Nothing Special   »   [go: up one dir, main page]

EP0652100B1 - Method of simulating the load dependent tilt of the slide of mechanical presses, on a hydraulic work-in press - Google Patents

Method of simulating the load dependent tilt of the slide of mechanical presses, on a hydraulic work-in press Download PDF

Info

Publication number
EP0652100B1
EP0652100B1 EP94114916A EP94114916A EP0652100B1 EP 0652100 B1 EP0652100 B1 EP 0652100B1 EP 94114916 A EP94114916 A EP 94114916A EP 94114916 A EP94114916 A EP 94114916A EP 0652100 B1 EP0652100 B1 EP 0652100B1
Authority
EP
European Patent Office
Prior art keywords
ram
holding
press
setpoint
cylinders
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP94114916A
Other languages
German (de)
French (fr)
Other versions
EP0652100A1 (en
Inventor
Markus Dr. Müller
Wieland Dr. Petter
Steffen Schmidt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Umformtechnik Erfurt GmbH
Original Assignee
Umformtechnik Erfurt GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Umformtechnik Erfurt GmbH filed Critical Umformtechnik Erfurt GmbH
Publication of EP0652100A1 publication Critical patent/EP0652100A1/en
Application granted granted Critical
Publication of EP0652100B1 publication Critical patent/EP0652100B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B15/00Details of, or accessories for, presses; Auxiliary measures in connection with pressing
    • B30B15/16Control arrangements for fluid-driven presses
    • B30B15/24Control arrangements for fluid-driven presses controlling the movement of a plurality of actuating members to maintain parallel movement of the platen or press beam
    • B30B15/245Control arrangements for fluid-driven presses controlling the movement of a plurality of actuating members to maintain parallel movement of the platen or press beam using auxiliary cylinder and piston means as actuating members

Definitions

  • the invention relates to a method for simulating the load-dependent ram tilting of mechanical presses on a hydraulic incorporation press according to the preamble of patent claim 1.
  • the faulty behavior of the respective press is taken into account when the tool is incorporated.
  • the press In the possibly lengthy familiarization process, the press is not available for production tasks.
  • the incorporation of tools is therefore often not carried out on highly productive mechanical production presses, but on hydraulic incorporation presses. If the incorporated tools are used in the production presses, Corrective work is often still required, which reduces production reliability and thus productivity.
  • the main cause is the load-dependent ram tilting of the production press, which cannot be simulated and simulated on the hydraulic incorporation press.
  • the invention has for its object to provide a method according to which the tilting behavior of production presses with different spring stiffness can be simulated on a hydraulic incorporation press with simple means.
  • the device arrangement for load-dependent tilt control (FIGS. 1, 3, 5) consists of the four stop spindles 2, each arranged in a corner point of the plunger 1, the associated counter-cylinders 3, including displacement measuring systems 4, pressure measuring systems 5 and control valves 6, and an electronic control device 7.
  • the force regulators 11 are each assigned to a counter-holding cylinder 3 and influence the counter-holding forces to limit the tappet tilting via control valves 6. They are designed, for example, as PID controllers, the control parameters (P, I, D components) being able to be adapted to the behavior of the controlled system by means of correction devices. This makes it possible, for example, to eliminate disruptive influences from the behavior of the control valves 6 and from the variable volume of the oil columns in the counter-cylinders 3.
  • the feedback of the actual value takes place via pressure measuring systems 5, whereby when using differential cylinders, two pressure measuring systems 5, each assigned to the upper and lower cylinder chamber, and devices for forming an area-weighted difference 15, actual value signals proportional to the respective counterforce are generated.
  • the counter moments that are required to limit the ram tilting to the desired value are determined separately according to the x and y directions of the ram 1.
  • signals k x and k y proportional to the ram tilt in the x and y directions are first generated from the actual path values of the four ram corner points by two summing devices 12.
  • the signals are assigned to two signal paths, which in turn are assigned to specific groups of counter-cylinders 3 (distributor 14a).
  • the components of the counter-holding moments assigned to it are added up in the x and y directions.
  • the setpoint values determined in this way are regulated by the force controllers 11 already described. This ensures that after the occurrence of a tilting moment, the tappet 1 can tilt until a counter torque equal to the tilting moment is built up, depending on the tilting moment.
  • the tilting behavior of production presses has a linear relationship between tilting and tilting moment. Then the rigidity that must be simulated with each counter-holding cylinder 3 is constant.
  • a higher-level controller 23 first calculates the stiffnesses for each axis (x, y) and then assigns a stiffness setpoint value to each of the four counter-holding cylinders 3 by superimposing them in a setpoint distribution 24.
  • the control device 7 of each counter cylinder 3 has the task of keeping the flexibility of the counter cylinder 3 constant.
  • the force exerted on the tappet 1 by the respective cylinders 3 is determined from the areas and pressure values of the counter-holding cylinder 3.
  • the instantaneous tilting values of the ram 1 are converted from the measured distance values between the ram 1 and the table in a device 22 calculated.
  • the momentary stiffness c i is determined from the determined force F i and the calculated tilt ⁇ s i in a device for calculating the stiffness 27 and compared with the setpoint in a summing point 26. The difference resulting from this comparison is transmitted to the stiffness controller 21.
  • the setpoint is determined as a function of the measured ram tilt, as shown in FIGS. 4 and 5.
  • the stiffness-tilt functions 23 and 23a stored in a control serve this purpose. These functions represent the dependence of the tipping stiffness c x and c y of the ram (of the production press to be simulated) on the tipping k x and k y about the x and y axes.
  • Correction functions 23a are available in the event of a rigidity of the simulation press that should not be neglected.
  • the target values distributor 24 assigns the target values to the individual counter-cylinders 3 by superimposing the respectively determined stiffness values of the x- and y axis.
  • the target stiffness values are compared with the associated actual stiffness values and fed to the stiffness controllers 21.
  • Each of the four stiffness regulators 21 influences the pressure in the counter cylinder 3 via a servo valve 6 until the deviation of the actual stiffness from the desired stiffness is compensated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Presses (AREA)
  • Press Drives And Press Lines (AREA)

