Nothing Special   »   [go: up one dir, main page]

EP0634887B1 - Torche à plasma d'arc transféré - Google Patents

Torche à plasma d'arc transféré Download PDF

Info

Publication number
EP0634887B1
EP0634887B1 EP94420206A EP94420206A EP0634887B1 EP 0634887 B1 EP0634887 B1 EP 0634887B1 EP 94420206 A EP94420206 A EP 94420206A EP 94420206 A EP94420206 A EP 94420206A EP 0634887 B1 EP0634887 B1 EP 0634887B1
Authority
EP
European Patent Office
Prior art keywords
torch
plasma
cathode
anode
nozzle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP94420206A
Other languages
German (de)
English (en)
Other versions
EP0634887A1 (fr
Inventor
Frédéric Girard
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SOUDURE ASSISTANCE
Original Assignee
SOUDURE ASSISTANCE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SOUDURE ASSISTANCE filed Critical SOUDURE ASSISTANCE
Publication of EP0634887A1 publication Critical patent/EP0634887A1/fr
Application granted granted Critical
Publication of EP0634887B1 publication Critical patent/EP0634887B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/34Details, e.g. electrodes, nozzles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/34Details, e.g. electrodes, nozzles
    • H05H1/3421Transferred arc or pilot arc mode
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/34Details, e.g. electrodes, nozzles
    • H05H1/3463Oblique nozzles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/34Details, e.g. electrodes, nozzles
    • H05H1/3468Vortex generators

