Nothing Special   »   [go: up one dir, main page]

EP0677775B1 - Thermal transfer imaging process - Google Patents

Thermal transfer imaging process Download PDF

Info

Publication number
EP0677775B1
EP0677775B1 EP19950200411 EP95200411A EP0677775B1 EP 0677775 B1 EP0677775 B1 EP 0677775B1 EP 19950200411 EP19950200411 EP 19950200411 EP 95200411 A EP95200411 A EP 95200411A EP 0677775 B1 EP0677775 B1 EP 0677775B1
Authority
EP
European Patent Office
Prior art keywords
layer
imaging process
donor
thermal imaging
dye
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP19950200411
Other languages
German (de)
French (fr)
Other versions
EP0677775A1 (en
Inventor
Geert C/O Agfa-Gevaert N.V. Defieuw
Wilhelmus C/O Agfa-Gevaert N.V. Janssens
Luc C/O Agfa-Gevaert N.V. Vanmaele
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Agfa Gevaert NV
Original Assignee
Agfa Gevaert NV
Agfa Gevaert AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agfa Gevaert NV, Agfa Gevaert AG filed Critical Agfa Gevaert NV
Priority to EP19950200411 priority Critical patent/EP0677775B1/en
Publication of EP0677775A1 publication Critical patent/EP0677775A1/en
Application granted granted Critical
Publication of EP0677775B1 publication Critical patent/EP0677775B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C1/00Photosensitive materials
    • G03C1/494Silver salt compositions other than silver halide emulsions; Photothermographic systems ; Thermographic systems using noble metal compounds
    • G03C1/498Photothermographic systems, e.g. dry silver
    • G03C1/4989Photothermographic systems, e.g. dry silver characterised by a thermal imaging step, with or without exposure to light, e.g. with a thermal head, using a laser
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C2200/00Details
    • G03C2200/22Dye or dye precursor