Description

Die Erfindung betrifft ein Verfahren zur Simulation der lastabhängigen Stößelkippung von mechanischen Pressen auf einer hydraulischen Einarbeitungspresse gemäß dem Oberbegriff des Patentanspruchs 1.The invention relates to a method for simulating the load-dependent ram tilting of mechanical presses on a hydraulic incorporation press according to the preamble of patent claim 1.

Außermittig den Pressenstößel angreifende Kräfte bewirken eine Kippung des Stößels. Das Maß der Stößelkippung ist eine wichtige Größe zur Beurteilung der Güte von Pressen, da hiervon auch die Formgenauigkeit des bearbeiteten Werkstückes bzw. des Blechteils abhängt.
Bei hydraulischen Pressen, insbesondere SMC-Pressen (DD-PS 289 970, DE-OS 37 26 578), ist es bekannt, zur Regelung des Parallellaufs an den Eckpunkten des Pressentisches die Lage des Stößels erfassende Wegmeßsysteme sowie mindestens vier mit Drucköl beaufschlagbare Gegenhaltezylinder anzuordnen, die zumindest im Arbeitsbereich der Presse eine im Sinne einer Kompensation der Parallelitätsabweichungen der Stößelbewegung entgegenwirkende Kraft aufbringen. Die Druckbeaufschlagung der Gegenhaltezylinder erfolgt mittels Servoventilen, die ihrerseits durch eine elektronische Vergleicher- und Auswerteschaltung in Abhängigkeit von den durch das jeweils zugeordnete Wegmeßsystem erfaßten Parallelitätsabweichungen ansteuerbar sind.
Forces acting off-center on the press ram cause the ram to tilt. The dimension of the ram tilt is an important factor for assessing the quality of presses, since the shape accuracy of the machined workpiece or sheet metal part also depends on this.
In hydraulic presses, in particular SMC presses (DD-PS 289 970, DE-OS 37 26 578), it is known to arrange the position of the ram to measure the parallel operation at the corner points of the press table and to position at least four counter-cylinders which can be pressurized with pressure oil which, at least in the working area of the press, exert a force which counteracts the deviations in parallelism of the ram movement. The counter cylinders are pressurized by means of servo valves, which in turn can be controlled by an electronic comparator and evaluation circuit as a function of the parallelism deviations detected by the respectively associated displacement measuring system.

Bei mechanischen Pressen, die im allgemeinen keine zusätzlichen Einrichtungen zur Regelung des Parallellaufs enthalten, wird das fehlerbehaftete Verhalten der jeweiligen Presse bei der Einarbeitung des Werkzeuges mit berücksichtigt. Bei dem u.U. langwierigen Einarbeitungsprozeß steht die Presse für Produktionsaufgaben nicht zur Verfügung.
Das Einarbeiten von Werkzeugen erfolgt deshalb häufig nicht auf hochproduktiven mechanischen Produktionspressen, sondern auf hydraulischen Einarbeitungspressen. Werden die eingearbeiteten Werkzeuge in den Produktionspressen eingesetzt, sind oft noch Korrekturarbeiten erforderlich, die die Produktionssicherheit und damit die Produktivität senken. Hauptursache ist die lastabhängige Stößelkippung der Produktionspresse, die auf der hydraulischen Einarbeitungspresse nicht vorempfunden und simuliert werden kann.
Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren anzugeben, nach dem das Kippungsverhalten von Produktionspressen mit unterschiedlicher Federsteife auf einer hydraulischen Einarbeitungspresse mit einfachen Mitteln simuliert werden kann.
Erfindungsgemäß wird das durch die im kennzeichnenden Teil des Patentanspruchs 1 beschriebenen Merkmale erreicht. Weitere detaillierte Ausgestaltungen der Erfindung sind in den Ansprüchen 2 und 3 beschrieben.
Für die Simulation des Kippungsverhaltens von Produktionspressen an hydraulischen Pressen stehen experimentell an den Produktionspressen ermittelte Funktionsverläufe der Kippung des Stößels (kx,y) in Abhängigkeit des Kippmomentes (Mkx,ky) für beide Achsen (x,y) zur Verfügung.
Bei der Kippungssimulation besteht nun die Zielstellung, in Abhängigkeit des tatsächlich wirkenden Kippmomentes (bezogen auf die jeweilige Achse) den Stößel nur so weit kippen zu lassen, wie es die in einer Steuerung gespeicherten Funktionsverläufe M x = f 1 (k x )

