Nothing Special   »   [go: up one dir, main page]

EP0639253B1 - Forced-flow steam generator - Google Patents

Forced-flow steam generator Download PDF

Info

Publication number
EP0639253B1
EP0639253B1 EP93908800A EP93908800A EP0639253B1 EP 0639253 B1 EP0639253 B1 EP 0639253B1 EP 93908800 A EP93908800 A EP 93908800A EP 93908800 A EP93908800 A EP 93908800A EP 0639253 B1 EP0639253 B1 EP 0639253B1
Authority
EP
European Patent Office
Prior art keywords
value
heating surface
evaporator heating
steam generator
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP93908800A
Other languages
German (de)
French (fr)
Other versions
EP0639253A1 (en
Inventor
Axel Butterlin
Hermann Dörr
Joachim Franke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Siemens Corp
Original Assignee
Siemens AG
Siemens Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=25915217&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0639253(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from DE19924217626 external-priority patent/DE4217626A1/en
Application filed by Siemens AG, Siemens Corp filed Critical Siemens AG
Priority to EP93908800A priority Critical patent/EP0639253B1/en
Publication of EP0639253A1 publication Critical patent/EP0639253A1/en
Application granted granted Critical
Publication of EP0639253B1 publication Critical patent/EP0639253B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B35/00Control systems for steam boilers
    • F22B35/06Control systems for steam boilers for steam boilers of forced-flow type
    • F22B35/10Control systems for steam boilers for steam boilers of forced-flow type of once-through type

Definitions

  • the invention relates to a once-through steam generator with an evaporator heating surface and with a device upstream of the evaporator heating surface for adjusting the feed water mass flow ⁇ into the evaporator heating surface and with a control device associated with this device, the controlled variable of which is the feed water mass flow ⁇ and whose setpoint ⁇ S for the feed water mass flow depends on one of the Steam generator power assigned setpoint L is performed.
  • the object of the invention is to substantially reduce or even avoid this disadvantageous overshoot of the specific enthalpy at the outlet of the evaporator heating surface.
  • the processing of the actual value of the specific enthalpy at the entrance of the evaporator heating surface enables it to be used of the heat flow flowing into the evaporator heating surface for determining the setpoint for the feed water mass flow, so that the feed water mass flow supplied to the evaporator heating surface can be largely adapted to the heat flow supplied to the evaporator heating surface. This enables targeted control of the specific enthalpy at the outlet of the evaporator heating surface.
  • the energy storage in the metal masses of the evaporator heating surface is taken into account, so that an even better adaptation of the feed water mass flow supplied to the evaporator heating surface takes place to the heat flow supplied to this evaporator heating surface.
  • Figure 1 shows schematically a once-through steam generator according to the invention.
  • FIGS. 2 and 3 show in a diagram the time course of the specific enthalpy at the outlet of the evaporator heating surface of the once-through steam generator according to FIG. 1.
  • the forced-flow steam generator according to FIG. 1 has a feed water preheating surface (economizer heating surface) 2, which is located in a gas train (not shown).
  • This feed water preheating surface 2 has a feed water pump 3 connected upstream and an evaporator heating surface 4 connected downstream.
  • a measuring device 9 for measuring the actual value h iE of the specific enthalpy of the feed water at the inlet of the evaporator heating surface 4 is provided at the entry of the evaporator heating surface 4 in the connecting line between the feed water preheating heating surface 2 and the evaporator heating surface 4.
  • a drive motor on the feed water pump 3 is assigned a very fast controller, namely a PI controller 6, at the input of which is the controlled variable the control deviation ⁇ of the feed water mass flow ⁇ i measured with the measuring device 5.
  • the controller 6 is assigned a device 8 for forming the setpoint ⁇ s for the feed water mass flow.
  • This device 8 has, on the one hand, as input variables a setpoint L for the output of the once-through steam generator, which is output by a setpoint generator 7, and, on the other hand, the actual value h iE of the specific enthalpy at the inlet of the evaporator heating surface 4 determined by the measuring device 9.
  • the setpoint value L of the power of the once-through steam generator which changes over and over again during operation and which is fed directly to the fuel controller in the combustion control circuit (not shown), is also fed to the input of a first delay element 13 of the device 8.
  • This delay element 13 which is of higher order, for example of 2nd order, gives a first signal or a delayed first power value L1 from.
  • This first power value L1 is fed to the inputs of function transmitter units 10 and 11 of the function transmitter of the device 8.
  • a value ⁇ (L1) for the feed water mass flow appears at the output of the function transmitter unit 10, and a value ⁇ h (L1) for the difference between the specific enthalpy h iA at the outlet of the evaporator heating surface 4 and the specific enthalpy h iE am appears at the output of the function transmitter unit 11 Entry of this evaporator heating surface 4.
  • the output variables ⁇ (L1) and ⁇ h (L1) of the function generator units 10 and 11 are multiplied together in a multiplication element 14 of the function generator of the device 8.
  • the product value Q ⁇ (L1) obtained corresponds to the heat flow into the evaporator heating surface 4 at the power value L1.
  • This quantity Q ⁇ (L1) is entered as a counter in a divider 15.
  • a setpoint h sA (L2) is taken from a third function generator unit 12 of the function generator of the device 8.
  • the input value of the function generator unit 12 arises at the output of a second delay element 16, in particular a delay element of the 1st order, the input variable of which is the first power value L1 at the output of the first delay element 13.
  • the input value of the third function generator unit 12 is a second power value L2, which is delayed compared to the first power value L1.
  • the values h sA (L2) as a function of L2 are stored in the third function generator unit 12; they are determined from values for h sA , which were respectively obtained during a steady-state operation of the once-through steam generator and entered into the third function generator unit 12.
  • the output of the second delay element 16 there can advantageously be the input of a differentiating element 17, the output of which is connected negatively to a summing element 18.
  • This summing element 18 corrects the value for the heat flow Q ⁇ (L1) into the evaporator heating surface 4 by the output signal of the differentiating element 17.
  • the input of the differentiating element 17 can also - as in FIG. 1 only indicated by dashed lines - are located on a device 30 for measuring the actual value of the pressure p i behind the evaporator heating surface 4 (for example also behind a superheater heating surface of the forced-flow steam generator connected downstream in terms of flow).
  • a function generator can also be connected between the input of the differentiating element 17 and such a device 30 for measuring the actual value of the pressure p i , which, for example, outputs the saturated steam temperature corresponding to the measured pressure p i to the differentiating element 17.
  • a further differentiating element 24 can advantageously be provided as a functional element with differentiating behavior.
  • This differentiating element 24 has, as an input variable, the actual value h iE of the specific enthalpy at the inlet of the evaporator heating surface 4, determined with the measuring device 9.
  • the output of the differentiating element 24 is also connected negatively to the summing element 18.
  • the once-through steam generator is in a steady state and the setpoint L for the steam generator output is constant.
  • the power values L1 at the output of delay element 13 and L2 at the output of delay element 16 are thus also constant; they have the same value as the setpoint L.
  • h iE corresponds to the stationary value for the specific enthalpy at the entrance to the evaporator heating surface 4
  • the value ⁇ s given by the device 8 corresponds to the stationary setpoint for the feed water flow into the feed water preheating heating surface 2 and thus into the evaporator heating surface 4th
  • the specific enthalpy h iA at the outlet of the evaporator heating surface 4 changes with a further delay when the heat flow into this evaporator heating surface 4 changes, which is taken into account by the second delay element 16 of the device 8 is.
  • the differentiator 17 reduces the setpoint value ⁇ s for the feed water flow by a corresponding correction value as long as the power value L2 rises over time and the heating of the metal masses of the evaporator heating surface 4 reduces the heat flow that gets into the mass flow in the evaporator heating surface 4.
  • the Differentiator 17, on the other hand increases the desired value ⁇ s by a corresponding correction value as long as the power value L2 drops in time and the cooling of the metal masses of the evaporator heating surface 4 increases the heat flow that reaches the mass flow in the evaporator heating surface 4.
  • the output of the differentiating element 17 can also be switched positively to the other summing element 19, possibly via a normalizing element.
  • the differentiator 24 reduces the setpoint ⁇ s for the feed water mass flow into the once-through steam generator by a correction value as long as the actual value h iE of the specific enthalpy at the entrance to the evaporator heating surface 4 increases. On the other hand, the differentiator 24 increases the target value ⁇ s by a correction value as long as the actual value h iE falls in time.
  • the output of the differentiating element 24 can also be connected to the summing element 19 in a positive manner - possibly via a normalization element.
  • the differentiating element 24 can be a pure functional element with differentiating behavior. However, it can also include additional computing elements that modify the differentiation behavior.
  • the curves I in FIGS. 2 and 3 apply in the event that the output value ⁇ (L1) of the function generator unit 10 is the uncorrected setpoint value ⁇ s for the controller 6.
  • the curves II apply in the event that the differentiators 17 and 24 are not present in the circuit according to FIG. 1, while the curves III apply to the circuit corresponding to FIG. 1, but without the differentiator 24.
  • the curves IV apply to the circuit according to FIG 1.
  • the diagrams according to FIGS. 2 and 3 show that the complete circuit according to FIG. 1 with the curves IV is the cheapest if it is important to avoid overshoot of the specific enthalpy h iA at the outlet of the evaporator heating surface 4 as far as possible.
  • an enthalpy correction controller 20 is also shown in broken lines, the input of which is connected to the output of a summing element 21.
  • This summing element 21 is supplied with the desired value h sA (L2) output at the output of the third function generator unit 12 and negatively with the actual value h iA of the specific enthalpy at the outlet of the evaporator heating surface 4.
  • This actual value h iA is measured with a measuring device 22 located in the outlet line of the evaporator heating surface 4.
  • the correction signal at the controller output is fed positively to the summing element 19 of the device 8.
  • This enthalpy correction controller 20 advantageously corrects the target value ⁇ s of the feed water flow in the Forced-flow steam generator , if the measured actual value h iA of the specific enthalpy at the outlet of the evaporator heating surface 4 due to external interference, such as fluctuations in the calorific value of the fuel supplied to the continuous-flow steam generator or changes in the fire position in the combustion chamber of the continuous-flow steam generator , from the setpoint h sA (L2) for the specific enthalpy am Exit of the evaporator heating surface 4 deviates, which is emitted by the third function generator unit 12.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