Definitions

  • the present invention relates to a welding torch or more particularly to reloading with transferred arc plasma, known under the abbreviation "PTA” (Plasma Transferred Arc).
  • the tip of the cathode is arranged on the main axis (longitudinal axis) of the torch, and positioned slightly behind the convergent nozzle-anode which surrounds it coaxially.
  • the plasma propagates and therefore leaves, in principle, along the main axis of the torch.
  • the geometric structure of the plasma generator device remains a structure parallel to the plasma, at least in the vicinity of the origin of the latter.
  • the plasma is born and begins to propagate in the axis of the negative electrode, even if this plasma is then deviated from said axis before the point of use, in particular by the oblique orientation of an outlet conduit and the position of the positive electrode constituted by the part to be recharged on which the transferred arc comes to loop.
  • the present invention therefore aims to improve a transferred plasma torch of the type concerned.
  • a transferred plasma torch comprising a nozzle-anode coaxially surrounding a cathode disposed along the longitudinal axis of the torch, and a channel of annular section formed between the nozzle-anode and the cathode and capable to be traversed by a flow of plasma gas, the torch being arranged to emit a plasma jet in a direction making a significant angle relative to the longitudinal axis of the torch, the latter being characterized in that it is provided , in addition to the initialization plasma gas circuit passing along the cathode, another circuit distinct from the previous one, and capable of being traversed by a directional plasma gas flow, the directional plasma gas circuit opening out, in a direction making a significant angle with the longitudinal axis of the torch, in a chamber or a conduit extending the annular section channel at the front of the torch and opening itself even outside by a lateral outlet orifice of the nozzle-anode, so that the plasma is created and propagates in a direction making
  • two separate circuits of plasma-generating gas are used, one for initialization traveling along the cathode, and the other directional arriving at the front of the torch in a direction forming a notable angle, which in a typical case reaches 90 °, with respect to the main axis of the torch (axis of the anode-cathode couple).
  • the use of a deflecting plasma gas stiffens the arc and gives much better results than in previous embodiments, which do not use a deflecting plasma gas and in which the plasma is emitted along the axis of the cathode and then deflected (as explained above).
  • the initial plasma plasma circuit and the directional plasma gas circuit are each provided with their own gas flow control means, so that the control of the plasma operating parameters results directly from the absolute settings and relative of the two plasma gas circuits.
  • the nozzle-anode is designed to be mounted on a base of a torch, comprising a cathode support block in which the cathode is held so as to be able to be mounted, axially adjusted and dismounted through the rear area of the torch.
  • This arrangement facilitates in particular the axial positioning adjustment of the cathode, which determines the characteristics of the plasma obtained.
  • the area made available by the change of direction of the plasma jet in the vicinity of the free end of the nozzle-anode is usable for accommodating in this area part of the cooling circuit by circulation of water.
  • the transferred arc plasma torch object of the invention, is particularly suitable for the reloading of small bores, with a flat melting bath, the internal cylindrical part to be coated having its axis disposed horizontally.
  • the torch which enters the bore during the reloading operation, is then with its horizontal main axis, and only the plasma jet is emitted vertically in a radial direction at the outlet of the lateral orifice practiced towards the free end of the anode nozzle.
  • the overall dimensions of the nozzle-anode must be adapted to the internal diameter of the bore of the part to be recharged, which in practice means that the nozzle-anode is long and of small diameter.
  • the advantage of such an arrangement is also to allow the use of a cathode of large longitudinal dimension, which can be conveniently mounted or dismounted by the base of the torch, for example to proceed with its sharpening.
  • FIG. 1 shows the front part of a welding torch or more particularly of reloading with transferred arc plasma, comprising a nozzle-anode 1 surrounding a cathode 2 arranged along the longitudinal axis 3 of the torch.
  • An annular section channel 4 is formed between the nozzle-anode 1 and the cathode 2.
  • the channel 4 is traversed by a first flow of plasma gas traveling along the cathode 2, as indicated by an arrow 5, this channel 4 belonging to a plasma gas circuit with the role of initializing the ionization of the gas and protecting the cathode 2.
  • the plasma initialization gas is distributed at the inlet of the convergent 6 of the nozzle-anode 1 by means of a ring 7 providing helical passages, which gives the gas a swirling movement capable of stabilizing the incipient discharge between the pointed end 8 of the cathode 2 and the anode 1.
  • the ring 7 also acts as a centering means for cathode 2 relative to the nozzle-anode 1.
  • the channel 4 is extended by a short convergent conduit 9 oriented along an axis 10 forming a significant angle A relative to the longitudinal axis 3 of the torch, and opening to the outside by an outlet orifice 11 located on the side wall of the nozzle-anode 1.
  • the angle A is equal to 90 °.
  • nozzle-anode 1 In the nozzle-anode 1 is formed, parallel to the channel 4 swept by the initial plasma gas, another channel 12 which has, at its front part, a right angle bend 13 with converging, opening out at the rear of the conduit 9, along the transverse axis 10.
  • the channel 12 is traversed, as indicated by an arrow 14, by a second flow of plasma gas, said directional plasma gas, thus traversing a circuit distinct from that of the initial plasma gas.
  • Each of these two independent circuits is provided with its own means (not shown) for controlling the plasma gas flow.
  • the plasma jet emitted at the anterior end of channel 4 is deflected by approximately 90 ° by the jet of directional plasma gas, of lower flow rate but of high speed, which is ejected by the converging elbow 13 and thus arrives in the duct 9 by imposing its own direction on the plasma flow.
  • the plasma created thus propagates, from the outset, in the direction of the axis 10, therefore substantially perpendicular to the axis 3 of the torch, to escape through the lateral outlet orifice 11.
  • the space made free by the change of direction of the plasma jet, in the vicinity of the end of the nozzle-anode, is used to pass the cooling water circuit 15 of the torch there, ensuring thus in this zone an energetic cooling.
  • FIG. 2 shows as a whole the torch equipped with the plasma generator device described above, in a particular embodiment inspired by French patent application FR-A-2672459 in the name of the Applicant.
  • the cathode 2 is held on its support block 17 by means of pliers 26.
  • a blind nut (not shown), screwed onto a thread 27 of the support block 17, gives very direct access to the cathode 2 which can thus be immobilized in the desired axial position.
  • This axial position of the cathode 2, as well as the independent adjustments of the flow rates of the initial plasma gas 5 and the directional plasma gas 14, constitute the three main elements for adjusting the torch.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Plasma Technology (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Description