Figure imgb0001
und M y = f 2 (k y )
Figure imgb0002
oder C x = f 3 (k x )
Figure imgb0003
und C y = f 4 (k y )
Figure imgb0004
der zu simulierenden Produktionspresse angeben.
Zu diesem Zweck wird die von den z. B. SMC-Pressen bekannte Kurzhubtechnik eingesetzt. Sie besteht aus vier an den Eckpunkten des Pressentisches angeordneten Hydraulikzylindern, die jeweils mittels eines Servoventils und einer Regeleinrichtung steuer- bzw. regelbar sind. Die vier Hydraulikzylinder sind mit Druckaufnehmern ausgestattet, die eine kontinuierliche Druckmessung in den Zylinderräumen zulassen. Der Stößel setzt bei seiner Abwärtsbewegung kurz vor Beginn des Arbeitsbereiches auf die ausgefahrenen Kolben der Arbeitszylinder auf und verdrängt bei seiner Weiterbewegung das Druckmedium aus den Zylinderräumen.In the case of mechanical presses, which generally do not contain any additional devices for regulating the parallel operation, the faulty behavior of the respective press is taken into account when the tool is incorporated. In the possibly lengthy familiarization process, the press is not available for production tasks.
The incorporation of tools is therefore often not carried out on highly productive mechanical production presses, but on hydraulic incorporation presses. If the incorporated tools are used in the production presses, Corrective work is often still required, which reduces production reliability and thus productivity. The main cause is the load-dependent ram tilting of the production press, which cannot be simulated and simulated on the hydraulic incorporation press.
The invention has for its object to provide a method according to which the tilting behavior of production presses with different spring stiffness can be simulated on a hydraulic incorporation press with simple means.
According to the invention this is achieved by the features described in the characterizing part of patent claim 1. Further detailed embodiments of the invention are described in claims 2 and 3.
For the simulation of the tilting behavior of production presses on hydraulic presses, experimentally determined function profiles of the tilting of the ram (k x, y ) depending on the tilting moment (M kx, ky ) are available for both axes (x, y).
In the case of the tilting simulation, the objective is now, depending on the actually acting tilting moment (in relation to the respective axis), to have the plunger tilted only as far as the function profiles stored in a control system M x = f 1 (k x )
Figure imgb0001
and M y = f 2nd (k y )
Figure imgb0002
or C. x = f 3rd (k x )
Figure imgb0003
and C. y = f 4th (k y )
Figure imgb0004
of the production press to be simulated.
For this purpose, the z. B. SMC presses known short stroke technology used. It consists of four hydraulic cylinders arranged at the corner points of the press table, each of which can be controlled or regulated by means of a servo valve and a regulating device. The four hydraulic cylinders are equipped with pressure transducers that allow continuous pressure measurement in the cylinder rooms. When the plunger moves downwards just before the start of the working area, it is placed on the extended pistons of the working cylinders and, as it moves on, displaces the pressure medium from the cylinder chambers.

Innerhalb des Arbeitsbereiches des Pressenstößels ist dieser durch seinen Antrieb (Preßzylinder) und durch die Kurzhubzylinder beidseitig verspannt. Der unbelastete Stößel (auf den keine Verfahrenskraft wirkt) kann bewußt in eine bestimmte Lage gekippt werden, indem jeweils zwischen zwei Zylinderpaaren (vorn - hinten, links - rechts) unterschiedlich hohe Drücke erzeugt werden.
Um einen außermittig belasteten Stößel in seiner idealen Parallellage zum Pressentisch zu halten, müssen zwischen den Zylinderpaaren (vorn - hinten, links - rechts) ebenfalls verschieden große Drücke eingestellt werden, die den Gleichgewichtszustand zur außermittig wirkenden Kraft wieder herstellen. Die im Gleichgewichtszustand auftretenden Druckdifferenzen repräsentieren die Größe der tatsächlich wirkenden Kippmomente.
Ein sich bezüglich Richtung und Zeit änderndes Kippmoment kann jedoch ohne Zuhilfenahme zusätzlicher Sensoren auf direktem Wege nicht rückwirkungsfrei ermittelt werden.
Weiterhin ist an jeder Stößelecke ein Wegmeßsystem angebracht, das den Abstand zwischen Pressenstößel und Pressentisch mit einer hohen Auflösung erfaßt. Aus dem Vergleich der vier Abstandsmaße kann die Stößelkippung ermittelt werden.
Die Erfindung ermöglicht es nun, aus der vorgegebenen Zuordnung von Kippung zu Kippmoment für jede Achse den Stößel definiert zu kippen und auf Änderungen des Kippmomentes schnell zu reagieren.
Dabei wird zuerst die Wirkung, also die Kippung erfaßt und danach wird die Ursache, das Kippmoment durch ein Gegenmoment kompensiert, indem unterschiedliche Drücke in den Gegenhaltezylindern geregelt werden, bis anhand der gespeicherten Kippungsfunktion ein Gleichgewichtszustand erreicht ist. Für den Gleichgewichtszustand ist kennzeichnend, daß das eingestellte Gegenmoment genau die Stößelkippung zuläßt, die gemäß der gespeicherten Kippungsfunktion dem Kippmoment entspricht. Ändert sich das Kippmoment, so wird anhand der sich ergebenden Stößelkippung das Gegenmoment nachgeregelt. Mit Hilfe des Gegenmomentes wird dafür gesorgt, daß der Stößel bei außermittiger Belastung nicht weiter als vereinbart kippt und bei nachlassendem Kippmoment wieder in seine Ausgangslage zurückkehrt.
Die Erfindung wird nachstehend an zwei Ausführungsbeispielen näher erläutert. Die zugehörigen Zeichnungen zeigen:

Fig. 1:
eine schematische Darstellung der auf die Stößelfläche der Presse wirkenden Kippmomente bei außermittiger Belastung,
Fig. 2:
eine Regeleinrichtung für die Stößelkippung als Blockschaltbild,
Fig.3:
die Schaltungsanordnung zu Fig. 2,
Fig. 4:
eine zweite Ausführung der Regeleinrichtung als Blockschaltbild und
Fig. 5:
die Schaltungsanordnung zu Fig. 4.
Within the working area of the press ram, it is braced on both sides by its drive (press cylinder) and by the short-stroke cylinders. The unloaded tappet (to which no process force acts) can be deliberately tilted into a certain position by generating different pressures between two pairs of cylinders (front - back, left - right).
In order to hold an eccentrically loaded ram in its ideal parallel position to the press table, pressures of different sizes must also be set between the cylinder pairs (front - back, left - right), which restore the state of equilibrium to the eccentric force. The pressure differences occurring in the equilibrium state represent the size of the actually acting tilting moments.
A tilting moment that changes with respect to direction and time cannot, however, be determined directly without feedback without the aid of additional sensors.
Furthermore, a distance measuring system is attached to each ram corner, which records the distance between the press ram and the press table with a high resolution. The ram tilt can be determined by comparing the four distance dimensions.
The invention now makes it possible to tilt the tappet in a defined manner for each axis from the predetermined assignment of tilting to tilting moment and to react quickly to changes in the tilting moment.
The effect, ie the tilting, is first recorded and then the cause, the tilting moment, is compensated by a counter-torque by regulating different pressures in the counter-cylinders until an equilibrium state is reached on the basis of the stored tilting function. It is characteristic of the state of equilibrium that the set counter torque allows exactly the tappet tilt, which corresponds to the tilting moment according to the stored tilt function. If the tilting moment changes, the counter moment is readjusted based on the resulting tappet tilt. With the help of the counter moment, it will ensured that the tappet does not tilt further than agreed when the load is off-center and returns to its initial position when the tilting moment decreases.
The invention is explained in more detail below using two exemplary embodiments. The associated drawings show:
Fig. 1:
1 shows a schematic illustration of the tilting moments acting on the ram surface of the press when the load is off-center,
Fig. 2:
a control device for tappet tilting as a block diagram,
Fig. 3:
2 shows the circuit arrangement for FIG. 2,
Fig. 4:
a second embodiment of the control device as a block diagram and
Fig. 5:
the circuit arrangement of Fig. 4th

Die Geräteanordnung zur lastabhängigen Kippungsregelung (Figur 1, 3, 5) besteht aus den vier jeweils in einem Eckpunkt des Stößels 1 angeordneten Anschlagspindeln 2, den dazugehörigen Gegenhaltezylindern 3 einschließlich Wegmeßsystemen 4, Druckmeßsystemen 5 und Regelventilen 6 sowie einer elektronischen Regeleinrichtung 7.The device arrangement for load-dependent tilt control (FIGS. 1, 3, 5) consists of the four stop spindles 2, each arranged in a corner point of the plunger 1, the associated counter-cylinders 3, including displacement measuring systems 4, pressure measuring systems 5 and control valves 6, and an electronic control device 7.

Die mit dem Pressenstößel 1 verbundenen Anschlagspindeln 2 dienen der Einstellung des Arbeitsbereiches der Einrichtung und werden je nach Werkzeugabmessungen so eingestellt, daß sie während des Umformvorganges die mit dem Pressentisch verbundenen Gegenhaltezylinder 3 sowie die Wegmeßsysteme 4 betätigen. Die Regelventile 6 dienen zur Beeinflussung der Drücke bzw. Kräfte in den Gegenhaltezylindern 3, die über die Druckmeßsysteme 5 an die Regeleinrichtung 7 gemeldet werden. Die Regeleinrichtung 7 erzeugt anhand der Signale aus den Druck- und Wegmeßsystemen 4,5 sowie der eingegebenen Regelparameter die Ansteuersignale für die Regelventile 6.
Die Regeleinrichtung 7 (Fig. 2 und 3) besteht aus folgenden Komponenten:

  • vier Kraftreglern 11 mit Korrektureinrichtung,
  • der Einrichtung zur Ermittlung der Stößelkippungen 12,
  • der Einrichtung zur Ermittlung der Sollwerte für die Gegenhaltemomente in x- und y-Richtung 13 und
  • der Einrichtung zur Verteilung der Sollwerte für die Gegenhaltekräfte 14,14a auf die vier Gegenhaltezylinder 3.
The stop spindles 2 connected to the press ram 1 are used to set the working area of the device and are set depending on the tool dimensions so that they actuate the counter-cylinders 3 connected to the press table and the displacement measuring systems 4 during the forming process. The control valves 6 serve to influence the pressures or forces in the counter-cylinders 3, which are reported to the control device 7 via the pressure measuring systems 5. The control device 7 uses the signals from the pressure and displacement measuring systems 4, 5 and the control parameters entered to generate the control signals for the control valves 6.
The control device 7 (FIGS. 2 and 3) consists of the following components:
  • four force controllers 11 with correction device,
  • the device for determining the ram tilts 12,
  • the device for determining the setpoints for the counter moments in the x and y directions 13 and
  • the device for distributing the target values for the counter-holding forces 14, 14 a to the four counter-holding cylinders 3.