Definitions

  • the present invention relates to a thermal imaging process, more in particular to a method wherein a thermotransferable reducing agent of a donor element is transferred image-wise to a receiving layer comprising a thermoreducible silver source, by means of e.g. a thermal head or a laser.
  • Thermal imaging or thermography is a recording process wherein images are generated by the use of image-wise modulated thermal energy.
  • thermography two approaches are known :
  • Thermography is converned with materials which are not photosensitive, but are heat sensitive. Imagewise applied heat is sufficient to bring about a visible change in a thermosensitive imaging material.
  • a recording material which contains a coloured support or support coated with a coloured layer which itself is overcoated with an opaque white light reflecting layer that can fuse to a clear, transparent state whereby the coloured support is no longer masked.
  • Physical thermographic systems operating with such kind of recording material are described on pages 136 and 137 of the above mentioned book of Kurt I. Jacobson et al.
  • thermographic recording materials are of the chemical type. On heating to a certain conversion temperature, an irreversible chemical reaction takes place and a coloured image is produced.
  • thermoreducible silver source in combination with a reducing agent in a direct thermal film in order to increase the optical density in transmission of a printed image
  • a thermoreducible silver source in combination with a reducing agent in a direct thermal film in order to increase the optical density in transmission of a printed image
  • continuous tones can be obtained by the printing method
  • the gradation produced by the printing method is too high. Fluctuations in the heat transfer from the heat source to the printing material result in a density difference of the final image.
  • a direct thermal printing method moreover has the disadvantage that in the non-image places the coreactants always remains unchanged, impairing the shelf-life and preservability.
  • US-A-3 094 417 discloses a heat-sensitive copy-sheet product capable of becoming locally visibly altered and highly infra-red absorptive on localized brief heating at a conversion temperature between about 90°C and about 150°C, comprising a paper-like backing, a visibly heat-sensitive layer, and a surface layer comprising a heat-transferable image-forming component; the heat-sensitive layer comprising chemically inter-reactant components in physically distinct and chemically inter-reactive relationship for interreaction to form a visibly distinct and infra-red absorptive reaction product upon heating the layer to the conversion temperature, one of the inter-reactant components being readily desensitizable against the inter-reaction by exposure, in solution in an inert solvent at a concentration just sufficient to permit distinctly visible reaction with the other of the components in the solvent, to radiation in the near-ultraviolet range of approximately 3000 to 4200 angstroms (300 to 420 nm) wavelength as obtained from a BH
  • JP-A-61 259 253 discloses a heat developing colour-photographic material containing at least photosensitive silver halide, binder, electron donor, anti-diffusion dye donor which releases movable dye by being reduced with an electron donor, on a support, wherein the electron donor is an alkyl or aryl (sulphon)amido naphthol derivative.
  • Research Disclosure no. 17706 discloses a photothermographic material which comprises a support coated with a layer which contains, or with layers which together contain, (a) a photographic silver halide, (b) an oxidation-reduction image-forming combination (i) a reducible silver salt and (ii) at least one reducing agent which comprises an azomethine or azo dye (c) a development modifier and (d) a synthetic polymeric binder, wherein the azo dye reducing agent is a compound of the formula (I).
  • US-A-3 767 414 discloses a method of imaging comprising a stratum containing a polymeric heavy metal azolate to heat at least at image areas and in the presence of a photosensitive reducing agent to provide on the sheet material a visible image, wherein the reducing agent is supplied from a second sheet held in face-to-face contact with the first sheet material.
  • Thermal dye transfer printing is a recording method wherein a dye-donor element is used that is provided with a dye layer wherefrom dyed portions or incorporated dye is transferred onto a contacting receiving element by the application of heat in a pattern normally controlled by electronic information signals.
  • thermosublimation printing dyes are transferred to a receiving element. It is possible to obtain an image with an excellent grey tone, however, with limited optical densities (2.0 - 2.5).
  • a thermal imaging process is provided using (i) a donor element comprising on a support a donor layer containing a binder and a thermotransferably reducing agent capable of reducing a silver source to metallic silver upon heating and (ii) a receiving element comprising on a support a receiving layer comprising a silver source capable of being reduced by means of heat in the presence of a reducing agent, the thermal imaging process comprising the steps of
  • This printing method is further referred to as 'reducing agent transfer printing' or 'RTP' and provides images having a high optical density.
  • a thermal imaging process is provided using (i) a donor element including on a support a donor layer containing a binder, a thermotransferable reducing agent capable of reducing a silver source to metallic silver upon heating and a thermotransferable dye and (b) a heat-resistant layer provided on the side of the support opposite to the side having the donor layer and (ii) a receiving element including on a support a receiving layer containing a silver source capable of being reduced by means of heat in the presence of a reducing agent, the thermal imaging process comprising the steps of
  • the donor element for use according to present invention comprises on one side of the donor element a donor layer, comprising a thermotransferable reducing agent capable of reducing a silver source to metallic silver, a thermotransferable dye and a binder.
  • the reducing agent for the silver source may comprise any of the conventional photographic developers known in the art, such as phenidone, hydroquinones and catechol provided that the reducing agent is thermotransferable.
  • Suitable reducing agents are aminohydroxycycloalkenone compounds, esters of amino reductones, N-hydroxyurea derivatives, hydrazones of aldehydes and ketones, phosphoramidophenols, phosphoramidoanilines, polyhydroxybenzenes, e.g.
  • ethyl gallate, propyl gallate and the like gallic acid amides, sulfhydroxamic acids. sulfonamidoanilines, 2-tetrazolylthiohydroquinones, e.g., 2-methyl-5-(1-phenyl-5-tetrazolylthio)hydroquinone, , tetrahydroquinoxalines, e.g.
  • 1,2,3,4-tetrahydroquinoxaline amidoximes, azines, hydroxamic acids, 5-pyrazolones, sulfonamidophenol reducing agents, 2-phenylindan-1,3-dione and the like, 1,4-dihydropyridines, such as 2,6-dimethoxy-3,5-dicarbethoxy-1,4-dihydropyridine, bisphenols, e.g., bis(2-hydroxy-3-t-butyl-5-methylphenyl) methane, bis(6-hydroxy-m-toly)mesitol, 2,2-bis (4-hydroxy-3-methylphenyl)propane, 4,4-ethylidene-bis(2-t-butyl-6-methylphenol) and 2,2-bis(3,5-dimethyl-4-hydroxyphenyl) propane, ascorbic acid derivatives and 3-pyrazolidones.
  • 1,4-dihydropyridines such as 2,6-dimethoxy-3,5-dicarbeth
  • Reducing agents being coloured in an oxidized form or capable of forming colour in an oxidized form (further referred to as color forming reducing agents) can also be used.
  • Specific examples are 4-methoxynaphthol and leucoazomethines in particular leucoindoanilines such as for example: Reducing agents derived from dihydroxy or trihydroxyphenyl compounds are especially preferred. Highly preferred are 4-phenyl pyrocatechol and propyl gallate.
  • thermotransferable dyes for use in connection with the present invention are dyes having a hue that is complementary to the hue of the metallic silver image that forms in the image receiving layer of the image receiving element.
  • dyes that can be used in connection with the present invention are azomethine dyes as disclosed in EP 400,704 and US 5.134.115, indoaniline dyes as disclosed in US 4.987.119, US 4.695.287, US 4.829.047 and US 4.983.493, azo dyes as disclosed in EP 344.592, EP 218.397, EP 302.628, EP 352.006 and EP 546.700, anthraquinone dyes as disclosed in US 4.940.692 and EP 209.911, azino dyes as disclosed in EP-A 611 663, heterocyclic dyes as disclosed in US 5.175.069 or mixtures of these dyes such disclosed in e.g.
  • the use of a dye having an absorption maximum in the range above 500nm is preferred and in particular the use of a cyan or a blue dye is especially preferred, while images obtained with reducing agent transfer printing are usually coloured yellow to brown.
  • the extinction coefficient of the dye at the absorption maximum is preferably at least 8000 1/(mol*cm) and more preferably at least 20000 1/(mol*cm).
  • the amount of dye or dye mixture is preferably lower than the amount of reducing agent or reducing agent mixture in the donor layer.
  • a dye can have a positive influence on the stability of the donor element during storage at elevated temperature (40-60°C). More particularly, the crystallization of the reducing agent(s) can be avoided as already mentioned above.
  • hydrophilic or hydrophobic binders can be used, although the use of hydrophobic binders is preferred.
  • Hydrophilic binders which can be used are polyvinylalcohol, gelatine, polyacrylamide and hydrophilic cellulosic binders such as hydroxyethyl cellulose, hydroxypropyl cellulose and the like.
  • the hydrophobic binders may be used as a dispersion in e.g. water or as a solution in an organic solvent.
  • Suitable binders for the donor layer are cellulose derivatives, such as ethyl cellulose, methyl cellulose, cellulose nitrate, cellulose acetate formate, cellulose acetate hydrogen phthalate, cellulose acetate, cellulose acetate propionate, cellulose acetate butyrate, cellulose acetate pentanoate, cellulose acetate benzoate, cellulose triacetate; vinyl-type resins and derivatives, such as polyvinyl acetate, polyvinyl butyral, copolyvinyl butyral-vinyl acetal-vinyl alcohol, polyvinyl pyrrolidone, polyvinyl acetoacetal, polyacrylamide; polymers and copolymers derivated from acrylates and acrylate derivatives, such as polymethyl metahcrylate and styreneacrylate copolymers: polyester resins; polycarbonates; copoly(styrene-co-acrylonitrile); polysulfones
  • the binder for the donor layer in accordance with the present invention comprises poly(styrene-co-acrylonitrile) or a mixture of poly(styrene-coacrylonitrile) and a toluenesulphonamide condensation product.
  • the binder for the donor layer preferably comprises a copolymer comprising styrene units and acrylonitrile units, preferentially at least 60% by weight of styrene units and at least 25% by weight of acrylonitrile units binder.
