EP0711442B1 - Active ir intrusion detector - Google Patents
Active ir intrusion detector Download PDFInfo
- Publication number
- EP0711442B1 EP0711442B1 EP95917879A EP95917879A EP0711442B1 EP 0711442 B1 EP0711442 B1 EP 0711442B1 EP 95917879 A EP95917879 A EP 95917879A EP 95917879 A EP95917879 A EP 95917879A EP 0711442 B1 EP0711442 B1 EP 0711442B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- signal
- detector according
- infrared detector
- controller
- infrared
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B29/00—Checking or monitoring of signalling or alarm systems; Prevention or correction of operating errors, e.g. preventing unauthorised operation
- G08B29/18—Prevention or correction of operating errors
- G08B29/183—Single detectors using dual technologies
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B13/00—Burglar, theft or intruder alarms
- G08B13/18—Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength
- G08B13/181—Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using active radiation detection systems
- G08B13/187—Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using active radiation detection systems by interference of a radiation field
Definitions
- the present invention is in the field of infrared detectors, which are detectors, who monitor a room for unauthorized entry and for this purpose one from Evaluate the infrared radiation received by the detector.
- infrared detectors There are two types of such infrared detectors, the passive and the active.
- passive infrared detectors With passive infrared detectors, the detector waits until one radiation source, the one emits different radiation from the environment, i.e. a different temperature than shows their surroundings, penetrates into the visual field.
- the passive infrared detectors that relatively inexpensive and widespread today, in principle only radiant Detect and hit objects as soon as objects, such as valuables, to be monitored using mechanical, undetectable means are removable.
- special measures are required for passive infrared detectors against the so-called masking, that is the unnoticed changing or covering the field of view of the detector.
- the active infrared detectors do not process the im Objects in the field of view are emitted heat radiation, but rather irradiate them actively monitor the room to be monitored and react to changes in the reflected infrared radiation. As a result, they can also move from "dead", that is, not radiating Detect objects. In addition, they are very difficult to mask because they are notice any approach.
- the active infrared detectors have certain difficulties sensitivity and false alarm security because of the reflected infrared radiation can be overlaid by such strong interference that reliable detection movement becomes almost impossible.
- the invention relates to an active infrared detector for the detection of movements in a surveillance room with a transmitter for transmitting modulated infrared radiation in the surveillance room, with a receiver for those from the surveillance room reflected infrared radiation, and with one connected to the receiver and means for obtaining an evaluation circuit containing a useful signal.
- the evaluation circuit contains an operational amplifier designed as a synchronous amplifier, from which only those receive signals are amplified that with the transmitted signal are in phase. These signals are in two integrators with different time constants integrated, both integrators having the same voltage in the undisturbed state generate, and a difference between these voltages indicates an intruder.
- This infrared detector can not satisfy in terms of responsiveness because the integration of the received signal with two different time constants is not sufficient Guarantees that every object movement in the surveillance room too is actually recognized.
- the detector is also not false alarm-proof because it is not excluded that can be a difference between the signals of the integrators causes other than caused by object movement.
- this known active infrared detector with regard to sensitivity, Reliability and insensitivity to external influences improved become.
- the inventive active infrared detector according to the preamble of claim 1 is to achieve the object characterized in that the evaluation circuit on the one hand with the useful signal acted upon and on the other hand connected to the output of the receiver for delivering a compensation signal superimposed on the receiver signal, and that the compensation signal is selected such that the useful signal is regulated the value is zero.
- An active infrared detector is also known from FR-A-2 290 671, whereby a useful signal is adjusted to zero.
- the evaluation circuit evaluates the received and broadcast signal.
- common optics are provided for the transmitter and receiver is.
- a second preferred embodiment of the infrared detector according to the invention is characterized in that the evaluation circuit is connected downstream of the controller Analog / digital converter has, at one output, the digitized controller signal available and its other output with a digital / analog converter for generation a voltage corresponding to the respective digital signal value and that this voltage is used to generate the compensation signal.
- the digitization of the controller signal has the advantage that it is more differentiated than previously and smarter signal evaluation becomes possible.
- the one output of the analog / digital converter is connected to a microprocessor.
- the microprocessor on the one hand enables an increase in resolution and on the other hand creates the prerequisite, after the existing sensor in the infrared detector with a second another detection principle to couple the sensor and the signals of both Evaluate sensors together.
- the active infrared motion detector 1 shown in Fig. 1 consists essentially of a transmitter S which irradiates the room to be monitored with pulsating infrared light, from a receiver E for the infrared radiation reflected from the monitoring room, from evaluation and control electronics 2 and from a power supply 3. 2 and 4, the transmitter S is an infrared light emitting diode (IRED) 4 and the receiver E is formed by a photodiode 5.
- Transmitter S, receiver E, electronics 2 and power supply 3 are arranged in a common housing 6, which in the monitoring room at a suitable location, for example on a wall or on the Ceiling is mounted.
- the power supply 3 is connected to an external supply and contains a fixed voltage regulator (not shown).
- the housing 6 contains in the area of the transmitter S and of the receiver E an infrared-transmissive window 7.
- suitable optics 8 provided, of course not between window 7 on the one hand and the transmitter and receiver S or E must be arranged on the other hand, but also in the window 7 can be integrated.
- the optics 8 can be a lens or a mirror optics.
- transmitter S and receiver E It is essential that common optics are provided for transmitter S and receiver E. is. In other words, this means that the receiver E is exactly in those areas of the surveillance room "sees" that the transmitter S is currently applying infrared radiation. And this enables a multiple range with the same power consumption or massively reduced power consumption with the same range. Between transmitter S and receiver E is a shield 9 for preventing a direct light connection arranged between these two elements. As can also be seen in FIG. 1, the electronics 2 has an alarm output 10 for those obtained in the signal evaluation Alarm signals on. These can be an internal one installed in the respective detector 1 and / or activate an external alarm display.
- the infrared light emitting diode 4 is preceded by a first modulator 11 a suitable modulation of the radiation emitted by the infrared light emitting diode 4 he follows.
- This radiation preferably consists of a continuous sequence of pulses and pulse pauses so that the room to be monitored is irradiated with pulsating infrared light becomes. It can also be useful to run a sequence of a certain number insert a longer, predetermined transmission pause of pulses and pulse pauses. In this In this case, the monitoring room is irradiated by intermittently emitted and pulse trains or pulse packets interrupted by pauses in transmission. The Transmission pauses to the pulse trains in a fixed or in a variable time ratio stand.
- the first modulator 11 is controlled by a control stage 12, which receives its clock from a clock 13.
- the control stage 12 determines in particular the time sequence and the length of the signals emitted to the infrared light-emitting diode 4.
- the infrared radiation emitted by the infrared light-emitting diode 4 is bundled by the optics 8 (FIG. 1) and directed into a defined area of the monitoring room.
- the infrared radiation reflected from this area is collected by the optics 8 and thrown onto the light-sensitive diode 5.
- the received infrared radiation is converted by the diode 5 into a proportional current (receiver signal) I e , which is fed to a current / voltage converter 14 connected downstream of the diode 5 and is converted by this into a voltage (received signal) U e .
- the transducer 14 also acts as a type of filter for uniform light by suppressing light from the sun and room lighting.
- a frequency filter 15 connected downstream of the current / voltage converter 14, undesired frequencies are filtered out of the received signal U e , as a result of which interference caused by incandescent, fluorescent and discharge lamps is suppressed.
- the output of the frequency filter 15 is connected to a switch 16 controlled by the control stage 12 in time with the modulation of the infrared light-emitting diode 4.
- the output signal of the frequency filter 15, which is largely free of interference, is alternately fed to one of two integrators 17, 17 'via the switch 16.
- the switch 16 is controlled by the control stage 12 in such a way that the received signal U e is transmitted to one integrator, for example to the integrator 17, during the duration of the pulse transmission and to the other integrator, for example to the integrator 17 ', during the duration of the pulse pauses. , is directed.
- the switch 16 remains in a neutral position in which neither of the two integrators 17 or 17 'is acted upon by the received signal.
- the switch 16 is preferably formed by a controlled switch.
- the integrator 17 receives only the reflected infrared transmission signal, including any residues of the filtered interference signal from the time of the transmission pulses, and the integrator 17 'only receives any residues of the filtered interference signal from the time of the pulse pauses, so that the reflected infrared transmission signal can be obtained by simply forming the difference between the output signals of the two integrators 17 and 17 '.
- the aforementioned difference formation takes place in a stage 18 connected downstream of the two integrators 17, 17 '. Its output signal is the infrared transmission signal U n , largely cleaned of interference and reflected from the monitoring room, which forms the useful signal for the signal evaluation.
- the useful signal U n is supplied on the one hand to a controller 19 and on the other hand to two comparators 20 and 20 '.
- the output of the controller 19 is connected to the one input of a second modulator 21, the second input of which is connected to the control stage 12 and the output of which is connected to the input of the current / voltage converter 14.
- the second modulator 21 superimposes a compensation current I k on the signal of the photodiode 5, the timing conditions for the superimposition of this compensation current being determined by the control stage 12.
- the controller 19 changes the compensation current I k until the output signal of stage 18, that is to say the useful signal U n, becomes zero. This means that the maximum sensitivity is always maintained.
- the control loop can be with a self-balancing scale or with a bridge circuit are compared, the value zero of the useful signal representing the rest position.