Die Kraftregler 11 sind jeweils einem Gegenhaltezylinder 3 zugeordnet und beeinflussen über Regelventile 6 die Gegenhaltekräfte zur Begrenzung der Stößelkippung. Sie sind beispielsweise als PID-Regler ausgebildet, wobei die Regelparameter (P-, I-, D-Anteile) durch Korrektureinrichtungen an das Verhalten der Regelstrecke angepaßt werden können. Hierdurch wird es z.B. möglich, störende Einflüsse aus dem Verhalten der Regelventile 6 sowie aus dem variablen Volumen der Ölsaulen in den Gegenhaltezylindern 3 zu eliminieren. Die Istwertrückführung erfolgt über Druckmeßsysteme 5, wobei beim Einsatz von Differentialzylindern über zwei jeweils dem oberen und unteren Zylinderraum zugeordnete Druckmeßsysteme 5 und Einrichtungen zur Bildung einer flächenbewerteten Differenz 15 Zur jeweiligen Gegenhaltekraft proportionale Istwertsignale erzeugt werden. Die Rückführung dieser Signale erfolgt auf Summierpunkte 16, über die durch ein zusätzliches Offsetsignal (Fmin) auch die minimale Gegenhaltekraft vorgegeben werden kann.
In einer weiteren Systemkomponente (Einrichtung 13) werden getrennt nach x- und y-Richtung des Stößels 1 die Gegenhaltemomente ermittelt, die erforderlich sind, die Stößelkippung auf den gewünschten Wert zu begrenzen. Hierfür werden zunächst aus den Weg-Ist-Werten der vier Stößeleckpunkte durch zwei Summiereinrichtungen 12 der Stößelkippung in x- und y-Richtung proportionale Signale kx und ky erzeugt. Je nach Richtung (Vorzeichen) der ermittelten Kippungen erfolgt eine Zuordnung der Signale auf jeweils zwei Signalpfade, die wiederum bestimmten Gruppen von Gegenhaltezylindern 3 zugeordnet sind (Verteiler 14a). Aus diesen Signalen (kx1, kx2, ky1, ky2) werden dann mit Hilfe der Kippungskennlinien M kx = f(k x )

Figure imgb0005
und M ky = g(k y )
Figure imgb0006
die Gegenhaltemomente ermittelt bzw. die dazu proportionalen Signale (Mx1, Mx2, My1, My2) erzeugt. Die Kippungskennlinien können an realen Pressen gemessen und als Parameter in die Regeleinrichtung 7 eingegeben werden.
Die Zuordnung dieser Momentensignale auf die vier Gegenhaltezylinder 3 und somit die Bildung der Kraft- bzw. Drucksollwerte erfolgt durch eine Summiereinrichtung 14, deren Summierpunkte den vier Kraftreglern 11 zugeordnet sind. Hierbei werden für jeden Kraftregler 11 die ihm zugeordneten Komponenten der Gegenhaltemomente in x- und y-Richtung aufsummiert.
Die Ausregelung der so ermittelten Sollwerte erfolgt durch die schon beschriebenen Kraftregler 11. Dadurch wird erreicht, daß nach Auftreten eines Kippmomentes der Stößel 1 so weit kippen kann, bis in Abhängigkeit vom Kippweg ein zum Kippmoment gleichgroßes Gegenhaltemoment aufgebaut ist.The force regulators 11 are each assigned to a counter-holding cylinder 3 and influence the counter-holding forces to limit the tappet tilting via control valves 6. They are designed, for example, as PID controllers, the control parameters (P, I, D components) being able to be adapted to the behavior of the controlled system by means of correction devices. This makes it possible, for example, to eliminate disruptive influences from the behavior of the control valves 6 and from the variable volume of the oil columns in the counter-cylinders 3. The feedback of the actual value takes place via pressure measuring systems 5, whereby when using differential cylinders, two pressure measuring systems 5, each assigned to the upper and lower cylinder chamber, and devices for forming an area-weighted difference 15, actual value signals proportional to the respective counterforce are generated. These signals are fed back to summing points 16, via which an additional offset signal (F min ) can also be used to specify the minimum counterforce.
In a further system component (device 13), the counter moments that are required to limit the ram tilting to the desired value are determined separately according to the x and y directions of the ram 1. For this purpose, signals k x and k y proportional to the ram tilt in the x and y directions are first generated from the actual path values of the four ram corner points by two summing devices 12. Depending on the direction (sign) of the determined tilts, the signals are assigned to two signal paths, which in turn are assigned to specific groups of counter-cylinders 3 (distributor 14a). These signals (k x1 , k x2 , k y1 , k y2 ) are then used with the aid of the tilting characteristic curves M kx = f (k x )
Figure imgb0005
and M ky = g (k y )
Figure imgb0006
the counter torque is determined or the proportional torque Signals (M x1 , M x2 , M y1 , M y2 ) generated. The tilt characteristics can be measured on real presses and entered as parameters in the control device 7.
The assignment of these torque signals to the four counter-cylinders 3 and thus the formation of the force or pressure setpoints is carried out by a summing device 14, the summing points of which are assigned to the four force regulators 11. For each force regulator 11, the components of the counter-holding moments assigned to it are added up in the x and y directions.
The setpoint values determined in this way are regulated by the force controllers 11 already described. This ensures that after the occurrence of a tilting moment, the tappet 1 can tilt until a counter torque equal to the tilting moment is built up, depending on the tilting moment.