A forced flow steam generator with an evaporator heating surface (4) has a control device for the furnace piloted by a reference value L allocated to the steam generator output and a control device (6) for the mass flow M of the supply water into the evaporator heating surface (4). To prevent any overshoot of the specific enthalpy at the outlet of the evaporator heating surface (4), a device (8) is superimposed on the supply water regulating device (6) which is used as a reference Ms for the mass flow of the supply water to form the quantity Q(L1)/(hsA(L2) - hiE). Here, hiE is the specific enthalpy at the inlet of the evaporator heating surface (4), Q(L1) is the value of the flow of heat into the evaporator heating surface (4) taken at a first power figure L1 from a function generator (10 to 14) and hsA(L2) is the reference derived with a second power figure L2 from the function generator for the specific enthalpy at the outlet from the evaporator heating surface (4). L1 is a first power figure which is delayed in relation to the reference L allocated to the steam generator output and L2 is a second power figure which is delayed in relation to the first power figure L1.

Description

Die Erfindung betrifft einen Zwangdurchlaufdampferzeuger mit einer Verdampferheizfläche sowie mit einer der Verdampferheizfläche durchflußmäßig vorgeschalteten Vorrichtung zum Einstellen des Speisewassermassenstroms Ṁ in die Verdampferheizfläche und mit einer dieser Vorrichtung zugeordneten Regelvorrichtung, deren Regelgröße der Speisewassermassenstrom Ṁ ist und deren Sollwert ṀS für den Speisewassermassenstrom abhängig von einem der Dampferzeugerleistung zugeordneten Sollwert L geführt ist.The invention relates to a once-through steam generator with an evaporator heating surface and with a device upstream of the evaporator heating surface for adjusting the feed water mass flow Ṁ into the evaporator heating surface and with a control device associated with this device, the controlled variable of which is the feed water mass flow Ṁ and whose setpoint Ṁ S for the feed water mass flow depends on one of the Steam generator power assigned setpoint L is performed.

Ein derartiger Zwangdurchlaufdampferzeuger ist aus "VGB Kraftwerkstechnik 65", Heft 1, Januar 1985, Seite 29, Bild 6, bekannt. Bei diesem bekannten Zwangdurchlaufdampferzeuger wird zur Synchronisierung des Wärmestroms in die Verdampferheizfläche mit dem Speisewassermassenstrom der Sollwert für den Speisewassermassenstrom von dem Sollwert der Dampferzeugerleistung oder von einem der Dampferzeugerleistung zugeordneten Sollwert über ein Verzögerungsglied geführt. Andere Maßnahmen sind für diese Synchronisierung nicht vorgesehen.Such a once-through steam generator is known from "VGB Kraftwerkstechnik 65", Issue 1, January 1985, page 29, Figure 6. In this known forced flow steam generator, the setpoint for the feedwater mass flow is guided from the setpoint of the steam generator output or from a setpoint assigned to the steam generator output via a delay element in order to synchronize the heat flow into the evaporator heating surface with the feedwater mass flow. No other measures are provided for this synchronization.

Es hat sich herausgestellt, daß bei diesem bekannten Zwangdurchlaufdampferzeuger ein Überschwingen der spezifischen Enthalpie am Austritt der Verdampferheizfläche bei Änderungen der Dampferzeugerleistung infolge von Laständerungen nicht zu vermeiden ist. Ein solches Überschwingen kann nicht nur die Lebensdauer des Durchlaufdampferzeugers verringern, sondern auch die Regelung der Temperatur des vom Durchlaufdampferzeuger abgegebenen Frischdampfes erschweren.It has been found that in this known forced-flow steam generator, an overshoot of the specific enthalpy at the outlet of the evaporator heating surface cannot be avoided when the steam generator output changes as a result of load changes. Such overshoot can not only reduce the life of the once-through steam generator, but can also make it more difficult to regulate the temperature of the live steam emitted by the once-through steam generator.

Der Erfindung liegt die Aufgabe zugrunde, dieses nachteilige Überschwingen der spezifischen Enthalpie am Austritt der Verdampferheizfläche wesentlich herabzusetzen oder gar ganz zu vermeiden.The object of the invention is to substantially reduce or even avoid this disadvantageous overshoot of the specific enthalpy at the outlet of the evaporator heating surface.