- Each received infrared signal, also the unwanted basic signal, is compensated for zero. This is the only way to open the possibility for sender and receiver S or E (Fig. 1) to use a common optics 8. Because reflections caused by the transmitter of lenses, mirrors and / or infrared windows that reflect the possible reflection signal Object in the surveillance room are usually exceeded by potencies suppressed by the control loop. A highly reflective object in the detector's field of vision does not lead to a loss of sensitivity, but is compensated for, and the maximum sensitivity is retained.
- the comparators 20 and 20 ' are used for signal evaluation. They compare the useful signal U n with an upper limit value (comparator 20) and a lower limit value (comparator 20 ') and deliver an alarm signal to the alarm output 10 when the limit value is exceeded or undershot. This signal evaluation can take place despite the described compensation of the useful signal, because the whole control process is so slow that the infrared signal received by the photodiode 5 is not immediately compensated for zero even with very careful and slow entry into the monitoring space, so that the two comparators 20, 20 'sufficient time remains for a detection.
- the controller 19 Because of the considerable size of the interfering reflections caused by imperfect optics 8 or windows 9 (FIG. 1), the controller 19 has to compensate a very large amount of generally more than 90% of the total reflections, the interfering reflections being caused by the geometry and material of the optics and windows have a fixed value. It would be desirable to compensate for this fixed value by means of an additional, fixed compensation current I k ' , as a result of which the amount of total reflections to be compensated for by the controller 19 would decrease sharply and the resolution would increase considerably. In this case, the controller 19 would have to accept not only the reflections from the monitoring room, but also any deviations caused by manufacturing tolerances and / or specimen variations of the infrared light-emitting diode 4.
- a third modulator 22 which is also controlled by the control stage 12, is provided for generating the compensation current I k ' .
- This is either set to a fixed value of the compensation current I k ' , or, as shown in the figure, it is adjustable. In the latter case, the compensation current I k 'can be adjusted so that not only the mentioned interference reflections but also the deviations caused by the infrared light-emitting diode 4 are compensated.
- the controller 19 has an approximately logarithmic behavior. If he is to regulate a small change in the useful signal requires a certain time t, then the Correction of a change ten times larger only twice the time 2t. This behavior is particularly advantageous when switching on the detector, where the change in the useful signal Is 100% and still does not waste an unnecessarily long time for the adjustment.
- the alarm signal at alarm output 10 can be further evaluated, for example for plausibility be checked what can be done in the detector or in a control center, or it is sent to a control center without further processing, where an alarm is then triggered.
- the alarm signal can additionally or alternatively be a light-emitting diode arranged in the detector 23 activate.
- a relay 24 is also provided, whose contacts enable potential-free evaluation of the alarm signal.
- Fig. 3 is another way to suppress or compensate for unwanted Reflections shown.
- the photodiode forming the actual motion detector 5 a second photodiode 5 'with preferably identical data with reversed polarity connected in parallel.
- the geometry of the arrangement is chosen so that the a photodiode 5 in the focus of the optics 8 (Fig. 1) and the second photodiode 5 'outside is arranged by this. This receives the one photodiode 5 from the Monitoring room reflected radiation plus any interfering reflections, against the second photodiode 5 'only receives the interference reflections. So the difference corresponds the photo currents of the two photo diodes 5 and 5 'the signal sought from the monitoring room, which at best from interference signals such as solar radiation or Room lighting can be overlaid.
- the temperature coefficients of the photosensitivity are mutually compensated for with respect to the common received signals.
- all those influences and potential sources of interference that have an effect on both photodiodes remain ineffective. Influences or disturbances of this type are in particular specimen scatter and temperature drifts of the infrared light-emitting diode 4, as well as specimen scatter and changes over time in the reflection constants of the relevant mechanical components, such as varying colors and surface structures.
- the controller 19 and the second modulator 21 thus only have the compensation of the infrared signals reflected from the monitoring room, whereas around 95% of the total reflections and photo currents are compensated by the second photo diode 5 '.
- the influence of the controller 19 can be reduced to approximately ⁇ 5%, as a result of which the resolution of the useful signal U n increases to approximately ten times what corresponds to approximately ten times the sensitivity for constant limits of the comparators 20, 20 '.
- the evaluation circuit 2 'shown in FIG. 4 differs from the evaluation circuit 2 of FIG. 2 essentially in that another controller is used and that the controller signal is converted analog / digital and thus for evaluation in digitized Form is available.
- the control of the first modulator 11 by a program control stage 26 which has a counter 27, among other things.
- the program control stage 26 receives its clock from a clock 13 and determines the time sequence and the length of the infrared light-emitting diode 4 signals emitted.
- With the reference numeral 28 is the first modulator 11 assigned temperature sensor to compensate for the temperature response of the the infrared light emitting diode 4 and the photodiode 5 containing the control circuit.
- stage 18 downstream of the two integrators 17 and 17 ' the signal processing proceeds analogously to that in the evaluation circuit shown in FIG. 2.
- the output signal U n of stage 18, which forms the useful signal for the signal evaluation is fed to a controller 29, which is preferably a so-called PID controller, that is to say a controller with a proportional, integral and differential component, and reaches a voltage from it / Pulse width converter 30.
- PID controller a controller with a proportional, integral and differential component
- the pulse-shaped signal from the converter 30 reaches the program control stage 26, the counter 27 of which counts the clock clocks per width of each of the pulses of this signal. Because of the proportionality between the pulse width and the output signal of the controller 29, the number of clock cycles determined by the counter 27 per pulse width represents a digital image of the analog output signal of the PID controller 29.
- the constant length pulse + Pulse pause is defined by the program control stage 26 and is at a clock frequency of 4 MHz and approx. 1 ms when using a 12 bit counter. So stand pro Second 1,000 results with a maximum of 12 bits, that's 4,096 pieces of information with accuracy of ⁇ 1d plus the possible error of converter 30 are available.
- the values of the clock clocks determined by the counter 27 pass from the program control stage 26 into a pulse width / voltage converter 32, in which a voltage corresponding to the respective counter value, which determines the compensation current I k , is formed with reference to a reference voltage obtained from the reference voltage source 25. An accuracy of ⁇ 0.001% can easily be achieved here, so that the compensation current corresponds exactly to the level of the counter 27.
- the output of the differential controller 31 is also connected to the pulse width / voltage converter 32 and supplies it with the higher-frequency components of the useful signal U n .
- the output of converter 32 is connected to one input of second modulator 21 (FIG. 2), whose second input is connected to program control stage 26 and whose output is connected to the input of current / voltage converter 14.
- the second modulator 21 superimposes the compensation current I k on the signal of the photodiode 5 in the opposite phase, the time conditions for this superimposition being determined by the program control stage 26.
- the PID controller 29 changes its output signal and thus the pulse / pause ratio in such a way that the output signal of the stage 18, ie the useful signal U n , becomes zero.
- the status of the counter 27 thus corresponds to the infrared image of the monitored room except for the already mentioned possible deviation of ⁇ 1d.
- accuracy can be determined further increase by averaging from a large number of individual values.
- a Such averaging can be done, for example, by the counter 27 or by a the microprocessor 33 downstream of the program control stage 26.
- the microprocessor also facilitates a meaningful coupling of the measuring principle described with a second in a so-called dual Detector.
- the microprocessor 33, the alarm signal present as a result of the evaluation outputs to alarm output 10, the alarm signal can check for plausibility and thereby relieve the head office.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Computer Security & Cryptography (AREA)
- Geophysics And Detection Of Objects (AREA)
- Burglar Alarm Systems (AREA)
- Photometry And Measurement Of Optical Pulse Characteristics (AREA)
Description
Die vorliegende Erfindung liegt auf dem Gebiet der Infrarotmelder, das sind Detektoren, die einen Raum auf unbefugtes Eindringen überwachen und zu diesem Zweck eine vom Detektor empfangene Infrarotstrahlung auswerten. Es gibt zwei Arten derartiger Infrarotmelder, die passiven und die aktiven.The present invention is in the field of infrared detectors, which are detectors, who monitor a room for unauthorized entry and for this purpose one from Evaluate the infrared radiation received by the detector. There are two types of such infrared detectors, the passive and the active.
Bei den passiven Infrarotmeldern wartet der Melder bis eine Strahlungsquelle, die eine von der Umgebung unterschiedliche Strahlung aussendet, also eine andere Temperatur als ihre Umgebung aufweist, in das Gesichtsfeld eindringt. Die passiven Infrarotmelder, die relativ preisgünstig und heute weit verbreitet sind, können vom Prinzip her nur strahlende Objekte detektieren und stossen an eine Grenze, sobald Objekte, beispielweise Wertgegenstände, überwacht werden sollen, die mit mechanischen, nicht detektierbaren Mitteln entfernbar sind. Ausserdem müssen bei den passiven Infrarotmeldern spezielle Massnahmen gegen das sogenannte Maskieren, das ist das unbemerkte Verändern oder Abdecken des Gesichtsfeldes des Melders, getroffen werden.With passive infrared detectors, the detector waits until one radiation source, the one emits different radiation from the environment, i.e. a different temperature than shows their surroundings, penetrates into the visual field. The passive infrared detectors that relatively inexpensive and widespread today, in principle only radiant Detect and hit objects as soon as objects, such as valuables, to be monitored using mechanical, undetectable means are removable. In addition, special measures are required for passive infrared detectors against the so-called masking, that is the unnoticed changing or covering the field of view of the detector.