  • La présente invention concerne une torche de soudage ou plus particulièrement de rechargement à plasma d'arc transféré, connue sous l'abréviation "PTA" (Plasma Transferred Arc).
  • La génération d'un plasma d'arc électrique est un phénomène bien connu, utilisé depuis plusieurs dizaines d'années dans les torches de soudure ou de rechargement dites à plasma transféré. De nombreux modes de réalisation ont été proposés pour ces torches. Tous font appel à l'effet de pointe d'une cathode affûtée, pour amorcer l'arc électrique et stabiliser son extrémité au potentiel négatif.
  • La plupart des réalisations existantes sont de structure parfaitement coaxiale. La pointe de la cathode est disposée sur l'axe principal (axe longitudinal) de la torche, et positionnée légèrement en arrière du convergent de la tuyère-anode qui l'entoure coaxialement. Le plasma se propage et sort donc, en principe, suivant l'axe principal de la torche.
  • On connaît aussi des réalisations de torches à plasma d'arc transféré, dans lesquelles le plasma sort de la torche selon une direction formant un angle notable par rapport à l'axe principal de la torche, et peut ainsi être dirigé vers un substrat à travailler selon une direction différente de l'axe principal de la torche.
  • Dans toutes les réalisations de ce genre, connues à ce jour, la structure géométrique du dispositif générateur de plasma reste une structure parallèle au plasma, du moins au voisinage de l'origine de celui-ci. Le plasma naît et commence à se propager dans l'axe de l'électrode négative, même si ce plasma est ensuite dévié dudit axe avant le point d'utilisation, notamment par l'orientation oblique d'un conduit de sortie et la position de l'électrode positive constituée par la pièce à recharger sur laquelle l'arc transféré vient se boucler. A titre d'exemples de ce genre de réalisations, on peut notamment citer la torche à plasma transféré selon la demande de brevet français FR-A-2672459 au nom du Demandeur (voir plus particulièrement la figure 3), ou encore le brevet FR-A-1338390.
  • Ce genre de réalisations, où la déviation de l'arc est obtenue uniquement par l'orientation du conduit et de l'orifice de sortie du plasma (d'éventuels canaux débouchant dans ce conduit, comme le montre le document précité FR-A-1338390, ne servant qu'à l'apport de poudre), ne donne pas entièrement satisfaction du point de vue de la rigidité de l'arc et du contrôle des paramètres de fonctionnement du plasma.
  • La présente invention a donc pour but d'améliorer une torche à plasma transféré du genre concerné.
  • A cet effet, elle a essentiellement pour objet une torche à plasma transféré comprenant une tuyère-anode entourant coaxialement une cathode disposée suivant l'axe longitudinal de la torche, et un canal de section annulaire ménagé entre la tuyère-anode et la cathode et apte à être parcouru par un débit de gaz plasmagène, la torche étant agencée pour émettre un jet de plasma selon une direction faisant un angle notable par rapport à l'axe longitudinal de la torche, celle-ci étant caractérisée en ce qu'il est prévu, en plus du circuit de gaz plasmagène d'initialisation cheminant le long de la cathode, un autre circuit distinct du précédent, et apte à être parcouru par un débit de gaz plasmagène directionnel, le circuit de gaz plasmagène directionnel débouchant, suivant une direction faisant un angle notable avec l'axe longitudinal de la torche, dans une chambre ou un conduit prolongeant le canal de section annulaire à l'avant de la torche et débouchant lui-même à l'extérieur par un orifice de sortie latéral de la tuyère-anode, de sorte que le plasma est créé et se propage dans une direction faisant un angle notable avec l'axe longitudinal de la torche, suivant lequel est disposée la cathode.
  • Ainsi, on utilise dans la torche objet de l'invention deux circuits distincts de gaz plasmagène, l'un d'initialisation cheminant le long de la cathode, et l'autre directionnel arrivant à l'avant de la torche selon une direction formant un angle notable, qui dans un cas typique atteint 90°, par rapport à l'axe principal de la torche (axe du couple anode-cathode). Un phénomène fluidique de déviation d'un jet de gaz à faible vitesse par un jet de débit moindre mais à vitesse élevée intervient alors, pour créer une veine de plasma qui dès l'origine se propage dans une direction qui n'est pas parallèle à l'axe du couple anode-cathode, mais forme un angle notable avec cet axe et est, en particulier, perpendiculaire audit axe. Le recours à un gaz plasmagène déviateur rigidifie l'arc et donne de bien meilleurs résultats que dans les précédentes réalisations, qui ne font pas appel à un gaz plasmagène déviateur et dans lesquelles le plasma est émis suivant l'axe de la cathode et dévié ensuite (comme expliqué plus haut).