  • the binder copolymer may, of course, comprise other comonomers than styrene units and acrylonitrile units. Suitable other comonomers are e.g. butadiene, butyl acrylate, and methyl methacrylate.
  • the binder copolymer preferably has a glass transition temperature of at least 50°C.
  • the donor layer génerally has a thickness of about 0.2 to 5.0 ⁇ m, preferably 0.4 to 2.0 ⁇ m, and the amount ratio of reducing agent and dye to binder generally ranges from 9:1 to 1:3 by weight, preferably from 3:1 to 1:2 by weight.
  • the donor layer may also contain other additives such as i.a. thermal solvents, stabilizers, curing agents, preservatives, dispersing agents, antistatic agents, defoaming agents, and viscosity-controlling agents.
  • additives such as i.a. thermal solvents, stabilizers, curing agents, preservatives, dispersing agents, antistatic agents, defoaming agents, and viscosity-controlling agents.
  • the donor layer in accordance with the present invention may consist of multiple layers. In the latter case the thermotransferable dye and thermotransferable reducing agent may be provided in different layers.
  • any material can be used as the support for the donor element provided it is dimensionally stable and capable of withstanding the temperatures involved, up to 400°C over a period of up to 20 msec, and is yet thin enough to transmit heat applied on one side through to the reducing agent on the other side to effect transfer to the receiver sheet within such short periods, typically from 1 to 10 msec.
  • Such materials include polyesters such as polyethylene terephthalate, polyamides, polyacrylates, polycarbonates, cellulose esters, fluorinated polymers, polyethers, polyacetals, polyolefins, polyimides, glassine paper and condenser paper. Preference is given to a support comprising polyethylene terephthalate.
  • the support preferably has a thickness of 3 to 10 ⁇ m in order to allow for a good heat transfer across the support, so that a good transfer of dye(s) and reducing agent(s) is obtained.
  • the support may also be coated with an adhesive of subbing layer, if desired.
  • Subbing layers comprising aromatic copolyesters, vinylidene chloride copolymers, organic titanate, zirconates and silanes, polyester urethanes and the like can be used.
  • the donor layer of the donor element can be coated on the support or printed thereon by a printing technique such as a gravure process.
  • a barrier layer for the reducing agent and the dye comprising a hydrophilic polymer may also be employed between the support and the donor layer of the donor element to enhance the transfer of reducing agent and dye by preventing wrong-way transfer thereof backwards to the support.
  • the barrier layer may contain any hydrophilic material that is useful for the intended purpose.
  • gelatin polyacrylamide, polyisopropyl acrylamide, butyl methacrylate-grafted gelatin, ethyl methacrylate-grafted gelatin, ethyl acrylate-grafted gelatin, cellulose monoacetate, methylcellulose, polyvinyl alcohol, polyethyleneimine, polyacrylic acid, a mixture of polyvinyl alcohol and polyvinyl acetate, a mixture of polyvinyl alcohol and polyacrylic acid, or a mixture of cellulose monoacetate and polyacrylic acid.
  • hydrophilic polymers e.g. those described in EP 227,091 also have an adequate adhesion to the support and the donor layer, so that the need for a separate adhesive or subbing layer is avoided.
  • the particular hydrophilic polymers used in a single layer in the donor element thus perform a dual function, hence are referred to as barrier/subbing layers.
  • the back of the support (the side opposite to that carrrying the dye layer) is typically provided with a heat-resistant layer to facilitate passage of the donor element past the thermal printing head.
  • An adhesive layer may be provided between the support and the heat-resistant layer.
  • Any heat-resistant layer known in the field of thermal sublimation printing or wax printing can be used in the present invention.
  • the heat-resistant layer generally comprises a lubricant and a binder.
  • the binder is either a cured binder as described in e.g. EP 153,880, EP 194,106.
  • Well known lubricants are polysiloxanes such as those mentioned in EP 267,469, US 4,738,950, US 4,866,028, US 4,753,920 and US 4,782,041.
  • Especially useful slipping agents are polysiloxanepolyether block or graft polymers.
  • lubricants for the heat-resistant slipping layer of the donor element are phosphoric acid derivatives such as those mentioned in EP 153,880 and EP 194,106.
  • metal salts of long fatty acids such as mentioned in EP 458,538, EP 458,522, EP 314,348, JP 01/241,491 and JN 01/222,993
  • wax compounds such as polyolefin waxes such as e.g. polyethylene or polypropylene wax, carnauba wax, bees wax, glycerine monostearate, amid wax such as ethylene bisstearamide and the like.
  • a heat-resistant layer such as mentioned in EP 634 291 is especially preferred.
  • Inorganic particles such as salts derived from silica such as e.g. talc, clay, china clay, mica, chlorite, silica, or carbonates such as calcium carbonate, magnesium carbonate or calcium magnesium carboante (dolomite) can be further added to the heat-resistant layer.
  • silica such as e.g. talc, clay, china clay, mica, chlorite, silica
  • carbonates such as calcium carbonate, magnesium carbonate or calcium magnesium carboante (dolomite) can be further added to the heat-resistant layer.
  • a mixture of talc and dolomite particles is highly preferred.
  • a particular heat-resistant layer for the present invention comprises as a binder a polycarbonate derived from a bis-(hydroxyphenyl)-cycloalkane, corresponding to general formula (I) : wherein :
  • Lubricants and binder can be coated in a single layer, or can be casted in a separate layer. It is highly preferred to cast the salt of a fatty acid in the heat resistant layer (e.g. as a dispersion) and the polysiloxane based lubricant in a separate topcoat. This separate topcoat is preferably casted from a non-solvent for the heat-resistant layer.
  • the heat-resistant layer of the donor element may be coated on the support or printed thereon by a printing technique such as a gravure printing.
  • the heat-resistant layer thus formed has a thickness of about 0.1 to 3 ⁇ m, preferably 0.3 to 1.5 ⁇ m.
  • a subbing layer is provided between the support and the heat-resistant layer to promote the adhesion between the support and the heat-resistant layer.
  • subbing layer any of the subbing layers known in the art for dye-donor elements can be used.
  • Suitable binders that can be used for the subbing layer can be chosen from the classes of polyester resins, polyurethane resins, polyester urethane resins, modified dextrans, modified cellulose, and copolymers comprising recurring units such as i.a. vinyl chloride, vinylidene chloride, vinyl acetate, acrylonitrile, methacrylate, acrylate. butadiene, and styrene (e.g. poly(vinylidene chloride-co-acrylonitrile).
  • Suitable subbing layers have. been described in e.g. EP 138,483, EP 227,090, EP 564010, US 4,567,113, US 4,572,860, US 4,717,711, US 4,559,273, US 4,695,288, US 4,727,057, US 4,737,486, US 4,965,239, US 4,753,921, US 4,895,830, US 4,929,592, US 4,748,150, US 4,965,238, and US 4,965,241.
  • the receiving element for use according to the printing method of the present invention comprises a receiving layer provided on a support, said receiving layer comprising a silver source capable of being reduced by means of heat in the presence of a reducing agent.
  • the reducible silver source may comprise any material that contains a reducible source of silver ions.
  • Silver salts of organic and hetero-organic acids particularly long chain fatty carboxylic acids (comprising from 10 to 30, preferably 15 to 25 carbon atoms) are preferred.
  • Complexes of organic or inorganic silver salts in which the ligand has a gross stability constant for silver ion of between 4.0 and 10.0 are also useful. Examples of suitable silver salts are disclosed in Research Disclosure Nos.
  • 17029 and 29963 include : salts of organic acids, e.g., gallic acid, oxalic acid, behenic acid, stearic acid, palmitic acid, lauric acid and the like; silver carboxyalkylthiourea salts, e.g., 1-(3-carboxypropyl)thiourea, 1-(3-carboxypropyl)-3,3-dimethylthiourea and the like; complexes of silver with the polymeric reaction product of an aldehyde with a hydroxy-substituted aromatic carboxylic acid, e.g., aldehydes, such as formaldehyde, acetaldehyde and butyraldehyde, and hydroxy-substituted acids, such as salicyclic acid, benzilic acid, 3,5-dihdyroxybenzilic acid and 5,5-thiodisalicylic acid; silver salts or complexes of thiones,
  • the silver source is preferably added as a dispersion to the coating liquid of the receiving layer.
  • thermoplastic water insoluble resins are used wherein the ingredients can be dispersed homogeneously or form therewith a solid-state solution.
  • thermoplastic water insoluble resins are used wherein the ingredients can be dispersed homogeneously or form therewith a solid-state solution.
  • natural, modified natural or synthetic resins may be used, e.g.
  • cellulose derivatives such as ethylcellulose, cellulose esters, carboxymethylcellulose, starch ethers, polymers derived from ⁇ , ⁇ -ethlenically unsatured compounds such as polyvinyl chloride, after chlorinated polyvinyl chloride, copolymers of vinyl chloride and vinylidene chloride, copolymers of vinyl chloride and vinyl acetate, polyvinyl acetate and partially hydrolyzed polyvinyl acetate, polyvinyl alcohol, polyvinyl acetals, e.g. polyvinyl butyral, copolymers of acrylonitrile and acrylamide, polyacrylic acid esters, polymethacrylic acid esters and polyethylene or mixtures thereof.
  • a particularly suitable ecologically interesting (halogen-free) binder is polyvinyl butyral.
  • a polyvinyl butyral containing some vinyl alcohol units is marketed under ButvarTM B79 of Monsanto USA.
  • the binder to organic silver salt weight ratio is preferably in the range of 0.2 to 6, and the thickness of the image forming layer is preferably in the range of 5 to 16 ⁇ m.
  • toning agent in the receiving layer or in a layer adjacent to said receiving layer.
  • This toning agent serves to change the tone of the silver image from brown to black or grey.
  • Suitable toning agents are e.g. phthalazinone, phthalazine, phthalimide, succinimide, phthalic acid, benzimidazole or a compound according to formula (II) :
  • phthalazinone or compound (II) is highly preferred.
  • release agent in the receiving element on the side of the receiving layer.
  • This release agent may be added to the coating solution of the receiving layer or may be applied, optionally in a mixture with other ingredients, as a separate layer called the release layer on top of said receiving layer.
  • the use of a release layer is preferred, since the release agent is in that case on top of the receiving element.
  • the release agent is preferred in the printing method of the present invention since the reducing agents useful in the present invention can give rise to a sticky contact between donor element and receiving element.