Im Unterschied zu den passiven verarbeiten die aktiven Infrarotmelder nicht die von im Gesichtsfeld befindlichen Objekten abgegebene Wärmestrahlung, sondern sie bestrahlen den zu überwachenden Raum aktiv und reagieren auf Veränderungen der reflektierten Infrarotstrahlung. Dadurch können sie auch Bewegungen von "toten", also nicht strahlenden Gegenständen detektieren. Ausserdem sind sie nur sehr schwer zu maskieren, weil sie jede Annäherung bemerken. Dafür haben die aktiven Infrarotmelder gewisse Schwierigkeiten bei der Empfindlichkeit und bei der Fehlalarmsicherheit, weil die reflektierte Infrarotstrahlung von so starken Störungen überlagert sein kann, dass eine sichere Detektion von Bewegungen nahezu unmöglich wird. In contrast to the passive ones, the active infrared detectors do not process the im Objects in the field of view are emitted heat radiation, but rather irradiate them actively monitor the room to be monitored and react to changes in the reflected infrared radiation. As a result, they can also move from "dead", that is, not radiating Detect objects. In addition, they are very difficult to mask because they are notice any approach. The active infrared detectors have certain difficulties sensitivity and false alarm security because of the reflected infrared radiation can be overlaid by such strong interference that reliable detection movement becomes almost impossible.
Die Erfindung betrifft einen aktiven Infrarotmelder zur Detektion von Bewegungen in einem Überwachungsraum, mit einem Sender zur Aussendung einer modulierten Infrarotstrahlung in den Überwachungsraum, mit einem Empfanger für die aus dem Überwachungsraum reflektierte Infrarotstrahlung, und mit einer an den Empfänger angeschlossenen und Mittel zur Gewinnung eines Nutzsignals enthaltenden Auswerteschaltung.The invention relates to an active infrared detector for the detection of movements in a surveillance room with a transmitter for transmitting modulated infrared radiation in the surveillance room, with a receiver for those from the surveillance room reflected infrared radiation, and with one connected to the receiver and means for obtaining an evaluation circuit containing a useful signal.
Bei einem in der GB-A-2 183 825 beschriebenen Melder dieser Art enthält die Auswerteschaltung einen als Synchronverstärker ausgebildeten Operationsverstärker, von dem nur diejenigen Empfangssignale verstärkt werden, die mit dem ausgesandten Signal in Phase sind. Diese Signale werden in zwei Integratoren mit verschiedenen Zeitkonstanten integriert, wobei im ungestörten Zustand beide Integratoren die gleiche Spannung erzeugen, und eine Differenz zwischen diesen Spannungen auf einen Eindringling hinweist. Dieser Infrarotmelder kann bezüglich Ansprechsicherheit nicht befriedigen, weil die Integration des Empfangssignals mit zwei verschiedenen Zeitkonstanten keine ausreichende Gewähr dafür bietet, dass jede Objektbewegung im Überwachungsraum auch tatsächlich erkannt wird. Der Melder ist auch nicht fehlalarmsicher, weil nicht ausgeschlossen werden kann, dass eine Differenz zwischen den Signalen der Integratoren durch andere Ursachen als durch eine Objektbewegung verursacht wird.In the case of a detector of this type described in GB-A-2 183 825, the evaluation circuit contains an operational amplifier designed as a synchronous amplifier, from which only those receive signals are amplified that with the transmitted signal are in phase. These signals are in two integrators with different time constants integrated, both integrators having the same voltage in the undisturbed state generate, and a difference between these voltages indicates an intruder. This infrared detector can not satisfy in terms of responsiveness because the integration of the received signal with two different time constants is not sufficient Guarantees that every object movement in the surveillance room too is actually recognized. The detector is also not false alarm-proof because it is not excluded that can be a difference between the signals of the integrators causes other than caused by object movement.
Durch die Erfindung soll nun dieser bekannte aktive Infrarotmelder hinsichtlich Empfindlichkeit, Zuverlässigkeit und Unempfindlichkeit gegenüber Fremdeinflüssen verbessert werden.By means of the invention, this known active infrared detector with regard to sensitivity, Reliability and insensitivity to external influences improved become.
Der erfindungsgemässe aktive Infrarotmelder nach dem Oberbegriff des Anspruchs 1 ist, zur Lösung der gestellten Aufgabe, dadurch gekennzeichnet, dass die Auswerteschaltung einen einerseits mit dem Nutzsignal beaufschlagten und andererseits mit dem Ausgang des Empfängers verbundenen Regler zur Abgabe eines dem Empfängersignal überlagerten Kompensationssignals aufweist, und dass das Kompensationssignal so gewählt ist, dass eine Ausregelung des Nutzsignals auf den Wert null erfolgt. The inventive active infrared detector according to the preamble of claim 1 is to achieve the object characterized in that the evaluation circuit on the one hand with the useful signal acted upon and on the other hand connected to the output of the receiver for delivering a compensation signal superimposed on the receiver signal, and that the compensation signal is selected such that the useful signal is regulated the value is zero.
Die Ausregelung des Nutzsignals auf den Wert null hat den Vorteil, dass immer die maximale Empfindlichkeit erhalten bleibt; der Empfänger wirkt also gleichsam wie eine sich selbst austarierende Waage. Daraus ergibt sich unmittelbar, dass auch ein unerwünschtes Störsignal, sofern dieses die gleiche Frequenz und Phase wie die ausgesandte Infrarotstrahlung hat, auf null kompensiert wird und nicht etwa zu einer Drosselung des Empfängers auf minimale Empfindlichkeit führt. Störsignale anderer Frequenzen sind nicht so kritisch, weil sie einfach ausgefiltert werden können.The adjustment of the useful signal to the value zero has the advantage that always the maximum Sensitivity is retained; the recipient thus acts as one self-balancing scales. It follows immediately that an undesirable Interference signal, provided that this has the same frequency and phase as the emitted infrared radiation has to be compensated to zero and not to throttle the receiver leads to minimal sensitivity. Interference signals of other frequencies are not so critical because they can be easily filtered out.
Aus der FR-A-2 290 671 ist noch ein aktiver Infrarotmelder bekannt, wobei ein Nutzsignal auf den wert null ausgeregelt wird. Die Auswerteschaltung wertet jedoch empfangenes und ausgestrahltes Signal aus.An active infrared detector is also known from FR-A-2 290 671, whereby a useful signal is adjusted to zero. The However, the evaluation circuit evaluates the received and broadcast signal.
Eine erste bevorzugte Ausführungsform des erfindungsgemässen Infrarotmelders ist dadurch gekennzeichnet, dass für Sender und Empfänger eine gemeinsame Optik vorgesehen ist. Die Verwendung einer gemeinsamen Optik ermöglicht eine massive Reduktion der Herstellkosten und der Abmessungen, sowie die Erzielung einer maximalen Reichweite bei geringem Stromverbrauch.This is a first preferred embodiment of the infrared detector according to the invention characterized in that common optics are provided for the transmitter and receiver is. The use of a common optic enables a massive reduction the manufacturing costs and dimensions, as well as achieving a maximum range with low power consumption.
Eine zweite bevorzugte Ausführungsform des erfindungsgemässen Infrarotmelders ist dadurch gekennzeichnet, dass die Auswerteschaltung einen dem Regler nachgeschalteten Analog/Digital-Wandler aufweist, an dessen einem Ausgang das digitalisierte Reglersignal erhältlich und dessen anderer Ausgang mit einem Digital/Analog-Wandler zur Erzeugung einer dem jeweiligen digitalen Signalwert entsprechenden Spannung verbunden ist, und dass diese Spannung zur Erzeugung des Kompensationssignals verwendet wird. Die Digitalisierung des Reglersignals hat den Vorteil, dass eine gegenüber bisher differenziertere und intelligentere Signalauswertung möglich wird.A second preferred embodiment of the infrared detector according to the invention is characterized in that the evaluation circuit is connected downstream of the controller Analog / digital converter has, at one output, the digitized controller signal available and its other output with a digital / analog converter for generation a voltage corresponding to the respective digital signal value and that this voltage is used to generate the compensation signal. The digitization of the controller signal has the advantage that it is more differentiated than previously and smarter signal evaluation becomes possible.
Eine solche Signalauswertung ist besonders dann möglich, wenn so wie bei einer weiteren bevorzugten Ausführungsform des erfindungsgemässen Infrarotmelders der eine Ausgang des Analog/Digital-Wandlers mit einem Mikroprozessor verbunden ist. Der Mikroprozessor ermöglicht einerseits eine Erhöhung der Auflösung und er schafft andererseits die Voraussetzung, den im Infrarotmelder vorhandenen Sensor mit einem zweiten, nach einem anderen Detektionsprinzip arbeitenden Sensor zu koppeln und die Signale beider Sensoren gemeinsam auszuwerten.Such a signal evaluation is particularly possible if as with another preferred embodiment of the infrared detector according to the invention the one output of the analog / digital converter is connected to a microprocessor. The microprocessor on the one hand enables an increase in resolution and on the other hand creates the prerequisite, after the existing sensor in the infrared detector with a second another detection principle to couple the sensor and the signals of both Evaluate sensors together.