  • Avantageusement, le circuit de gaz plasmagène d'initialisation et le circuit de gaz plasmagène directionnel sont munis, chacun, de leurs propres moyens de contrôle du débit de gaz, de sorte que le contrôle des paramètres de fonctionnement du plasma résulte directement des réglages absolus et relatifs des deux circuits de gaz plasmagène.
  • Selon un autre aspect de l'invention, la tuyère-anode est prévue pour être montée sur une embase d'une torche, comprenant un bloc-support de cathode dans lequel la cathode est tenue de manière à pouvoir être montée, réglée axialement et démontée par la zone arrière de la torche. Cette disposition facilite en particulier le réglage de positionnement axial de la cathode, qui détermine les caractéristiques du plasma obtenu.
  • Les opérations ici mentionnées s'effectuent donc commodément par l'arrière de l'embase de la torche, sans démontage d'éléments de faibles dimensions et sans contact direct avec le circuit d'eau de refroidissement.
  • En outre, la zone rendue disponible par le changement de direction du jet de plasma au voisinage de l'extrémité libre de la tuyère-anode est utilisable pour loger dans cette zone une partie du circuit de refroidissement par circulation d'eau.
  • La torche à plasma d'arc transféré, objet de l'invention, est particulièrement adaptée au rechargement de petits alésages, avec un bain de fusion à plat, la partie cylindrique intérieure à revêtir ayant son axe disposé horizontalement. La torche, qui pénètre dans l'alésage lors de l'opération de rechargement, se trouve alors avec son axe principal horizontal, et seul le jet de plasma est émis verticalement dans une direction radiale à la sortie de l'orifice latéral pratiqué vers l'extrémité libre de la tuyère-anode. Bien entendu, les dimensions hors tout de la tuyère-anode doivent être adaptées au diamètre intérieur de l'alésage de la pièce à recharger, ce qui signifie en pratique que la tuyère-anode est longue et de faible diamètre. L'intérêt d'une telle disposition est de permettre aussi l'utilisation d'une cathode de grande dimension longitudinale, que l'on peut venir monter ou démonter commodément par l'embase de la torche, par exemple pour procéder à son affûtage.
  • L'invention sera de toute façon mieux comprise à l'aide de la description qui suit, en référence au dessin schématique annexé représentant, à titre d'exemple, une forme d'exécution de cette torche à plasma d'arc transféré :
    • Figure 1 est une vue en coupe longitudinale de la partie avant de la torche, plus particulièrement concernée par la présente invention ;
    • Figure 2 est une vue d'ensemble en coupe longitudinale, très schématique, de cette torche.
  • La figure 1 montre la partie avant d'une torche de soudage ou plus particulièrement de rechargement à plasma d'arc transféré, comportant une tuyère-anode 1 entourant une cathode 2 disposée suivant l'axe longitudinal 3 de la torche. Un canal de section annulaire 4 est ménagé entre la tuyère-anode 1 et la cathode 2. Le canal 4 est parcouru par un premier débit de gaz plasmagène cheminant le long de la cathode 2, comme indiqué par une flèche 5, ce canal 4 appartenant à un circuit de gaz plasmagène ayant pour rôle l'initialisation de l'ionisation du gaz et protection de la cathode 2. Le gaz plasmagène d'initialisation est réparti à l'entrée du convergent 6 de la tuyère-anode 1 au moyen d'une bague 7 ménageant des passages hélicoïdaux, qui donne au gaz un mouvement tourbillonnaire apte à stabiliser la décharge naissant entre l'extrémité en pointe 8 de la cathode 2 et l'anode 1. La bague 7 joue aussi le rôle de moyen de centrage de la cathode 2 relativement à la tuyère-anode 1.
  • A son extrémité avant, le canal 4 est prolongé par un court conduit 9 convergent orienté suivant un axe 10 formant un angle notable A par rapport à l'axe longitudinal 3 de la torche, et débouchant à l'extérieur par un orifice de sortie 11 situé sur la paroi latérale de la tuyère-anode 1. Dans l'exemple considéré, l'angle A est égal à 90°.
  • Dans la tuyère-anode 1 est ménagé, parallèlement au canal 4 balayé par le gaz plasmagène d'initialisation, un autre canal 12 qui présente, à sa partie antérieure, un coude à angle droit 13 avec convergent, débouchant à l'arrière du conduit 9, suivant l'axe transversal 10. Le canal 12 est parcouru, comme indiqué par une flèche 14, par un second débit de gaz plasmagène, dit gaz plasmagène directionnel, parcourant ainsi un circuit distinct de celui du gaz plasmagène d'initialisation.