Zur Lösung dieser Aufgabe ist ein Zwangdurchlaufdampferzeuger der eingangs erwähnten Art erfindungsgemäß dadurch gekennzeichnet, daß der Regelvorrichtung eine Vorrichtung zur Bildung der Größe Q ̇ (L1) / (h sA (L2) - h iE )

Figure imgb0001

  • als Sollwert Ṁs für den Speisewassermassenstrom zugeordnet ist, und daß dieser Vorrichtung als Eingangsgrößen der Istwert hiE der spezifischen Enthalpie am Eingang der Verdampferheizfläche und der der Dampferzeugerleistung zugeordnete Sollwert L zuführbar sind,
  • wobei Q̇(L1) der mit einem ersten Leistungswert L1 aus einem Funktionsgeber nach einer fest vorgebbaren Funktion entnommene Wert für den Wärmestrom in die Verdampferheizfläche,
  • wobei hsA(L2) der mit einem zweiten Leistungswert L2 aus dem Funktionsgeber nach einer fest vorgebbaren Funktion entnommene Sollwert für die spezifische Enthalpie am Austritt der Verdampferheizfläche,
  • wobei der erste Leistungswert L1 ein über ein erstes Verzögerungsglied gegenüber dem der Dampferzeugerleistung zugeordneten Sollwert L verzögerter Leistungswert und wobei der zweite Leistungswert L2 ein gegenüber dem ersten Leistungswert L1 durch ein zweites Verzögerungsglied verzögerter Leistungswert ist.
To achieve this object, a once-through steam generator of the type mentioned at the outset is characterized in that the control device is provided with a device for forming the size Q ̇ (L1) / (h sA (L2) - h iE )
Figure imgb0001
  • is assigned as the target value Ṁ s for the feed water mass flow, and that this device can be supplied with the actual values h iE of the specific enthalpy at the input of the evaporator heating surface and the target value L assigned to the steam generator output as input variables,
  • where Q̇ (L1) is the value for the heat flow into the evaporator heating surface taken from a function generator according to a predefinable function with a first power value L1,
  • where h sA (L2) is the setpoint for the specific enthalpy at the outlet of the evaporator heating surface, which is taken from the function generator with a second power value L2 according to a predefinable function,
  • wherein the first power value L1 is a power value delayed by a first delay element compared to the target value L assigned to the steam generator power, and wherein the second power value L2 is a power value delayed by a second delay element compared to the first power value L1.

Das Verarbeiten des Istwerts der spezifischen Enthalpie am Eintritt der Verdampferheizfläche ermöglicht das Heranziehen des in die Verdampferheizfläche fließenden Wärmestroms zur Bestimmung des Sollwerts für den Speisewassermassenstrom, so daß der der Verdampferheizfläche zugeführte Speisewassermassenstrom dem der Verdampferheizfläche zugeführten Wärmestrom weitgehend angepaßt werden kann. Damit ist gezieltes Führen der spezifischen Enthalpie am Ausgang der Verdampferheizfläche ermöglicht.The processing of the actual value of the specific enthalpy at the entrance of the evaporator heating surface enables it to be used of the heat flow flowing into the evaporator heating surface for determining the setpoint for the feed water mass flow, so that the feed water mass flow supplied to the evaporator heating surface can be largely adapted to the heat flow supplied to the evaporator heating surface. This enables targeted control of the specific enthalpy at the outlet of the evaporator heating surface.

Eine vorteilhafte Weiterbildung ist darauf gerichtet, daß die Vorrichtung zur Bildung der Größe Q ̇ (L1)/(h sA (L2) - h iE ) = M ̇ s

Figure imgb0002
ein Differenzierglied aufweist, das mit seinem Eingang auf den zweiten Leistungswert L2 am Ausgang des zweiten Verzögerungsglieds oder auf den Istwert eines hinter der Verdampferheizfläche gemessenen Drucks geschaltet ist und das den Wert der als Sollwert Ṁs gebildeten Größe bei einem Ansteigen des zweiten Leistungswerts L2 am Ausgang des zweiten Verzögerungsglieds bzw. des Istwerts des hinter der Verdampferheizfläche gemessenen Drucks um einen Korrekturwert vorübergehend verringert und bei einem Absinken dieses zweiten Leistungswerts L2 bzw. des Istwerts des hinter der Verdampferheizfläche gemessenen Drucks um einen Korrekturwert vorübergehend erhöht. Dadurch findet die Energiespeicherung in den Metallmassen der Verdampferheizfläche Berücksichtigung, so daß eine noch bessere Anpassung des der Verdampferheizfläche zugeführten Speisewassermassenstroms an den dieser Verdampferheizfläche zugeführten Wärmestrom erfolgt.An advantageous development is directed to the device for forming the size Q ̇ (L1) / (h sA (L2) - h iE ) = M ̇ s
Figure imgb0002
has a differentiating element which has its input connected to the second power value L2 at the output of the second delay element or to the actual value of a pressure measured behind the evaporator heating surface and which has the value of the variable formed as the setpoint value Ṁ s when the second power value L2 rises at the output of the second delay element or the actual value of the pressure measured behind the evaporator heating surface is temporarily reduced by a correction value and is temporarily increased by a correction value when this second power value L2 or the actual value of the pressure measured behind the evaporator heating surface falls. As a result, the energy storage in the metal masses of the evaporator heating surface is taken into account, so that an even better adaptation of the feed water mass flow supplied to the evaporator heating surface takes place to the heat flow supplied to this evaporator heating surface.

Eine weitere vorteilhafte Ausbildung ist dadurch gekennzeichnet, daß die Vorrichtung zur Bildung der Größe Q ̇ (L1)/(h sA (L2) - h iE ) = M ̇ s

Figure imgb0003
ein Funktionsglied mit Differenzierverhalten aufweist, das mit seinem Eingang auf den Istwert hiE der spezifischen Enthalpie am Eingang der Verdampferheizfläche geschaltet ist und das den Wert der als Sollwert Ṁs gebildeten Größe bei einem Ansteigen des Istwerts hiE der spezifischen Enthalpie am Eingang der Verdampferheizfläche um einen Korrekturwert vorübergehend verringert und bei einem Absinken dieses Istwerts hiE um einen Korrekturwert vorübergehend erhöht. Dadurch ist berücksichtigt, daß die Auswirkungen von Massenstrom- und Temperaturänderungen des in die Verdampferheizfläche eintretenden Speisewassers in der Verdampferheizfläche nicht synchron verlaufen.Another advantageous embodiment is characterized in that the device for forming the size Q ̇ (L1) / (h sA (L2) - h iE ) = M ̇ s
Figure imgb0003
comprises a functional element having a differentiating behavior iE h with its input to the actual value of the specific enthalpy is connected at the input of the evaporator, and the value of the desired value S M formed size with an increase of the actual value h iE of the specific enthalpy at the entrance of the evaporator to a correction value temporarily reduced, and a lowering of this actual value h iE temporarily increased by a correction value. This takes into account that the effects of changes in mass flow and temperature of the feed water entering the evaporator heating surface do not run synchronously in the evaporator heating surface.

Weitere Ausgestaltungen sind in den Unteransprüchen gekennzeichnet.Further refinements are characterized in the subclaims.

Die Erfindung und ihre Vorteile seien anhand der Zeichnung an Ausführungsbeispielen näher erläutert.The invention and its advantages are explained in more detail with the aid of exemplary embodiments.

Figur 1 zeigt schematisch einen Zwangdurchlaufdampferzeuger entsprechend der Erfindung.Figure 1 shows schematically a once-through steam generator according to the invention.

Figur 2 und 3 zeigen in einem Diagramm den zeitlichen Verlauf der spezifischen Enthalpie am Austritt der Verdampferheizfläche des Zwangdurchlaufdampferzeugers nach Figur 1.FIGS. 2 and 3 show in a diagram the time course of the specific enthalpy at the outlet of the evaporator heating surface of the once-through steam generator according to FIG. 1.

In Figur 1 ist eine Speisewasser-Regelung dargestellt. Die zugehörige Regelung der Feuerung ergibt sich aus Figur 6 der eingangs genannten Literaturstelle "VGB Kraftwerkstechnik 65".In Figure 1, a feed water control is shown. The associated control of the furnace results from Figure 6 of the above-mentioned reference "VGB Kraftwerkstechnik 65".

Der Zwangdurchlaufdampferzeuger nach Figur 1 weist eine Speisewasservorwärmheizfläche (Economizerheizfläche) 2 auf, die sich in einem nicht dargestellten Gaszug befindet.The forced-flow steam generator according to FIG. 1 has a feed water preheating surface (economizer heating surface) 2, which is located in a gas train (not shown).