Im folgenden wird die Erfindung anhand von in den Zeichnungen dargestellten Ausführungsbeispielen näher erläutert; dabei zeigt:
- Fig. 1
- eine schematische Schnittdarstellung eines erfindungsgemässen Infrarotmelders,
- Fig. 2
- ein Blockschaltbild eines ersten Ausführungsbeispiels der Auswerteschaltung des Infrarotmelders von Fig. 1,
- Fig. 3
- eine Detailvariante der Schaltung von Fig. 2; und
- Fig. 4
- ein Blockschaltbild eines zweiten Ausfürungsbeispiels der Auswerteschaltung des Infrarotmelders von Fig. 1.
- Fig. 1
- 2 shows a schematic sectional illustration of an infrared detector according to the invention,
- Fig. 2
- 2 shows a block diagram of a first exemplary embodiment of the evaluation circuit of the infrared detector of FIG. 1,
- Fig. 3
- a detailed variant of the circuit of Fig. 2; and
- Fig. 4
- 2 shows a block diagram of a second exemplary embodiment of the evaluation circuit of the infrared detector of FIG. 1.
Der in Fig. 1 dargestellte aktive Infrarotbewegungsmelder 1 besteht im wesentlichen aus
einem Sender S, der den zu überwachenden Raum mit pulsierendem Infrarotlicht bestrahlt,
aus einem Empfänger E für die aus dem Überwachungsraum reflektierte Infrarotstrahlung,
aus einer Auswerte- und Steuerelektronik 2 und aus einer Stromversorgung 3.
Gemäss den Fig. 2 und 4 ist der Sender S durch eine Infrarotleuchtdiode (IRED) 4 und
der Empfänger E durch eine Fotodiode 5 gebildet. Sender S, Empfänger E, Elektronik 2
und Stromversorgung 3 sind in einem gemeinsamen Gehäuse 6 angeordnet, das in dem zu
überwachenden Raum an geeigneter Stelle, beispielsweise an einer Wand oder an der
Decke montiert wird.The active infrared motion detector 1 shown in Fig. 1 consists essentially of
a transmitter S which irradiates the room to be monitored with pulsating infrared light,
from a receiver E for the infrared radiation reflected from the monitoring room,
from evaluation and
Die Stromversorgung 3 ist an eine externe Speisung angeschlossen und enthält einen Fixspannungsregler
(nicht dargestellt). Das Gehäuse 6 enthält im Bereich des Senders S und
des Empfängers E ein infrarot-durchlässiges Fenster 7. Ausserdem ist eine geeignete Optik
8 vorgesehen, die selbstverständlich nicht zwischen Fenster 7 einerseits und Sender
und Empfänger S bzw. E andererseits angeordnet sein muss, sondern auch in das Fenster
7 integriert sein kann. Die Optik 8 kann eine Linsen- oder eine Spiegeloptik sein. The
Wesentlich ist, dass für Sender S und Empfänger E eine gemeinsame Optik vorgesehen
ist. Dies bedeutet mit anderen Worten, dass der Empfänger E genau in diejenigen Bereiche
des Überwachungsraums "sieht", die der Sender S gerade mit Infrarotstrahlung beaufschlagt.
Und das ermöglicht bei gleichem Stromverbrauch eine vervielfachte Reichweite
oder bei gleicher Reichweite einen massiv reduzierten Stromverbrauch. Zwischen Sender
S und Empfänger E ist eine Abschirmung 9 zur Verhinderung einer direkten Lichtverbindung
zwischen diesen beiden Elementen angeordnet. Wie Fig. 1 weiter zu entnehmen ist,
weist die Elektronik 2 einen Alarmausgang 10 für die bei der Signalauswertung gewonnenen
Alarmsignale auf. Diese können eine im jeweiligen Melder 1 eingebaute interne
und/oder eine externe Alarmanzeige aktivieren.It is essential that common optics are provided for transmitter S and receiver E.
is. In other words, this means that the receiver E is exactly in those areas
of the surveillance room "sees" that the transmitter S is currently applying infrared radiation.
And this enables a multiple range with the same power consumption
or massively reduced power consumption with the same range. Between transmitter
S and receiver E is a
Gemäss Fig. 2 ist der Infrarotleuchtdiode 4 ein erster Modulator 11 vorgeschaltet, durch
den eine geeignete Modulation der von der Infrarotleuchtdiode 4 ausgesandten Strahlung
erfolgt. Vorzugsweise besteht diese Strahlung aus einer fortlaufenden Folge von Pulsen
und Pulspausen, so dass der zu überwachende Raum mit pulsierendem Infrarotlicht bestrahlt
wird. Es kann auch sinnvoll sein, nach einer Folge von einer bestimmten Anzahl
von Pulsen und Pulspausen eine längere, vorbestimmte Sendepause einzufügen. In diesem
Fall erfolgt die Bestrahlung des Überwachungsraums durch intermittierend ausgesandte
und von Sendepausen unterbrochene Impulszüge oder Impulspakete. Dabei können die
Sendepausen zu den Impulszügen in einem festen oder in einem variablen zeitlichen Verhältnis
stehen. Die Steuerung des ersten Modulators 11 erfolgt durch eine Steuerstufe 12,
die ihren Takt von einem Taktgeber 13 erhält. Die Steuerstufe 12 bestimmt insbesondere
die zeitliche Folge und die Länge der an die Infrarotleuchtdiode 4 abgegebenen Signale.2, the infrared light emitting diode 4 is preceded by a first modulator 11
a suitable modulation of the radiation emitted by the infrared light emitting diode 4
he follows. This radiation preferably consists of a continuous sequence of pulses
and pulse pauses so that the room to be monitored is irradiated with pulsating infrared light
becomes. It can also be useful to run a sequence of a certain number
insert a longer, predetermined transmission pause of pulses and pulse pauses. In this
In this case, the monitoring room is irradiated by intermittently emitted
and pulse trains or pulse packets interrupted by pauses in transmission. The
Transmission pauses to the pulse trains in a fixed or in a variable time ratio
stand. The first modulator 11 is controlled by a
Die von der Infrarotleuchtdiode 4 ausgesandte Infrarotstrahlung wird durch die Optik 8
(Fig. 1) gebündelt und in einen definierten Bereich des Überwachungsraums gerichtet.
Die aus diesem Bereich reflektierte Infrarotstrahlung wird von der Optik 8 gesammelt und
auf die lichtempfindliche Diode 5 geworfen. Von der Diode 5 wird die empfangene Infrarotstrahlung
in einen proportionalen Strom (Empfängersignal) Ie ungewandelt, der einem
der Diode 5 nachgeschalteten Strom/Spannungswandler 14 zugeführt und von diesem in
eine Spannung (Empfangssignal) Ue umgewandelt wird. Der Wandler 14 wirkt zusätzlich
als eine Art von Filter für gleichförmiges Licht, indem er von der Sonne und von der
Raumbeleuchtung herrührendes Licht unterdrückt. In einem dem Strom/Spannungswandler
14 nachgeschalteten Frequenzfilter 15 werden aus dem Empfangssignal Ue unerwünschte
Frequenzen herausgefiltert, wodurch insbesondere durch Glüh-, Fluoreszenz-
und Entladungslampen verursachte Störungen unterdrückt werden. Der Ausgang des Frequenzfilters
15 ist mit einer von der Steuerstufe 12 im Takt der Modulation der Infrarotleuchtdiode
4 gesteuerten Weiche 16 verbunden.The infrared radiation emitted by the infrared light-emitting diode 4 is bundled by the optics 8 (FIG. 1) and directed into a defined area of the monitoring room. The infrared radiation reflected from this area is collected by the optics 8 and thrown onto the light-sensitive diode 5. The received infrared radiation is converted by the diode 5 into a proportional current (receiver signal) I e , which is fed to a current /
Das von Störungen weitgehend befreite Ausgangssignal des Frequenzfilters 15 wird über
die Weiche 16 abwechselnd einem von zwei Integratoren 17, 17' zugeführt. Dabei ist die
Weiche 16 von der Steuerstufe 12 so gesteuert, das das Empfangssignal Ue während der
Sendedauer der Impulse an den einen Integrator, beispielsweise an den Integrator 17, und
während der Dauer der Pulspausen an den anderen Integrator, beispielsweise an den Integrator
17', geleitet wird. Während allfälliger Sendepausen zwischen den Impulszügen
oder Impulspaketen verharrt die Weiche 16 in einer neutralen Stellung, in der keiner der
beiden Integratoren 17 oder 17' mit dem Empfangssignal beaufschlagt ist. Die Weiche 16
ist vorzugsweise durch einen gesteuerten Schalter gebildet.The output signal of the
Aufgrund der Steuerung der Weiche 16 im Takt der Modulation erhält der Integrator 17
ausschliesslich das reflektierte Infrarotsendesignal einschliesslich eventueller Reste des
gefilterten Störsignals aus der Zeit der Sendepulse, und der Integrator 17' erhält nur eventuelle
Reste des gefilterten Störsignals aus der Zeit der Pulspausen, so dass durch eine
einfache Differenzbildung der Ausgangssignale der beiden Integratoren 17 und 17' das
reflektierte Infrarotsendesignal gewonnen werden kann. Die genannte Differenzbildung
erfolgt in einer den beiden Integratoren 17, 17' nachgeschalteten Stufe 18. Deren Ausgangssignal
ist das von Störungen weitgehend gereinigte, aus dem Überwachungsraum reflektierte
Infrarotsendesignal Un, welches das Nutzsignal für die Signalauswertung bildet. Due to the control of the
Solange sich die Bedingungen im Überwachungsraum nicht ändern, wird auch das reflektierte Infrarotsendesignal konstant bleiben. Erfolgt jedoch im Überwachungsraum eine Bewegung eines Objekts, gleichgültig ob es sich dabei um ein Lebewesen, eine Maschine oder um irgendeinen Gegenstand handelt, dann kommt es zu einer entsprechenden Änderung des reflektierten Infrarotsendesignals. Gasförmige Stoffe beeinflussen das reflektierte Signal nur dann, wenn sich das Reflexionsverhalten des den betreffenden Stoff enthaltenden Raums oder Raumabschnitts ändert. Letzteres bedeutet, dass blosse Luftbewegungen, wie beispielsweise von einem Heizkörper aufsteigende warme Luft, vom Melder nicht detektiert werden und daher auch keinen Fehlalarm auslösen können, wogegen das plötzliche Auftreten von Dämpfen oder von Rauch und dergleichen das Reflexionsverhalten verändert und daher vom Melder detektiert wird.As long as the conditions in the interstitial space do not change, this will also be reflected Infrared transmission signal remain constant. However, one takes place in the monitoring room Movement of an object, regardless of whether it is a living being, a machine or is something, then there is a corresponding change of the reflected infrared transmission signal. Gaseous substances influence the reflected Signal only when the reflective behavior of the substance in question Room or room section changes. The latter means that mere air movements, such as warm air rising from a radiator, from the detector cannot be detected and therefore cannot trigger a false alarm, whereas that sudden occurrence of vapors or smoke and the like the reflection behavior changed and therefore detected by the detector.
