for air separation Download PDF

Info

Publication number
EP0713069B1
EP0713069B1 EP96200235A EP96200235A EP0713069B1 EP 0713069 B1 EP0713069 B1 EP 0713069B1 EP 96200235 A EP96200235 A EP 96200235A EP 96200235 A EP96200235 A EP 96200235A EP 0713069 B1 EP0713069 B1 EP 0713069B1
Authority
EP
European Patent Office
Prior art keywords
nitrogen
pressure column
column
medium
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96200235A
Other languages
German (de)
French (fr)
Other versions
EP0713069A1 (en
Inventor
Jean-Louis Girault
Phillippe Mazières
Jean-Pierre Tranier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=9420168&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0713069(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Air Liquide SA, LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude filed Critical Air Liquide SA
Publication of EP0713069A1 publication Critical patent/EP0713069A1/en
Application granted granted Critical
Publication of EP0713069B1 publication Critical patent/EP0713069B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/04193Division of the main heat exchange line in consecutive sections having different functions
    • F25J3/04206Division of the main heat exchange line in consecutive sections having different functions including a so-called "auxiliary vaporiser" for vaporising and producing a gaseous product
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/0409Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04303Lachmann expansion, i.e. expanded into oxygen producing or low pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04333Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04351Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04418Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system with thermally overlapping high and low pressure columns
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/20Processes or apparatus using separation by rectification in an elevated pressure multiple column system wherein the lowest pressure column is at a pressure well above the minimum pressure needed to overcome pressure drop to reject the products to atmosphere
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/50Processes or apparatus using separation by rectification using multiple (re-)boiler-condensers at different heights of the column
    • F25J2200/52Processes or apparatus using separation by rectification using multiple (re-)boiler-condensers at different heights of the column in the high pressure column of a double pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/50Processes or apparatus using separation by rectification using multiple (re-)boiler-condensers at different heights of the column
    • F25J2200/54Processes or apparatus using separation by rectification using multiple (re-)boiler-condensers at different heights of the column in the low pressure column of a double pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/90Details relating to column internals, e.g. structured packing, gas or liquid distribution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/42Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/50Oxygen or special cases, e.g. isotope-mixtures or low purity O2
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/10Boiler-condenser with superposed stages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/20Boiler-condenser with multiple exchanger cores in parallel or with multiple re-boiling or condensing streams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/30External or auxiliary boiler-condenser in general, e.g. without a specified fluid or one fluid is not a primary air component or an intermediate fluid
    • F25J2250/40One fluid being air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/30External or auxiliary boiler-condenser in general, e.g. without a specified fluid or one fluid is not a primary air component or an intermediate fluid
    • F25J2250/50One fluid being oxygen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S62/00Refrigeration
    • Y10S62/939Partial feed stream expansion, air