Dieser Speisewasservorwärmheizfläche 2 ist durchflußmäßig eine Speisewasserpumpe 3 vor- und eine Verdampferheizfläche 4 nachgeschaltet. In der von der Speisewasserpumpe 3 zur Speisewasservorwärmheizfläche 2 geführten Speisewasserleitung ist eine Meßvorrichtung 5 zum Messen des Speisewassermassenstroms Ṁi (= zeitliche Ableitung der Masse) durch die Speisewasserleitung angeordnet. Weiter ist am Eintritt der Verdampferheizfläche 4 in der Verbindungsleitung zwischen der Speisewasservorwärmheizfläche 2 und der Verdampferheizfläche 4 eine Meßvorrichtung 9 zum Messen des Istwerts hiE der spezifischen Enthalpie des Speisewassers am Eintritt der Verdampferheizfläche 4 vorgesehen.This feed water preheating surface 2 has a feed water pump 3 connected upstream and an evaporator heating surface 4 connected downstream. A measuring device 5 for measuring the feed water mass flow Ṁ i (= time derivative of the mass) through the feed water line is arranged in the feed water line led from the feed water pump 3 to the feed water preheating heating surface 2. Furthermore, a measuring device 9 for measuring the actual value h iE of the specific enthalpy of the feed water at the inlet of the evaporator heating surface 4 is provided at the entry of the evaporator heating surface 4 in the connecting line between the feed water preheating heating surface 2 and the evaporator heating surface 4.

Einem Antriebsmotor an der Speisewasserpumpe 3 ist ein sehr schneller Regler, und zwar ein PI-Regler 6, zugeordnet, an dessen Eingang als Regelgröße die Regelabweichung ΔṀ des mit der Meßvorrichtung 5 gemessenen Speisewassermassenstroms Ṁi liegt. Dem Regler 6 ist eine Vorrichtung 8 zur Bildung des Sollwerts Ṁs für den Speisewassermassenstrom zugeordnet. Diese Vorrichtung 8 hat als Eingangsgrößen einerseits einen von einem Sollwertgeber 7 abgegebenen Sollwert L für die Leistung des Zwangdurchlaufdampferzeugers und andererseits den von der Meßvorrichtung 9 bestimmten Istwert hiE der spezifischen Enthalpie am Eintritt der Verdampferheizfläche 4.A drive motor on the feed water pump 3 is assigned a very fast controller, namely a PI controller 6, at the input of which is the controlled variable the control deviation ΔṀ of the feed water mass flow Ṁ i measured with the measuring device 5. The controller 6 is assigned a device 8 for forming the setpoint Ṁ s for the feed water mass flow. This device 8 has, on the one hand, as input variables a setpoint L for the output of the once-through steam generator, which is output by a setpoint generator 7, and, on the other hand, the actual value h iE of the specific enthalpy at the inlet of the evaporator heating surface 4 determined by the measuring device 9.

Der Sollwert L der Leistung des Zwangdurchlaufdampferzeugers, der sich im Betrieb immer wieder zeitlich verändert und der im (nicht gezeigten) Feuerungsregelkreis direkt auf den Brennstoff-Regler gegeben wird, wird auch dem Eingang eines ersten Verzögerungsgliedes 13 der Vorrichtung 8 zugeführt. Dieses Verzögerungsglied 13, das von höherer Ordnung, zum Beispiel von 2. Ordnung, ist, gibt ein erstes Signal oder einen verzögerten ersten Leistungswert L1 ab. Dieser erste Leistungswert L1 wird den Eingängen von Funktionsgebereinheiten 10 und 11 des Funktionsgebers der Vorrichtung 8 zugeführt. Am Ausgang der Funktionsgebereinheit 10 erscheint ein Wert Ṁ(L1) für den Speisewassermassenstrom, und am Ausgang der Funktionsgebereinheit 11 erscheint ein Wert Δh(L1) für die Differenz aus der spezifischen Enthalpie hiA am Austritt der Verdampferheizfläche 4 und der spezifischen Enthalpie hiE am Eintritt dieser Verdampferheizfläche 4. Die Werte Ṁ und Δh als Funktionen von L1 sind in den Funktionsgebereinheiten 10 bzw. 11 hinterlegt. Sie sind aus stationären Werten für Ṁ und Δh ermittelt, die jeweils bei einem stationären Betrieb des Zwangdurchlaufdampferzeugers gemessen und in die Funktionsgebereinheiten 10 und 11 eingegeben wurden. Mögliche Funktionen sind in den Kästchen der Einheiten 10 und 11 eingezeichnet. Danach ist jeweils im Bereich von 35 % bis 100 % (= Vollast) des Lastwerts L ein im wesentlichen proportional ansteigender bzw. abfallender Funktionsverlauf vorgesehen.The setpoint value L of the power of the once-through steam generator, which changes over and over again during operation and which is fed directly to the fuel controller in the combustion control circuit (not shown), is also fed to the input of a first delay element 13 of the device 8. This delay element 13, which is of higher order, for example of 2nd order, gives a first signal or a delayed first power value L1 from. This first power value L1 is fed to the inputs of function transmitter units 10 and 11 of the function transmitter of the device 8. A value Ṁ (L1) for the feed water mass flow appears at the output of the function transmitter unit 10, and a value Δh (L1) for the difference between the specific enthalpy h iA at the outlet of the evaporator heating surface 4 and the specific enthalpy h iE am appears at the output of the function transmitter unit 11 Entry of this evaporator heating surface 4. The values Ṁ and Δh as functions of L1 are stored in the function generator units 10 and 11, respectively. They are determined from stationary values for Ṁ and Δh, each of which was measured during stationary operation of the once-through steam generator and entered into the function generator units 10 and 11. Possible functions are shown in the boxes of units 10 and 11. According to this, an essentially proportionally increasing or decreasing function curve is provided in the range from 35% to 100% (= full load) of the load value L.

Die Ausgangsgrößen Ṁ(L1) und Δh(L1) der Funktionsgebereinheiten 10 und 11 werden in einem Multiplikationsglied 14 des Funktionsgebers der Vorrichtung 8 miteinander multipliziert. Der gewonnene Produktwert Q̇(L1) entspricht dem Wärmestrom in die Verdampferheizfläche 4 beim Leistungswert L1. Diese Größe Q̇(L1) wird als Zähler in ein Dividierglied 15 eingegeben.The output variables Ṁ (L1) and Δh (L1) of the function generator units 10 and 11 are multiplied together in a multiplication element 14 of the function generator of the device 8. The product value Q̇ (L1) obtained corresponds to the heat flow into the evaporator heating surface 4 at the power value L1. This quantity Q̇ (L1) is entered as a counter in a divider 15.

Als Nenner wird in das Dividierglied 15 die mit einem Summierglied 19 gebildete Differenz zwischen dem Sollwert hsA(L2) der spezifischen Enthalpie am Austritt der Verdampferheizfläche 4 und dem Istwert hiE der spezifischen Enthalpie am Eintritt der Verdampferheizfläche 4, der mit Hilfe der Meßvorrichtung 9 gemessen wird, eingegeben.The difference between the nominal value h sA (L2) of the specific enthalpy at the outlet of the evaporator heating surface 4 and the actual value h iE of the specific enthalpy at the inlet of the evaporator heating surface 4, which is formed with the aid of the measuring device 9, is used as the denominator in the dividing element 15 is measured, entered.