  • Chacun de ces deux circuits indépendants est muni de ses propres moyens (non représentés) de contrôle du débit de gaz plasmagène. D'une façon générale, le jet de plasma émis à l'extrémité antérieure du canal 4 est dévié d'environ 90° par le jet de gaz plasmagène directionnel, de débit moindre mais de vitesse élevée, qui est éjecté par le coude convergent 13 et arrive ainsi dans le conduit 9 en imposant sa propre direction au flux de plasma. Le plasma créé se propage ainsi, dès l'origine, dans la direction de l'axe 10, donc sensiblement perpendiculairement à l'axe 3 de la torche, pour s'échapper par l'orifice de sortie latéral 11.
  • L'espace rendu libre par le changement de direction du jet de plasma, au voisinage de l'extrémité de la tuyère-anode, est mis à profit pour faire passer à cet endroit le circuit d'eau de refroidissement 15 de la torche, assurant ainsi dans cette zone un refroidissement énergique.
  • La figure 2 représente dans son ensemble la torche équipée du dispositif générateur de plasma précédemment décrit, dans une réalisation particulière s'inspirant de la demande de brevet français FR-A-2672459 au nom du Demandeur.
  • En particulier, la partie droite de la figure 2 montre l'embase 16 de la torche, qui comprend un bloc-support de cathode 17 séparé par un isolateur 18 d'une embase d'anode 19. Ces trois composants 17, 18 et 19, qui constituent l'embase 16 de la torche, sont dotés de tous les canaux nécessaires à l'acheminement des fluides permettant le fonctionnement de la torche :
    • Le circuit d'eau de refroidissement 15 est collecté en 20 sur l'embase d'anode 19, puis il parcourt la tuyère-anode 1 jusqu'à son extrémité avant, avant de revenir à travers l'embase d'anode 19 ainsi que l'isolateur 18 jusqu'au bloc-support 17 de la cathode 2, où il est évacué en 21, ce circuit d'eau n'étant représenté que partiellement du fait qu'il s'étend dans un plan autre que le plan de coupe des figures 1 et 2.
    • Un canal d'alimentation 22, ménagé dans le bloc-support 17 de la cathode 2, débouche à l'arrière du canal 4 de section annulaire et sert à l'amenée du gaz plasmagène d'initialisation.
    • Un canal 23, traversant successivement les composants 17,18 et 19 de l'embase 16 de la torche, et se prolongeant dans la tuyère-anode 1 jusqu'à un débouché latéral 24 proche de l'orifice 11, assure l'amenée du mélange gaz-poudre d'apport d'alliage métallique constitutif du dépôt.
    • Un autre canal 25, traversant successivement les composants 17,18 et 19 de l'embase 16 de la torche, se prolonge dans la tuyère-anode 1 par le canal 12 précité, et sert à l'acheminement du gaz plasmagène directionnel.
    • Il est encore prévu un canal d'alimentation du gaz protecteur (non représenté), qui est dirigé vers un diffuseur approprié.
  • A l'arrière de l'embase de la torche, la cathode 2 est tenue sur son bloc-support 17 au moyen d'une pince 26. Un écrou borgne (non représenté), vissé sur un filetage 27 du bloc-support 17, donne un accès très direct à la cathode 2 que l'on peut ainsi immobiliser dans la position axiale souhaitée.
  • Cette position axiale de la cathode 2, ainsi que les réglages indépendants des débits du gaz plasmagène d'initialisation 5 et du gaz plasmagène directionnel 14, constituent les trois principaux éléments de réglage de la torche.
  • Bien entendu, en fonction de chaque cas d'application et comme cela est habituel dans les procédés de rechargement par torche à plasma d'arc transféré, les autres paramètres de fonctionnement, tels que par exemple l'intensité transférée, seront à ajuster en fonction des épaisseurs, taux de dépôts et autres données particulières rencontrées.
  • Il va de soi que l'invention ne se limite pas à la seule forme d'exécution de cette torche à plasma d'arc transféré qui a été décrite ci-dessus, à titre d'exemple ; elle en embrasse, au contraire, toutes les variantes de réalisation et d'application entrant dans le cadre des revendications annexées. En particulier, l'on ne s'éloignerait pas de l'esprit de l'invention en modifiant l'angle A de la direction de propagation du plasma par rapport à l'axe longitudinal 3 de la torche, la valeur particulière de 90° de cet angle donnée par l'exemple illustré au dessin n'étant nullement limitative. Dans le même ordre d'idées, on peut substituer à l'embase de torche particulière, donnée ici en exemple, une structure différente des organes servant de supports pour l'anode et la cathode, ainsi que de collecteurs et distributeurs pour les divers fluides spécifiques au fonctionnement ou au refroidissement du genre de torche concerné. Enfin, les formes de détail de la torche peuvent être modifiées, par exemple l'orifice de sortie latéral peut être situé en retrait, par rapport au restant de la paroi latérale cylindrique de la tuyère-anode 1.