Definitions

  • the present invention relates to a method of air separation by distillation in an installation double column air distillation, of the type described in the preamble to the claim 1, as well as an installation according to the preamble of claim 6.
  • a method and such an installation are known from EP-A-0 384 483.
  • the subject of the invention is a method according to claim 1.
  • the invention also relates to an apparatus according to claim 6.
  • FIG. 4 schematically represents a mode of the air distillation installation according to the invention and Figures 1, 2 and 3 represent other embodiments of a air distillation installation.
  • the installation shown in FIG. 1 is intended to produce oxygen at a purity of the order of 85% under a pressure of the order of 7.4 x 10 5 Pa abs. It essentially comprises a double column 1 for air distillation consisting of a medium pressure column (or "MP column") 2 operating at 15.7 X 10 5 Pa abs, and a low pressure column (or “LP column ”) 3 operating at 6.3 X 10 5 Pa abs, a main heat exchange line 4, a sub-cooler 5, an auxiliary evaporator-condenser 6 and a turbine 7 for blowing air into the low pressure column .
  • Column 3 is superimposed on column 2 and contains in the tank a vaporizer-condenser 8 and, above this, a second vaporizer-condenser 9.
  • the air to be distilled arrives at medium pressure via a line 10 and enters the exchange line 4. Most of this air is cooled to near its dew point and comes out at the cold end of the exchange line at an intermediate temperature, expanded at low pressure in turbine 7 to keep the installation cold, and injected at an intermediate level in the BP column 3.
  • a fraction of the fully cooled air is introduced, via a pipe 11, at the base of the column MP 2, and the rest is condensed in the vaporizer-condenser 6; part of the liquid obtained is introduced via a line 12 at an intermediate point from column 2, and the rest is, after sub-cooling in 5 and expansion in an expansion valve 13, introduced at an intermediate point in the BP column 3.
  • the approximately pure nitrogen produced at the head of the column MP is partly evacuated from the installation as product, after heating in the exchange line, via a line 16 and, for the rest, sent in the form gas via a line 17, at medium pressure, in the upper evaporator-condenser 9. After condensation, this nitrogen is returned to reflux at the top of the MP column via a pipe 18.
  • impure nitrogen gas drawn off in a intermediate point of column 2 and, in this example, at the same level as the lean liquid, is sent via a line 19, at medium pressure, in the lower vaporizer-condenser 8.
  • the liquid thus obtained is returned to reflux in the MP column, about close to the same level, via line 20.
  • the pump 23 could be eliminated, the impure oxygen then being vaporized in 6 below the low pressure.
  • the BP column tank temperature is determined by that of the gas condensed in this vaporizer-condenser. As it is an intermediate gas of the MP column, hotter than the top nitrogen of this column, the temperature of the tank liquid, which is impure oxygen is relatively high. Therefore, for a desired purity of this impure oxygen, the pressure of the BP column, i.e. the low pressure, can be increased.
  • the upper vaporizer-condenser 9 is used to provide the necessary reflux at the top of the MP column.
  • Impure oxygen is drawn off in gaseous form from the column BP 3, and is simply reheated in the row 4 before its evacuation via line 24. This is particularly interesting when the impure oxygen is desired under low pressure. Consequently, the vaporizer-condenser 6 is deleted.
  • a fraction of the medium pressure air, cooled near its dew point is sent, via a line 26, in the vaporizer-condenser lower 8 in place of the intermediate gas in figure 1.
  • This intermediate gas feeds a intermediate vaporizer-condenser 27 located between the vaporizers-condensers lower 8 and higher 9.
  • Liquefied air from vaporizer-condenser 8 is sent in part, via line 28, in the MP column and in part, after sub-cooling in 5 and expansion in the valve trigger 13, in the LP column.
  • the impure oxygen is withdrawn in the form liquid from the BP column tank and then is brought in by a pump 23 at the desired production pressure, then vaporized and heated under this pressure in the line 4 before being evacuated from the installation via the driving 24.
  • a nitrogen cycle is planned, says rectification support cycle, which is used in same time to ensure vaporization of oxygen impure: part of the nitrogen produced at the top of the column 3 (which, in this case, has a "minaret" 30 which is supplied at its top by nitrogen pure liquid from the upper vaporizer-condenser 9 and which consequently produces pure nitrogen below the low pressure) is, after heating in the line exchange, compressed by a compressor 31 to the average pressure.
  • This medium pressure nitrogen combined with a current medium pressure nitrogen taken from line 16, is compressed again by a compressor 33 at a pressure vaporization of impure oxygen compressed by the pump 23, liquefied in the exchange line then, after expansion in an expansion valve 34, introduced under reflux at the head in the MP column.
  • FIG. 4 also includes a column BP 3 to minaret 30.
  • a column BP 3 to minaret 30 is high pressure air, boosted at a vaporization pressure of impure oxygen by a booster 35, which provides oxygen vaporization unclean in exchange line 4.
  • this air is, after liquefaction and expansion in a valve expansion valve 36 and in the expansion valve 13, distributed between the two columns 2 and 3. Therefore, the compressor 33 and the expansion valve 34 of FIG. 3 are deleted.
  • the nitrogen from compressor 31, compressed to a pressure higher than the medium pressure supplies in gaseous form, after cooling in the line exchange, the lower vaporizer-condenser 8, and the resulting liquid nitrogen is, after expansion in a expansion valve 37, combined with medium liquid nitrogen pressure from upper vaporizer-condenser 9.
  • This nitrogen pressure can be chosen between average pressure and the pressure at which nitrogen condenses at the cold end of the exchange line.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Description

La présente invention est relative à un procédé de séparation d'air par distillation dans une installation de distillation d'air à double colonne, du type décrit dans le préambule de la revendication 1, ainsi qu'à une installation conformément au préambule de la revendication 6. Un tel procédé et une telle installation sont connus par le EP-A-0 384 483.The present invention relates to a method of air separation by distillation in an installation double column air distillation, of the type described in the preamble to the claim 1, as well as an installation according to the preamble of claim 6. Such a method and such an installation are known from EP-A-0 384 483.

EP-A-0.042.676 divulgue un procédé dans lequel :

  • on refroidit un débit d'air et on l'envoie à la colonne moyenne pression ;
  • on sépare l'air par distillation dans la colonne moyenne pression pour produire un fluide enrichi en oxygène et un fluide enrichi en azote ;
  • on envoie lesdits fluides à la colonne basse pression ;
  • on soutire un liquide riche en oxygène de la colonne basse pression et on le vaporise ; et
  • on soutire un gaz enrichi en azote de la colonne basse pression.
EP-A-0.042.676 discloses a process in which:
  • an air flow is cooled and sent to the medium pressure column;
  • the air is separated by distillation in the medium pressure column to produce a fluid enriched in oxygen and a fluid enriched in nitrogen;
  • said fluids are sent to the low pressure column;
  • a liquid rich in oxygen is drawn from the low pressure column and vaporized; and
  • a nitrogen-enriched gas is drawn off from the low pressure column.

Dans le procédé de EP-A-0.042.676, de l'azote est soutiré de la colonne moyenne pression, réchauffé à la température ambiante, comprimé à une pression élevée, liquéfié et renvoyé à la colonne moyenne pression.In the process of EP-A-0.042.676, nitrogen is withdrawn from the medium pressure column, heated to room temperature, compressed at high pressure, liquefied and returned to the medium pressure column.

A cet effet, l'invention a pour objet un procédé selon la revendication 1. To this end, the subject of the invention is a method according to claim 1.

L'invention a également pour objet un appareil selon la revendication 6.The invention also relates to an apparatus according to claim 6.

Suivant d'autres caractéristiques, l'appareil comprend des moyens pour :

  • pressuriser le liquide avant de l'envoyer à l'échangeur de chaleur ;
  • comprimer un gaz de tête de la colonne moyenne pression et des moyens pour envoyer le gaz de tête comprimé à l'échangeur de chaleur.
According to other characteristics, the apparatus comprises means for:
  • pressurize the liquid before sending it to the heat exchanger;
  • compressing a top gas from the medium pressure column and means for sending the compressed top gas to the heat exchanger.