Ein Sollwert hsA(L2) wird einer dritten Funktionsgebereinheit 12 des Funktionsgebers der Vorrichtung 8 entnommen. Der Eingangswert der Funktionsgebereinheit 12 entsteht am Ausgang eines zweiten Verzögerungsglieds 16, insbesondere eines Verzögerungsglieds 1. Ordnung, dessen Eingangsgröße der erste Leistungswert L1 am Ausgang des ersten Verzögerungsglieds 13 ist. Dementsprechend ist der Eingangswert der dritten Funktionsgebereinheit 12 ein zweiter Leistungswert L2, der gegenüber dem ersten Leistungswert L1 verzögert ist. Die Werte hsA(L2) als Funktion von L2 sind in der dritten Funktionsgebereinheit 12 hinterlegt; sie sind aus Werten für hsA ermittelt, die jeweils bei einem stationären Betrieb des Durchlaufdampferzeugers gewonnen und in die dritte Funktionsgebereinheit 12 eingegeben wurden. Eine mögliche Funktion ist im Kästchen der Einheit 12 eingezeichnet. Danach ist im Bereich von 35 % bis 100 % (= Voll-Last) des Lastwerts L ein im wesentlichen linear abfallender Funktionsverlauf vorgesehen.A setpoint h sA (L2) is taken from a third function generator unit 12 of the function generator of the device 8. The input value of the function generator unit 12 arises at the output of a second delay element 16, in particular a delay element of the 1st order, the input variable of which is the first power value L1 at the output of the first delay element 13. Accordingly, the input value of the third function generator unit 12 is a second power value L2, which is delayed compared to the first power value L1. The values h sA (L2) as a function of L2 are stored in the third function generator unit 12; they are determined from values for h sA , which were respectively obtained during a steady-state operation of the once-through steam generator and entered into the third function generator unit 12. A possible function is shown in the box of unit 12. According to this, an essentially linearly decreasing function curve is provided in the range from 35% to 100% (= full load) of the load value L.

Dem Ausgang des Dividiergliedes 15 kann der Sollwert M ̇ s = Q ̇ (L1)/(h sA (L2)-h iE ) = Δh(L1) × M ̇ (L1)/(h sA (L2) - h iE )

Figure imgb0004
für den Speisewassermassenstrom für die in einem Summierglied 23 stattfindende Bildung der dem Regler 6 zugeführten Regelabweichung ΔṀ des mit der Vorrichtung 5 gemessenen Istwerts für den Speisewassermassenstrom in die Speisewasservorwärmheizfläche 2 entnommen werden.The output of the divider 15 can be the setpoint M ̇ s = Q ̇ (L1) / (h sA (L2) -h iE ) = Δh (L1) × M ̇ (L1) / (h sA (L2) - h iE )
Figure imgb0004
for the feed water mass flow for the formation in a summing member 23 of the control deviation 6 supplied to the controller 6 of the actual value measured with the device 5 for the feed water mass flow into the feed water preheating heating surface 2.

Am Ausgang des zweiten Verzögerungsglieds 16 kann vorteilhafterweise der Eingang eines Differenzierglieds 17 liegen, dessen Ausgang negativ auf ein Summierglied 18 geschaltet ist. Dieses Summierglied 18 korrigiert den Wert für den Wärmestrom Q̇(L1) in die Verdampferheizfläche 4 um das Ausgangssignal des Differenzierglieds 17. Der Eingang des Differenzierglieds 17 kann auch - wie in Figur 1 nur gestrichelt angedeutet - an einer Vorrichtung 30 zum Messen des Istwerts des Drucks pi hinter der Verdampferheizfläche 4 (z.B. auch hinter einer dieser Verdampferheizfläche 4 durchflußmäßig nachgeschalteten Überhitzerheizfläche des Zwangdurchlaufdampferzeugers) liegen. Zwischen dem Eingang des Differenzierglieds 17 und einer solchen Vorrichtung 30 zum Messen des Istwerts des Drucks pi kann auch noch ein Funktionsgeber geschaltet sein, der beispielsweise als Ausgangssignal die dem gemessenen Druck pi entsprechende Sattdampftemperatur an das Differenzierglied 17 abgibt.At the output of the second delay element 16 there can advantageously be the input of a differentiating element 17, the output of which is connected negatively to a summing element 18. This summing element 18 corrects the value for the heat flow Q̇ (L1) into the evaporator heating surface 4 by the output signal of the differentiating element 17. The input of the differentiating element 17 can also - as in FIG. 1 only indicated by dashed lines - are located on a device 30 for measuring the actual value of the pressure p i behind the evaporator heating surface 4 (for example also behind a superheater heating surface of the forced-flow steam generator connected downstream in terms of flow). A function generator can also be connected between the input of the differentiating element 17 and such a device 30 for measuring the actual value of the pressure p i , which, for example, outputs the saturated steam temperature corresponding to the measured pressure p i to the differentiating element 17.

Vorteilhafterweise kann ein weiteres Differenzierglied 24 als Funktionsglied mit Differenzierverhalten vorgesehen sein. Dieses Differenzierglied 24 hat als Eingangsgröße den mit der Meßvorrichtung 9 bestimmten Istwert hiE der spezifischen Enthalpie am Eintritt der Verdampferheizfläche 4. Der Ausgang des Differenzierglieds 24 ist ebenfalls negativ auf das Summierglied 18 geschaltet.A further differentiating element 24 can advantageously be provided as a functional element with differentiating behavior. This differentiating element 24 has, as an input variable, the actual value h iE of the specific enthalpy at the inlet of the evaporator heating surface 4, determined with the measuring device 9. The output of the differentiating element 24 is also connected negatively to the summing element 18.

In einem normalen stationären Lastbetrieb sei der Zwangdurchlaufdampferzeuger in einem Beharrungszustand, und der Sollwert L für die Dampferzeugerleistung ist konstant. Damit sind auch die Leistungswerte L1 am Ausgang des Verzögerungsglieds 13 und L2 am Ausgang des Verzögerungsglieds 16 konstant; sie haben den gleichen Wert wie der Sollwert L.In normal steady-state load operation, the once-through steam generator is in a steady state and the setpoint L for the steam generator output is constant. The power values L1 at the output of delay element 13 and L2 at the output of delay element 16 are thus also constant; they have the same value as the setpoint L.

In diesem stationären Betrieb im Beharrungszustand des Durchlaufdampferzeugers entspricht hiE dem Stationärwert für die spezifische Enthalpie am Eintritt in die Verdampferheizfläche 4, und der von der Vorrichtung 8 abgegebene Wert Ṁs entspricht dem stationären Sollwert für den Speisewasserstrom in die Speisewasservorwärmheizfläche 2 und damit in die Verdampferheizfläche 4.In this steady state operation of the continuous steam generator , h iE corresponds to the stationary value for the specific enthalpy at the entrance to the evaporator heating surface 4, and the value Ṁ s given by the device 8 corresponds to the stationary setpoint for the feed water flow into the feed water preheating heating surface 2 and thus into the evaporator heating surface 4th

Das im Multiplikationsglied 14 gebildete Produkt Δh(L1) × Ṁ(L1) = Δh(L) × Ṁ(L) entspricht einem Stationärwert für den Wärmestrom in die Verdampferheizfläche 4.The product Δh (L1) × Ṁ (L1) = Δh (L) × Ṁ (L) formed in the multiplication element 14 corresponds to a stationary value for the heat flow into the evaporator heating surface 4.

Bei einer Änderung des Sollwerts L für die Dampferzeugerleistung am Sollwertgeber 7 stellt sich ein neuer Stationärwert Q̇(L) für den Wärmestrom in die Verdampferheizfläche 4 nur verzögert ein, da die Feuerung des Zwangdurchlaufdampferzeugers einer Änderung des Sollwerts L der Dampferzeugerleistung nur verzögert folgt. Dies ist durch das erste Verzögerungsglied 13 der Vorrichtung 8 berücksichtigt (Synchronisierung).When the setpoint L for the steam generator output at the setpoint generator 7 changes, a new stationary value Q̇ (L) for the heat flow into the evaporator heating surface 4 is only delayed because the firing of the once-through steam generator follows a change in the setpoint L of the steam generator output only with a delay. This is taken into account by the first delay element 13 of the device 8 (synchronization).