Claims (5)

  1. Torche de soudage ou plus particulièrement de rechargement à plasma d'arc transféré, comprenant une tuyère-anode (1) entourant coaxialement une cathode (2), disposée suivant l'axe longitudinal (3) de la torche, et un canal (4) de section annulaire ménagé entre la tuyère-anode (1) et la cathode (2) et apte à être parcouru par un débit de gaz plasmagène (5), la torche étant agencée pour émettre un jet de plasma selon une direction (10) faisant un angle notable (A) par rapport à l'axe longitudinal (3) de la torche, caractérisée en ce qu'il est prévu, en plus du circuit de gaz plasmagène d'initialisation (4,22) cheminant le long de la cathode (1), un autre circuit (12,13,25) distinct du précédent, et apte à être parcouru par un débit de gaz plasmagène directionnel (14), le circuit de gaz plasmagène directionnel débouchant (en 13), suivant une direction (10) faisant un angle notable (A) avec l'axe longitudinal (3) de la torche, dans une chambre ou un conduit (9) prolongeant le canal (4) de section annulaire, à l'avant de la torche et débouchant lui-même à l'extérieur par un orifice de sortie latéral (11) de la tuyère-anode (1), de sorte que le plasma est créé et se propage dans une direction faisant un angle notable avec l'axe longitudinal (3) de la torche, suivant lequel est disposée la cathode (2).
  2. Torche à plasma d'arc transféré selon la revendication 1, caractérisée en ce que le circuit de gaz plasmagène directionnel (12,13,25) présente, dans sa partie antérieure, un coude à angle droit (13), avec convergent, débouchant à l'arrière de la chambre ou du conduit (9) précité, de manière à dévier le jet de plasma, selon une direction (10) faisant un angle d'environ 90° par rapport à l'axe longitudinal (3) de la torche, suivant lequel est disposée la cathode (2).
  3. Torche à plasma d'arc transféré selon la revendication 1 ou 2, caractérisé en ce que le circuit de gaz plasmagène d'initialisation (4,22) et le circuit de gaz plasmagène directionnel (12,13,25) sont munis, chacun, de leurs propres moyens de contrôle du débit de gaz, de sorte que le contrôle des paramètres de fonctionnement du plasma résulte directement des réglages absolus et relatifs des deux circuits de gaz plasmagène.
  4. Torche à plasma d'arc transféré selon l'une quelconque des revendications 1 à 3, caractérisé en ce que la tuyère-anode (1) est prévue pour être montée sur une embase (16) d'une torche, comprenant un bloc-support (17) de cathode dans lequel la cathode (2) est tenue (en 26) de manière à pouvoir être montée, réglée axialement et démontée par la zone arrière de la torche.
  5. Torche à plasma d'arc transféré selon l'une quelconque des revendications 1 à 4, caractérisé en ce q'une partie d'un circuit de refroidissement (15) par circulation d'eau est logée dans la zone de l'extrémité libre de la tuyère-anode (1), cette zone étant rendue disponible par le changement de direction du jet de plasma.
EP94420206A 1993-07-15 1994-07-13 Torche à plasma d'arc transféré Expired - Lifetime EP0634887B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9308802 1993-07-15
FR9308802A FR2707824B1 (fr) 1993-07-15 1993-07-15 Torche plasma transféré (PTA) à cathode radiale.