Des exemples de mise en oeuvre de l'invention vont maintenant être décrits en regard des dessins annexés sur lesquels la figure 4 représente schématiquement un mode de réalisation de l'installation de distillation d'air conforme à l'invention et les figures 1, 2 et 3 représentent d'autres modes de réalisation d'une installation de distillation d'air.Examples of implementation of the invention will now be described with reference to the accompanying drawings on which FIG. 4 schematically represents a mode of the air distillation installation according to the invention and Figures 1, 2 and 3 represent other embodiments of a air distillation installation.

L'installation représentée à la figure 1 est destinée à produire de l'oxygène à une pureté de l'ordre de 85% sous une pression de l'ordre de 7,4 x 105 Pa abs. Elle comprend essentiellement une double colonne 1 de distillation d'air constituée d'une colonne moyenne pression (ou "colonne MP") 2 fonctionnant sous 15,7 X 105 Pa abs, et d'une colonne basse pression (ou "colonne BP") 3 fonctionnant sous 6,3 X 105 Pa abs, une ligne d'échange thermique principale 4, un sous-refroidisseur 5, un vaporiseur-condenseur auxiliaire 6 et une turbine 7 d'insufflation d'air dans la colonne basse pression. La colonne 3 est superposée à la colonne 2 et contient en cuve un vaporiseur-condenseur 8 et, au-dessus de celui-ci, un second vaporiseur-condenseur 9.The installation shown in FIG. 1 is intended to produce oxygen at a purity of the order of 85% under a pressure of the order of 7.4 x 10 5 Pa abs. It essentially comprises a double column 1 for air distillation consisting of a medium pressure column (or "MP column") 2 operating at 15.7 X 10 5 Pa abs, and a low pressure column (or "LP column ") 3 operating at 6.3 X 10 5 Pa abs, a main heat exchange line 4, a sub-cooler 5, an auxiliary evaporator-condenser 6 and a turbine 7 for blowing air into the low pressure column . Column 3 is superimposed on column 2 and contains in the tank a vaporizer-condenser 8 and, above this, a second vaporizer-condenser 9.

L'air à distiller arrive sous la moyenne pression via une conduite 10 et pénètre dans la ligne d'échange 4. La majeure partie de cet air est refroidie jusqu'au voisinage de son point de rosée et sort au bout froid de la ligne d'échange à une température intermédiaire, détendu à la basse pression dans la turbine 7 pour assurer le maintien en froid de l'installation, et insufflé à un niveau intermédiaire dans la colonne BP 3.The air to be distilled arrives at medium pressure via a line 10 and enters the exchange line 4. Most of this air is cooled to near its dew point and comes out at the cold end of the exchange line at an intermediate temperature, expanded at low pressure in turbine 7 to keep the installation cold, and injected at an intermediate level in the BP column 3.

Une fraction de l'air entièrement refroidi est introduit, via une conduite 11, à la base de la colonne MP 2, et le reste est condensé dans le vaporiseur-condenseur 6 ; une partie du liquide obtenu est introduite via une conduite 12 en un point intermédiaire de la colonne 2, et le reste est, après sous-refroidissement en 5 et détente dans une vanne de détente 13, introduit en un point intermédiaire de la colonne BP 3.A fraction of the fully cooled air is introduced, via a pipe 11, at the base of the column MP 2, and the rest is condensed in the vaporizer-condenser 6; part of the liquid obtained is introduced via a line 12 at an intermediate point from column 2, and the rest is, after sub-cooling in 5 and expansion in an expansion valve 13, introduced at an intermediate point in the BP column 3.

Le "liquide riche" (air enrichi en oxygène) recueilli en cuve de la colonne MP est, après sous-refroidissement en 5 et détente dans une vanne de détente 14, introduit en un point intermédiaire de la colonne BP. De même, du "liquide pauvre" (azote impur) soutiré en un point intermédiaire de la colonne MP est, après sous-refroidissement en 5 et détente dans une vanne de détente 15, introduit au sommet de la colonne BP.The "rich liquid" (oxygen enriched air) collected in the bottom of the MP column, after sub-cooling in 5 and expansion in an expansion valve 14, introduced at an intermediate point in the BP column. Likewise, "lean liquid" (impure nitrogen) withdrawn in a intermediate point of the MP column is, after sub-cooling in 5 and expansion in an expansion valve 15, introduced at the top of the BP column.

L'azote à peu près pur produit en tête de la colonne MP est pour partie évacué de l'installation en tant que produit, après réchauffement dans la ligne d'échange, via une conduite 16 et, pour le reste, envoyé sous forme gazeuse via une conduite 17, sous la moyenne pression, dans le vaporiseur-condenseur supérieur 9. Après condensation, cet azote est renvoyé en reflux en tête de la colonne MP via une conduite 18.The approximately pure nitrogen produced at the head of the column MP is partly evacuated from the installation as product, after heating in the exchange line, via a line 16 and, for the rest, sent in the form gas via a line 17, at medium pressure, in the upper evaporator-condenser 9. After condensation, this nitrogen is returned to reflux at the top of the MP column via a pipe 18.