  • release agents inorganic and organic release agents can be used. Among them, the organic release agent, are preferred.
  • Solid waxes, fluorine- or phosphate-containing surfactants and silicone oils can be used as releasing agent.
  • Suitable releasing agents have been described in e.g. EP 133012, JP 85/19138, and EP 227092.
  • a separate release layer incorporating the release agent
  • other ingredients such as binders, plasticizers, or particulate fillers such as talc, silica or collodial particles can be added to said release layer, provided that the transfer of the reducing agent to the receiving layer comprising the reducible silver source can take place.
  • binders for the release layer are polyvinylbutyral, ethylcellulose, cellulose acetate propionate, cellulose acetate butyrate, polyvinylchloride, copolymers of vinylchloride, vinylacetate and vinylalcohol, aromatic or aliphatic copolyesters, polymethylmethacrylate, polycarbonates derived from bisphenol A, polycarbonates comprising bisphenols according to formula (I) and the like.
  • the release layer can also act as a protective layer for the images.
  • An adhesive layer is usually provided between the support and the receiving layer, such as those mentioned in e.g. US 4,748,150, US 4,954,241, US 4,965,239 and US 4,965,238 and EP-A 574 055.
  • the subbing layer can further comprise other polymers, particles, or low molecular weight additives.
  • Addition of inorganic particles such as silica, colloidal silica, water soluble polymers suchas gelatin, polymeric latices, polystyrene sulfonic acid and polystyrene sulfonic acid sodium salt, surfactants such as cationic, anionic, amphoteric and non-ionic surfactants, and polymeric dispersants is preferred.
  • colloidal silica the above mentioned surfactants, butadiene containing latices suchas poly(butadiene-co-methylmethacrylate-co-itaconic acid), polystyrene sulfonic acid and polystyrene sulfonic acid sodium salt.
  • butadiene containing latices suchas poly(butadiene-co-methylmethacrylate-co-itaconic acid), polystyrene sulfonic acid and polystyrene sulfonic acid sodium salt.
  • the subbing layer of the present invention is applied directly to the support of the receiving element.
  • the subbing layer can be applied by coextrusion or can be coated on the support. Coating from aqueous solution is preferred due to its simplicity and the possibility of adding other ingredients.
  • the receiving layer is usually hydrophobic in order to enhance the absorption of reducing agent into the receiving element.
  • the polyester recycling procedure uses a cleaning step whereby the film waste is immersed in an alkaline or acid soap solution in water. It is an object of this cleaning process to remove all layers casted on the polymeric substrate.
  • hydrophilic polymers which can be used in such intermediate layers are polyvinyl alcohol, polyacrylamide, hydroxyethylcellulose, gelatin, polystyrene sulfonic acid, polyethylene glycol, poly(meth)acrylic acid, poly(meth)acrylic acid, alkali metal salts of polyacrylic acid, crosslinked copolymers containing (meth)acrylic acid or alkali metal salts of (meth)acrylic acid, alkali metal salts of polystyrene sulfonic acid, dextran, carrageenan and the like.
  • Alkali metal salts of polystyrene sulfonic acid such as the sodium salt of polystyrene sulfonic acid is highly preferred, since the use of this polymer in the intermediate layer results in better anti-static properties of the dye-receiving elment.
  • Anti-static coatings such as those described in EP 440,957 can be incorporated in the intermediate layer. This results both in a higher hydrophilicity and in better anti-static properties.
  • the intermediate layer may further comprise polymeric dispersions or latices, surfactants, inorganic particles suchas silica and colloidal silica and the like. Addition of surfactants, colloidal silica and/or latices is preferred. Addition of silica to the intermediate layer decreases sticking to the coating roll after coating. Addition of latices to the intermediate layer improves the addition and improves the removing step in the recycling process in case of acrylic acid or methacrylic acid type latices.
  • the intermediate layer may also have a cushioning property, such as mentioned in US 4,734,397.
  • the support for the receiver sheet or element may be a transparant film of e.g. polyethylene terephthalate, a polyether sulfone, a polyimide, a cellulose ester, or a polyvinyl alcohol-coacetal.
  • the support may also be a reflective one such as barytacoated paper, polyethylene-coated paper, or white polyester i.e. white-pigmented polyester. Blue-coloured polyethylene terephthalate film can also be used as a support.
  • subbing layer is useful for application on polyethylene-coated paper, substrates based on polyester, transparent or reflective, are preferred. In this case, the subbing layer can be applied before, during or after the biaxial stretching procedure.
  • a backcoat can be provided, optionally in combination, with an appropriate subbing layer to improve the adhesion between the backcoat and the support.
  • Hydrophilic as well as hydrophobic backcoats can be used. Hydrophilic backcoats can be applied easily from water, while hydrophobic backcoats have the advantage that the backcoat performs well at all humidity levels (no curl).
  • hydrophilic backcoat layers are layers comprising polyvinylalcohol, polyethylene glycol, polyacrylamide, hydroxyethylcellulose, dextran and gelatin.
  • gelatin is highly preferred.
  • hydrophilic backcoat layers may further comprise dispersions or latices of hydrophobic polymers, inorganic particles, surfactant and the like.
  • the addition of these particles can be used in order to obtain a specific surface gloss, such as mentioned in EP-A-543441.
  • Especially preferred particles are silica and polymethylmethacrylate beads of 0.5 to 10 ⁇ m.
  • Antistatic treatment can also be provided to said backcoat layer.
  • hydrophobic backcoat layers are backcoat layers comprising addition polymers suchas polymethylmethacrylate, polyvinylchloride and polycondensates such as polyesters, polycarbonates in combination with the above mentioned particles for the hydrophilic backcoat layers.
  • hydrophobic backcoat layers it can be useful to provide an intermediate hydrophilic layer between the subbing layer and the backcoat layer, such as those mentioned for use at the receiving side of the dye-receiving element, in order to improve the removal of the backcoat layer in the recycling procedure.
  • the printing method of the present invention preferably uses a thermal head to selectively heat specific portions of the donor element in contact with a receiving element.
  • the thermal head can be a thick or thin film thermal head although the use of a thin film thermal head is preferred, since this offers more opportunities to obtain appropriate gradation.
  • the pressure applied to the thermal head is preferably between 120 and 400 g/cm heater line. A spatial resolution of 150 dpi or higher is preferred.
  • the average printing power is calculated as the total amount of energy applied during one line time divided by the line time and by the surface area of the heat-generating elements.
  • the time needed for printing one single line with the thermal head also called the line time, is preferably below 45 ms. Longer line times result in longer printing times and more deformation of the receiving sheet and/or receiving layer.
  • an overall heat treatment of the receiving element may be performed.
  • This heat treatment can be e.g. done with an infrared source, a heated air stream or a hot plate but is preferably done by means of a heated roller.
  • the transferred reducing agent can further react with the reducible silver source and the dye further migrates into the receiving layer.
  • the heat treatment time for the overall heating can be adjusted.
  • the heated rollers can be used to uncurl the receiving sheet after printing.
  • a subbed polyethylene terephthalate support having a thickness of 100 ⁇ m was coated in order to obtain the following receiving layer : silver behenate 4.5 g/m 2 compound II mentioned above 0.34 g/m 2 polyvinylbutyral (ButvarTM B79, Monsanto) 4.5 g/m 2
  • a release layer was coated from hexane comprising 0.03 g/m 2 TegoglideTM 410 (polyether-polysiloxane blockcopolymer from Goldschmidt). This receiving element was used in the following printing examples.
  • Both sides of a 5.7 ⁇ m thick polyethylene terephthalate support were coated with a subbing layer of a copolyester comprising ethylene glycol, adipic acid, neopentyl glycol, terephthalatic acid, isophthalic acid, and glycerol.
  • a copolyester comprising ethylene glycol, adipic acid, neopentyl glycol, terephthalatic acid, isophthalic acid, and glycerol.
  • the resulting subbing layer was covered with a solution in methyl ethyl ketone of 13% of a polycarbonate having the following structural formula (III) : wherein n represents the number of units to obtain a polycarbonate having a relative viscosity of 1.30 as measured in a 0.5% solution in dichloromethane, 0.5% of talc (Nippon Talc P3, Interorgana) and 0.5% of zinc stearate.
  • structural formula (III) wherein n represents the number of units to obtain a polycarbonate having a relative viscosity of 1.30 as measured in a 0.5% solution in dichloromethane, 0.5% of talc (Nippon Talc P3, Interorgana) and 0.5% of zinc stearate.
  • the other side of the donor element was provided with a donor layer.
  • the nature of the ingredients is mentioned in table 1.
  • the amount of reducing agent(s) and dye(s) are given in weight % in the coating solution.
  • the binder (10 weight %) was casted together with the reducing agent(s) and the dye(s) from a solution in butanone. These coating solutions were applied at a wet thickness of 10 ⁇ m by means of a wire bar. The resulting layer was dried by evaporation of the solvent.
  • Printing was performed by contacting the donor layer of the donor element with the receiving layer of the receiving element, followed by heating by means of a thermal head.
  • the thermal head was a thin film thermal head heated at an average printing power of 5 Watt/mm 2 and a line time of 18 ms with a resolution of 300 dpi.
  • the pressure applied between the thermal head and the rotating drum carrying the receiving and donor element was 160 g/cm heater line. After printing, the receiving element was separated from the donor element.
  • the printed image was a 16-step grey scale between data level 0 and 255 (8 bit).
  • the data levels of the different steps were choosen equidistant with respect to the input data level in order to obtain the native sensitometry.
  • All receiving elements were subsequent to the image-wise heating overall heated on a hot plate of 118°C for 10 seconds.
  • the optical maximal densities of the overall heated prints were measured after a visual filter in a MacbethTM TR924 densitometer in the grey scale part corresponding to data level 255.
  • the evaluation of the grey tone of the printed images after heat treatment was determined by visual inspection of the print on a negatoscope (light box).