Publications (2)

Publication Number Publication Date
EP0634887A1 EP0634887A1 (fr) 1995-01-18
EP0634887B1 true EP0634887B1 (fr) 1996-10-16

Family

ID=9449342

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94420206A Expired - Lifetime EP0634887B1 (fr) 1993-07-15 1994-07-13 Torche à plasma d'arc transféré

Country Status (4)

Country Link
EP (1) EP0634887B1 (fr)
AT (1) ATE144368T1 (fr)
DE (1) DE69400737D1 (fr)
FR (1) FR2707824B1 (fr)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5837959A (en) * 1995-09-28 1998-11-17 Sulzer Metco (Us) Inc. Single cathode plasma gun with powder feed along central axis of exit barrel
AT4599U1 (de) * 2000-06-21 2001-09-25 Inocon Technologie Gmbh Plasmabrenner
DE102006012100B3 (de) * 2006-03-16 2007-09-20 Maschinenfabrik Reinhausen Gmbh Vorrichtung zur Erzeugung eines Plasma-Jets
US9211603B2 (en) 2012-01-31 2015-12-15 The Esab Group, Inc. Plasma gouging torch and angled nozzle therefor
US10314155B2 (en) 2012-08-06 2019-06-04 Hypertherm, Inc. Asymmetric consumables for a plasma arc torch
US9107282B2 (en) * 2012-08-06 2015-08-11 Hypertherm, Inc. Asymmetric consumables for a plasma arc torch
US9781818B2 (en) 2012-08-06 2017-10-03 Hypertherm, Inc. Asymmetric consumables for a plasma arc torch
US9497845B2 (en) 2012-08-06 2016-11-15 Hypertherm, Inc. Consumables for a plasma arc torch for bevel cutting
US10721812B2 (en) 2012-08-06 2020-07-21 Hypertherm, Inc. Asymmetric consumables for a plasma arc torch
CN115734449B (zh) * 2022-11-29 2023-11-14 哈尔滨工程大学 一种固定电弧发生位置的等离子电弧发生器