Das Nutzsignal Un wird einerseits einem Regler 19 und andererseits zwei Komparatoren
20 und 20' zugeführt. Der Ausgang des Reglers 19 ist mit dem einen Eingang eines zweiten
Modulators 21 verbunden, dessen zweiter Eingang mit der Steuerstufe 12 und dessen
Ausgang mit dem Eingang des Strom/Spannungswandlers 14 verbunden ist. Der zweite
Modulator 21 überlagert dem Signal der Photodiode 5 im Gegentakt einen Kompensationsstrom
Ik, wobei die zeitlichen Bedingungen für die Überlagerung dieses Kompensationsstroms
durch die Steuerstufe 12 bestimmt werden. Der Regler 19 ändert den Kompensationsstrom
Ik so lange, bis das Ausgangssignal der Stufe 18, also das Nutzsignal Un
null wird. Damit bleibt immer die maximale Empfindlichkeit erhalten.The useful signal U n is supplied on the one hand to a
Der Regelkreis kann mit einer selbst abgleichenden Waage oder mit einer Brückenschaltung verglichen werden, wobei der Wert null des Nutzsignals die Ruhelage darstellt. Jedes empfangene Infrarotsignal, auch das unerwünschte Grundsignal, wird auf null kompensiert. Erst dadurch eröffnet sich die Möglichkeit, für Sender und Empfänger S bzw. E (Fig. 1) eine gemeinsame Optik 8 zu verwenden. Denn senderseitig verursachte Reflexionen von Linsen, Spiegeln und/oder Infrarotfenster, die das Reflexionssignal eines möglichen Objekts im Überwachungsraum in der Regel um Potenzen übertreffen, werden durch den Regelkreis unterdrückt. Ein stark reflektierendes Objekt im Blickfeld des Melders führt nicht zu einer Empfindlichkeitseinbusse, sondern wird wegkompensiert, und die maximale Empfindlichkeit bleibt erhalten.The control loop can be with a self-balancing scale or with a bridge circuit are compared, the value zero of the useful signal representing the rest position. Each received infrared signal, also the unwanted basic signal, is compensated for zero. This is the only way to open the possibility for sender and receiver S or E (Fig. 1) to use a common optics 8. Because reflections caused by the transmitter of lenses, mirrors and / or infrared windows that reflect the possible reflection signal Object in the surveillance room are usually exceeded by potencies suppressed by the control loop. A highly reflective object in the detector's field of vision does not lead to a loss of sensitivity, but is compensated for, and the maximum sensitivity is retained.
Die Komparatoren 20 und 20' dienen zur Signalauswertung. Sie vergleichen das Nutzsignal
Un mit einem oberen Grenzwert (Komparator 20) und einem unteren Grenzwert
(Komparator 20') und liefern bei dessen Über- bzw. Unterschreitung an den Alarmausgang
10 ein Alarmsignal. Diese Signalauswertung kann trotz der beschriebenen Kompensation
des Nutzsignals erfolgen, weil nämlich der ganze Regelvorgang so langsam ist,
dass auch bei sehr vorsichtigem und langsamem Eindringen in den Überwachungsraum
das von der Fotodiode 5 empfangene Infrarotsignal nicht sofort auf null ausgeregelt wird,
so dass den beiden Komparatoren 20, 20' ausreichend Zeit für eine Detektion verbleibt.The
Wegen der beachtlichen Grösse der durch nicht perfekte Optik 8 oder Fenster 9 (Fig. 1)
verursachten Störreflexionen muss der Regler 19 einen sehr grossen Betrag von in der
Regel über 90% der gesamten Reflexionen kompensieren, wobei die Störreflexionen
einen durch Geometrie und Material von Optik und Fenster bedingten fixen Wert haben.
Es wäre wünschenswert, diesen fixen Wert durch einen zusätzlichen, fixen Kompensationsstrom
Ik' auszugleichen, wodurch der Betrag der vom Regler 19 zu kompensierenden
Gesamtreflexionen stark sinken und die Auflösung beträchtlich steigen würde. Der Regler
19 hätte in diesem Fall neben den Reflexionen aus dem Überwachungsraum allenfalls
noch durch Fabrikationstoleranzen und/oder Exemplarstreuungen der Infrarotleuchtdiode
4 bedingte Abweichungen zu übernehmen.Because of the considerable size of the interfering reflections caused by imperfect optics 8 or windows 9 (FIG. 1), the
Wie Fig. 2 zu entnehmen ist, ist zur Erzeugung des Kompensationsstroms Ik' ein ebenfalls
von der Steuerstufe 12 gesteuerter dritter Modulator 22 vorgesehen. Dieser ist entweder
auf einen fixen Wert des Kompensationsstroms Ik' eingestellt, oder er ist, so wie in
der Figur dargestellt, einstellbar ausgebildet. Im letzteren Fall kann der Kompensationsstrom
Ik' so justiert werden, dass nicht nur die genannten Störreflexionen, sondern auch
die durch die Infrarotleuchtdiode 4 bedingten Abweichungen kompensiert werden.As can be seen in FIG. 2, a
Der Regler 19 hat ein annähernd logarithmisches Verhalten. Wenn er zur Ausregelung
einer kleinen Änderung des Nutzsignals eine bestimmte Zeit t benötigt, dann erfordert die
Ausregelung einer zehnmal so grossen Änderung nur die doppelte Zeit 2t. Dieses Verhalten
ist besonders beim Einschalten des Melders vorteilhaft, wo die Änderung des Nutzsignals
100% beträgt und für die Ausregelung trotzdem nicht unnötig viel Zeit verstreicht.The
Das Alarmsignal am Alarmausgang 10 kann weiter ausgewertet, beispielsweise auf Plausibilität
überprüft werden, was im Melder oder in einer Zentrale erfolgen kann, oder es
wird ohne Weiterverarbeitung an eine Zentrale geleitet, wo dann Alarm ausgelöst wird.
Das Alarmsignal kann zusätzlich oder alternativ eine im Melder angeordnete Leuchtdiode
23 aktivieren. Darstellungsgemäss ist ausserdem ein Relais 24 vorgesehen, dessen Kontakte
eine potentialfreie Auswertung des Alarmsignals ermöglichen. Durch separate Untersuchung
der Ausgangssignale der beiden Komparatoren 20 und 20' auf ihr Vorzeichen,
also durch Auswertung der positiven oder negativen Änderungen der Reflexionen, kann
die Bewegungsrichtung eines Objekts im Überwachungsraum, auf den Melder zu oder
von diesem weg, festgestellt werden.The alarm signal at
In Fig. 3 ist eine weitere Möglichkeit zur Unterdrückung oder Kompensation von unerwünschten Reflexionen dargestellt. Bei dieser Variante, bei der kein dritter Modulator 22 (Fig. 2) erforderlich ist, wird der den eigentlichen Bewegungsdetektor bildenden Fotodiode 5 eine zweite Fotodiode 5' mit vorzugsweise identischen Daten mit umgekehrter Polarität parallelgeschaltet. Dabei ist die Geometrie der Anordnung so gewählt, dass die eine Fotodiode 5 im Brennpunkt der Optik 8 (Fig. 1) und die zweite Fotodiode 5' ausserhalb von diesem angeordnet ist. Dadurch empfängt die eine Fotodiode 5 die aus dem Überwachungsraum reflektierte Strahlung plus die allfälligen Störreflexionen, wogegen die zweite Fotodiode 5' nur die Störreflexionen empfängt. Somit entspricht die Differenz der Fotoströme der beiden Fotodioden 5 und 5' dem gesuchten Signal aus dem Überwachungsraum, welches allenfalls noch von Störsignalen wie Sonneneinstrahlung oder Raumbeleuchtung überlagert sein kann.In Fig. 3 is another way to suppress or compensate for unwanted Reflections shown. In this variant, in which no third modulator 22 (Fig. 2) is required, the photodiode forming the actual motion detector 5 a second photodiode 5 'with preferably identical data with reversed polarity connected in parallel. The geometry of the arrangement is chosen so that the a photodiode 5 in the focus of the optics 8 (Fig. 1) and the second photodiode 5 'outside is arranged by this. This receives the one photodiode 5 from the Monitoring room reflected radiation plus any interfering reflections, against the second photodiode 5 'only receives the interference reflections. So the difference corresponds the photo currents of the two photo diodes 5 and 5 'the signal sought from the monitoring room, which at best from interference signals such as solar radiation or Room lighting can be overlaid.