De plus, de l'azote impur gazeux, soutiré en un point intermédiaire de la colonne 2 et, dans cet exemple, au même niveau que le liquide pauvre, est envoyé via une conduite 19, sous la moyenne pression, dans le vaporiseur-condenseur inférieur 8. Le liquide ainsi obtenu est renvoyé en reflux dans la colonne MP, à peu près au même niveau, via une conduite 20.In addition, impure nitrogen gas, drawn off in a intermediate point of column 2 and, in this example, at the same level as the lean liquid, is sent via a line 19, at medium pressure, in the lower vaporizer-condenser 8. The liquid thus obtained is returned to reflux in the MP column, about close to the same level, via line 20.

Les courants de fluides sortant de la double colonne sont :

  • au sommet de la colonne MP, de l'azote moyenne pression, dont il a été question plus haut ;
  • au sommet de la colonne BP, de l'azote impur, constituant le gaz résiduaire de l'installation. Cet azote impur, après réchauffement dans le sous-refroidisseur 5 et dans la ligne d'échange 4, est évacué via une conduite 21 ; et
  • en cuve de la colonne BP, de l'oxygène impur liquide. Ce liquide est soutiré via une conduite 22, comprimé par une pompe 23 à la pression de production (7,4 X 105 Pa abs dans cet exemple), puis vaporisé dans le vaporiseur-condenseur 6 en condensant la fraction d'air moyenne pression qui traverse ce dernier, puis réchauffé sous forme gazeuse dans la ligne d'échange et évacué de l'installation via une conduite de production 24.
The streams of fluids leaving the double column are:
  • at the top of the MP column, medium pressure nitrogen, which was discussed above;
  • at the top of the LP column, impure nitrogen, constituting the waste gas from the installation. This impure nitrogen, after heating in the sub-cooler 5 and in the exchange line 4, is discharged via a line 21; and
  • in the bottom of the BP column, liquid impure oxygen. This liquid is drawn off via a line 22, compressed by a pump 23 at the production pressure (7.4 X 10 5 Pa abs in this example), then vaporized in the evaporator-condenser 6 by condensing the medium pressure air fraction which crosses the latter, then heated in gaseous form in the exchange line and evacuated from the installation via a production line 24.

En variante, la pompe 23 pourrait être supprimée, l'oxygène impur étant alors vaporisé en 6 sous la basse pression.As a variant, the pump 23 could be eliminated, the impure oxygen then being vaporized in 6 below the low pressure.

La description ci-dessus montre que, pour un écart de température donné dans le vaporiseur-condenseur 8, la température du liquide de cuve de la colonne BP est déterminée par celle du gaz condensé dans ce vaporiseur-condenseur. Comme il s'agit d'un gaz intermédiaire de la colonne MP, plus chaud que l'azote de tête de cette colonne, la température du liquide de cuve, qui est l'oxygène impur, est relativement élevée. Par suite, pour une pureté désirée de cet oxygène impur, la pression de la colonne BP, c'est-à-dire la basse pression, peut être augmentée. Finalement, on obtient de l'oxygène impur et de l'azote impur sous une pression accrue, ce qui permet de réaliser des économies sur leur valorisation, par exemple sur l'énergie nécessaire pour comprimer l'azote impur à la pression voulue dans une turbine à gaz (non représentée) couplée à l'installation, par exemple de la manière décrite dans le brevet US-A-4.224.045 précité.The above description shows that for a gap temperature given in the vaporizer-condenser 8, the BP column tank temperature is determined by that of the gas condensed in this vaporizer-condenser. As it is an intermediate gas of the MP column, hotter than the top nitrogen of this column, the temperature of the tank liquid, which is impure oxygen is relatively high. Therefore, for a desired purity of this impure oxygen, the pressure of the BP column, i.e. the low pressure, can be increased. Finally, we get impure oxygen and impure nitrogen under increased pressure, which allows to save on their valuation, by example on the energy required to compress nitrogen impure at the desired pressure in a gas turbine (not shown) coupled to the installation, for example of the as described in the aforementioned US-A-4,224,045.

Dans ce contexte, le vaporiseur-condenseur supérieur 9 sert à fournir le reflux nécessaire en tête de la colonne MP.In this context, the upper vaporizer-condenser 9 is used to provide the necessary reflux at the top of the MP column.

Si les températures des deux gaz alimentant les deux vaporiseurs-condenseurs sont nettement différentes l'une de l'autre, il est nécessaire de prévoir un certain nombre de plateaux de distillation 25 entre ces vaporiseurs-condenseurs. Dans le cas contraire, ces plateaux peuvent être supprimés, ce qui simplifie la construction de la colonne BP, les deux vaporiseurs-condenseurs pouvant même être intégrés en un seul échangeur de chaleur. C'est pourquoi les plateaux 25 ont été représentés en trait interrompu.If the temperatures of the two gases feeding the two vaporizers-condensers are significantly different one on the other, it is necessary to provide for a certain number of distillation trays 25 between these vaporizers-condensers. Otherwise, these trays can be removed, which simplifies the construction of the BP column, the two vaporizer-condensers can even be integrated into one heat exchanger. This is why the plates 25 have have been shown in broken lines.

L'installation représentée à la figure 2 ne diffère de la figure 1 que par les points suivants :The installation shown in Figure 2 does not differ of Figure 1 only by the following points:

L'oxygène impur est soutiré sous forme gazeuse de la colonne BP 3, et est simplement réchauffé dans la ligne d'échange 4 avant son évacuation via la conduite 24. Ceci est particulièrement intéressant lorsque l'oxygène impur est désiré sous la basse pression. En conséquence, le vaporiseur-condenseur 6 est supprimé.Impure oxygen is drawn off in gaseous form from the column BP 3, and is simply reheated in the row 4 before its evacuation via line 24. This is particularly interesting when the impure oxygen is desired under low pressure. Consequently, the vaporizer-condenser 6 is deleted.