Bei einer weiteren Ausführung (Fig. 4 und 5) wird davon ausgegangen, daß ein bewußtes Kippen des Stößels um einen definierten Betrag möglich ist, wenn eine definierte Steifigkeit ( c i = F i /Δ s i

Figure imgb0007
) für jeden Eckpunkt des Stößels 1 steuer- bzw. regelbar ist.In a further embodiment (FIGS. 4 and 5) it is assumed that a conscious tilting of the ram by a defined amount is possible if a defined stiffness ( c i = F i / Δ s i
Figure imgb0007
) can be controlled or regulated for each corner point of the ram 1.

Im einfachsten Falle besteht für das Kippungsverhalten von Produktionspressen ein linearer Zusammenhang zwischen Kippung und Kippmoment. Dann ist die Steifigkeit, die mit jedem Gegenhaltezylinder 3 nachgebildet werden muß, konstant. Das bedeutet, daß z.B. eine übergeordnete Steuerung 23 zuerst für jede Achse (x,y) die Steifigkeiten berechnet und anschließend durch Überlagerung in einer Sollwertverteilung 24 jedem der vier Gegenhaltzylinder 3 einen Steifigkeits-Sollwert zuordnet. Die Regeleinrichtung 7 jedes Gegenhaltezylinders 3 hat die Aufgabe, die Nachgiebigkeit des Gegenhaltezylinders 3 konstantzuhalten.
Die durch die jeweiligen Zylinder 3 auf den Stößel 1 ausgeübte Kraft wird aus den Flächen und Druckwerten des Gegenhaltezylinders 3 ermittelt. Aus den gemessenen Abstandswerten zwischen Stößel 1 und Tisch werden in einer Einrichtung 22 die momentanen Kippungswerte des Stößels 1 errechnet. Für jeden Gegenhaltezylinder 3 wird aus der ermittelten Kraft Fi und der errechneten Kippung Δ si in einer Einrichtung zur Steifeberechnung 27 die momentane Steifigkeit ci bestimmt und in einem Summierpunkt 26 mit dem Sollwert verglichen. Die aus diesem Vergleich resultierende Differenz wird dem Steiferegler 21 übermittelt. Dieser ändert mittels eines Servoventils 6 das Druckverhältnis im Gegenhaltezylinder 3 derart, daß die daraus resultierende Steifigkeit mit dem Sollwert übereinstimmt.
Besteht bei Produktionspressen kein linearer Zusammenhang zwischen der Stößelkippung und dem Kippmoment, so wird, wie in den Fig. 4 und 5 dargestellt ist, der Sollwert in Abhängigkeit von der gemessenen Stößelkippung ermittelt. Dazu dienen die in einer Steuerung gespeicherten Steifigkeits-Kippungs-Funktionen 23 und 23a. Diese Funktionen stellen die Abhängigkeit der Kippsteifigkeiten cx und cy des Stößels (der zu simulierenden Produktionspresse) von den Kippungen kx und ky um die x- bzw. die y-Achse dar. Die Funktion c = f(k)

Figure imgb0008
kann direkt in die Steuerung eingegeben oder aus der Funktion M = f(k)
Figure imgb0009
steuerungsintern ermittelt werden.
Für den Fall einer nicht zu vernachlässigenden Steifigkeit der Simulationspresse stehen Korrekturfunktionen 23a zur Verfügung.
Nachdem die Soll-Steifigkeiten für die x- und die y-Achse mit Hilfe der gespeicherten Funktionen 23 und ggf. 23a ermittelt sind, erfolgt in dem Sollwertverteiler 24 die Zuordnung der Sollwerte zu den einzelnen Gegenhaltezylindern 3 durch Überlagerung der jeweils ermittelten Steifigkeitswerte der x- und y- Achse.
In den Summierpunkten 26 werden die Soll-Steifigkeitswerte mit den zugehörigen Ist-Steifigkeitswerten verglichen und den Steifereglern 21 zugeführt.
Jeder der vier Steiferegler 21 beeinflußt über ein Servoventil 6 den Druck im Gegenhaltezylinder 3, bis die Abweichung der Ist-Steifigkeit von der Soll-Steifigkeit ausgeglichen ist.In the simplest case, the tilting behavior of production presses has a linear relationship between tilting and tilting moment. Then the rigidity that must be simulated with each counter-holding cylinder 3 is constant. This means that, for example, a higher-level controller 23 first calculates the stiffnesses for each axis (x, y) and then assigns a stiffness setpoint value to each of the four counter-holding cylinders 3 by superimposing them in a setpoint distribution 24. The control device 7 of each counter cylinder 3 has the task of keeping the flexibility of the counter cylinder 3 constant.
The force exerted on the tappet 1 by the respective cylinders 3 is determined from the areas and pressure values of the counter-holding cylinder 3. The instantaneous tilting values of the ram 1 are converted from the measured distance values between the ram 1 and the table in a device 22 calculated. For each counter-cylinder 3, the momentary stiffness c i is determined from the determined force F i and the calculated tilt Δ s i in a device for calculating the stiffness 27 and compared with the setpoint in a summing point 26. The difference resulting from this comparison is transmitted to the stiffness controller 21. This changes the pressure ratio in the counter-cylinder 3 by means of a servo valve 6 in such a way that the resulting rigidity corresponds to the target value.
If there is no linear relationship between the ram tilt and the tilting moment in production presses, the setpoint is determined as a function of the measured ram tilt, as shown in FIGS. 4 and 5. The stiffness-tilt functions 23 and 23a stored in a control serve this purpose. These functions represent the dependence of the tipping stiffness c x and c y of the ram (of the production press to be simulated) on the tipping k x and k y about the x and y axes. The function c = f (k)
Figure imgb0008
can be entered directly into the control or from the function M = f (k)
Figure imgb0009
be determined internally by the control system.
Correction functions 23a are available in the event of a rigidity of the simulation press that should not be neglected.
After the target stiffnesses for the x and y axes have been determined with the aid of the stored functions 23 and possibly 23a, the target values distributor 24 assigns the target values to the individual counter-cylinders 3 by superimposing the respectively determined stiffness values of the x- and y axis.
In the summing points 26, the target stiffness values are compared with the associated actual stiffness values and fed to the stiffness controllers 21.
Each of the four stiffness regulators 21 influences the pressure in the counter cylinder 3 via a servo valve 6 until the deviation of the actual stiffness from the desired stiffness is compensated.