Bei Verwendung von zwei gleichen Fotodioden 5, 5' werden hinsichtlich der gemeinsamen
Empfangssignale die Temperaturbeiwerte der Fotoempfindlichkeit gegenseitig kompensiert.
Ausserdem bleiben alle diejenigen Einflüsse und potentiellen Störquellen ohne
Wirkung, die sich auf beide Fotodioden auswirken. Einflüsse oder Störungen dieser Art
sind insbesondere Exemplarstreuungen und Temperaturdriften der Infrarotleuchtdiode 4
sowie Exemplarstreuungen und zeitliche Änderungen der Reflexionskonstanten der relevanten
mechanischen Bauteile, wie variierende Einfärbungen und Oberflächenstrukturen.
Somit verbleibt dem Regler 19 und dem zweiten Modulator 21 nur noch die Kompensation
der aus dem Überwachungsraum reflektierten Infrarotsignale, wogegen rund 95% der
Gesamtreflexionen und Fotoströme durch die zweite Fotodiode 5' kompensiert werden.
Dadurch kann die Einflussnahme des Reglers 19 auf rund ±5% reduziert werden, wodurch
die.Auflösung des Nutzsignals Un auf das etwa Zehnfache ansteigt, was für konstante
Grenzen der Komparatoren 20, 20' einer rund zehnfachen Ansprechempfindlichkeit
entspricht.When using two identical photodiodes 5, 5 ', the temperature coefficients of the photosensitivity are mutually compensated for with respect to the common received signals. In addition, all those influences and potential sources of interference that have an effect on both photodiodes remain ineffective. Influences or disturbances of this type are in particular specimen scatter and temperature drifts of the infrared light-emitting diode 4, as well as specimen scatter and changes over time in the reflection constants of the relevant mechanical components, such as varying colors and surface structures. The
Die erwähnte Überprüfung des Alarmsignals auf Plausibilität, die eine möglichst vollständige Unterdrückung von Fehlalarmen ermöglichen soll, ist besonders bei sogenannten dualen Meldern, das sind Melder mit zwei nach verschiedenen Prinzipien arbeitenden Sensoren, sinnvoll. Bekannte derartige duale passive Infrarotbewegungsmelder kombinieren die passive Infrarotstrahlung mit Ultraschall oder mit Mikrowellen. Beim vorliegenden aktiven Infrarotbewegungsmelder ist eine Kombination aktiv/passiv Infrarot denkbar. Eine derartige Kombination wäre den bekannten Kombinationen Infrarot/Ultraschall und Infrarot/Mikrowellen nicht zuletzt deswegen vorzuziehen, weil sich die Infrarotstrahlung exakt gleich wie das sichtbare Licht verhält und daher mit den vom sichtbaren Licht her bekannten optischen Mitteln beherrschbar ist. Die letztgenannte vorteilhafte Eigenschaft der Infrarotstrahlung ist insbesondere beim Schutz von leicht durchdringbaren Flächen mit einem Infrarotvorhang, beispielsweise beim Schutz von Bildern oder Skulpturen in Galerien oder Museen, oder beim Schutz ganzer Fensterflächen, besonders wichtig.The aforementioned checking of the alarm signal for plausibility, which is as complete as possible Suppression of false alarms should be possible, especially with so-called dual detectors are detectors with two people working on different principles Sensors, useful. Combine known dual passive infrared motion detectors of this type passive infrared radiation with ultrasound or with microwaves. In the present active infrared motion detector, a combination of active / passive infrared is conceivable. Such a combination would be the known combinations of infrared / ultrasound and Infrared / microwaves are preferable not least because the infrared radiation behaves exactly the same as visible light and therefore with those from visible light known optical means is controllable. The latter advantageous property Infrared radiation is particularly useful for protecting easily penetrable areas with an infrared curtain, for example when protecting pictures or sculptures in Galleries or museums, or when protecting entire window areas, particularly important.
Die in Fig. 4 dargestellte Auswerteschaltung 2' unterscheidet sich von der Auswerteschaltung
2 von Fig. 2 im wesentlichen dadurch, dass ein anderer Regler verwendet, und dass
das Reglersignal analog/digital gewandelt wird und somit für die Auswertung in digitalisierter
Form zur Verfügung steht. Darstellungsgemäss erfolgt bei diesem Ausführungsbeispiel
die Steuerung des ersten Modulators 11 durch eine Programmsteuerstufe 26, die
unter anderem einen Zähler 27 aufweist. Die Programmsteuerstufe 26 erhält ihren Takt
von einem Taktgeber 13 und bestimmt die zeitliche Folge und die Länge der an die Infrarotleuchtdiode
4 abgegebenen Signale. Mit dem Bezugszeichen 28 ist ein dem ersten Modulator
11 zugeordneter Temperaturfühler zur Kompensation des Temperaturgangs des
die Infrarotleuchtdiode 4 und die Fotodiode 5 enthaltenden Regelkreises bezeichnet.The evaluation circuit 2 'shown in FIG. 4 differs from the
Bis zu der den beiden Integratoren 17 und 17' nachgeschalteten Stufe 18, verläuft die
Signalverarbeitung analog wie in der in Fig. 2 dargestellten Auswerteschaltung. Das Ausgangssignal
Un der Stufe 18, welches das Nutzsignal für die Signalauswertung bildet,
wird einem Regler 29 zugeführt, der vorzugsweise ein sogenannter PID-Regler, also ein
Regler mit Proportional-, Integral- und Differentialanteil ist, und gelangt von diesem in
einen Spannungs/Pulsbreiten-Wandler 30. Dieser erzeugt aus dem analogen Ausgangssignal
des Reglers 29 ein impulsförmiges Signal, bei dem die Summe Puls plus Pulspause
konstant und die Breite (Dauer) der Pulse proportional zum Signal des Reglers 29 ist. Das
impulsförmige Signal des Wandlers 30 gelangt in die Programmsteuerstufe 26, deren
Zähler 27 jeweils die Clocktakte pro Breite jedes der Impulse dieses Signals zählt. Wegen
der Proportionalität zwischen Pulsbreite und Ausgangssignal des Reglers 29 stellt die Anzahl
der vom Zähler 27 ermittelten Clocktakte pro Pulsbreite ein digitales Abbild des analogen
Ausgangssignals des PID-Reglers 29 dar. Up to the
Die am Ausgang des Spannungs/Pulsbrei-ten-Wandlers 30 erhältliche Pulsbreite wird nur
in seltenen Fällen genau mit einem Vielfachen des Clocktakts übereinstimmen und kann
bis zu ±1d (d = kleinste Informationseinheit) daneben liegen. Die konstante Länge Puls +
Pulspause ist durch die Programmsteuerstufe 26 festgelegt und beträgt bei einer Clockfrequenz
von 4 MHz und bei Verwendung eines 12 Bit-Zählers ca. 1 ms. Damit stehen pro
Sekunde 1'000 Resultate von maximal 12 bit, das sind 4'096 Informationen, mit einer Genauigkeit
von ±1d plus dem eventuellen Fehler des Wandlers 30 zur Verfügung.The pulse width available at the output of the voltage /
Da der Differentialanteil des dem PID-Regler 29 zugeführten Signals zu einer gewissen
Unstabilität des digitalen Signals führen kann, ist es vorteilhaft, diesen Signalanteil einem
Differential-Regler 31 zuzuführen. Man kann dabei eine Aufteilung des Differentialanteils
auf die beiden Regler 29 und 31 vornehmen, oder den gesamten Differentialanteil
auf den Differential-Regler 31 führen, oder man kann auch den Differential-Regler weglassen
und nur den PID-Regler 29 verwenden. Massgebend dafür, welche dieser Lösungen
man wählt, wird nicht zuletzt das Verhältnis zwischen Aufwand einerseits und Empfindlichkeit
und Zuverlässigkeit andererseits sein. Es sei aber betont, dass alle drei Lösungen
voll funktionsfähig sind und zufriedenstellende Resultate liefern.Since the differential portion of the signal supplied to the
Die Werte der vom Zähler 27 ermittelten Clocktakte gelangen von der Programmsteuerstufe
26 in einen Pulsbreiten/Spannungs-Wandler 32, in dem mit Bezug auf eine von der
Referenzspannungsquelle 25 bezogene Referenzspannung eine dem jeweiligen Zählerwert
entsprechende Spannung gebildet wird, die den Kompensationsstrom Ik bestimmt.