De plus, une fraction de l'air moyenne pression, refroidi au voisinage de son point de rosée est envoyée, via une conduite 26, dans le vaporiseur-condenseur inférieur 8 à la place du gaz intermédiaire de la figure 1. Ce gaz intermédiaire, quant à lui, alimente un vaporiseur-condenseur intermédiaire 27 situé entre les vaporiseurs-condenseurs inférieur 8 et supérieur 9. Comme précédemment, il peut y avoir ou non des plateaux entre les paires de vaporiseurs-condenseurs. L'air liquéfié issu du vaporiseur-condenseur 8 est envoyé pour partie, via une conduite 28, dans la colonne MP et pour partie, après sous-refroidissement en 5 et détente dans la vanne de détente 13, dans la colonne BP.In addition, a fraction of the medium pressure air, cooled near its dew point is sent, via a line 26, in the vaporizer-condenser lower 8 in place of the intermediate gas in figure 1. This intermediate gas, in turn, feeds a intermediate vaporizer-condenser 27 located between the vaporizers-condensers lower 8 and higher 9. As previously, there may or may not be trays between the pairs of vaporizers-condensers. Liquefied air from vaporizer-condenser 8 is sent in part, via line 28, in the MP column and in part, after sub-cooling in 5 and expansion in the valve trigger 13, in the LP column.

Par rapport à la solution de la figure 1, on obtient une température plus élevée en cuve de la colonne BP, ce qui est favorable à l'augmentation de la basse pression. En revanche, on doit vaporiser un liquide plus riche en oxygène que l'oxygène impur à produire, ce qui tend à réduire la basse pression.Compared to the solution of figure 1, one obtains a higher temperature in the BP column tank, this which is favorable to the increase in low pressure. On the other hand, a liquid richer in oxygen than the impure oxygen to produce, which tends to reduce low pressure.

Ce dernier inconvénient est supprimé dans l'installation de la figure 3 qui permet de produire l'oxygène impur sous une pression élevée, et qui diffère de la précédente par les points suivants :This last drawback is removed in the installation of figure 3 which allows to produce impure oxygen under high pressure, which differs of the previous one by the following points:

D'une part, l'oxygène impur est soutiré sous forme liquide de la cuve de la colonne BP, puis est amené par une pompe 23 à la pression de production désirée, puis vaporisé et réchauffé sous cette pression dans la ligne d'échange 4 avant d'être évacué de l'installation via la conduite 24.On the one hand, the impure oxygen is withdrawn in the form liquid from the BP column tank and then is brought in by a pump 23 at the desired production pressure, then vaporized and heated under this pressure in the line 4 before being evacuated from the installation via the driving 24.

D'autre part, pour compenser la perte de reflux dans la colonne MP résultant du soutirage d'oxygène liquide en cuve de la colonne BP, il est prévu un cycle azote, dit cycle de soutien de rectification, qui est utilisé en même temps pour assurer la vaporisation de l'oxygène impur : une partie de l'azote produit en tête de la colonne 3 (laquelle, dans ce cas, possède en tête un "minaret" 30 qui est alimenté à son sommet par de l'azote liquide pur provenant du vaporiseur-condenseur supérieur 9 et qui, par suite, produit de l'azote pur sous la basse pression) est, après réchauffement dans la ligne d'échange, comprimée par un compresseur 31 à la moyenne pression. Cet azote moyenne pression, réuni à un courant d'azote moyenne pression prélevé sur la conduite 16, est comprimé de nouveau par un compresseur 33 à une pression de vaporisation de l'oxygène impur comprimé par la pompe 23, liquéfié dans la ligne d'échange puis, après détente dans une vanne de détente 34, introduit en reflux en tête de la colonne MP.On the other hand, to compensate for the loss of reflux in the MP column resulting from the withdrawal of liquid oxygen in BP column tank, a nitrogen cycle is planned, says rectification support cycle, which is used in same time to ensure vaporization of oxygen impure: part of the nitrogen produced at the top of the column 3 (which, in this case, has a "minaret" 30 which is supplied at its top by nitrogen pure liquid from the upper vaporizer-condenser 9 and which consequently produces pure nitrogen below the low pressure) is, after heating in the line exchange, compressed by a compressor 31 to the average pressure. This medium pressure nitrogen, combined with a current medium pressure nitrogen taken from line 16, is compressed again by a compressor 33 at a pressure vaporization of impure oxygen compressed by the pump 23, liquefied in the exchange line then, after expansion in an expansion valve 34, introduced under reflux at the head in the MP column.

L'installation de la figure 4 comporte également une colonne BP 3 à minaret 30. Toutefois, contrairement au cas précédent, c'est de l'air haute pression, surpressé à une pression de vaporisation de l'oxygène impur par un surpresseur 35, qui assure la vaporisation de l'oxygène impur dans la ligne d'échange 4. Dans cet exemple, cet air est, après liquéfaction et détente dans une vanne de détente 36 et dans la vanne de détente 13, réparti entre les deux colonnes 2 et 3. Par conséquent, le compresseur 33 et la vanne de détente 34 de la figure 3 sont supprimés.The installation of FIG. 4 also includes a column BP 3 to minaret 30. However, unlike the previous case, it is high pressure air, boosted at a vaporization pressure of impure oxygen by a booster 35, which provides oxygen vaporization unclean in exchange line 4. In this example, this air is, after liquefaction and expansion in a valve expansion valve 36 and in the expansion valve 13, distributed between the two columns 2 and 3. Therefore, the compressor 33 and the expansion valve 34 of FIG. 3 are deleted.

De plus, l'azote issu du compresseur 31, comprimé à une pression supérieure à la moyenne pression, alimente sous forme gazeuse, après refroidissement dans la ligne d'échange, le vaporiseur-condenseur inférieur 8, et l'azote liquide résultant est, après détente dans une vanne de détente 37, réuni à l'azote liquide moyenne pression issu du vaporiseur-condenseur supérieur 9. Ceci présente l'avantage de permettre un réglage de la température de la cuve de la colonne BP, et donc de la pression de cette colonne, par réglage de la pression de l'azote alimentant le vaporiseur-condenseur 8. Cette pression d'azote peut être choisie entre la moyenne pression et la pression pour laquelle l'azote se condense au bout froid de la ligne d'échange.In addition, the nitrogen from compressor 31, compressed to a pressure higher than the medium pressure, supplies in gaseous form, after cooling in the line exchange, the lower vaporizer-condenser 8, and the resulting liquid nitrogen is, after expansion in a expansion valve 37, combined with medium liquid nitrogen pressure from upper vaporizer-condenser 9. This has the advantage of allowing adjustment of the temperature of the BP column tank, and therefore of the pressure of this column, by adjusting the pressure of the nitrogen supplying the vaporizer-condenser 8. This nitrogen pressure can be chosen between average pressure and the pressure at which nitrogen condenses at the cold end of the exchange line.

Claims (8)

  1. Process for producing oxygen by air distillation in a double-column air distillation plant (1), the double column comprising a medium-pressure column (2) and a low-pressure column (3), in which process:
    a stream of air is cooled and sent to the medium-pressure column (2);
    the air is separated by distillation in the medium-pressure column into an oxygen-enriched fluid and a nitrogen-enriched fluid;
    the said fluids are sent to the low-pressure column;
    an oxygen-rich liquid is withdrawn from the low-pressure column and vaporized;
    a nitrogen-enriched gas is withdrawn from the low-pressure column;
    the nitrogen-enriched gas withdrawn from the low-pressure column is compressed and cooled, and the cooled fluid is sent to the medium-pressure column and,
    the oxygen-rich liquid is vaporized by heat exchange with the stream of air, characterized in that the compressed and cooled nitrogen-enriched gas is sent to a reboiler (8) in the low-pressure column where it condenses to form reflux.
  2. Process according to Claim 1, in which the oxygen-rich liquid is vaporized by heat exchange with the compressed nitrogen-enriched gas.
  3. Process according to Claim 1 or 2, in which the nitrogen-enriched gas is warmed before being compressed.
  4. Process according to Claim 1, 2 or 3, in which the oxygen-rich liquid is vaporized against a portion of the nitrogen-enriched gas which has been compressed.
  5. Apparatus for the production of a gas product, comprising:
    an air compressor;
    a heat exchanger (4);
    a medium-pressure column (2);
    a low-pressure column (3);
    means for sending air to the medium-pressure column via the heat exchanger;
    means for withdrawing a liquid from the bottom of the low-pressure column and for sending the liquid to the heat exchanger, a first nitrogen compressor (31), means for sending a nitrogen-enriched fluid from the low-pressure column to the first nitrogen compressor, from the first nitrogen compressor to the cooling means (4) and from the cooling means (4) indirectly to the medium-pressure column, characterized in that it comprises means for sending the nitrogen-enriched compressed fluid from the heat exchanger to a bottom condenser (8) in the low-pressure column and then to the medium-pressure column (2).
  6. Apparatus according to Claim 5, comprising means for pressurizing the liquid before it is sent to the heat exchanger (4).
  7. Apparatus according to either of Claims 5 and 6, in which the nitrogen-enriched fluid is sent from the first nitrogen compressor to a cooling means (4) consisting of the heat exchanger.
  8. Apparatus according to either of Claims 6 and 7, comprising means for compressing a top gas in the medium-pressure column (2) and means for sending the compressed top gas to the heat exchanger (4).
EP96200235A 1991-12-18 1992-12-09 Process and plant for air separation Expired - Lifetime EP0713069B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9115705 1991-12-18
FR9115705A FR2685459B1 (en) 1991-12-18 1991-12-18 PROCESS AND PLANT FOR PRODUCING IMPURATED OXYGEN.
EP92403330A EP0547946B2 (en) 1991-12-18 1992-12-09 Process for the production of impure oxygen

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
EP92403330A Division EP0547946B2 (en) 1991-12-18 1992-12-09 Process for the production of impure oxygen
EP92403330.1 Division 1992-12-09

Publications (2)

Publication Number Publication Date
EP0713069A1 EP0713069A1 (en) 1996-05-22
EP0713069B1 true EP0713069B1 (en) 2000-04-26

Family

ID=9420168

Family Applications (2)

Application Number Title Priority Date Filing Date
EP92403330A Expired - Lifetime EP0547946B2 (en) 1991-12-18 1992-12-09 Process for the production of impure oxygen
EP96200235A Expired - Lifetime EP0713069B1 (en) 1991-12-18 1992-12-09 Process and plant for air separation

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP92403330A Expired - Lifetime EP0547946B2 (en) 1991-12-18 1992-12-09 Process for the production of impure oxygen

Country Status (9)

Country Link
US (1) US5392609A (en)
EP (2) EP0547946B2 (en)
CN (1) CN1068428C (en)
AU (1) AU654601B2 (en)
BR (1) BR9205050A (en)
CA (1) CA2085561A1 (en)
DE (2) DE69214409T3 (en)
ES (2) ES2145967T3 (en)
FR (1) FR2685459B1 (en)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5251451A (en) * 1992-08-28 1993-10-12 Air Products And Chemicals, Inc. Multiple reboiler, double column, air boosted, elevated pressure air separation cycle and its integration with gas turbines
US5355682A (en) * 1993-09-15 1994-10-18 Air Products And Chemicals, Inc. Cryogenic air separation process producing elevated pressure nitrogen by pumped liquid nitrogen
US5454227A (en) * 1994-08-17 1995-10-03 The Boc Group, Inc. Air separation method and apparatus
US5463871A (en) * 1994-10-04 1995-11-07 Praxair Technology, Inc. Side column cryogenic rectification system for producing lower purity oxygen
DE19609490A1 (en) * 1995-03-10 1996-09-12 Linde Ag Oxygen-production process with reduced energy requirement
US5546767A (en) * 1995-09-29 1996-08-20 Praxair Technology, Inc. Cryogenic rectification system for producing dual purity oxygen
US5600970A (en) * 1995-12-19 1997-02-11 Praxair Technology, Inc. Cryogenic rectification system with nitrogen turboexpander heat pump
US5666824A (en) * 1996-03-19 1997-09-16 Praxair Technology, Inc. Cryogenic rectification system with staged feed air condensation
US5611219A (en) * 1996-03-19 1997-03-18 Praxair Technology, Inc. Air boiling cryogenic rectification system with staged feed air condensation
US5678427A (en) * 1996-06-27 1997-10-21 Praxair Technology, Inc. Cryogenic rectification system for producing low purity oxygen and high purity nitrogen
US5669236A (en) * 1996-08-05 1997-09-23 Praxair Technology, Inc. Cryogenic rectification system for producing low purity oxygen and high purity oxygen
US5664438A (en) * 1996-08-13 1997-09-09 Praxair Technology, Inc. Cryogenic side column rectification system for producing low purity oxygen and high purity nitrogen
US5682762A (en) * 1996-10-01 1997-11-04 Air Products And Chemicals, Inc. Process to produce high pressure nitrogen using a high pressure column and one or more lower pressure columns
US5675977A (en) * 1996-11-07 1997-10-14 Praxair Technology, Inc. Cryogenic rectification system with kettle liquid column
US5761927A (en) * 1997-04-29 1998-06-09 Air Products And Chemicals, Inc. Process to produce nitrogen using a double column and three reboiler/condensers
US5836175A (en) * 1997-08-29 1998-11-17 Praxair Technology, Inc. Dual column cryogenic rectification system for producing nitrogen
US5839296A (en) * 1997-09-09 1998-11-24 Praxair Technology, Inc. High pressure, improved efficiency cryogenic rectification system for low purity oxygen production
KR100536508B1 (en) 1997-09-26 2005-12-14 지멘스 악티엔게젤샤프트 Housing for a fan, pump or compressor
US5806342A (en) * 1997-10-15 1998-09-15 Praxair Technology, Inc. Cryogenic rectification system for producing low purity oxygen and high purity oxygen
US5956972A (en) * 1997-12-23 1999-09-28 The Boc Group, Inc. Method of operating a lower pressure column of a double column distillation unit
US6253576B1 (en) * 1999-11-09 2001-07-03 Air Products And Chemicals, Inc. Process for the production of intermediate pressure oxygen
DE10139727A1 (en) 2001-08-13 2003-02-27 Linde Ag Method and device for obtaining a printed product by low-temperature separation of air
DE10205878A1 (en) * 2002-02-13 2003-08-21 Linde Ag Cryogenic air separation process
FR2930330B1 (en) * 2008-04-22 2013-09-13 Air Liquide METHOD AND APPARATUS FOR AIR SEPARATION BY CRYOGENIC DISTILLATION
FR2973865B1 (en) 2011-04-08 2015-11-06 Air Liquide METHOD AND APPARATUS FOR AIR SEPARATION BY CRYOGENIC DISTILLATION
US9453674B2 (en) * 2013-12-16 2016-09-27 Praxair Technology, Inc. Main heat exchange system and method for reboiling
CN106989567A (en) * 2017-04-25 2017-07-28 河南开元空分集团有限公司 A kind of apparatus and method that oxygen rich gas and high pure nitrogen are produced while low energy consumption
EP3625509A4 (en) 2017-05-16 2021-02-10 Ebert, Terrence, J. Apparatus and process for liquefying gases

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0024962A1 (en) * 1979-07-20 1981-03-11 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Cryogenic air separation process with production of high-pressure oxygen