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Thermal Transfer Or Thermal Recording In General (AREA)

Description

    1. Field of the invention.
  • The present invention relates to a thermal imaging process, more in particular to a method wherein a thermotransferable reducing agent of a donor element is transferred image-wise to a receiving layer comprising a thermoreducible silver source, by means of e.g. a thermal head or a laser.
  • 2. Background of the invention
  • Thermal imaging or thermography is a recording process wherein images are generated by the use of image-wise modulated thermal energy.
  • In thermography two approaches are known :
  • 1. Direct thermal formation of a visible image pattern by imagewise heating of a recording material containing matter that by chemical or physical process changes colour or optical density.
  • 2. Formation of a visible image pattern by transfer of a coloured species from an imagewise heated donor element onto a receptor element.
  • A survey of "direct thermal" imaging methods is given in the book "Imaging Systems" by Kurt I. Jacobson-Ralph E. Jacobson, The Focal Press - London and New York (1976), Chapter VII under the heading "7.1 Thermography". Thermography is converned with materials which are not photosensitive, but are heat sensitive. Imagewise applied heat is sufficient to bring about a visible change in a thermosensitive imaging material.
  • According to a direct thermal embodiment operating by physical change, a recording material is used which contains a coloured support or support coated with a coloured layer which itself is overcoated with an opaque white light reflecting layer that can fuse to a clear, transparent state whereby the coloured support is no longer masked. Physical thermographic systems operating with such kind of recording material are described on pages 136 and 137 of the above mentioned book of Kurt I. Jacobson et al.
  • Yet most of the "direct" thermographic recording materials are of the chemical type. On heating to a certain conversion temperature, an irreversible chemical reaction takes place and a coloured image is produced.
  • It has been suggested to use a thermoreducible silver source in combination with a reducing agent in a direct thermal film in order to increase the optical density in transmission of a printed image (see e.g. EP-A-537.975). Although continuous tones can be obtained by the printing method, the gradation produced by the printing method is too high. Fluctuations in the heat transfer from the heat source to the printing material result in a density difference of the final image. Thus, it is extremely difficult to obtain images having a uniform density profile. A direct thermal printing method moreover has the disadvantage that in the non-image places the coreactants always remains unchanged, impairing the shelf-life and preservability.
  • US-A-3 094 417 discloses a heat-sensitive copy-sheet product capable of becoming locally visibly altered and highly infra-red absorptive on localized brief heating at a conversion temperature between about 90°C and about 150°C, comprising a paper-like backing, a visibly heat-sensitive layer, and a surface layer comprising a heat-transferable image-forming component; the heat-sensitive layer comprising chemically inter-reactant components in physically distinct and chemically inter-reactive relationship for interreaction to form a visibly distinct and infra-red absorptive reaction product upon heating the layer to the conversion temperature, one of the inter-reactant components being readily desensitizable against the inter-reaction by exposure, in solution in an inert solvent at a concentration just sufficient to permit distinctly visible reaction with the other of the components in the solvent, to radiation in the near-ultraviolet range of approximately 3000 to 4200 angstroms (300 to 420 nm) wavelength as obtained from a BH-6 high pressure mercury arc lamp at a distance of 6 inches (15.24 cm) and a time of 45 minutes, and, uniformly intermixed with the one component, a colored activatable organic photoreducible dye characterized by its ability to cause reduction of silver ion in a dilute solution of silver nitrate, triethanolammonium nitrate, and the dye on exposure of the solution for thirty minutes to visible light absorbable by the dye and at about 60,000 foot candles (5789 lux) intensity as obtained from a high intensity incandescent tungsten filament lamp.
  • JP-A-61 259 253 discloses a heat developing colour-photographic material containing at least photosensitive silver halide, binder, electron donor, anti-diffusion dye donor which releases movable dye by being reduced with an electron donor, on a support, wherein the electron donor is an alkyl or aryl (sulphon)amido naphthol derivative.
  • Research Disclosure no. 17706 discloses a photothermographic material which comprises a support coated with a layer which contains, or with layers which together contain, (a) a photographic silver halide, (b) an oxidation-reduction image-forming combination (i) a reducible silver salt and (ii) at least one reducing agent which comprises an azomethine or azo dye (c) a development modifier and (d) a synthetic polymeric binder, wherein the azo dye reducing agent is a compound of the formula (I).
  • US-A-3 767 414 discloses a method of imaging comprising a stratum containing a polymeric heavy metal azolate to heat at least at image areas and in the presence of a photosensitive reducing agent to provide on the sheet material a visible image, wherein the reducing agent is supplied from a second sheet held in face-to-face contact with the first sheet material.
  • Thermal dye transfer printing is a recording method wherein a dye-donor element is used that is provided with a dye layer wherefrom dyed portions or incorporated dye is transferred onto a contacting receiving element by the application of heat in a pattern normally controlled by electronic information signals.
  • In thermosublimation printing, dyes are transferred to a receiving element. It is possible to obtain an image with an excellent grey tone, however, with limited optical densities (2.0 - 2.5).
  • It has been suggested to increase the density of a print made by thermal sublimation printing by printing several times on the same receiving sheet.
  • This procedure is slow and optical densities in transmission above 3.0 are hardly obtained with a good image stability.
  • In EP-A 671 283, a thermal imaging process is provided using (i) a donor element comprising on a support a donor layer containing a binder and a thermotransferably reducing agent capable of reducing a silver source to metallic silver upon heating and (ii) a receiving element comprising on a support a receiving layer comprising a silver source capable of being reduced by means of heat in the presence of a reducing agent, the thermal imaging process comprising the steps of
    • bringing the donor layer of said reductor donor element into face to face relationship with said receiving layer of said receiving element,
    • image-wise heating a thus obtained assemblage by means of a thermal head, thereby causing image-wise transfer of an amount of said thermotransferable reducing agent to said receiving element in accordance with the amount of heat supplied by said thermal head, and
    • separating said donor element from said receiving element.
  • This printing method is further referred to as 'reducing agent transfer printing' or 'RTP' and provides images having a high optical density.
  • In the above thermal transfer printing process, however, it has been found extremely difficult to obtain a high optical density combined with a neutral grey tone necessary e.g. for medical diagnostics.
  • 3. Object of the present invention
  • It is an object of the present invention to provide a thermal imaging process using a donor element wherein said donor element contains a donor layer comprising a binder and a thermotransferable reducing agent capable of reducing a silver source to metallic silver upon heating and that can yield images of having a high optical density and an improved neutral black or grey tone.
  • In accordance with the present invention a thermal imaging process is provided using (i) a donor element including on a support a donor layer containing a binder, a thermotransferable reducing agent capable of reducing a silver source to metallic silver upon heating and a thermotransferable dye and (b) a heat-resistant layer provided on the side of the support opposite to the side having the donor layer and (ii) a receiving element including on a support a receiving layer containing a silver source capable of being reduced by means of heat in the presence of a reducing agent, the thermal imaging process comprising the steps of
    • bringing the donor layer of the donor element into face to face relationship with the receiving layer of the receiving element,
    • image-wise heating a thus obtained assemblage preferably by means of a thermal head or a laser, thereby causing image-wise transfer of an amount of the thermotransferable reducing agents to said receiving element in accordance with the amount of heat supplied,
    • separating the donor element from the receiving element and
    • subsequent overall heating of the receiving element.
    4. Detailed description of the invention
  • The donor element for use according to present invention comprises on one side of the donor element a donor layer, comprising a thermotransferable reducing agent capable of reducing a silver source to metallic silver, a thermotransferable dye and a binder.
  • The reducing agent for the silver source may comprise any of the conventional photographic developers known in the art, such as phenidone, hydroquinones and catechol provided that the reducing agent is thermotransferable.
  • Examples of suitable reducing agents are aminohydroxycycloalkenone compounds, esters of amino reductones, N-hydroxyurea derivatives, hydrazones of aldehydes and ketones, phosphoramidophenols, phosphoramidoanilines, polyhydroxybenzenes, e.g. hydroquinone, t-butylhydroquinone, isopropylhydroquinone, and (2,5-dihydroxyphenyl)methylsulfone, dihydroxybenzene derivatives such as pyrocatechol, and pyrogallol derivatives such as 4-phenylpyrocatechol, t-butylcatechol, pyrogallol, or pyrogallol derivatives such as pyrogallol ethers or esters, dihydroxybenzoic acid, dihydroxybenzoic acid esters such as dihydroxybenzoic acid, methyl ester, ethyl ester, propyl ester, butyl ester and the like, gallic acid, gallic acid esters such as methyl gallate. ethyl gallate, propyl gallate and the like, gallic acid amides, sulfhydroxamic acids. sulfonamidoanilines, 2-tetrazolylthiohydroquinones, e.g., 2-methyl-5-(1-phenyl-5-tetrazolylthio)hydroquinone, , tetrahydroquinoxalines, e.g. 1,2,3,4-tetrahydroquinoxaline, amidoximes, azines, hydroxamic acids, 5-pyrazolones, sulfonamidophenol reducing agents, 2-phenylindan-1,3-dione and the like, 1,4-dihydropyridines, such as 2,6-dimethoxy-3,5-dicarbethoxy-1,4-dihydropyridine, bisphenols, e.g., bis(2-hydroxy-3-t-butyl-5-methylphenyl) methane, bis(6-hydroxy-m-toly)mesitol, 2,2-bis (4-hydroxy-3-methylphenyl)propane, 4,4-ethylidene-bis(2-t-butyl-6-methylphenol) and 2,2-bis(3,5-dimethyl-4-hydroxyphenyl) propane, ascorbic acid derivatives and 3-pyrazolidones.
  • Reducing agents being coloured in an oxidized form or capable of forming colour in an oxidized form (further referred to as color forming reducing agents) can also be used. Specific examples are 4-methoxynaphthol and leucoazomethines in particular leucoindoanilines such as for example:
    Figure 00060001
    Reducing agents derived from dihydroxy or trihydroxyphenyl compounds are especially preferred. Highly preferred are 4-phenyl pyrocatechol and propyl gallate.
  • Preferred thermotransferable dyes for use in connection with the present invention are dyes having a hue that is complementary to the hue of the metallic silver image that forms in the image receiving layer of the image receiving element. Particular examples of dyes that can be used in connection with the present invention are azomethine dyes as disclosed in EP 400,704 and US 5.134.115, indoaniline dyes as disclosed in US 4.987.119, US 4.695.287, US 4.829.047 and US 4.983.493, azo dyes as disclosed in EP 344.592, EP 218.397, EP 302.628, EP 352.006 and EP 546.700, anthraquinone dyes as disclosed in US 4.940.692 and EP 209.911, azino dyes as disclosed in EP-A 611 663, heterocyclic dyes as disclosed in US 5.175.069 or mixtures of these dyes such disclosed in e.g. US 5.177.022, EP 366.261, US 4.933.226, EP 361.197 and JP 05-131765. Particularly preferred in accordance with the present invention are the dyes disclosed in EP 400.706 which are incorporated herein by reference. The latter dyes appear to have the advantage that crystallization of the thermotransferable reducing agent in the donor layer is substantially reduced in the presence of one or more of these dyes.
  • A non-exhaustive list of dyes that can be used in the present invention are given in the following table 1:
    Figure 00070001
    Figure 00080001
    Figure 00090001
    Figure 00090002
    Figure 00100001
    Figure 00100002
  • The use of a dye having an absorption maximum in the range above 500nm is preferred and in particular the use of a cyan or a blue dye is especially preferred, while images obtained with reducing agent transfer printing are usually coloured yellow to brown. The extinction coefficient of the dye at the absorption maximum (measured in the coating solvent) is preferably at least 8000 1/(mol*cm) and more preferably at least 20000 1/(mol*cm).
  • The amount of dye or dye mixture is preferably lower than the amount of reducing agent or reducing agent mixture in the donor layer.
  • The addition of a dye can have a positive influence on the stability of the donor element during storage at elevated temperature (40-60°C). More particularly, the crystallization of the reducing agent(s) can be avoided as already mentioned above.
  • As a binder for the donor layer, hydrophilic or hydrophobic binders can be used, although the use of hydrophobic binders is preferred.