Claims (3)

  1. Method of simulating the load-dependent ram tilting of mechanical presses on a hydraulic cavity press having at least one pressure cylinder connected to the press ram for developing a working pressure which acts upon the workpiece, having at least four holding-up cylinders acting upon the ram in the opposite direction to the working motion, having displacement measuring systems for detecting the ram position at any one time and having a control device for individual pressurization of the holding-up cylinders,
    characterized in
    that the oil pressure in the holding-up cylinders is controlled in such a way that at least in the working region - on the basis of the determined ram tilt - in each case sufficient force is opposed to the ram to limit the load-dependent ram tilts in the x- and y-axis to values which are preselected by means of parameterizable tilting characteristics M x = f 1 (k x )
    Figure imgb0014
    and M y = f 2 (k y )
    Figure imgb0015
    or c x = f 3 (k x )
    Figure imgb0016
    and c y = f 4 (k y )
    Figure imgb0017
    .
  2. Method of simulating the load-dependent ram tilting according to claim 1,
    characterized by the cyclic execution of the following steps in the working region of the press:
    1. detection of the pressure or the pressure difference and calculation of the effective piston force for each holding-up cylinder,
    2. detection of the distance between press bed and ram by means of displacement measuring systems at each ram corner and calculation of the ram tilts kx and ky for the x- and the y-axis from the distance differences,
    3. determination of the setpoint holding-up moments for the x- and y-axis with the aid of preselected function characteristics and the actual ram tilts,
    4. determination of the setpoint forces for the holding-up cylinders by superimposition of the tilting moments while taking the geometric proportions of the press into account,
    5. comparison between setpoint and actual forces and input of the force differences into the force control units,
    6. influencing of the control valves by means of the actuating signals of the force control units in such a way that the pressures in the holding-up cylinders are varied until a conformance of setpoint and actual forces is achieved,
    it being possible within the cycle for steps to be executed either in parallel or in a different sequence.
  3. Method of simulating the load-dependent ram tilting according to claim 1,
    characterized by the cyclic execution of the following steps in the working region of the press:
    1. detection of the pressure or the pressure difference and calculation of the effective piston force for each holding-up cylinder,
    2. detection of the distance between press bed and ram by means of displacement measuring systems at each ram corner and calculation of the ram tilts kx and ky for the x- and the y-axis from the distance differences and the dimensions of the ram surface,
    3. calculation of the actual stiffness value c for each holding-up cylinder from the piston force and the calculated ram tilt kx or ky,
    4. determination of the setpoint stiffness values for the x- and y-axis with the aid of preselected function characteristics and the actual ram tilts,
    5. determination of the setpoint stiffness values for the holding-up cylinders by superimposition of the setpoint stiffness values for the x- and y-axis while taking the geometric proportions of the press into account,
    6. comparison between setpoint and actual stiffness value and input of the stiffness difference into the stiffness control unit,
    7. influencing of the control valves by means of the actuating signals of the control units in such a way that the pressures in the holding-up cylinders are varied until a conformance of setpoint and actual stiffness value has been achieved,
    it being possible within the cycle for steps to be executed either in parallel or in a different sequence.
EP94114916A 1993-11-05 1994-09-22 Method of simulating the load dependent tilt of the slide of mechanical presses, on a hydraulic work-in press Expired - Lifetime EP0652100B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4337825A DE4337825A1 (en) 1993-11-05 1993-11-05 Process for simulating the load-dependent ram tilting of mechanical presses on a hydraulic incorporation press
DE4337825 1993-11-05

Publications (2)

Publication Number Publication Date
EP0652100A1 EP0652100A1 (en) 1995-05-10
EP0652100B1 true EP0652100B1 (en) 1997-03-12

Family

ID=6501911

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94114916A Expired - Lifetime EP0652100B1 (en) 1993-11-05 1994-09-22 Method of simulating the load dependent tilt of the slide of mechanical presses, on a hydraulic work-in press