Schon weil ein Massenstrom zum Durchströmen der Verdampferheizfläche 4 einen endlichen Zeitraum benötigt, ändert sich die spezifische Enthalpie hiA am Austritt der Verdampferheizfläche 4 bei einer Änderung des Wärmestroms in diese Verdampferheizfläche 4 mit einer weiteren Verzögerung, was durch das zweite Verzögerungsglied 16 der Vorrichtung 8 berücksichtigt ist.Already because a mass flow needs a finite period of time to flow through the evaporator heating surface 4, the specific enthalpy h iA at the outlet of the evaporator heating surface 4 changes with a further delay when the heat flow into this evaporator heating surface 4 changes, which is taken into account by the second delay element 16 of the device 8 is.

Die Berücksichtigung der am Eintritt in die Verdampferheizfläche 4 gemessenen spezifischen Enthalpie hiE bei der Bildung des Sollwerts Ṁs für den Speisewassermassenstrom trägt insbesondere dem zeitlichen Verhalten der Erwärmung des Speisewassers außerhalb des Zwangdurchlaufdampferzeugers Rechnung.Taking into account the specific enthalpy h iE measured at the entry into the evaporator heating surface 4 when forming the setpoint value Ṁ s for the feed water mass flow takes into account in particular the temporal behavior of the heating of the feed water outside the once-through steam generator.

Das Differenzierglied 17 verringert einerseits den Sollwert Ṁs für den Speisewasserstrom so lange um einen entsprechenden Korrekturwert, wie der Leistungswert L2 zeitlich ansteigt und das Erwärmen der Metallmassen der Verdampferheizfläche 4 den Wärmestrom, der in den Massenstrom in der Verdampferheizfläche 4 gelangt, verringert. Das Differenzierglied 17 vergrößert andererseits den Sollwert Ṁs so lange um einen entsprechenden Korrekturwert, wie der Leistungswert L2 zeitlich abfällt und das Abkühlen der Metallmassen der Verdampferheizfläche 4 den Wärmestrom, der in den Massenstrom in der Verdampferheizfläche 4 gelangt, vergrößert.The differentiator 17 on the one hand reduces the setpoint value Ṁ s for the feed water flow by a corresponding correction value as long as the power value L2 rises over time and the heating of the metal masses of the evaporator heating surface 4 reduces the heat flow that gets into the mass flow in the evaporator heating surface 4. The Differentiator 17, on the other hand, increases the desired value Ṁ s by a corresponding correction value as long as the power value L2 drops in time and the cooling of the metal masses of the evaporator heating surface 4 increases the heat flow that reaches the mass flow in the evaporator heating surface 4.

Der Ausgang des Differenzierglieds 17 kann auch positiv - gegebenenfalls über ein Normierungsglied - auf das andere Summierglied 19 geschaltet sein.The output of the differentiating element 17 can also be switched positively to the other summing element 19, possibly via a normalizing element.

Das Differenzierglied 24 verringert einerseits den Sollwert Ṁs für den Speisewassermassenstrom in den Durchlaufdampferzeuger so lange um einen Korrekturwert, wie der Istwert hiE der spezifischen Enthalpie am Eingang der Verdampferheizfläche 4 ansteigt. Andererseits vergrößert das Differenzierglied 24 den Sollwert Ṁs so lange um einen Korrekturwert, wie der Istwert hiE zeitlich abfällt. Der Ausgang des Differenzierglieds 24 kann auch positiv - gegebenenfalls über ein Normierungsglied - auf das Summierglied 19 geschaltet sein.The differentiator 24 reduces the setpoint Ṁ s for the feed water mass flow into the once-through steam generator by a correction value as long as the actual value h iE of the specific enthalpy at the entrance to the evaporator heating surface 4 increases. On the other hand, the differentiator 24 increases the target value Ṁ s by a correction value as long as the actual value h iE falls in time. The output of the differentiating element 24 can also be connected to the summing element 19 in a positive manner - possibly via a normalization element.

Das Differenzierglied 24 kann ein reines Funktionsglied mit Differenzierverhalten sein. Es kann aber auch zusätzliche Rechenglieder umfassen, die das Differenzierverhalten modifizieren.The differentiating element 24 can be a pure functional element with differentiating behavior. However, it can also include additional computing elements that modify the differentiation behavior.

Der in Figur 2 gezeigte Verlauf (Kurvenzüge I bis IV) der vier spezifischen Enthalpien hiA in kJ/kg am Austritt der Verdampferheizfläche 4 in Abhängigkeit von der Zeit t wurde für einen Zwangdurchlaufdampferzeuger bei einer rampenförmigen Änderung des Sollwerts L für die Leistung dieses Dampferzeugers von 50 % auf 100 % innerhalb von 200 Sek. ermittelt. Entsprechendes gilt für den in Figur 3 gezeigten zeitlichen Verlauf (Kurvenzüge I bis IV) der vier spezifischen Enthalpien hiA in kJ/kg, denen eine rampenförmige Änderung des Sollwerts L der Leistung des Zwangdurchlaufdampferzeugers von 100 % auf 50 % innerhalb von 200 Sek. zugrundeliegt.The course shown in FIG. 2 (curves I to IV) of the four specific enthalpies h iA in kJ / kg at the outlet of the evaporator heating surface 4 as a function of time t was for a once-through steam generator with a ramp-shaped change in the setpoint L for the output of this steam generator from 50% to 100% determined within 200 seconds. The same applies to that shown in Figure 3 Time course (curves I to IV) of the four specific enthalpies h iA in kJ / kg, which are based on a ramp-shaped change in the setpoint value L of the power of the once-through steam generator from 100% to 50% within 200 seconds.

Die Kurvenzüge I in den Figuren 2 und 3 gelten für den Fall, daß der Ausgangswert Ṁ(L1) der Funktionsgebereinheit 10 der unkorrigierte Sollwert Ṁs für den Regler 6 ist. Die Kurvenzüge II gelten für den Fall, daß die Differenzierglieder 17 und 24 in der Schaltung nach Figur 1 nicht vorhanden sind, während die Kurvenzüge III für die Schaltung entsprechend Figur 1 gelten, jedoch ohne Differenzierglied 24. Die Kurvenzüge IV gelten für die Schaltung entsprechend Figur 1. Die Diagramme nach Figur 2 und 3 zeigen, daß die komplette Schaltung nach Figur 1 mit den Kurvenzügen IV am günstigsten ist, wenn es gilt, ein Überschwingen der spezifischen Enthalpie hiA am Austritt der Verdampferheizfläche 4 möglichst ganz zu vermeiden.The curves I in FIGS. 2 and 3 apply in the event that the output value Ṁ (L1) of the function generator unit 10 is the uncorrected setpoint value Ṁ s for the controller 6. The curves II apply in the event that the differentiators 17 and 24 are not present in the circuit according to FIG. 1, while the curves III apply to the circuit corresponding to FIG. 1, but without the differentiator 24. The curves IV apply to the circuit according to FIG 1. The diagrams according to FIGS. 2 and 3 show that the complete circuit according to FIG. 1 with the curves IV is the cheapest if it is important to avoid overshoot of the specific enthalpy h iA at the outlet of the evaporator heating surface 4 as far as possible.