Hier ist ohne weiteres eine Genauigkeit von ±0.001% erreichbar, so dass also der Kompensationsstrom
genau dem Stand des Zählers 27 entspricht. Der Ausgang des Differential-Reglers
31 ist ebenfalls an den Pulsbreiten-/Spannungswandler 32 angeschlossen und
führt diesem die höherfrequenten Anteile des Nutzsignals Un zu. Der Ausgang des Wandlers
32 ist mit dem einen Eingang des zweiten Modulators 21 (Fig. 2) verbunden, dessen
zweiter Eingang mit der Programmsteuerstufe 26 und dessen Ausgang mit dem Eingang
des Strom/Spannungswandlers 14 verbunden ist. The values of the clock clocks determined by the
Der zweite Modulator 21 überlagert dem Signal der Fotodiode 5 in Gegenphase den
Kompensationsstrom Ik, wobei die zeitlichen Bedingungen für diese Überlagerung durch
die Programmsteuerstufe 26 bestimmt sind. Der PID-Regler 29 verändert sein Ausgangssignal
und damit das Puls-/Pausen-Verhältnis derart, dass das Ausgangssignal der Stufe
18, also das Nutzsignal Un, gleich null wird. Somit entspricht der Stand des Zählers 27
bis auf die schon erwähnte mögliche Abweichung von ±1d dem Infrarotbild des überwachten
Raumes.The
Obwohl diese Abweichung in der Praxis ohne Bedeutung sein wird, kann man die Genauigkeit
durch Mittelwertbildung aus einer Vielzahl von Einzelwerten weiter erhöhen. Eine
derartige Mittelwertbildung kann beispielsweise durch den Zähler 27 oder durch einen
der Programmsteuerstufe 26 nachgeschalteten Mikroprozessor 33 erfolgen. Mit diesem
kann das in der Programmsteuerstufe 26 in digitaler Form vorhandene Infrarotsignal differenzierter
und intelligenter ausgewertet werden, was zu einer höheren Auflösung und
damit zu einer verbesserten Detektionssicherheit und zu einer verbesserten Sicherheit vor
Falschmeldungen führt. Ausserdem erleichtert der Mikroprozessor eine sinnvolle Kopplung
des beschriebenen Messprinzips mit einem zweiten in einem sogenannten dualen
Melder. Der Mikroprozessor 33, der das als Ergebnis der Auswertung vorliegende Alarmsignal
an den Alarmausgang 10 abgibt, kann das Alarmsignal auf Plausibilität überprüfen
und dadurch die Zentrale entlasten.Although this deviation will be irrelevant in practice, accuracy can be determined
further increase by averaging from a large number of individual values. A
Such averaging can be done, for example, by the
Die beschriebene Auswerteelektronik mit ihrem mit einer Brückenschaltung vergleichbaren Regelkreis, bei dem der Wert null des Nutzsignals die Ruhelage darstellt, bietet eine Reihe von Vorteilen:
- Durch die kompensierende Elektronik wird der Einfluss stark reflektierender Objekte nahe beim Melder so weit zurückgedrängt, dass die Hintergrundstrahlung nach wie vor erkennbar ist. Stark reflektierende Objekte werden wegkompensiert und die maximale Empfindlichkeit bleibt erhalten.
- Durch die kompensierende Elektronik wird die Verwendung einer gemeinsamen Sende/Empfangsoptik ermöglicht. Denn sendeseitig verursachte Reflexionen von Linsen, Spiegeln und/oder vom Infrarotfenster, die das Reflexionssignal eines möglichen Objekts im Überwachungsraum in der Regel um Potenzen übertreffen, werden durch den Regelkreis unterdrückt.
- Die Digitalisierung des Signals bietet die Möglichkeit, Absolutwerte der Infrarotstrahlung zu erfassen und dadurch eine echte Präsenzdetektion zu ermöglichen, und sie ermöglicht den Einsatz eines Mikroprozessors mit all seinen Vorteilen.
- Die Erfassung der Anbsolutwerte der Infrarotstrahlung ermöglicht die Bestimmung von deren Vorzeichen, also die Feststellung, ob eine positive oder negative Änderung der Reflexion und damit eine Objektbewegung auf den Melder zu oder von diesem weg stattfindet.
- Der vorgeschlagene Analog/Digital-Wandler ist wesentlich preisgünstiger als jeder käufliche A/D-Wandler gleicher Auflösung.
- Due to the compensating electronics, the influence of strongly reflecting objects near the detector is suppressed so far that the background radiation can still be seen. Highly reflective objects are compensated for and the maximum sensitivity is retained.
- The compensating electronics enable the use of a common transmission / reception optics. This is because the control circuit suppresses reflections from lenses, mirrors and / or from the infrared window caused by the transmission, which generally exceed the reflection signal of a possible object in the surveillance room by potencies.
- The digitization of the signal offers the possibility of acquiring absolute values of the infrared radiation and thereby enabling real presence detection, and it enables the use of a microprocessor with all of its advantages.
- The detection of the absolute values of the infrared radiation enables the determination of their sign, that is to say whether there is a positive or negative change in the reflection and thus an object movement towards or away from the detector.
- The proposed analog / digital converter is considerably cheaper than any commercially available A / D converter with the same resolution.
Claims (21)
- An active infrared detector for detecting movements in a monitored room, having an emitter for emitting modulated infrared radiation into the monitored room, having a receiver for the infrared radiation reflected from the monitored room, and having an analysis circuit connected to the receiver, containing means for obtaining a working signal and analysing only received signals, characterised in that the analysis circuit has a controller (19, 29) for outputting a compensating signal (Ik) which is superimposed over the incoming signal (Ie), which on the one hand receives the working signal (Un) and on the other hand is connected to the output of the receiver (5), and that the compensating signal is selected so that the working signal is corrected to the value zero.
- An infrared detector according to claim 1, characterised in that a common optical system (8) is provided for the emitter (S, 4) and receiver (E, 5).
- An infrared detector according to claim 2, characterised in that the analysis circuit has a first modulator (11), connected to a control stage (12, 26), for the pulse-shaped modulation of the signal emitted by the emitter (S, 4), a controlled separating filter (16) connected to the control stage, two integrators (17, 17') connected downstream of the separating filter and means (18) for calculating the difference between the output signals from the integrators.
- An infrared detector according to claim 3, characterised in that the incoming signal (Ue) is routed to the integrators (17, 17') via the separating filter (16) in phase with the modulation of the emitted signal so that integration of the incoming signal takes place in one of the integrators (17) for the duration of the pulses and takes place in the other integrator (17') during the gaps between pulses.
- An infrared detector according to claim 4, characterised in that at least one comparator (20, 20') in which the working signal (Un) is compared with at least one limit value is connected downstream of the means (18) for calculating the difference.
- An infrared detector according to claim 5, characterised in that two comparators (20, 20') are provided in which the working signal (Un) is compared with an upper or a lower limit value.
- An infrared detector according to claim 6, characterised in that the output signals from the two comparators (20, 20') are tested for their sign in order to determine the direction of movement of an object detected in the monitored room.
- An infrared detector according to one of claims 3 to 7, characterised in that a second modulator (21), controlled by the control stage (12), is connected downstream of the controller (19), the modulator (21) superimposing, in phase opposition, the compensating signal (Ik) over the incoming signal (Ie).
- An infrared detector according to claim 8, characterised in that the control behaviour of the controller (19) is approximately logarithmic.
- An infrared detector according to claim 8, characterised by a third, preferably adjustable, modulator (22) for generating an additional compensating signal (Ik') for compensating for reflections caused by the optical system (8) or by an infrared-permeable window (7) of the detector (1).
- An infrared detector according to claim 8, characterised in that a second diode (5') is provided, connected with reverse polarity in parallel to the first diode (5) forming the receiver (E) and having preferably identical data, and that the difference between the photoelectric currents of the two diodes forms the incoming signal (Ie).
- An infrared detector according to claim 11, characterised in that the first diode (5) receives the infrared radiation reflected from the monitored room and any interference radiation reflected by the optical system (8) or by an infrared-permeable window (7) of the detector (1), and that the second diode (5') receives only the aforementioned interference radiation.
- An infrared detector according to claim 12, characterised in that the first diode (5) is arranged in the focal point of the common optical system (8) and the second diode (5') is arranged outside the focal point.
- An infrared detector according to one of claims 1 to 4, characterised in that the analysis circuit has an analogue/digital converter (26, 30) connected downstream of the controller (29), at one of the outputs of which the digitised controller signal is obtainable and the other output of which is connected to a digital/analogue converter (25, 32) for generating a voltage corresponding to the digital signal value in each case, and that this voltage is used to generate the compensating signal (Ik).
- An infrared detector according to claim 14, characterised in that one of the outputs of the analogue/digital converter (26, 30) is connected to a microprocessor (33).
- An infrared detector according to claim 15, characterised in that the controller (29) receiving the working signal (Un) is formed by a PID controller.
- An infrared detector according to one of claims 14 to 16, characterised in that the analogue/digital converter is formed by a signal converter (30) for converting the controller signal into a pulse-shaped signal and by a stage (26), connected downstream of the signal converter, for obtaining numerical values corresponding to the magnitude of the individual pulses.
- An infrared detector according to claim 17, characterised in that the signal converter (30) is formed by a voltage/pulse-width converter which generates a pulse-shaped signal from the analogue output signal from the controller, in which the pulse plus pause between pulses duration is constant and the width of the pulse is proportional to the controller signal.
- An infrared detector according to claim 18, characterised in that the stage (26) connected downstream of the signal converter (30) has a counter (27) and a clock pulse encoder (13), wherein clock pulses corresponding to the width of the individual signal pulses are counted by the counter.