  • Hydrophilic binders which can be used are polyvinylalcohol, gelatine, polyacrylamide and hydrophilic cellulosic binders such as hydroxyethyl cellulose, hydroxypropyl cellulose and the like.
  • The hydrophobic binders may be used as a dispersion in e.g. water or as a solution in an organic solvent.
  • Suitable binders for the donor layer are cellulose derivatives, such as ethyl cellulose, methyl cellulose, cellulose nitrate, cellulose acetate formate, cellulose acetate hydrogen phthalate, cellulose acetate, cellulose acetate propionate, cellulose acetate butyrate, cellulose acetate pentanoate, cellulose acetate benzoate, cellulose triacetate; vinyl-type resins and derivatives, such as polyvinyl acetate, polyvinyl butyral, copolyvinyl butyral-vinyl acetal-vinyl alcohol, polyvinyl pyrrolidone, polyvinyl acetoacetal, polyacrylamide; polymers and copolymers derivated from acrylates and acrylate derivatives, such as polymethyl metahcrylate and styreneacrylate copolymers: polyester resins; polycarbonates; copoly(styrene-co-acrylonitrile); polysulfones: polyphenylene oxide; organosilicones, such as polysiloxans; epoxy resins and natural resins, such as gum arabic. Preferably, the binder for the donor layer in accordance with the present invention comprises poly(styrene-co-acrylonitrile) or a mixture of poly(styrene-coacrylonitrile) and a toluenesulphonamide condensation product.
  • The binder for the donor layer preferably comprises a copolymer comprising styrene units and acrylonitrile units, preferentially at least 60% by weight of styrene units and at least 25% by weight of acrylonitrile units binder. The binder copolymer may, of course, comprise other comonomers than styrene units and acrylonitrile units. Suitable other comonomers are e.g. butadiene, butyl acrylate, and methyl methacrylate. The binder copolymer preferably has a glass transition temperature of at least 50°C.
  • It is also possible to use a mixture of the copolymer comprising styrene units and at least 15% by weight of acrylonitrile units with another binder known in the art, but preferably the acrylonitrile copolymer is present in an amount of at least 50 % by weight of the total amount of binder.
  • The donor layer génerally has a thickness of about 0.2 to 5.0 µm, preferably 0.4 to 2.0 µm, and the amount ratio of reducing agent and dye to binder generally ranges from 9:1 to 1:3 by weight, preferably from 3:1 to 1:2 by weight.
  • The donor layer may also contain other additives such as i.a. thermal solvents, stabilizers, curing agents, preservatives, dispersing agents, antistatic agents, defoaming agents, and viscosity-controlling agents.
  • The donor layer in accordance with the present invention may consist of multiple layers. In the latter case the thermotransferable dye and thermotransferable reducing agent may be provided in different layers.
  • Any material can be used as the support for the donor element provided it is dimensionally stable and capable of withstanding the temperatures involved, up to 400°C over a period of up to 20 msec, and is yet thin enough to transmit heat applied on one side through to the reducing agent on the other side to effect transfer to the receiver sheet within such short periods, typically from 1 to 10 msec. Such materials include polyesters such as polyethylene terephthalate, polyamides, polyacrylates, polycarbonates, cellulose esters, fluorinated polymers, polyethers, polyacetals, polyolefins, polyimides, glassine paper and condenser paper. Preference is given to a support comprising polyethylene terephthalate. The support preferably has a thickness of 3 to 10 µm in order to allow for a good heat transfer across the support, so that a good transfer of dye(s) and reducing agent(s) is obtained. The support may also be coated with an adhesive of subbing layer, if desired.
  • Subbing layers comprising aromatic copolyesters, vinylidene chloride copolymers, organic titanate, zirconates and silanes, polyester urethanes and the like can be used.
  • The donor layer of the donor element can be coated on the support or printed thereon by a printing technique such as a gravure process.
  • A barrier layer for the reducing agent and the dye comprising a hydrophilic polymer may also be employed between the support and the donor layer of the donor element to enhance the transfer of reducing agent and dye by preventing wrong-way transfer thereof backwards to the support. The barrier layer may contain any hydrophilic material that is useful for the intended purpose. In general, good results can be obtained with gelatin, polyacrylamide, polyisopropyl acrylamide, butyl methacrylate-grafted gelatin, ethyl methacrylate-grafted gelatin, ethyl acrylate-grafted gelatin, cellulose monoacetate, methylcellulose, polyvinyl alcohol, polyethyleneimine, polyacrylic acid, a mixture of polyvinyl alcohol and polyvinyl acetate, a mixture of polyvinyl alcohol and polyacrylic acid, or a mixture of cellulose monoacetate and polyacrylic acid.
  • Certain hydrophilic polymers e.g. those described in EP 227,091 also have an adequate adhesion to the support and the donor layer, so that the need for a separate adhesive or subbing layer is avoided. The particular hydrophilic polymers used in a single layer in the donor element thus perform a dual function, hence are referred to as barrier/subbing layers.
  • Owing to the fact that the thin support softens when heated during the printing operation and then sticks to the thermal printing head, thereby causing malfunction of the printing apparatus and reduction in image quality, the back of the support (the side opposite to that carrrying the dye layer) is typically provided with a heat-resistant layer to facilitate passage of the donor element past the thermal printing head. An adhesive layer may be provided between the support and the heat-resistant layer.
  • Any heat-resistant layer known in the field of thermal sublimation printing or wax printing can be used in the present invention.
  • The heat-resistant layer generally comprises a lubricant and a binder. In the conventional heat-resistant layers the binder is either a cured binder as described in e.g. EP 153,880, EP 194,106. EP 314,348, EP 329,117, JP 60/151,096, JP 60/229,787, JP 60/229,792, JP 60/229,795, JP 62/48,589, JP 62/212,192, JP 62/259,889, JP 01/5884, JP 01/56,587, and JP 92/128,899 or a polymeric thermoplast as described in e.g. EP 267,469, JP 58/187,396, JP 63/191,678. JP 63/191,679, JP 01/234,292, and JP 02/70,485.
  • During printing, a smooth transport of the donor ribbon and the receiving element is required in order to obtain a good density uniformity all over the print.
  • It is preferred to use different types of lubricants to allow continuous transport of the donor ribbon relative to the thermal head.
  • Well known lubricants are polysiloxanes such as those mentioned in EP 267,469, US 4,738,950, US 4,866,028, US 4,753,920 and US 4,782,041. Especially useful slipping agents are polysiloxanepolyether block or graft polymers.
  • Other lubricants for the heat-resistant slipping layer of the donor element are phosphoric acid derivatives such as those mentioned in EP 153,880 and EP 194,106. metal salts of long fatty acids (such as mentioned in EP 458,538, EP 458,522, EP 314,348, JP 01/241,491 and JN 01/222,993), wax compounds such as polyolefin waxes such as e.g. polyethylene or polypropylene wax, carnauba wax, bees wax, glycerine monostearate, amid wax such as ethylene bisstearamide and the like.
  • A heat-resistant layer such as mentioned in EP 634 291 is especially preferred.
  • Inorganic particles such as salts derived from silica such as e.g. talc, clay, china clay, mica, chlorite, silica, or carbonates such as calcium carbonate, magnesium carbonate or calcium magnesium carboante (dolomite) can be further added to the heat-resistant layer.
  • It is highly preferred to add mixtures of particles to the heat resistant layer having a Mohs hardness below 2.7 and particles having a Mohs hardness above, 2.7 such as mentioned in EP 628 428.
  • A mixture of talc and dolomite particles is highly preferred.
  • A particular heat-resistant layer for the present invention comprises as a binder a polycarbonate derived from a bis-(hydroxyphenyl)-cycloalkane, corresponding to general formula (I) :
    Figure 00140001
    wherein :
  • R1, R2, R3, and R4 each independently represents hydrogen, halogen, a C1-C8 alkyl group, a substituted C1-C8 alkyl group, a C5-C6 cycloalkyl group, a substituted C5-C6 cycloalkyl group, a C6-C10 aryl group, a substituted C6-C10 aryl group, a C7-C12 aralkyl group, or a substituted C7-C12 aralkyl group; and
  • X represents the atoms necessary to complete a 5- to 8-membered alicyclic ring, optionally substituted with a C1-C6 alkyl group, a 5- or 6-membered cycloalkyl group or a fused-on 5- or 6-membered cycloalkyl group,
    as lubricants polyether modified polysiloxane block copolymer and zinc stearate and as particles talc particles with a mean size of 4.5 µm.
  • Lubricants and binder can be coated in a single layer, or can be casted in a separate layer. It is highly preferred to cast the salt of a fatty acid in the heat resistant layer (e.g. as a dispersion) and the polysiloxane based lubricant in a separate topcoat. This separate topcoat is preferably casted from a non-solvent for the heat-resistant layer.
  • The heat-resistant layer of the donor element may be coated on the support or printed thereon by a printing technique such as a gravure printing.
  • The heat-resistant layer thus formed has a thickness of about 0.1 to 3 µm, preferably 0.3 to 1.5 µm.
  • Preferably a subbing layer is provided between the support and the heat-resistant layer to promote the adhesion between the support and the heat-resistant layer. As subbing layer any of the subbing layers known in the art for dye-donor elements can be used. Suitable binders that can be used for the subbing layer can be chosen from the classes of polyester resins, polyurethane resins, polyester urethane resins, modified dextrans, modified cellulose, and copolymers comprising recurring units such as i.a. vinyl chloride, vinylidene chloride, vinyl acetate, acrylonitrile, methacrylate, acrylate. butadiene, and styrene (e.g. poly(vinylidene chloride-co-acrylonitrile). Suitable subbing layers have. been described in e.g. EP 138,483, EP 227,090, EP 564010, US 4,567,113, US 4,572,860, US 4,717,711, US 4,559,273, US 4,695,288, US 4,727,057, US 4,737,486, US 4,965,239, US 4,753,921, US 4,895,830, US 4,929,592, US 4,748,150, US 4,965,238, and US 4,965,241.
  • The receiving element for use according to the printing method of the present invention comprises a receiving layer provided on a support, said receiving layer comprising a silver source capable of being reduced by means of heat in the presence of a reducing agent.
  • The reducible silver source may comprise any material that contains a reducible source of silver ions. Silver salts of organic and hetero-organic acids, particularly long chain fatty carboxylic acids (comprising from 10 to 30, preferably 15 to 25 carbon atoms) are preferred. Complexes of organic or inorganic silver salts in which the ligand has a gross stability constant for silver ion of between 4.0 and 10.0 are also useful. Examples of suitable silver salts are disclosed in Research Disclosure Nos. 17029 and 29963 and include : salts of organic acids, e.g., gallic acid, oxalic acid, behenic acid, stearic acid, palmitic acid, lauric acid and the like; silver carboxyalkylthiourea salts, e.g., 1-(3-carboxypropyl)thiourea, 1-(3-carboxypropyl)-3,3-dimethylthiourea and the like; complexes of silver with the polymeric reaction product of an aldehyde with a hydroxy-substituted aromatic carboxylic acid, e.g., aldehydes, such as formaldehyde, acetaldehyde and butyraldehyde, and hydroxy-substituted acids, such as salicyclic acid, benzilic acid, 3,5-dihdyroxybenzilic acid and 5,5-thiodisalicylic acid; silver salts or complexes of thiones, e.g., 3-(2-carboxyethyl)-4-hydroxymethyl-4-thiazoline-2-thione and 3-carboxymethyl-4-methyl-4-thiazoline-2-thione; complexes of salts of silver with nitrogen acids selected from imidazole, pyrazole, urazole, 1,2,4-triazole and 1H-tetrazole, 3-amino-5-benzylthio-1,2,4-triazole and benzotriazole; silver salts of saccharin, 5-chlorosalicylaldoxime and the like; and silver salts of mercaptides. The preferred silver source is silver behenate.
  • The silver source is preferably added as a dispersion to the coating liquid of the receiving layer.
  • As binding agent for the heat sensitive layer preferably thermoplastic water insoluble resins are used wherein the ingredients can be dispersed homogeneously or form therewith a solid-state solution. For that purpose all kinds of natural, modified natural or synthetic resins may be used, e.g. cellulose derivatives such as ethylcellulose, cellulose esters, carboxymethylcellulose, starch ethers, polymers derived from α, β-ethlenically unsatured compounds such as polyvinyl chloride, after chlorinated polyvinyl chloride, copolymers of vinyl chloride and vinylidene chloride, copolymers of vinyl chloride and vinyl acetate, polyvinyl acetate and partially hydrolyzed polyvinyl acetate, polyvinyl alcohol, polyvinyl acetals, e.g. polyvinyl butyral, copolymers of acrylonitrile and acrylamide, polyacrylic acid esters, polymethacrylic acid esters and polyethylene or mixtures thereof. A particularly suitable ecologically interesting (halogen-free) binder is polyvinyl butyral. A polyvinyl butyral containing some vinyl alcohol units is marketed under Butvar™ B79 of Monsanto USA.
  • The binder to organic silver salt weight ratio is preferably in the range of 0.2 to 6, and the thickness of the image forming layer is preferably in the range of 5 to 16 µm.
  • It is preferred to use a so-called toning agent in the receiving layer or in a layer adjacent to said receiving layer. This toning agent serves to change the tone of the silver image from brown to black or grey. Suitable toning agents are e.g. phthalazinone, phthalazine, phthalimide, succinimide, phthalic acid, benzimidazole or a compound according to formula (II) :
    Figure 00170001
  • The use of phthalazinone or compound (II) is highly preferred.