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3210951A (en) * 1960-08-25 1965-10-12 Air Prod & Chem Method for low temperature separation of gaseous mixtures
JPS56124879A (en) * 1980-02-26 1981-09-30 Kobe Steel Ltd Air liquefying and separating method and apparatus
GB2079428A (en) * 1980-06-17 1982-01-20 Air Prod & Chem A method for producing gaseous oxygen
US4453957A (en) * 1982-12-02 1984-06-12 Union Carbide Corporation Double column multiple condenser-reboiler high pressure nitrogen process
US4448595A (en) * 1982-12-02 1984-05-15 Union Carbide Corporation Split column multiple condenser-reboiler air separation process
JPS61190277A (en) * 1985-02-16 1986-08-23 大同酸素株式会社 High-purity nitrogen and oxygen gas production unit
US4704147A (en) * 1986-08-20 1987-11-03 Air Products And Chemicals, Inc. Dual air pressure cycle to produce low purity oxygen
EP0383994A3 (en) * 1989-02-23 1990-11-07 Linde Aktiengesellschaft Air rectification process and apparatus
US4936099A (en) * 1989-05-19 1990-06-26 Air Products And Chemicals, Inc. Air separation process for the production of oxygen-rich and nitrogen-rich products
US5006137A (en) * 1990-03-09 1991-04-09 Air Products And Chemicals, Inc. Nitrogen generator with dual reboiler/condensers in the low pressure distillation column
US5069699A (en) * 1990-09-20 1991-12-03 Air Products And Chemicals, Inc. Triple distillation column nitrogen generator with plural reboiler/condensers

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0024962A1 (en) * 1979-07-20 1981-03-11 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Cryogenic air separation process with production of high-pressure oxygen

Also Published As

Publication number Publication date
BR9205050A (en) 1993-08-10
EP0713069A1 (en) 1996-05-22
DE69214409T2 (en) 1997-05-22
CN1088301A (en) 1994-06-22
DE69230975T2 (en) 2000-10-05
EP0547946B1 (en) 1996-10-09
EP0547946B2 (en) 2000-03-22
ES2092661T3 (en) 1996-12-01
CA2085561A1 (en) 1993-06-19
FR2685459A1 (en) 1993-06-25
CN1068428C (en) 2001-07-11
US5392609A (en) 1995-02-28
DE69214409D1 (en) 1996-11-14
DE69214409T3 (en) 2000-07-13
DE69230975D1 (en) 2000-05-31
FR2685459B1 (en) 1994-02-11
EP0547946A1 (en) 1993-06-23
ES2145967T3 (en) 2000-07-16
AU3022192A (en) 1993-06-24
AU654601B2 (en) 1994-11-10

Similar Documents

Publication Publication Date Title
EP0713069B1 (en) Process and plant for air separation
EP0689019B1 (en) Process and apparatus for producing gaseous oxygen under pressure
JP4331460B2 (en) Method and apparatus for producing krypton and / or xenon by low temperature air separation
EP2122282B1 (en) Method for separating a mixture of carbon monoxide, methane, hydrogen and nitrogen by cryogenic distillation
WO2007068858A2 (en) Process for separating air by cryogenic distillation
EP0610972B1 (en) Process for preparing nitrogen
EP0789208A1 (en) Process and installation for the production of gaseous oxygen under high pressure
EP0618415B1 (en) Process and installation for the production of gaseous oxygen and/or gaseous nitrogen under pressure by distillation of air
EP0694746B1 (en) Process for the production of a gas under pressure in variable quantities
EP0611936B1 (en) Process and installation for producing ultrapure nitrogen by air distillation
JPH03181776A (en) Method and device for rectifying air accompanied with manufacture of argon
EP1189003B1 (en) Process and apparatus for air separation by cryogenic distillation
EP0677713B1 (en) Process and installation for the production of oxygen by distillation of air
EP0732556B1 (en) Method and apparatus for vaporizing a liquid stream
EP0611218B2 (en) Process and installation for producing oxygen under pressure
EP1132700B1 (en) Process and apparatus for air separation by cryogenic distillation
EP0595673B1 (en) Process and installation for the production of nitrogen and oxygen
EP0612967B1 (en) Process for the production of oxygen and/or nitrogen under pressure
JPH08170876A (en) Method and equipment for manufacturing oxygen by cooling distribution
EP1063485B1 (en) Device and process for air separation by cryogenic distillation
FR2787559A1 (en) Air separation using cryogenic distillation has double column receiving compressed, cooled, and expanded air to produce oxygen rich and nitrogen rich fractions
FR2787561A1 (en) Cryogenic distillation of air uses double column with air supply to medium pressure column and oxygen rich fluid from bottom of both low pressure and auxiliary columns
WO2024105022A1 (en) Method and apparatus for separating air by means of cryogenic distillation
FR3141995A3 (en) Process and apparatus for air separation by cryogenic distillation
FR2861841A1 (en) METHOD AND APPARATUS FOR AIR SEPARATION BY CRYOGENIC DISTILLATION

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AC Divisional application: reference to earlier application

Ref document number: 547946

Country of ref document: EP

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE ES FR GB IT NL SE

17P Request for examination filed

Effective date: 19961122

17Q First examination report despatched

Effective date: 19980525

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AC Divisional application: reference to earlier application

Ref document number: 547946

Country of ref document: EP

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE ES FR GB IT NL SE

ITF It: translation for a ep patent filed
REF Corresponds to:

Ref document number: 69230975

Country of ref document: DE

Date of ref document: 20000531

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20000523

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2145967

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20011112

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20011116

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20011119

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20011120

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20011126

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20011211

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20011219

Year of fee payment: 10

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021210

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021231

BERE Be: lapsed

Owner name: S.A. L'*AIR LIQUIDE POUR L'ETUDE ET L'EXPLOITATION

Effective date: 20021231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030701

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030701

EUG Se: european patent has lapsed
GBPC Gb: european patent ceased through non-payment of renewal fee
NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20030701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030901

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20021210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051209