In Figur 1 ist gestrichelt noch ein Enthalpie-Korrekturregler 20 eingezeichnet, dessen Eingang mit dem Ausgang eines Summiergliedes 21 verbunden ist. Diesem Summierglied 21 ist positiv der am Ausgang der dritten Funktionsgebereinheit 12 abgegebene Sollwert hsA(L2) und negativ der Istwert hiA der spezifischen Enthalpie am Austritt der Verdampferheizfläche 4 zugeführt. Dieser Istwert hiA wird mit einer in der Austrittsleitung der Verdampferheizfläche 4 befindlichen Meßvorrichtung 22 gemessen. Das Korrektursignal am Reglerausgang ist positiv dem Summierglied 19 der Vorrichtung 8 zugeführt.In FIG. 1, an enthalpy correction controller 20 is also shown in broken lines, the input of which is connected to the output of a summing element 21. This summing element 21 is supplied with the desired value h sA (L2) output at the output of the third function generator unit 12 and negatively with the actual value h iA of the specific enthalpy at the outlet of the evaporator heating surface 4. This actual value h iA is measured with a measuring device 22 located in the outlet line of the evaporator heating surface 4. The correction signal at the controller output is fed positively to the summing element 19 of the device 8.

Dieser Enthalpie-Korrekturregler 20 korrigiert in vorteilhafter Weise den Sollwert Ṁs des Speisewasserstroms in den Zwangdurchlaufdampferzeuger, wenn der gemessene Istwert hiA der spezifischen Enthalpie am Austritt der Verdampferheizfläche 4 infolge äußerer Störeinflüsse, wie zum Beispiel Heizwertschwankungen des dem Durchlaufdampferzeuger zugeführten Brennstoffs oder Veränderungen der Feuerlage im Brennraum des Durchlaufdampferzeugers, vom Sollwert hsA(L2) für die spezifische Enthalpie am Austritt der Verdampferheizfläche 4 abweicht, der von der dritten Funktionsgebereinheit 12 abgegeben wird.This enthalpy correction controller 20 advantageously corrects the target value Ṁ s of the feed water flow in the Forced-flow steam generator , if the measured actual value h iA of the specific enthalpy at the outlet of the evaporator heating surface 4 due to external interference, such as fluctuations in the calorific value of the fuel supplied to the continuous-flow steam generator or changes in the fire position in the combustion chamber of the continuous-flow steam generator , from the setpoint h sA (L2) for the specific enthalpy am Exit of the evaporator heating surface 4 deviates, which is emitted by the third function generator unit 12.

Claims (8)

  1. Forced once-through steam generator having an evaporator heating surface (4) and a device (3), connected upstream of the evaporator heating surface (4) in terms of flow, for setting the feed-water mass flow Ṁ into the evaporator heating surface (4), and having a control device (6) which is assigned to said device (3), whose control variable is the feed-water mass flow Ṁ and whose setpoint value Ṁs for the feed-water mass flow is controlled as a function of a setpoint value L assigned to the steam generator power, characterized in that a device (8) for deriving the variable Q ̇ (L1) / (h sA (L2) - h iE )
    Figure imgb0008
    as setpoint value Ṁs for the feed-water mass flow is assigned to the control device (6), and in that the actual value hiE of the specific enthalpy at the inlet of the evaporator heating surface (4) and the setpoint value L assigned to the steam generator power can be fed to said device (8) as input variables,
    where Q̇(L1) is the value for the heat flow into the evaporator heating surface (4), which value is derived, along with a first power value L1, from a function generator (10, 11, 12, 14) in accordance with a function which can be predetermined in a fixed manner,
    where hsA(L2) is the setpoint value for the specific enthalpy at the outlet of the evaporator heating surface (4), which setpoint value is derived, together with a second power value L2, from the function generator (10, 11, 12, 14) in accordance with a function which can be predetermined in a fixed manner,
    where the first power value L1 is a power value which is delayed by means of a first delay element (13) with respect to the setpoint value L assigned to the steam generator power, and
    where the second power value L2 is a power value which is delayed by a second delay element (16) with respect to the first power value L1.
  2. Forced once-through steam generator according to Claim 1, characterized in that the device (8) for deriving the variable Q ̇ (L1) / (h sA (L2) - h iE ) = M ̇ s
    Figure imgb0009
    has a differentiating element (17) whose input is connected to the second power value L2 at the output of the second delay element (16) or to the actual value of a pressure measured downstream of the evaporator heating surface (4) and which temporarily reduces by a correction value the value of the variable derived as setpoint value Ṁs if the second power value L2 at the output of the second delay element (16) or of the actual value of the pressure measured downstream of the evaporator heating surface (4) rises, and temporarily increases it by a correction value if said second power value L2 or the actual value of the pressure measured downstream of the evaporator heating surface (4) decreases.
  3. Forced once-through steam generator according to Claim 1 or 2, characterized in that the device (8) for deriving the variable Q ̇ (L1)/(h sA (L2) - h iE ) = M ̇ s
    Figure imgb0010
    has a functional element (24) having a differentiating characteristic, whose input is connected to the actual value hiE of the specific enthalpy at the inlet of the evaporator heating surface (4) and which temporarily reduces by a correction value the value of the variable derived as setpoint value Ṁs if the actual value hiE of the specific enthalpy at the inlet of the evaporator heating surface (4) rises, and temporarily increases it by a correction value if said actual value hiE decreases.
  4. Forced once-through steam generator according to Claim 1, 2 or 3, characterized in that an enthalpy correction control (20) is provided to whose controller input the variable (hsA(L2) - hiA) is applied as control deviation and at whose controller output a correction value can be supplied which is added to the difference (hsA(L2) - hiE), where hiA is the actual value of the specific enthalpy at the outlet of the evaporator heating surface (4).
  5. Forced once-through steam generator according to one of Claims 1 to 4, characterized in that the function generator (10, 11, 12, 14) comprises a first and a second function generator unit (10, 11) to which the first power value L1 is applied and whose output signals (Ṁ(L1), Δh(L1) are fed to a multiplication element (14).
  6. Forced once-through steam generator according to one of Claims 1 to 5, characterized in that the function generator (10, 11, 12, 14) comprises a third function generator unit (12) to which the second power value L2 is applied and whose output signal (hsA(L2)) is fed to a summing element.
  7. Forced once-through steam generator according to one of Claims 1 to 6, characterized in that the device (8) comprises a dividing element (15) for deriving the variable Ṁs.
  8. Forced once-through steam generator according to one of Claims 1 to 7, characterized in that a measuring device (5, 9, 22) is provided for determining the actual value of the specific enthalpy at the inlet and/or at the outlet of the evaporator heating surface (4).
EP93908800A 1992-05-04 1993-04-21 Forced-flow steam generator Expired - Lifetime EP0639253B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP93908800A EP0639253B1 (en) 1992-05-04 1993-04-21 Forced-flow steam generator

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
EP92107500 1992-05-04
EP92107500 1992-05-04
DE19924217626 DE4217626A1 (en) 1992-05-27 1992-05-27 Forced steam generator
DE4217626 1992-05-27
EP93908800A EP0639253B1 (en) 1992-05-04 1993-04-21 Forced-flow steam generator
PCT/DE1993/000344 WO1993022599A1 (en) 1992-05-04 1993-04-21 Forced-flow steam generator

Publications (2)

Publication Number Publication Date
EP0639253A1 EP0639253A1 (en) 1995-02-22
EP0639253B1 true EP0639253B1 (en) 1996-12-11

Family

ID=25915217

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93908800A Expired - Lifetime EP0639253B1 (en) 1992-05-04 1993-04-21 Forced-flow steam generator

Country Status (8)