Country Status (3)

Country Link
EP (1) EP0652100B1 (en)
DE (2) DE4337825A1 (en)
ES (1) ES2098841T3 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4157623A4 (en) * 2020-05-28 2024-05-15 Ozkoc Hidrolik Makina San. Ve Tic. A.S. Parallel control system in hydraulic presses and the operation method of this system

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE29507608U1 (en) * 1995-05-11 1995-07-27 Bilfinger + Berger Bauaktiengesellschaft, 68165 Mannheim Device for moving buildings
DE102006059796A1 (en) * 2006-12-15 2008-06-19 Müller Weingarten AG Method and device for controlling and regulating plunger position deviations on servo-electric presses
DE102012013722B4 (en) * 2012-07-11 2014-10-09 Volkswagen Aktiengesellschaft Testing tool for determining the properties of a forming press under real conditions
FR3028281B1 (en) * 2014-11-06 2016-12-23 Sateco Sa SUPPORTING DEVICE AND FORMWORKING METHOD USING SUCH A DEVICE
CN109203556B (en) * 2017-07-07 2021-08-10 博世力士乐(常州)有限公司 Passive electrohydraulic leveling system of hydraulic press
CN109210030B (en) * 2017-07-07 2022-02-11 博世力士乐(常州)有限公司 Hydraulic press leveling system suitable for compression molding process
CN114454547B (en) * 2022-02-14 2023-03-31 福州大学 Experiment bench for testing four-corner leveling performance of press and load simulation method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1427309A1 (en) * 1962-10-04 1969-02-13 Schloemann Ag Forging press, for example closed-die forging press
US4784058A (en) * 1986-08-13 1988-11-15 Kabushiki Kaisha Kobe Seiko Sho Press control for maintaining a level position and a uniform pressure on a workpiece
DD297602A5 (en) * 1990-09-12 1992-01-16 Techn. Universitaet Dresden,Direktorat Forschung, Patentabteilung,De DEVICE FOR CHECKING PRESSES
CA2051565A1 (en) * 1991-09-17 1993-03-18 Ronald Ballantyne Maintaining press platens in parallel relationship

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4157623A4 (en) * 2020-05-28 2024-05-15 Ozkoc Hidrolik Makina San. Ve Tic. A.S. Parallel control system in hydraulic presses and the operation method of this system

Also Published As

Publication number Publication date
EP0652100A1 (en) 1995-05-10
DE4337825A1 (en) 1995-05-11
DE59402041D1 (en) 1997-04-17
ES2098841T3 (en) 1997-05-01

Similar Documents

Publication Publication Date Title
DE69121109T2 (en) LOWER UPHOLSTERY DEVICE FOR PRESS
EP1917565B1 (en) Method and device for controlling and adjusting forces on servo-electric presses
DE69331016T2 (en) Apparatus for measuring the holding force exerted on the pressure ring of a press
DE69313585T2 (en) Die cushion and method for optimizing its cylinder pin pressure
DE69102744T2 (en) Device for force regulation of the hold-down device of a press.
DE3600364C2 (en)
DE3530204B4 (en) Mechanically driven drawing press
EP0626628A1 (en) Control system for a hydraulic drive
DE3735582C1 (en) Double-acting press for pulling sheet metal parts
WO2009021500A1 (en) Hydraulic wheel set press
DE3726578A1 (en) PRESS FORM CONTROL METHOD AND PRESS CONTROL DEVICE FOR CARRYING OUT THE METHOD
EP0652100B1 (en) Method of simulating the load dependent tilt of the slide of mechanical presses, on a hydraulic work-in press
DE3241940A1 (en) MICRO-ADJUSTABLE DEVICE FOR DETERMINING SHIFT AND ROTATION
DE69011077T2 (en) RULE ARRANGEMENT FOR PRESS BRAKE.
DE3924748C2 (en)
EP0308762A1 (en) Position control device for a hydraulic advance drive, in particular a hydraulic press or stamping machine
EP1793946B1 (en) Method for producing a workpiece by forming under bending conditions
EP3191236B1 (en) Press brake and a method for bending a workpiece with the bending press
DD289970A5 (en) HYDRAULIC PRESS WITH SHORT HUB AND A HIGH ACCURACY EQUATE CONTROL
DE3521699A1 (en) Arrangement for regulating controllable pneumatic pads
WO2012059504A1 (en) Device and method for the multiple filling of high-viscosity materials
DE2010389A1 (en) Device for the mutual guidance of two machine parts that move or rotate against each other by means of a working movement
DE69329807T2 (en) Method and device for adapting the operating conditions of a press depending on the forms used
DE4129256C2 (en) Device for testing presses
WO2016083305A1 (en) Coordinate measuring machine and method for compensating for large workpiece masses

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR GB IT SE

17P Request for examination filed

Effective date: 19950602

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

17Q First examination report despatched

Effective date: 19960813

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT SE

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19970319

REF Corresponds to:

Ref document number: 59402041

Country of ref document: DE

Date of ref document: 19970417

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2098841

Country of ref document: ES

Kind code of ref document: T3

ITF It: translation for a ep patent filed
ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20030819

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20030904

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20030917

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20040826

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040922

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040923

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20040923

Year of fee payment: 11

EUG Se: european patent has lapsed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20040922

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050531

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050922

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050923

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060401

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20050923