  • It is highly preferred to use a release agent in the receiving element on the side of the receiving layer. This release agent may be added to the coating solution of the receiving layer or may be applied, optionally in a mixture with other ingredients, as a separate layer called the release layer on top of said receiving layer. The use of a release layer is preferred, since the release agent is in that case on top of the receiving element.
  • The release agent is preferred in the printing method of the present invention since the reducing agents useful in the present invention can give rise to a sticky contact between donor element and receiving element.
  • As release agents, inorganic and organic release agents can be used. Among them, the organic release agent, are preferred.
  • Solid waxes, fluorine- or phosphate-containing surfactants and silicone oils can be used as releasing agent. Suitable releasing agents have been described in e.g. EP 133012, JP 85/19138, and EP 227092.
  • When, as mentioned above, a separate release layer, incorporating the release agent, is casted on top of said receiving layer, other ingredients such as binders, plasticizers, or particulate fillers such as talc, silica or collodial particles can be added to said release layer, provided that the transfer of the reducing agent to the receiving layer comprising the reducible silver source can take place.
  • Examples of binders for the release layer are polyvinylbutyral, ethylcellulose, cellulose acetate propionate, cellulose acetate butyrate, polyvinylchloride, copolymers of vinylchloride, vinylacetate and vinylalcohol, aromatic or aliphatic copolyesters, polymethylmethacrylate, polycarbonates derived from bisphenol A, polycarbonates comprising bisphenols according to formule (I) and the like. The release layer can also act as a protective layer for the images.
  • An adhesive layer is usually provided between the support and the receiving layer, such as those mentioned in e.g. US 4,748,150, US 4,954,241, US 4,965,239 and US 4,965,238 and EP-A 574 055.
  • The subbing layer can further comprise other polymers, particles, or low molecular weight additives. Addition of inorganic particles such as silica, colloidal silica, water soluble polymers suchas gelatin, polymeric latices, polystyrene sulfonic acid and polystyrene sulfonic acid sodium salt, surfactants such as cationic, anionic, amphoteric and non-ionic surfactants, and polymeric dispersants is preferred.
  • Especially preferred additives are colloidal silica, the above mentioned surfactants, butadiene containing latices suchas poly(butadiene-co-methylmethacrylate-co-itaconic acid), polystyrene sulfonic acid and polystyrene sulfonic acid sodium salt. The addition of silica to the subbing layer decreases sticking on the coating roll after coating of the subbing layer. The addition of polystyrene sulfonic acid or polystyrene sulfonic acid sodium salt to the subbing layer accelerates the recycling process.
  • The subbing layer of the present invention is applied directly to the support of the receiving element. The subbing layer can be applied by coextrusion or can be coated on the support. Coating from aqueous solution is preferred due to its simplicity and the possibility of adding other ingredients.
  • The receiving layer is usually hydrophobic in order to enhance the absorption of reducing agent into the receiving element. The polyester recycling procedure, however, uses a cleaning step whereby the film waste is immersed in an alkaline or acid soap solution in water. It is an object of this cleaning process to remove all layers casted on the polymeric substrate.
  • In order to remove the hydrophobic receiving layer, it is highly preferred to cast an intermediate layer of an hydrophilic polymer between the subbing layer and the dye-receiving layer. This intermediate layer accelerates the cleaning step in the recycling procedure. Typical examples of hydrophilic polymers which can be used in such intermediate layers are polyvinyl alcohol, polyacrylamide, hydroxyethylcellulose, gelatin, polystyrene sulfonic acid, polyethylene glycol, poly(meth)acrylic acid, poly(meth)acrylic acid, alkali metal salts of polyacrylic acid, crosslinked copolymers containing (meth)acrylic acid or alkali metal salts of (meth)acrylic acid, alkali metal salts of polystyrene sulfonic acid, dextran, carrageenan and the like. Alkali metal salts of polystyrene sulfonic acid such as the sodium salt of polystyrene sulfonic acid is highly preferred, since the use of this polymer in the intermediate layer results in better anti-static properties of the dye-receiving elment. Anti-static coatings such as those described in EP 440,957 can be incorporated in the intermediate layer. This results both in a higher hydrophilicity and in better anti-static properties.
  • The intermediate layer may further comprise polymeric dispersions or latices, surfactants, inorganic particles suchas silica and colloidal silica and the like. Addition of surfactants, colloidal silica and/or latices is preferred. Addition of silica to the intermediate layer decreases sticking to the coating roll after coating. Addition of latices to the intermediate layer improves the addition and improves the removing step in the recycling process in case of acrylic acid or methacrylic acid type latices.
  • The intermediate layer may also have a cushioning property, such as mentioned in US 4,734,397.
  • The support for the receiver sheet or element may be a transparant film of e.g. polyethylene terephthalate, a polyether sulfone, a polyimide, a cellulose ester, or a polyvinyl alcohol-coacetal. The support may also be a reflective one such as barytacoated paper, polyethylene-coated paper, or white polyester i.e. white-pigmented polyester. Blue-coloured polyethylene terephthalate film can also be used as a support.
  • Although the subbing layer is useful for application on polyethylene-coated paper, substrates based on polyester, transparent or reflective, are preferred. In this case, the subbing layer can be applied before, during or after the biaxial stretching procedure.
  • At the opposite side of the receiving element (opposite to the receiving layer), a backcoat can be provided, optionally in combination, with an appropriate subbing layer to improve the adhesion between the backcoat and the support.
  • Hydrophilic as well as hydrophobic backcoats can be used. Hydrophilic backcoats can be applied easily from water, while hydrophobic backcoats have the advantage that the backcoat performs well at all humidity levels (no curl).
  • Examples of hydrophilic backcoat layers are layers comprising polyvinylalcohol, polyethylene glycol, polyacrylamide, hydroxyethylcellulose, dextran and gelatin. The use of gelatin is highly preferred.
  • These hydrophilic backcoat layers may further comprise dispersions or latices of hydrophobic polymers, inorganic particles, surfactant and the like. The addition of these particles can be used in order to obtain a specific surface gloss, such as mentioned in EP-A-543441. Especially preferred particles are silica and polymethylmethacrylate beads of 0.5 to 10 µm. Antistatic treatment can also be provided to said backcoat layer.
  • Examples of hydrophobic backcoat layers are backcoat layers comprising addition polymers suchas polymethylmethacrylate, polyvinylchloride and polycondensates such as polyesters, polycarbonates in combination with the above mentioned particles for the hydrophilic backcoat layers.
  • With hydrophobic backcoat layers, it can be useful to provide an intermediate hydrophilic layer between the subbing layer and the backcoat layer, such as those mentioned for use at the receiving side of the dye-receiving element, in order to improve the removal of the backcoat layer in the recycling procedure.
  • The printing method of the present invention preferably uses a thermal head to selectively heat specific portions of the donor element in contact with a receiving element. The thermal head can be a thick or thin film thermal head although the use of a thin film thermal head is preferred, since this offers more opportunities to obtain appropriate gradation. The pressure applied to the thermal head is preferably between 120 and 400 g/cm heater line. A spatial resolution of 150 dpi or higher is preferred. The average printing power is calculated as the total amount of energy applied during one line time divided by the line time and by the surface area of the heat-generating elements.
  • Although a higher average printing power results in higher optical densities of the final image, it is preferred to use an average printing power below 10 W/mm2. At higher printing energies, deformation of the receiving layer and/or receiving sheet occurs.
  • The time needed for printing one single line with the thermal head, also called the line time, is preferably below 45 ms. Longer line times result in longer printing times and more deformation of the receiving sheet and/or receiving layer.
  • In order to increase the density of the final image after printing line-by-line with a thermal head, an overall heat treatment of the receiving element may be performed. This heat treatment can be e.g. done with an infrared source, a heated air stream or a hot plate but is preferably done by means of a heated roller.
  • It is believed that during the overall heat treatment, the transferred reducing agent can further react with the reducible silver source and the dye further migrates into the receiving layer.
  • By selecting the appropriate diameter and speed of the heated roller, the heat treatment time for the overall heating can be adjusted. Moreover, the heated rollers can be used to uncurl the receiving sheet after printing.
  • The following examples illustrate the invention in more detail without, however, limiting the scope thereof. All parts are by weight unless otherwise specified.
  • EXAMPLES Preparation of the receiving element
  • A subbed polyethylene terephthalate support having a thickness of 100 µm was coated in order to obtain the following receiving layer :
    silver behenate 4.5 g/m2
    compound II mentioned above 0.34 g/m2
    polyvinylbutyral (Butvar™ B79, Monsanto) 4.5 g/m2
  • After drying, a release layer was coated from hexane comprising 0.03 g/m2 Tegoglide™ 410 (polyether-polysiloxane blockcopolymer from Goldschmidt). This receiving element was used in the following printing examples.
  • Preparation of the donor elements
  • Both sides of a 5.7 µm thick polyethylene terephthalate support were coated with a subbing layer of a copolyester comprising ethylene glycol, adipic acid, neopentyl glycol, terephthalatic acid, isophthalic acid, and glycerol.
  • The resulting subbing layer was covered with a solution in methyl ethyl ketone of 13% of a polycarbonate having the following structural formula (III) :
    Figure 00220001
    wherein n represents the number of units to obtain a polycarbonate having a relative viscosity of 1.30 as measured in a 0.5% solution in dichloromethane, 0.5% of talc (Nippon Talc P3, Interorgana) and 0.5% of zinc stearate.
  • Finally, a top layer of polyether-modified polydimethylsilocane (Tegoglide™ 410, Goldschmidt) was coated from a solution in isopropanol on the resulting heat-resistant polycarbonate layer.
  • The other side of the donor element was provided with a donor layer. The nature of the ingredients is mentioned in table 1.
  • The amount of reducing agent(s) and dye(s) are given in weight % in the coating solution. The binder (10 weight %) was casted together with the reducing agent(s) and the dye(s) from a solution in butanone. These coating solutions were applied at a wet thickness of 10 µm by means of a wire bar. The resulting layer was dried by evaporation of the solvent.
  • Printing of the combination of donor and receiving elements
  • Printing was performed by contacting the donor layer of the donor element with the receiving layer of the receiving element, followed by heating by means of a thermal head. The thermal head was a thin film thermal head heated at an average printing power of 5 Watt/mm2 and a line time of 18 ms with a resolution of 300 dpi. The pressure applied between the thermal head and the rotating drum carrying the receiving and donor element was 160 g/cm heater line. After printing, the receiving element was separated from the donor element.
  • The printed image was a 16-step grey scale between data level 0 and 255 (8 bit). The data levels of the different steps were choosen equidistant with respect to the input data level in order to obtain the native sensitometry.
  • Overall heat treatment
  • All receiving elements were subsequent to the image-wise heating overall heated on a hot plate of 118°C for 10 seconds.
  • Measurement of the optical density of the prints
  • The optical maximal densities of the overall heated prints were measured after a visual filter in a Macbeth™ TR924 densitometer in the grey scale part corresponding to data level 255.
  • Evaluation of the grey tone.
  • The evaluation of the grey tone of the printed images after heat treatment was determined by visual inspection of the print on a negatoscope (light box).
  • The following criteria were used :
  • Bad : the print has a clear yellow-brown shade
  • Moderate : the print has a moderate yellowish shade
  • Good : the print has only a faint yellowish shade
  • Excellent : the print has an excellent grey tone without a specific coloured shade.
  • The results are listed in table 2.
    Example Reducing agents Dyes Visual density Grey tone
    A % B % C % A % B %
    1(Comp) R1 15 - - - - 2.24 B
    2(Comp) R1 10 R2 3 R3 2 - - 2.50 M
    3 R1 13 - - D11 2 - 2.14 E
    4 R1 5 R2 5 R3 2 D3 3 - 2.75 G
    5 R3 13 - - D3 2 - 2.42 E
    6 R3 7 R1 4.5 - D3 3.5 - 2.58 E
    7 R3 8 R1 5 - D3 2 - - E
    8 R1 10 - - D3 3 D12 2 1.54 G
  • Reducing agents :
  • R1
    propylgallate
    R2
    dihydroxybenzoic acid ethyl ester
    R3
    4-phenylpyrocatechol
    Dyes: for the structure of the dyes, see table 1.
  • It is clear from table 2 that the prints made with donor elements according to the present invention have good optical densities and a good to excellent grey tone (neutral hue).