- An infrared detector according to claim 19, characterised in that the digital/analogue converter is formed by a pulse-width/voltage converter (32) connected to a reference voltage source (25), each value of the counter (27) being converted into a voltage in the pulsewidth/voltage converter (32).
- An infrared detector according to claim 20, characterised in that the working signal (Un) is routed, in parallel to the PID controller (29), to a differential controller (31) for the differential part of the signal, and that the output of the differential controller is connected to the pulse-width/voltage converter (32).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP95917879A EP0711442B1 (en) | 1994-05-30 | 1995-05-19 | Active ir intrusion detector |
Applications Claiming Priority (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP94108289 | 1994-05-30 | ||
EP94108289 | 1994-05-30 | ||
CH907/95 | 1995-03-31 | ||
CH90795 | 1995-03-31 | ||
CH90795 | 1995-03-31 | ||
PCT/CH1995/000112 WO1995033248A1 (en) | 1994-05-30 | 1995-05-19 | Active ir intrusion detector |
EP95917879A EP0711442B1 (en) | 1994-05-30 | 1995-05-19 | Active ir intrusion detector |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0711442A1 EP0711442A1 (en) | 1996-05-15 |
EP0711442B1 true EP0711442B1 (en) | 1999-09-22 |
Family
ID=25686074
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP95917879A Expired - Lifetime EP0711442B1 (en) | 1994-05-30 | 1995-05-19 | Active ir intrusion detector |
Country Status (8)
Country | Link |
---|---|
US (1) | US5675150A (en) |
EP (1) | EP0711442B1 (en) |
JP (1) | JPH09501253A (en) |
CN (1) | CN1088225C (en) |
CA (1) | CA2166389C (en) |
DE (1) | DE59506883D1 (en) |
IL (1) | IL113653A (en) |
WO (1) | WO1995033248A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102008004419A1 (en) * | 2008-01-14 | 2009-07-16 | Elmos Semiconductor Ag | Controllable lighting device i.e. garden path lamp, for illuminating outdoor area, has sensor staying in operative connection with timer, and control of illuminant provided by circuit that is coupled with regulating or switching device |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09186574A (en) * | 1995-12-28 | 1997-07-15 | Nec Corp | Terminal equipment with detection function |
EP0845765A1 (en) | 1996-12-02 | 1998-06-03 | Cerberus Ag | Intrusion detection system |
DE19709805A1 (en) * | 1997-03-10 | 1998-09-24 | Stribel Gmbh | Room monitoring device |
US6768504B2 (en) | 2001-03-31 | 2004-07-27 | Videojet Technologies Inc. | Device and method for monitoring a laser-marking device |
JP3959461B2 (en) * | 2002-01-31 | 2007-08-15 | オプテックス株式会社 | Active infrared sensor |
US20040004577A1 (en) * | 2002-04-29 | 2004-01-08 | Forster Ian J. | Flexible curtain antenna for reading RFID tags |
DE10236937A1 (en) * | 2002-08-12 | 2004-02-26 | BSH Bosch und Siemens Hausgeräte GmbH | Operating panel for household device, e.g. washing machine, with movement detector to activate indicator displays and lights on panel only when user is nearby to save power |
US6812466B2 (en) * | 2002-09-25 | 2004-11-02 | Prospects, Corp. | Infrared obstacle detection in the presence of sunlight |
EP1731925A4 (en) * | 2003-11-10 | 2009-01-14 | Omron Tateisi Electronics Co | Processing device and object detection device |
US7616109B2 (en) * | 2006-03-09 | 2009-11-10 | Honeywell International Inc. | System and method for detecting detector masking |
US8384559B2 (en) | 2010-04-13 | 2013-02-26 | Silicon Laboratories Inc. | Sensor device with flexible interface and updatable information store |
EP2453426B2 (en) * | 2010-11-15 | 2021-03-17 | Cedes AG | Self-testing monitoring sensor |
EP2631674A1 (en) * | 2012-02-23 | 2013-08-28 | ELMOS Semiconductor AG | Method and sensor system for measuring the properties of a transfer segment of a measuring system between transmitter and recipient |
CN105046860B (en) * | 2015-09-14 | 2018-04-13 | 北京世纪之星应用技术研究中心 | A kind of intruder detection system and method using light wave Doppler effect |
CN107367340B (en) * | 2017-06-21 | 2023-11-14 | 陈中杰 | Infrared light moment monitoring system |
CN111025416A (en) * | 2018-10-09 | 2020-04-17 | 众智光电科技股份有限公司 | Infrared sensing device |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2452794C3 (en) * | 1974-11-07 | 1979-08-30 | Philips Patentverwaltung Gmbh, 2000 Hamburg | Automatic level adjustment circuit for presettable IR pulse monitoring devices with clocked receiver |
DE3045217C2 (en) * | 1980-12-01 | 1986-08-07 | Brown, Boveri & Cie Ag, 6800 Mannheim | Method and device for optical monitoring and securing of rooms against intruders |
DE3618693A1 (en) * | 1985-06-12 | 1986-12-18 | Yoshida Kogyo K.K., Tokio/Tokyo | METHOD AND DEVICE FOR DETERMINING THE PRESENCE OF A HUMAN BODY |
GB8529585D0 (en) * | 1985-11-30 | 1986-01-08 | Casswell P H | Active infra red detector |
-
1995
- 1995-05-08 IL IL11365395A patent/IL113653A/en not_active IP Right Cessation
- 1995-05-19 EP EP95917879A patent/EP0711442B1/en not_active Expired - Lifetime
- 1995-05-19 JP JP8500128A patent/JPH09501253A/en active Pending
- 1995-05-19 CA CA002166389A patent/CA2166389C/en not_active Expired - Fee Related
- 1995-05-19 CN CN95190495A patent/CN1088225C/en not_active Expired - Fee Related
- 1995-05-19 WO PCT/CH1995/000112 patent/WO1995033248A1/en active IP Right Grant
- 1995-05-19 US US08/592,363 patent/US5675150A/en not_active Expired - Fee Related
- 1995-05-19 DE DE59506883T patent/DE59506883D1/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102008004419A1 (en) * | 2008-01-14 | 2009-07-16 | Elmos Semiconductor Ag | Controllable lighting device i.e. garden path lamp, for illuminating outdoor area, has sensor staying in operative connection with timer, and control of illuminant provided by circuit that is coupled with regulating or switching device |
Also Published As
Publication number | Publication date |
---|---|
IL113653A (en) | 1998-10-30 |
CN1129042A (en) | 1996-08-14 |
WO1995033248A1 (en) | 1995-12-07 |
US5675150A (en) | 1997-10-07 |
JPH09501253A (en) | 1997-02-04 |
IL113653A0 (en) | 1995-08-31 |
CA2166389C (en) | 2004-07-13 |
CN1088225C (en) | 2002-07-24 |
CA2166389A1 (en) | 1995-12-07 |
DE59506883D1 (en) | 1999-10-28 |
EP0711442A1 (en) | 1996-05-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0711442B1 (en) | Active ir intrusion detector | |
EP0360126B2 (en) | Operation method for an optical smoke detector and smoke detector for carrying out the method | |
EP2252984B1 (en) | Evaluation of a difference signal between output signals of two receiving devices in a sensor apparatus | |
DE60121807T2 (en) | OBSTACLE DETECTION SENSOR WITH SYNCHRONOUS DETECTION | |
EP2541273B1 (en) | Detection and measuring of distance between objects | |
DE19721105C5 (en) | Optoelectronic sensor | |
DE3514982C2 (en) | ||
DE10229408B4 (en) | Optical sensor | |
EP0107042A1 (en) | Infrared detector for spotting an intruder in an area | |
EP1061489A1 (en) | Intrusion detector with a device for monitoring against tampering | |
EP2159603B1 (en) | Method and sensor for identifying objects | |
EP1071931B1 (en) | Sensor device and method for operating a sensor device | |
EP0926646A1 (en) | Optical smoke detector | |
DE2705831B2 (en) | Optical locator | |
EP2093731A1 (en) | Linear optical smoke alarm with multiple part-beams | |
EP1087352A1 (en) | Optical smoke detector | |
EP0039799B1 (en) | Motion detection device | |
DE3316010C2 (en) | ||
DE19520242C2 (en) | Device for motion detection with at least one optoelectric sensor for detecting light rays from a room area to be monitored | |
EP0886252B1 (en) | Optical smoke sensor operating by the extinguish principle | |
DE10016892A1 (en) | Optoelectronic device for scanning reflective light includes first and second transmitters to emit transmitting light-induced impulses alternately. | |
DE3415233A1 (en) | Room surveillance device | |
DE102006023971B4 (en) | Optical sensor and method for detecting persons, animals or objects | |
DE102010064682B3 (en) | Optoelectronic sensor and method for detecting and determining the distance of objects | |
DE2911363A1 (en) | Passive IR intruder location alarm - sweeps over monitored region and detects changes from previous sweep, using timing pulses from encoder |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19960120 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): CH DE FR GB LI NL |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
17Q | First examination report despatched |
Effective date: 19981103 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: SIEMENS BUILDING TECHNOLOGIES AG |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): CH DE FR GB LI NL |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19990928 |
|
REF | Corresponds to: |
Ref document number: 59506883 Country of ref document: DE Date of ref document: 19991028 |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20040506 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20040511 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20040525 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20040719 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20040806 Year of fee payment: 10 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050519 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050531 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20051201 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20051201 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20050519 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060131 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 20051201 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20060131 |