Country Link
US (1) US5529021A (en)
EP (1) EP0639253B1 (en)
JP (1) JP2563099B2 (en)
KR (1) KR100251011B1 (en)
CN (1) CN1044404C (en)
DE (1) DE59304751D1 (en)
DK (1) DK0639253T3 (en)
WO (1) WO1993022599A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006005708A1 (en) * 2004-07-09 2006-01-19 Siemens Aktiengesellschaft Process for operating a continuous steam generator
DE102011004263A1 (en) * 2011-02-17 2012-08-23 Siemens Aktiengesellschaft Method for operating a solar-heated waste heat steam generator and solar thermal waste heat steam generator

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996028689A1 (en) * 1995-03-16 1996-09-19 Siemens Aktiengesellschaft Method and device for monitoring the feed-water supply to a steamgenerator
EP2065641A3 (en) 2007-11-28 2010-06-09 Siemens Aktiengesellschaft Method for operating a continuous flow steam generator and once-through steam generator
EP2194320A1 (en) * 2008-06-12 2010-06-09 Siemens Aktiengesellschaft Method for operating a once-through steam generator and once-through steam generator
EP2182278A1 (en) * 2008-09-09 2010-05-05 Siemens Aktiengesellschaft Continuous-flow steam generator
EP2180250A1 (en) * 2008-09-09 2010-04-28 Siemens Aktiengesellschaft Continuous-flow steam generator
DE102010040210A1 (en) * 2010-09-03 2012-03-08 Siemens Aktiengesellschaft Method for operating a solar-heated continuous steam generator and solar thermal continuous steam generator
DE102010042458A1 (en) 2010-10-14 2012-04-19 Siemens Aktiengesellschaft Method for operating a combined cycle power plant and for the implementation of the method prepared gas and steam turbine plant and corresponding control device
DE102011004269A1 (en) * 2011-02-17 2012-08-23 Siemens Aktiengesellschaft Method for operating a solar thermal parabolic trough power plant
DE102011004277A1 (en) * 2011-02-17 2012-08-23 Siemens Aktiengesellschaft Method for operating a directly heated solar thermal steam generator
EP2655811B1 (en) 2011-02-25 2015-10-14 Siemens Aktiengesellschaft Method for regulating a brief increase in power of a steam turbine
FR2975797B1 (en) * 2011-05-26 2020-01-24 Electricite De France CONTROL SYSTEM FOR MULTIVARIABLE REGULATION OF FLAME THERMAL POWER PLANT
DE102011076968A1 (en) * 2011-06-06 2012-12-06 Siemens Aktiengesellschaft Method for operating a circulation heat recovery steam generator
CN109780523B (en) * 2016-08-31 2020-06-30 青岛科技大学 Intelligent control steam drying machine capable of spraying water on wall surface
CN107356095B (en) * 2016-08-31 2019-02-22 青岛科技大学 A steam dryer with intelligent pressure control
CN109780525B (en) * 2016-08-31 2020-06-23 青岛科技大学 Control method for pipe diameter of pipe bundle of drying machine
CN107356094B (en) * 2016-08-31 2019-02-22 青岛科技大学 A steam dryer with intelligent control of steam flow
EP3647657A1 (en) * 2018-10-29 2020-05-06 Siemens Aktiengesellschaft Feed water control for forced throughput by-product steam generator

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2118028A1 (en) * 1971-04-14 1973-03-15 Siemens Ag PROCEDURE AND ARRANGEMENT FOR CONTROL ON A HEAT EXCHANGER
DE3242968C2 (en) * 1982-11-20 1985-11-14 Evt Energie- Und Verfahrenstechnik Gmbh, 7000 Stuttgart Procedure for regulating the feed water supply to steam generators
DK0439765T3 (en) * 1990-01-31 1995-10-02 Siemens Ag A steam generator

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006005708A1 (en) * 2004-07-09 2006-01-19 Siemens Aktiengesellschaft Process for operating a continuous steam generator
US7624708B2 (en) 2004-07-09 2009-12-01 Siemens Aktiengesellschaft Process for operating a continuous steam generator
CN1906441B (en) * 2004-07-09 2010-06-16 西门子公司 How a once-through boiler works
DE102011004263A1 (en) * 2011-02-17 2012-08-23 Siemens Aktiengesellschaft Method for operating a solar-heated waste heat steam generator and solar thermal waste heat steam generator

Also Published As

Publication number Publication date
WO1993022599A1 (en) 1993-11-11
US5529021A (en) 1996-06-25
DK0639253T3 (en) 1997-06-16
JP2563099B2 (en) 1996-12-11
EP0639253A1 (en) 1995-02-22
KR100251011B1 (en) 2000-04-15
KR950701420A (en) 1995-03-23
CN1044404C (en) 1999-07-28
CN1086299A (en) 1994-05-04
JPH07502803A (en) 1995-03-23
DE59304751D1 (en) 1997-01-23

Similar Documents

Publication Publication Date Title
EP0639253B1 (en) Forced-flow steam generator
DE3126331C2 (en)
DE68922266T2 (en) Waste heat boiler and method of using it.
EP2297518B1 (en) Method for operating a once-through steam generator and once-through steam generator
EP2510198B1 (en) Method and device for regulating the production of steam in a steam plant
EP2212618B1 (en) Method for operating a continuous flow steam generator and once-through steam generator
EP0559043B1 (en) Method for heat exchanger control
DE3017659A1 (en) BOILER LEVEL CONTROL ARRANGEMENT
EP1766288B1 (en) Process for operating a continuous steam generator
DE2445525C3 (en) Method for influencing the outlet temperature of the steam flowing through a contact heating surface of a steam generator
EP0149002B1 (en) Process-variable regulating device for a flowing medium
DE2620734C3 (en) Monitoring arrangement for a continuous steam generator to determine the deviations between the amount of heat absorbed by the feed water and the amount of heat given off by the furnace
EP3161378B1 (en) Control method for operating a heat recovery steam generator
DE3784011T2 (en) BOILER CONTROL SYSTEM.
DE3632041A1 (en) Process and device for regulating the output of a steam power station unit
EP3827200B1 (en) Feed water control for forced throughput by-product steam generator
DE2544799A1 (en) GAS HEATED STEAM GENERATOR
EP0293367B1 (en) Device for adjusting the smooth running of internal combustion engines
EP0308596B1 (en) Method for the regulation of the feed water flow in a steam plant
DE2923288C2 (en)
DE4217626A1 (en) Forced steam generator
DE102011006390A1 (en) Method for operating a continuous steam generator and for carrying out the method designed steam generator
DE2427923A1 (en) CONTROL DEVICE FOR A STEAM TURBINE ARRANGEMENT WITH BYPASS
DE3243578C2 (en)
EP0565853B1 (en) Method and device for in-temperature regulation of a heating system and control unit for carrying out the process

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19940420

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE DK FR GB IT LI NL SE

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19960328

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE DK FR GB IT LI NL SE

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG

REF Corresponds to:

Ref document number: 59304751

Country of ref document: DE

Date of ref document: 19970123

ET Fr: translation filed
ITF It: translation for a ep patent filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19970214

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

26 Opposition filed

Opponent name: ASEA BROWN BOVERI AG

Effective date: 19970911

NLR1 Nl: opposition has been filed with the epo

Opponent name: ASEA BROWN BOVERI AG

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PLBO Opposition rejected

Free format text: ORIGINAL CODE: EPIDOS REJO

PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

27O Opposition rejected

Effective date: 19981005

NLR2 Nl: decision of opposition
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20020410

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20020423

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20020430

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20020711

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030422

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031101

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20031101

EUG Se: european patent has lapsed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031231

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20120418

Year of fee payment: 20

Ref country code: DE

Payment date: 20120618

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20120413

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20120426

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59304751

Country of ref document: DE

REG Reference to a national code

Ref country code: DK

Ref legal event code: EUP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59304751

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20130420

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20130423

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20130420