Claims (9)

  1. A thermal imaging process using (i) a donor element including on a support (a) a donor layer comprising a binder, a thermotransferable reducing agent capable of reducing a silver source to metallic silver upon heating and a thermotransferable dye, and (b) a heat-resistant layer provided on the side of the support opposite to the side having said donor layer and (ii) a receiving element comprising on a support a receiving layer comprising a silver source capable of being reduced by means of heat in the presence of a reducing agent, said thermal imaging process comprising the steps of
    bringing said donor layer of said donor element into face to face relationship with said receiving layer of said receiving element,
    image-wise heating a thus obtained assemblage, thereby causing image-wise transfer of an amount of said thermotransferable reducing agents to said receiving element in accordance with the amount of heat supplied,
    separating said donor element from said receiving element and
    subsequent overall heating of said receiving element.
  2. Thermal imaging process according to claim 1, wherein the amount ratio of said thermotransferable reducing agent and thermotransferable dye to said binder ranges from 3:1 to 1:2 by weight.
  3. Thermal imaging process according to claim 1 or 2, wherein said dye has an absorption maximum in the range above 500 nm.
  4. Thermal imaging process according to claim 1 or 3, wherein said dye has a molar extinction coefficient of at least 8000 1/(mol*cm).
  5. Thermal imaging process according to any of claims 1 to 4, wherein said dye is selected from the group consisting of azomethine dyes, antraquinone dyes, azo dyes, indoaniline dyes and azino dyes.
  6. Thermal imaging process according to any of the preceding claims, wherein the thickness of said support is between 3 and 10 µm.
  7. Thermal imaging process according to any of the preceding claims, wherein said overall heating is performed by means of a heated roller.
  8. Thermal imaging process according to any of the preceding claims, wherein said receiving element further comprises a toning agent.
  9. Thermal imaging process according to any of the preceding claims, wherein said image-wise heating is carried out by means of a thermal head.
EP19950200411 1994-03-25 1995-02-21 Thermal transfer imaging process Expired - Lifetime EP0677775B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP19950200411 EP0677775B1 (en) 1994-03-25 1995-02-21 Thermal transfer imaging process

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP94200796 1994-03-25
EP94200796 1994-03-25
EP19950200411 EP0677775B1 (en) 1994-03-25 1995-02-21 Thermal transfer imaging process

Publications (2)

Publication Number Publication Date
EP0677775A1 EP0677775A1 (en) 1995-10-18
EP0677775B1 true EP0677775B1 (en) 2002-06-12

Family

ID=26136121

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19950200411 Expired - Lifetime EP0677775B1 (en) 1994-03-25 1995-02-21 Thermal transfer imaging process

Country Status (1)

Country Link
EP (1) EP0677775B1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6066445A (en) * 1996-12-19 2000-05-23 Eastman Kodak Company Thermographic imaging composition and element comprising said composition
US5928856A (en) * 1998-03-20 1999-07-27 Eastman Kodak Company Thermographic imaging element
US5922528A (en) * 1998-03-20 1999-07-13 Eastman Kodak Company Thermographic imaging element
US5928855A (en) * 1998-03-20 1999-07-27 Eastman Kodak Company Thermographic imaging element
US5994052A (en) * 1998-03-20 1999-11-30 Eastman Kodak Company Thermographic imaging element

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE612241A (en) * 1961-01-03 1900-01-01
US3767414A (en) * 1972-05-22 1973-10-23 Minnesota Mining & Mfg Thermosensitive copy sheets comprising heavy metal azolates and methods for their use
JPS61259253A (en) * 1985-05-14 1986-11-17 Fuji Photo Film Co Ltd Heat-developoable color photosensitive material
CA2016687A1 (en) * 1989-05-31 1990-11-30 Agfa-Gevaert Naamloze Vennootschap Dyes and dye-donor elements for use in thermal dye sublimation transfer
EP0582144B1 (en) * 1992-08-03 1997-04-23 Minnesota Mining And Manufacturing Company Laser addressable thermal recording material

Also Published As

Publication number Publication date
EP0677775A1 (en) 1995-10-18

Similar Documents

Publication Publication Date Title
US5599647A (en) New toning agents for thermographic and photothermographic materials and process
EP0671283B1 (en) Thermal transfer imaging process
EP0713133B1 (en) Receiving element for use in thermal transfer printing
EP0692733B1 (en) Direct thermal recording process
US6130033A (en) (Photo) thermographic material with improved transport performance
US5863859A (en) Heat-sensitive material suited for use in direct thermal recording
US5547809A (en) Thermal transfer imaging system based on the heat transfer of a reducing agent for reducing a silver source to metallic silver
EP0752616B1 (en) New toning agents for thermographic and photothermographic materials and process
EP0677775B1 (en) Thermal transfer imaging process
US5582953A (en) Direct thermal recording process
EP0678775B1 (en) Thermal transfer process
EP0599369B1 (en) Thermosensitive recording material
EP0671284B1 (en) Thermal imaging process and an assemblage of a donor and receiving element for use therein
US5587268A (en) Thermal transfer imaging process
EP0600898B1 (en) Dry silver systems
EP0677776A1 (en) Thermal transfer printing process using a mixture of reducing agents for image-wise reducing a silver source
US5627008A (en) Thermal transfer printing process using a mixture of reducing agents for image-wise reducing a silver source
US5601962A (en) Thermal transfer process wherein a reducing agent and toning agent are transferred to a receiving element containing a thermoreducible silver source
EP0674216B1 (en) Thermal transfer imaging process and donor element for use therein
US5858913A (en) Receiving element for use in thermal transfer printing
EP0889355A1 (en) (Photo) thermographic material with a blue background
JPH09295459A (en) Formation of image having improved slip performance by heat
EP0706080B1 (en) Thermal transfer printing of a reducing agent to a silver source contained in an image receiving layer
JPH08267934A (en) Thermosensible recording material having image stabilizationproperty
JPH10115889A (en) Sensitivity enhancing method and recording method for photosensitive thermally developable photographic material

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE FR GB NL

17P Request for examination filed

Effective date: 19960418

17Q First examination report despatched

Effective date: 19961023

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: AGFA-GEVAERT

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE FR GB NL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020612

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020612

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020612

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 69527000

Country of ref document: DE

Date of ref document: 20020718

REG Reference to a national code

Ref country code: GB

Ref legal event code: 746

Effective date: 20020708

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20021212

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20021216

Year of fee payment: 9

EN Fr: translation not filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20030313

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040901

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20040221