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1338390A (fr) * 1962-07-05 1963-09-27 Air Liquide Tête orientable de générateur de plasma
US3575568A (en) * 1967-06-08 1971-04-20 Rikagaku Kenkyusho Arc torch
US3740522A (en) * 1971-04-12 1973-06-19 Geotel Inc Plasma torch, and electrode means therefor
FR2672459B1 (fr) * 1991-02-01 1993-04-30 Girard Frederic Dispositif de rechargement par plasma a orifice oblique.

Also Published As

Publication number Publication date
FR2707824B1 (fr) 1995-12-01
DE69400737D1 (de) 1996-11-21
FR2707824A1 (fr) 1995-01-20
EP0634887A1 (fr) 1995-01-18
ATE144368T1 (de) 1996-11-15

Similar Documents

Publication Publication Date Title
EP0480828B1 (fr) Dispositif d'apport de poudre pour revêtements par traitement au faisceau laser
EP0574580B1 (fr) Buse coaxiale de traitement superficiel sous irradiation laser, avec apport de materiaux sous forme de poudre
EP0634887B1 (fr) Torche à plasma d'arc transféré
FR2787675A1 (fr) Buse, ainsi que dispositif a buse pour une tete de bruleur d'un pistolet pulverisateur de plasma
CA1250026A (fr) Torche de soudage ou de coupage plasma munie d'une cartouche tuyere
EP0110735A2 (fr) Torche à plasma monogaz
CH543711A (fr) Générateur à jet de plasma
FR2648068A1 (fr) Procede et appareil de soudage laser
EP1480756B1 (fr) Dispositif de pulverisation de produit de revetement liquide
EP1446258A1 (fr) Dispositif et procede de soudage hybride
EP0250308B1 (fr) Torche de rechargement à plasma
FR2703557A1 (fr) Torche plasma et procédé de mise en Óoeuvre pour le gougeage de pièces.
EP0750449B1 (fr) Tête de torche à plasma et torche à plasma la comportant
CA2522932C (fr) Procede de revetement par flamme et dispositif correspondant
EP0185226B1 (fr) Générateur laser à flux gazeux et procédé de fonctionnement de ce générateur
EP0935405A1 (fr) Electrode pour torche à plasma
FR2672459A1 (fr) Dispositif de rechargement par plasma a orifice oblique.
FR2494778A1 (fr) Buse a double circuit d'injection de carburant
EP0327526B1 (fr) Dispositif de refroidissement d'un métal pendant la coulée
CA2644189C (fr) Ensemble buse/guide-fil pour torche de soudage tig robotise
FR2787352A1 (fr) Dispositif de pulverisation de gouttelettes muni d'un tube d'extraction
EP1567281A1 (fr) Procede et installation de pointage d'un jet fin de fluide, notamment en soudage, usinage, ou rechargement laser
BE1004612A6 (fr) Dispositif de prechauffage d'une busette de coulee d'un metal en fusion.
EP1181126B1 (fr) Procede et installation automatique de soudage multiplasma
EP0668121A1 (fr) Tête de soudage au laser à buse améliorée

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19941104

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FR GB IT LI NL SE

17Q First examination report despatched

Effective date: 19951129

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB IT LI NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19961016

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 19961016

Ref country code: GB

Effective date: 19961016

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19961016

Ref country code: AT

Effective date: 19961016

REF Corresponds to:

Ref document number: 144368

Country of ref document: AT

Date of ref document: 19961115

Kind code of ref document: T

REF Corresponds to:

Ref document number: 69400737

Country of ref document: DE

Date of ref document: 19961121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19970116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19970117

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 19961016

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970731

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970731

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
BERE Be: lapsed

Owner name: SOUDURE ASSISTANCE

Effective date: 19970731

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20030711

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050331

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST