EP0645984A1 - Gabarit pour outils de traitement et procede de traitement de structures osseuses - Google Patents
Gabarit pour outils de traitement et procede de traitement de structures osseusesInfo
- Publication number
- EP0645984A1 EP0645984A1 EP93914666A EP93914666A EP0645984A1 EP 0645984 A1 EP0645984 A1 EP 0645984A1 EP 93914666 A EP93914666 A EP 93914666A EP 93914666 A EP93914666 A EP 93914666A EP 0645984 A1 EP0645984 A1 EP 0645984A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- treatment
- template
- osseous
- osseous structure
- treatment tool
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/14—Surgical saws ; Accessories therefor
- A61B17/15—Guides therefor
- A61B17/151—Guides therefor for corrective osteotomy
- A61B17/152—Guides therefor for corrective osteotomy for removing a wedge-shaped piece of bone
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/14—Surgical saws ; Accessories therefor
- A61B17/15—Guides therefor
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/16—Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans
- A61B17/17—Guides or aligning means for drills, mills, pins or wires
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/16—Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans
- A61B17/1662—Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans for particular parts of the body
- A61B17/1671—Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans for particular parts of the body for the spine
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/16—Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans
- A61B17/17—Guides or aligning means for drills, mills, pins or wires
- A61B17/1732—Guides or aligning means for drills, mills, pins or wires for bone breaking devices
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/16—Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans
- A61B17/17—Guides or aligning means for drills, mills, pins or wires
- A61B17/1739—Guides or aligning means for drills, mills, pins or wires specially adapted for particular parts of the body
- A61B17/1742—Guides or aligning means for drills, mills, pins or wires specially adapted for particular parts of the body for the hip
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/16—Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans
- A61B17/17—Guides or aligning means for drills, mills, pins or wires
- A61B17/1739—Guides or aligning means for drills, mills, pins or wires specially adapted for particular parts of the body
- A61B17/1757—Guides or aligning means for drills, mills, pins or wires specially adapted for particular parts of the body for the spine
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/16—Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans
- A61B17/17—Guides or aligning means for drills, mills, pins or wires
- A61B17/1739—Guides or aligning means for drills, mills, pins or wires specially adapted for particular parts of the body
- A61B17/1764—Guides or aligning means for drills, mills, pins or wires specially adapted for particular parts of the body for the knee
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/16—Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans
- A61B17/17—Guides or aligning means for drills, mills, pins or wires
- A61B17/1739—Guides or aligning means for drills, mills, pins or wires specially adapted for particular parts of the body
- A61B17/1775—Guides or aligning means for drills, mills, pins or wires specially adapted for particular parts of the body for the foot or ankle
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/16—Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans
- A61B2017/1602—Mills
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/10—Computer-aided planning, simulation or modelling of surgical operations
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/30—Surgical robots
Definitions
- the invention is directed to a template for treat ⁇ ment tools for the treatment of osseous structures and a method for the definition and reproduction of the positional relationship of a treatment tool rel ⁇ ative to an osseous structure.
- the accuracy of execution depends exclusively on the experience, the three-dimensional perceptivity and the technical skill of the surgeon, which, depending on the type and the anatomical site of the interven ⁇ tion can involve extreme risks even with experienced surgeons.
- the accuracy of execution depends exclusively on the experience, the three-dimensional perceptivity and the technical skill of the surgeon, which, depending on the type and the anatomical site of the interven ⁇ tion can involve extreme risks even with experienced surgeons.
- two-dimensional tomographic images and pre- or intraoperative X-ray images are available.
- standard tool guides have been provided. These are mostly cutting, boring or sinking templates for preparing and/or fixing the seat of a knee or hip joint prosthesis (as e.g. US 4,567,885, US 4,703,751, US 4,822,362, US 4,721,104, DE-33 39 259, EP 380 451, EP 415 837, EP 231 885, EP 228 339, DE 39 25 488, DE 79 14 280) or for reposi ⁇ tioning osteotomies in the region of the proximal head of the femur or tibia (e.g. US 4,565,191, DE 38 42 645, DE 32 11 153).
- intraoperative posi ⁇ tioning of these templates relative to the bone is performed free-handed and even in case of special solutions allowing limited adaptation to the anatom ⁇ ical conditions, as e.g. in US 4,846,161, DE 34 47 163 or DE 40 16 704, can generally not be car ⁇ ried out exactly and clearly according to the plan ⁇ ning of the intervention.
- intra ⁇ operative measurement and positioning under X-ray control are provided. This causes an increased expo- sure to radiation for the patient and the medical staff, prolongs the duration of the surgical inter ⁇ vention and again is just an indirect and not clear ⁇ ly defined transfer of the treatment strategy de ⁇ fined in the surgical planning.
- the first category comprises devices which, designed as rigid frames, are attach ⁇ ed directly (e.g. by screws) on/in the bone and are adapted for rigid mechanical coupling a posi ⁇ tioning or coordinate measuring syste; , with the reference points of said devices being ⁇ &. roduced in a tomographic image (e.g. stereotaxic apparatuses as described in Riechert et al.: Beschrexbung und An- effet niegerates fur stereotaktische Hirn- operationen, Acta neurochir., Vienna, Austria, Suppl.
- the second category com ⁇ prises methods wherein individual reference bodies (marking elements, at least three of them) are fixed in or on the bone or the overlying skin surface al ⁇ ready prior to tomographic scanning of the respec ⁇ tive part of the body and subsequently are imaged in the tomographic pictures. These reference bodies und markers are then detected, as to their position and orientation, through a mechanically rigid construc ⁇ tion or 3D coordinate measurement and evaluation for detection of the transformation relation between the coordinate systems of the bone structure, the tomo ⁇ graphic images and the environment (Adams et al.: A navigation support for surgery.
- the reference bodies can be fixed on the skin surface only in special cases (in the skull region or in the region of palpable sites on osseous structures), and even there only with restricted accuracy.
- a fixing directly on or in the osseous tissue requires that the patient has to undergo an ad ⁇ ditional surgical intervention.
- the reference bodies (and possibly the whole rigid device) must remain fixed to the patient in an unchanged position from the time of image pick-up to the surgical intervention.
- time- consuming (and again failure-prone) intraopera ⁇ tive measuring and aligning work has to be per ⁇ formed.
- Some methods are executed with intraoperative image acquisition (particularly biplanar X-ray projection images) and suitable targeting and calibrating de ⁇ vices which appear in the image.
- the targeting device being fixed e.g. in the robot gripper
- the relationship - defined by intraoperative X-ray images - between the targeting device and the X-rayed part of the body the "ob ⁇ ject", as e.g. an osseous structure
- contours of the re ⁇ spective osseous structure which have been detected with the aid of a computer in biplanar intraopera ⁇ tive X-ray projection images are compared to and, as far as possible, made congruent with 3D-CAD mod ⁇ els of this structure which have been reconstructed from tomographic images and stored in the computer. If the orientation of the basic coordinate system of the robot and that of the X-ray device relative to each other are known, the robot can be moved accord ⁇ ing to its programming made corresponding to the 3D model in the CAD system. In the above mentioned pub ⁇ lication, repositioning osteotomy is mentioned as an exemplary application. This system has not been re ⁇ alized yet.
- treatment is understood to comprise not only the treatment of an osseous structure by suitable tools (cutting, boring, milling device) but also other forms of treatment such as e.g. invasive mea ⁇ suring and scanning of osseous structures by corre ⁇ sponding measuring devices.
- intraoperative measuring and posi ⁇ tioning periods shall be minimized by shifting them into the preoperative planning phase and working steps requiring X-ray imaging shall generally be rendered unnecessary.
- intraoperative access to a ma ⁇ nipulator or robot as a tool for assistance in the surgical intervention shall be made possible.
- the central functional element is a so-called individual template by which parts of the surface of an arbitrary osseous struc ⁇ ture which is to be treated and is intraoperatively accessible to the surgeon, are copied as a negative image without undercut and in a mechanically rigid manner, so that the individual template can be set onto the osseous structure in a clearly defined po ⁇ sition and with mating-engagement.
- a split-field device e.g. a computer or a nuclear spin tomograph
- split images are produced of the layers extending through the body of the liv ⁇ ing organism and containing the osseous structure, and from these split images, data regarding the three-dimensional shape of the osseous structure and the surface thereof are obtained.
- these data are used as a basis for defining, within the coordinate system fixedly positioned relative to the osseous structure, a rig ⁇ id individual template which, completely or by seg ⁇ ments (but at least by three intraoperatively clear ⁇ ly identifiable abutting points) , copies the surface of the osseous structure in such a manner that the individual template can be intraoperatively set onto these - then freely exposed - contact faces or points in exclusively one clearly defined position in form-closed manner.
- an individual abutting behavior is observed in all six spatial degrees of freedom. Therefore, quick and reliable identification and detection of position is possible intraoperatively.
- the inter- and intra-individual variants of the shape of osseous structures which pose a problem in other systems, guarantee a safe and clear intraoperative identification and detec ⁇ tion of position.
- the invention is characterized in that the cutting, boring, milling and other treatment steps which in the preoperative surgical planning phase are three-dimensionally charted in said coordinate system fixed relative to the osseous structure, can be clearly defined in or on the individual template in form of guide means or reference or flange en ⁇ gagement points for standardized tool guides, which can be performed directly in or on the template body relative to the bone.
- this situa ⁇ tion which in surgical planning is precisely de ⁇ fined in three dimensions and simulated, is realized by simply setting the individual template onto the exposed surface of the bone. Time-consuming measur ⁇ ing and aligning work is thus shifted into the pre ⁇ operative phase.
- Working steps which involve intra ⁇ operative X-ray control can be omitted.
- Using the template of the invention allows a treat ⁇ ment of osseous structures for any orthopedic inter ⁇ vention (i.e. also complex and possible novel inter ⁇ ventions) which is carried out in a safe, fast and precise manner and is defined according to the sur ⁇ gical planning while it is not necessary anymore to intraoperatively check the orientation of the treat ⁇ ment tool. Intraoperative measuring and positioning periods are minimized by being shifted into the pre ⁇ operative planning phase and working steps requiring X-ray imaging have become unnecessary. For complex surgical interventions, a possibility is created for quick and easy intraoperative access to a manipula ⁇ tor or robot employed as an auxiliary tool in the surgical intervention.
- the above negative mold can reproduce a cohesive region or a plurality of geometrically non-abut ⁇ ting partial segments of a bone surface and is constructed in a cohesive, mechanically rigid basic body (the individual template) .
- the over ⁇ all geometry of the basic body is also adapted to the spatial conditions of the surgical access so that it will not overlap with any structure.
- the treatment of the bone can be planned.
- any suitable tool guides particularly drill sleeves, paral ⁇ lel guides, saw templates, 2D- and 3D-profiling milling devices can be provided.
- tool guides, connecting elements, surfaces or points can be provided in/on the basic body of the in ⁇ dividual template, which relative to the 3D re ⁇ construction of the osseous structure are ori ⁇ ented or constructed in such a manner that the tool guides, which here can be coupled (releasably or non-releasably) in a mechanically rigid manner, will effect a three-dimensional guiding of the treatment tools or measuring de ⁇ vices exactly as provided by the surgical plan ⁇ ning.
- the basic body of the individual template can have connecting ele ⁇ ments, surfaces or points arranged thereon, which can be releasably coupled in mechanically rigid manner to the gripper piece of a manipula ⁇ tor and thus preoperatively define the position of the gripper piece of the manipulator relative to the three-dimensional reconstruction of the osseous structure.
- a spatial treatment or moving program for the gripper piece of the manipulator can be defined in the gripper piece coordinate system in a spa ⁇ tially determined relation to the three-dimen ⁇ sional reconstruction of the osseous structure and be programmed in a computer-based procedure.
- a desired spatial and chronological dependence on the 3D position and the mechanical 6D impedance can be defined in the gripper piece coordinate system and be programmed in a computer-based procedure.
- a computer-based manufacturing device particular ⁇ ly by NC milling and/or stereolithography
- the tool guides provided in the surgical plan ⁇ ning are preoperatively mounted on the basic body of the individual template.
- the above treatment steps defined in the phase of surgical planning can be exactly transferred since, rela ⁇ tive to the osseous structure, the tool guides can be brought exactly into the positions de ⁇ fined during the surgical planning phase (i.e. the manipulator gripper piece can be brought into the home position defined in the surgical planning phase).
- the individual template with the faces of the negative mold is set under mating engagement onto the then ex ⁇ posed bone surface, which is done without any further intraoperative devices (particularly without measuring devices such as 3D measuring arms or the like) and without intraoperative measuring and positioning work.
- the moving program defined during the preoperative planning phase in the computer system through gripper and workpiece coordinates, or, respectively, the 6D impedance variation space defined in the same manner is converted after the intraoperative mounting of the individual template coupled to the gripper piece, and then will be available during the surgical intervention.
- the treatment and moving program defined under item 5 can be automatically reproduced in an exactly defined manner relative to the osseous structure or be manually released by pieces.
- the moving and treatment space defined according to items 6 and 9 is intraoperatively reproduced in an exactly defined manner relative to the bone through the spatial and chronological dependence on the var ⁇ iation of the mechanical 6D impedance of the manipulator guided by the surgeon on its gripper piece.
- the guide means of the template for limiting the movement of a treatment device during the treat ⁇ ment of an osseous structure as provided by the surgical planning allows e.g. vertebral osteo ⁇ tomy using a vertebral-osteotomy template with a rear contour analogous limitation for the cut ⁇ ting depth.
- This limitation for the cutting depth which requires a guide path for the guide means which corresponds to that limiting edge of the cut through the osseous structure which fac ⁇ es away from the template, can guarantee suffi ⁇ cient accuracy by exact positioning and guidance of the tool simply by employment of an (individ ⁇ ual) template conforming with the osseous struc ⁇ ture in mating engagement.
- 3D copying milling device for the cleansing of medullary space or for the milling of predeter ⁇ mined shapes in osseous structures, character ⁇ ized in that the geometrical data provided for the 3D copying milling device reproduce individ ⁇ ual geometrical conditions of the thre ⁇ .-dimen ⁇ sional reconstruction of the tomographically imaged osseous structure. Also here, it is func ⁇ tionally important to use an individual-template basic body so as to exactly and clearly position the 3D copying milling device during the surgi ⁇ cal intervention.
- FIG. 1 show a first embodiment of the invention with an individual template, adapted to a vertebra, for guiding a tool, which in this case is a drill for application of bores for pedicle " screws into the vertebra,
- Figs. 6 to 8 show a further embodiment of an individual template and its intraoperative handling and use
- Fig. 9 shows an individual template which is an al ⁇ ternative to the embodiment according to Figs. 6 to 8,
- FIG. 12 shows the use of an individual template for osteotomy in the region of the thoracic limb
- Fig. 17 shows a further example of robot-assisted treatment
- Fig. 18 is a flow chart for illustrating the method of computer-aided and computer-integrated alignment of treatment tools for the treat- ment of osseous structures in orthopedic surgery.
- Fig. 19 is a flow chart for illustrating the method for alignment of treatment tools for the robot-assisted treatment of osseous struc ⁇ tures in orthopedic surgery.
- Figs, la, lb, 2a, 2b, 2c, 3a, 3b, 4, 5a, 5b, 5c show an individual template 4 for application of two bores in a vertebra.
- Each of the bores serves for the mounting of a pedicle screw which shall be screwed trough the (left or right) pedicle into the body of the vertebra, -as it is usually done for the anchoring of a fixateur-intern within a scoliosis operation.
- the screw shall be secured in the cortical substance (i.e. the out ⁇ er, more compact osseous layer).
- the bore and the screw shall injure neither the spi ⁇ nal cord extending in the adjacent spinal canal nor the spinal nerves issuing from the intervertebral canal, and penetrate through the cortical substance of the ventral side of the vertebra only so far that it does not yet ventrally issue from the boy of the vertebra.
- the bores are preoperatively clearly defined in space by the entrance and end points and the diameter, and the screw is defined by the diameter and the length, which is done e.g. using CT images.
- the method of the invention will be described here- under by way of an example which also stands for other, comparable interventions:
- the vertebra and the regions of the structure rele ⁇ vant for the surgical planning (the osseous struc ⁇ ture 17 in general) are scanned by a tomographic method as already described, are reconstructed in three dimensions, and the thus obtained 1:1 model is visualized by a suitable medium (e.g. CAD system).
- a model of the osseous structure 17 made from any mechanically rigid model material, which has been produced in the master mold technique by machining or any other desired production method (from UV curable polymer material, e.g. by means of stereolithography), can serve as a basis for the further method steps described hereunder.
- Methods for the construction of an individual template e.g. by means of a physically rigid model of the osseous structure (e.g. of plastics, wax or metal) and by a plastically deformable, curable material which is machinable in the cured condition, can be used for modelling
- the osseous structure 17 (i.e. the vertebra) is re ⁇ produced in a CAD system as a computerized model.
- a CAD system As a computerized model.
- parts of the bone surface which are intraoperatively accessible to the surgeon are de ⁇ fined in the model as contact faces 1 for the indi ⁇ vidual template 4.
- the defined con ⁇ tact faces 1 are used (as a negative, a "cast", “re ⁇ production") for a basis for the individual template 4 to be constructed in the coordinate system fixed relative to the model.
- the contact faces 1 are first connected to a mechanically rigid construction adapted to the environment and the de ⁇ sired overall function, i.e. to the individual tem ⁇ plate body, so that the individual template 4, via the conventional surgical access (Fig. 4: sketch of a dorsal surgical access in an intervention for sco ⁇ liosis correction), can be set directly onto the exposed bone surface in a clearly defined manner as provided by the invention, without colliding with other structures in the surgical region.
- the individual template 4 is of such a config ⁇ uration that e.g. the contact faces 1 are defined without undercut and that, possibly, recesses 5 (cf. Fig. 5) are provided for structures in the vicinity of the contact faces 1.
- the individual tem ⁇ plate as a whole is adapted to the surgical site.
- the tool guide i.e. the drill guide
- two bores 7 are provided in the body of the individual template, on whose bore axes 8 there are arranged the entrance and end points 9,10 of the bores defined in the bone model according to the surgical planning, and which are provided with drill sleeves 11 which are each unambiguously positionable in the bores.
- these drill sleeves define drill depths and diameters which, in length and in ⁇ ner diameter, are exactly adapted to the surgical planning.
- a universal gripper 14 which can also be reusable, or e.g. of a holding arm 15 which is fixed to the operation table and can be freely positioned and locked.
- clamping devices or screw connections e.g. 19
- the individual template 4 is produced by machining on a NC milling machine, favorably from plastics, e.g. plexiglass (PMMA) or also other materials, e.g. metal, or by a master mold technique, e.g. by ste- eolithography (or a similar procedure as de ⁇ scribed e.g. in Eusemann, Schnell Kurs Modelltechnik Rapid Prototyping, VDI nachlet No. 17, April 26, 1991, p. 26 and in DE 39 33 142) from UV curable polymer.
- a NC milling machine favorably from plastics, e.g. plexiglass (PMMA) or also other materials, e.g. metal, or by a master mold technique, e.g. by ste- eolithography (or a similar procedure as de ⁇ scribed e.g. in Eusemann, Schnell Kurs Modelltechnik Anlagenmann No. 17, April 26, 1991, p. 26 and in DE 39 33 142) from UV curable polymer.
- ste- eolithography
- the bores 7 can be generated di ⁇ rectly by insertion of the drilling tool into the drill sleeves 11, wherein the diameter 16 and the entrance and end points 9,10 of the bores in the osseous structure of the vertebra 17 are defined by the preoperative planning and can be clearly repro ⁇ quizzed intraoperatively.
- Semifinished products specifically suited for the intervention can be stored, in the CAD sys ⁇ tem, as a Macro (also parametrically) in libraries together with standard tool guides, standard tools, surgical fixing elements such as screws, fixateur- intern or -extern, other osteosynthesis instruments, grippers and holding arms up to robot and manipula ⁇ tor libraries. Also the storage of libraries with physiological or pathological osseous structures as well as standard surgical accesses in the CAD com ⁇ puter system can be of advantage.
- the mentioned individual com ⁇ ponents can be combined with each other, adapted to each other and positioned relative to each other in any desired manner in the coordinate system fixed relative to the computerized model of the osseous structure.
- Figs. 6a, 6b, 7a, 7b and 8 illustrate an embodiment of the method exemplified by the use of the princi ⁇ ple of the individual template in a repositioning osteotomy in the region of the trochanter minor.
- the contact faces 1 of the mechanically rigid template body 6 of the individual template 4 clearly define the position of the template relative to the osseous structure 17. Thereby, also the position of the cut ⁇ ting planes according to the surgical planning (Fig. 7) can be intraoperatively reproduced by mounting the individual template 4.
- the individual template 4 can optionally be provided with a universal gripper 14. Also a fixation (nails, screws and the like) 19 on the bone 17 can be optionally performed.
- Fig. 9 shows an alternative simple individual template 4 (only saw template) for repositioning osteotomy.
- Figs. 10a to lOd show an embodi ⁇ ment for a corresponding individual template 4.
- Fig. 10 again shows a simplified alternative.
- the in ⁇ dividual template 4 can also be the basis for fur ⁇ ther, additional individual templates 27 which need not have contact faces 1 to the osseous structure 17 but are (rigidly) connected to the basic individual template 4 by defined flange engagement points 28.
- flange engagement points 28 By use of such flange engagement points 28, also other additional devices, e.g. a parallel guide 26, can be coupled. Also a rear contour analogous limi ⁇ tation 24 of the cutting depth can be provided in/on the individual template 4 or/and the addition ⁇ al individual template 27.
- the cut ⁇ ting contour of the rear side of the osseous struc ⁇ ture 17 with the respective cutting plane 20 is re ⁇ produced in such a manner in the individual template 4 (or, respectively, in the additional individual template 27) in the form of the rear contour analo ⁇ gous limitation for the cutting depth that the saw 25, guided in parallel, whose housing is rigidly connected to a guide pin (or guide cam) which slides along the rear contour analogous limitation for the cutting depth, cannot move beyond the boundary of the osseous structure in rearward direction.
- the bores 19 applied for the fixation of the individual template can be utilized, if desired (Fig. lOd) .
- Figs. 11a to lie illustrate, by way of example, the method of a scoliosis correction by a repositioning osteotomy in the region of individual bodies of the vertebrae. Further, the method of the rear contour analogous limitation 24 of the cutting depth, an alternative option of a parallel guide 26 for the sawing tool 25 and the method for mounting a fixateur-extern through a ventral access (Fig. He), are explained in greater detail.
- a rear contour analogous limitation 24 for the cutting depth and a saw 25, being guided exactly parallel in the respective cutting plane, are required.
- the whole design and the manufacture are performed, as already described, on the basis of tomographic imag ⁇ es of the spinal column and assisted by a computer, in the CAD system, and manufacture is carried out by one of the above mentioned manufacturing methods.
- Two guide pins 23, rigidly connected to the housing of the sawing tool 25, are moved along two guides, i.e. the rear contour analogous limitations 24 for the cutting depth.
- the individual template 4 can be optionally fixed, as shown at 19, on the body of the vertebra and be provided with a universal gripper 14. If a universal parallel guide (as shown e.g. in Fig. 10b) is to be employed, corresponding flange engagement points 28 have to be defined in the surgical planning phase. In this case, a sole rear contour analogous limita ⁇ tion 24 for the cutting depth, accordingly having a sole guide pin 23, will be sufficient.
- Fig. He shows a method by which a fixateur-extern for alignment and temporary fixation of the spinal column after a ventral repositioning osteotomy in the region of individual bodies of the vertebrae, can be fixed solely through the ventral access and can be mounted in a non-invasive manner from dorsal.
- bores 7 are formed from ventral through the body of the vertebra and the pedicles by use of an individual template 4 and drill sleeves 11. Then, a surgical threaded bar 30 is screwed into each of these bores until the head 32 of the threaded bar is flush with the ventral surface of the body of the vertebra.
- the threaded bars 30 are characterized in that each of them comprises a mandrel-like tip 31 which, when the threaded bars 30 are screwed into place, penetrate the layers of tissue dorsally abutting the vertebra, and in the screwed condition project so far beyond the dorsal surface 33 of the body that a fixateur-extern 22 adapted to them can be fixed to them and, thus, alignment and fixation of the spinal column can be performed from dorsal.
- the threaded bar 30 is characterized in that a screwing tool can be applied in the region of the head 32 of the threaded bar (e.g. an internal hexagon), while, however, the head 32 of the threaded bar has a smaller diameter or the same diameter as the inner diameter of the thread.
- the threaded bar can be removed from dorsal.
- Additional ventral fixations of the bodies of the vertebrae to the purpose of osteosynthesis can be performed by use of fixateur-intern (clamps, plates and so on; possibly also by absorbable material) as commonly used to that purpose.
- Figs. 12a and 12b schematical ⁇ ly illustrate an application of the method using the individual template with alignment and definition of the cutting planes 20 and rear contour analogous limitation 24 for the cutting depth as performed in osteotomy in the region of the thoracic limb.
- the line 24 of the body 6 of the individual template corresponds to that edge of the cutting plane through the osseous structure 17 of the thoracic limb which is facing away from template 4.
- Figs. 13a to 13c schematically show an individual template 4 for the preparation of the seat for the knee-joint head prosthesis illustrated by way of example in Fig. 13d.
- the intraoperative procedure is as follows: The individual template 4 is set onto the bone 17 in a defined manner, abutting the con ⁇ tact faces 1.
- the drill sleeve 11 is inserted, and the bore with the bore axis 8 is formed in the bone. Subsequently, the drill sleeve is removed again. Then, the cut is formed along the cutting plane 20a.
- the cut 20b can be performed free-handed at a right angle to cut 20a. (To this effect, also an additional template 27 can be provided). Thereafter, the groove (cut 20c) is milled or sawed (according to the geometry of the prosthesis), and then, cut 20d is formed along the lower edge of the individual template 4.
- Using an individual template almost any random de ⁇ vices can be brought into a clearly defined position relative to the osseous structure as provided by the surgical planning. Milling operations can be exactly planned and realized by a copying milling device which is set onto the osseous structure through a suitable individual template (and which can also reproduce geometries of osseous structures or re ⁇ flect them in some other manner).
- Figs. 14a to 14c schematically show the cleansing of the space of the femural marrow from bone cement.
- the individual template 4 is intraoperatively set with the contact faces 1 onto the prepared bone. (Also for preparatory treatment, individual tem ⁇ plates can be provided) .
- the plan- parallel guide 36 of the additional device 41 limits the movements of the milling tool (or the milling head) in a plane perpendicular to the axis 42 of the milling device, and, further, the linear guide 37 of the additional device 41 limits the movements in the direction of the axis 42 of the milling device.
- the individual template 4 also comprises a cavity which, in the manner illustrated in Fig.
- This method allows three-dimensional milling and cleansing of the medullary space in one working phase and in a clearly defined manner in accordance with the surgical planning.
- a robot or manipulator can be advan ⁇ tageous in case of very small access openings or spatially complex treatment processes (e.g. in tri ⁇ ple repositioning osteotomy of the pelvic bone or complex milling treatment) .
- Fig. 19 describes the principal method in diagrammatic form.
- Figs. 15a and 15b show a first embodiment for the use of an individual template for robot-assisted treatment of osseous structures in orthopedic sur ⁇ gery.
- the gripper 48 of a robot mechanics 49 stored in the macro library of the CAD system can be connected, with the contact faces 1, to the comput ⁇ erized model of the osseous structure 17 by a non- positive and torque-coupling connection to the in ⁇ dividual template 4.
- the simulated po ⁇ sition of the robot gripper 48 in the coordinate system 43 fixed relative to the osseous structure 17 (or, respectively, the transformation relationship between the coordinate system fixed 44 relative to the robot gripper and fixed 43 relative to the osse ⁇ ous structure, when the individual template 4 is mounted on the bone 17 and is connected to robot gripper 48 in a defined rigid manner) is computed and stored as a starting position for simulation and program generation of the whole treatment procedure which, if desired, is performed with different treatment tools 47.
- the transformation relationship, changeable over time during the treatment procedure, between the robotic end effector 47 or the robot gripper coordinate system 44 and the coordinate sys ⁇ tem 43 fixed relative- to the osseous structure 17, is respectively planned, computed, simulated and stored or documented in the CAD system.
- This in ⁇ cludes the possibility of a positioning of laser pointers, tool guides, measuring probes, and of a direct treatment of the osseous structure by drills, milling devices, saws, lasers, ultrasonic applica ⁇ tors and others. Under the safety aspect, it would also be reasonable to define and program allowed and prohibited moving regions.
- the robot Using the individual template 4, fixed to the grip ⁇ per 48 of robot 49 according to the surgical plan ⁇ ning, the robot, during the surgical intervention, can quickly and reliably detect the spatial position of the osseous structure by the teach-in method (Fig. 15a).
- the parameters of the joint or the positional measuring data of the e.g. six axes of the robot 49 can be used for determining the trans- formation relationship between the basic coordinate system 45 of the robot and the coordinate system 43 fixed relative to the osseous structure 17.
- the treatment steps, defined during the surgical plan ⁇ ning phase in the coordinate system 43 fixed rela ⁇ tive to the osseous structure 17 i.e.
- the transfor ⁇ mation relationship, changeable over time during the treatment procedure, between the robotic end effec ⁇ tor 47 or the robot gripper coordinate system 44 and the coordinate system 43 fixed relative to the os ⁇ seous structure 17), can the be computed after spa ⁇ tial fixation 46 (holding arm, other fixados- extern) of the bone in the basic coordinate system 45 of the robot.
- the transformation relationship, changeable over time, between the ro ⁇ bot gripper coordinate system 44 and the basic coor ⁇ dinate system 45 of the robot, and thus the movement of the endeffector 47 (or gripper 48, respectively) is computed in the basic coordinate system 45 of the robot.
- the intraoperative transfer of the treatment procedure can be carried out e.g.
- the position of the treatment tool 47 relative to the osseous structure 17 can be intraoperatively displayed in the picture of the model on a computer monitor 57 and can be visually controlled by the surgeon.
- Figs. 15a and 15b schematically show the described method.
- the description of the geometry of the treatment tool 47 in the coordinate system of the robot gripper 44 has to be known and has to be iden ⁇ tical with the one defined in the surgical planning. The same holds true for the transformation relation ⁇ ship between the robot gripper 48 or 44 and the in ⁇ dividual template 4 (among others, defined by the flange engagement points 28).
- the robot must be new ⁇ ly calibrated in each case prior to the operation.
- CAD models for preoperative simulation and off-line programming of diverse robots are available on the market.
- Figs. 16a to 16e schematically show the method by way of example in connection with an operation for applying an individually adapted hip-joint prosthe ⁇ sis.
- the Figures show other embodiments for individual functional elements, e.g. fixation of the individual template 4 to the bone 17a through a con ⁇ necting element 18, establishing a reference between the coordinate system 43 of the bone and the basic coordinate system 45 of the robot by use of a refer ⁇ ence bore 52 provided with an adjusting-spring groove, spatial fixation of the osseous structure 17 through flange engagement points 28 of the individu ⁇ al template 4.
- the individual template 4 is set with the contact face la onto the femur bone 17a and is fixed by two wires.
- the bone 17a and the individual template 4 are spatially fixed through flange engagement points 28 by means of a holding arm (or other fixateur-externs) 46 clampingly fixed e.g. to the operating table.
- the robot 49 whose gripper piece 48 carries e.g. a shaft end having a defined geometry and being provided with an adjustment spring, detects the relative po ⁇ sition of the osseous structure 17 in the basic co ⁇ ordinate system 45 of the robot by the teach-in method through insertion of the referencing body (shaft end with adjustment spring) into the refer ⁇ encing bore 52 of the individual template 4.
- the pelvis 17b is clampingly fixed from outside in the region of the palpable bone points as rigidly as possible and non-inva- sively.
- the robot 49 determines the spatial position of the os ⁇ seous structure 17 in the basic coordinate system 45 of the robot.
- the treatment e.g. by means of a milling tool, is executed as defined by the surgi ⁇ cal planning. In this manner, it is possible e.g. to define an optimum thickness of the remaining bone and to avoid unintended perforation of the bottom of the acetabulum.
- Fig. 16 just gives one example of the many possible applications of the instant method in the field of surgical treatment of osseous struc ⁇ tures.
- the "allowed" moving range 50 for treatment tools is structured, defined and programmed with suitable precision in the coordinate system 43 fixed relative to the osseous structure 17, it is possible to define, on the basis of respective limitations of the moving space, respectively one access corridor 55 and, adjoining it, a "virtual" tool guide 56 aligned and positioned according to the surgical planning. In this manner, a reproducible treatment of the bone can be accomplished also in that the treatment tool (saw, drill, milling device or the like) is intraoperatively fixed to the gripper piece 48 of a passive, impedance-variable manipulator 49 and is manually moved by the surgeon.
- Fig. 17 serves for schematic illustration of the method.
- the surgeon is guided by defined impedance variations of the manipulator (in ⁇ crease of the impedance when performing movements in the direction of the limitation of the access corri ⁇ dor) until, directly before contact of the treatment tool with the osseous structure 17, movement is pos- i_ J -le only along the virtual tool guide ("virtual tplate") defined according to the surgical plan- ning.
- the impedance variations can be effected or controlled by computer-assisted brake systems or actuators in the individual joints and degrees of freedom of the manipulator 49.
- a 6D position and force-moment measurement e.g. in the individual joints or through a 6D force-moment sen ⁇ sor 53 in the gripper piece 48 of manipulator 49).
- Intraoperative steps are:
- control points 54 can be moved freely or, respectively, assisted by a servo mechanism (i.e. with vectorially negative counterforces and -moments). Further, during the operation, the position of the treatment tool 47 relative to the osseous structure 17 can be displayed in the image of the model on a computer monitor 57 and can be visually controlled by the surgeon.
Landscapes
- Health & Medical Sciences (AREA)
- Surgery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biomedical Technology (AREA)
- Medical Informatics (AREA)
- Veterinary Medicine (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Engineering & Computer Science (AREA)
- Dentistry (AREA)
- Heart & Thoracic Surgery (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Molecular Biology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Prostheses (AREA)
- Surgical Instruments (AREA)
Abstract
On produit une reconstruction d'une structure osseuse à traiter. Sur la base des points de contact de cette reconstruction, des points d'aboutement sont définis pour un gabarit de guidage, d'alignement et de positionnement d'un outil de traitement. Les points de contact sont définis de manière que le gabarit peut être monté sur la structure osseuse dans une configuration définitive dans exactement une seule position définie dans l'espace. L'outil de traitement est fixé et guidé sur ledit gabarit de manière que le traitement de la structure osseuse peut être effectué selon la planification préalable de l'intervention chirurgicale.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE4219939A DE4219939C2 (de) | 1992-06-18 | 1992-06-18 | Vorrichtung zur Ausrichtung, Positionierung und Führung von Bearbeitungswerkzeugen, Bearbeitungs- oder Meßvorrichtungen zur Bearbeitung einer knöchernen Struktur und Verfahren zur Erstellung dieser Vorrichtung |
DE4219939 | 1992-06-18 | ||
PCT/EP1993/001540 WO1993025157A1 (fr) | 1992-06-18 | 1993-06-17 | Gabarit pour outils de traitement et procede de traitement de structures osseuses |
Publications (1)
Publication Number | Publication Date |
---|---|
EP0645984A1 true EP0645984A1 (fr) | 1995-04-05 |
Family
ID=6461275
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP93914666A Withdrawn EP0645984A1 (fr) | 1992-06-18 | 1993-06-17 | Gabarit pour outils de traitement et procede de traitement de structures osseuses |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP0645984A1 (fr) |
DE (1) | DE4219939C2 (fr) |
WO (1) | WO1993025157A1 (fr) |
Cited By (88)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8070752B2 (en) | 2006-02-27 | 2011-12-06 | Biomet Manufacturing Corp. | Patient specific alignment guide and inter-operative adjustment |
US8092465B2 (en) | 2006-06-09 | 2012-01-10 | Biomet Manufacturing Corp. | Patient specific knee alignment guide and associated method |
US8123815B2 (en) | 2008-11-24 | 2012-02-28 | Biomet Manufacturing Corp. | Multiple bearing acetabular prosthesis |
US8133234B2 (en) | 2006-02-27 | 2012-03-13 | Biomet Manufacturing Corp. | Patient specific acetabular guide and method |
US8170641B2 (en) | 2009-02-20 | 2012-05-01 | Biomet Manufacturing Corp. | Method of imaging an extremity of a patient |
US8241293B2 (en) | 2006-02-27 | 2012-08-14 | Biomet Manufacturing Corp. | Patient specific high tibia osteotomy |
US8282646B2 (en) | 2006-02-27 | 2012-10-09 | Biomet Manufacturing Corp. | Patient specific knee alignment guide and associated method |
US8298237B2 (en) | 2006-06-09 | 2012-10-30 | Biomet Manufacturing Corp. | Patient-specific alignment guide for multiple incisions |
US8308810B2 (en) | 2009-07-14 | 2012-11-13 | Biomet Manufacturing Corp. | Multiple bearing acetabular prosthesis |
US8323288B2 (en) | 2007-09-30 | 2012-12-04 | Depuy Products, Inc. | Customized patient-specific bone cutting blocks |
US8377066B2 (en) | 2006-02-27 | 2013-02-19 | Biomet Manufacturing Corp. | Patient-specific elbow guides and associated methods |
US8407067B2 (en) | 2007-04-17 | 2013-03-26 | Biomet Manufacturing Corp. | Method and apparatus for manufacturing an implant |
US8473305B2 (en) | 2007-04-17 | 2013-06-25 | Biomet Manufacturing Corp. | Method and apparatus for manufacturing an implant |
US8486150B2 (en) | 2007-04-17 | 2013-07-16 | Biomet Manufacturing Corp. | Patient-modified implant |
US8532807B2 (en) | 2011-06-06 | 2013-09-10 | Biomet Manufacturing, Llc | Pre-operative planning and manufacturing method for orthopedic procedure |
US8535387B2 (en) | 2006-02-27 | 2013-09-17 | Biomet Manufacturing, Llc | Patient-specific tools and implants |
US8568487B2 (en) | 2006-02-27 | 2013-10-29 | Biomet Manufacturing, Llc | Patient-specific hip joint devices |
US8591516B2 (en) | 2006-02-27 | 2013-11-26 | Biomet Manufacturing, Llc | Patient-specific orthopedic instruments |
US8597365B2 (en) | 2011-08-04 | 2013-12-03 | Biomet Manufacturing, Llc | Patient-specific pelvic implants for acetabular reconstruction |
US8603180B2 (en) | 2006-02-27 | 2013-12-10 | Biomet Manufacturing, Llc | Patient-specific acetabular alignment guides |
US8608749B2 (en) | 2006-02-27 | 2013-12-17 | Biomet Manufacturing, Llc | Patient-specific acetabular guides and associated instruments |
US8608748B2 (en) | 2006-02-27 | 2013-12-17 | Biomet Manufacturing, Llc | Patient specific guides |
US8632547B2 (en) | 2010-02-26 | 2014-01-21 | Biomet Sports Medicine, Llc | Patient-specific osteotomy devices and methods |
US8641721B2 (en) | 2011-06-30 | 2014-02-04 | DePuy Synthes Products, LLC | Customized patient-specific orthopaedic pin guides |
US8668700B2 (en) | 2011-04-29 | 2014-03-11 | Biomet Manufacturing, Llc | Patient-specific convertible guides |
US8715289B2 (en) | 2011-04-15 | 2014-05-06 | Biomet Manufacturing, Llc | Patient-specific numerically controlled instrument |
US8764760B2 (en) | 2011-07-01 | 2014-07-01 | Biomet Manufacturing, Llc | Patient-specific bone-cutting guidance instruments and methods |
US8864769B2 (en) | 2006-02-27 | 2014-10-21 | Biomet Manufacturing, Llc | Alignment guides with patient-specific anchoring elements |
US8956364B2 (en) | 2011-04-29 | 2015-02-17 | Biomet Manufacturing, Llc | Patient-specific partial knee guides and other instruments |
US8992538B2 (en) | 2008-09-30 | 2015-03-31 | DePuy Synthes Products, Inc. | Customized patient-specific acetabular orthopaedic surgical instrument and method of use and fabrication |
US9060788B2 (en) | 2012-12-11 | 2015-06-23 | Biomet Manufacturing, Llc | Patient-specific acetabular guide for anterior approach |
US9066727B2 (en) | 2010-03-04 | 2015-06-30 | Materialise Nv | Patient-specific computed tomography guides |
US9066734B2 (en) | 2011-08-31 | 2015-06-30 | Biomet Manufacturing, Llc | Patient-specific sacroiliac guides and associated methods |
US9084618B2 (en) | 2011-06-13 | 2015-07-21 | Biomet Manufacturing, Llc | Drill guides for confirming alignment of patient-specific alignment guides |
US9113971B2 (en) | 2006-02-27 | 2015-08-25 | Biomet Manufacturing, Llc | Femoral acetabular impingement guide |
US9131945B2 (en) | 2013-03-11 | 2015-09-15 | DePuy Synthes Products, Inc. | Customized patient-specific revision surgical instruments and method |
US9168048B2 (en) | 2010-08-12 | 2015-10-27 | DePuy Synthes Products, Inc. | Customized patient-specific acetabular orthopaedic surgical instrument and method of use and fabrication |
US9173661B2 (en) | 2006-02-27 | 2015-11-03 | Biomet Manufacturing, Llc | Patient specific alignment guide with cutting surface and laser indicator |
US9204977B2 (en) | 2012-12-11 | 2015-12-08 | Biomet Manufacturing, Llc | Patient-specific acetabular guide for anterior approach |
US9237950B2 (en) | 2012-02-02 | 2016-01-19 | Biomet Manufacturing, Llc | Implant with patient-specific porous structure |
US9241745B2 (en) | 2011-03-07 | 2016-01-26 | Biomet Manufacturing, Llc | Patient-specific femoral version guide |
US9271744B2 (en) | 2010-09-29 | 2016-03-01 | Biomet Manufacturing, Llc | Patient-specific guide for partial acetabular socket replacement |
US9289253B2 (en) | 2006-02-27 | 2016-03-22 | Biomet Manufacturing, Llc | Patient-specific shoulder guide |
US9295497B2 (en) | 2011-08-31 | 2016-03-29 | Biomet Manufacturing, Llc | Patient-specific sacroiliac and pedicle guides |
US9301812B2 (en) | 2011-10-27 | 2016-04-05 | Biomet Manufacturing, Llc | Methods for patient-specific shoulder arthroplasty |
US9339278B2 (en) | 2006-02-27 | 2016-05-17 | Biomet Manufacturing, Llc | Patient-specific acetabular guides and associated instruments |
US9345548B2 (en) | 2006-02-27 | 2016-05-24 | Biomet Manufacturing, Llc | Patient-specific pre-operative planning |
US9351743B2 (en) | 2011-10-27 | 2016-05-31 | Biomet Manufacturing, Llc | Patient-specific glenoid guides |
US9381011B2 (en) | 2012-03-29 | 2016-07-05 | Depuy (Ireland) | Orthopedic surgical instrument for knee surgery |
US9386993B2 (en) | 2011-09-29 | 2016-07-12 | Biomet Manufacturing, Llc | Patient-specific femoroacetabular impingement instruments and methods |
US9393028B2 (en) | 2009-08-13 | 2016-07-19 | Biomet Manufacturing, Llc | Device for the resection of bones, method for producing such a device, endoprosthesis suited for this purpose and method for producing such an endoprosthesis |
US9408616B2 (en) | 2014-05-12 | 2016-08-09 | Biomet Manufacturing, Llc | Humeral cut guide |
US9451973B2 (en) | 2011-10-27 | 2016-09-27 | Biomet Manufacturing, Llc | Patient specific glenoid guide |
US9498233B2 (en) | 2013-03-13 | 2016-11-22 | Biomet Manufacturing, Llc. | Universal acetabular guide and associated hardware |
US9517145B2 (en) | 2013-03-15 | 2016-12-13 | Biomet Manufacturing, Llc | Guide alignment system and method |
US9538953B2 (en) | 2009-03-31 | 2017-01-10 | Depuy Ireland Unlimited Company | Device and method for determining force of a knee joint |
US9545459B2 (en) | 2012-03-31 | 2017-01-17 | Depuy Ireland Unlimited Company | Container for surgical instruments and system including same |
US9554910B2 (en) | 2011-10-27 | 2017-01-31 | Biomet Manufacturing, Llc | Patient-specific glenoid guide and implants |
US9561040B2 (en) | 2014-06-03 | 2017-02-07 | Biomet Manufacturing, Llc | Patient-specific glenoid depth control |
US9579107B2 (en) | 2013-03-12 | 2017-02-28 | Biomet Manufacturing, Llc | Multi-point fit for patient specific guide |
US9649119B2 (en) | 2009-03-31 | 2017-05-16 | Depuy Ireland Unlimited Company | Method for performing an orthopaedic surgical procedure |
US9675400B2 (en) | 2011-04-19 | 2017-06-13 | Biomet Manufacturing, Llc | Patient-specific fracture fixation instrumentation and method |
US9786022B2 (en) | 2007-09-30 | 2017-10-10 | DePuy Synthes Products, Inc. | Customized patient-specific bone cutting blocks |
US9795399B2 (en) | 2006-06-09 | 2017-10-24 | Biomet Manufacturing, Llc | Patient-specific knee alignment guide and associated method |
US9820868B2 (en) | 2015-03-30 | 2017-11-21 | Biomet Manufacturing, Llc | Method and apparatus for a pin apparatus |
US9826981B2 (en) | 2013-03-13 | 2017-11-28 | Biomet Manufacturing, Llc | Tangential fit of patient-specific guides |
US9826994B2 (en) | 2014-09-29 | 2017-11-28 | Biomet Manufacturing, Llc | Adjustable glenoid pin insertion guide |
US9833245B2 (en) | 2014-09-29 | 2017-12-05 | Biomet Sports Medicine, Llc | Tibial tubercule osteotomy |
US9839438B2 (en) | 2013-03-11 | 2017-12-12 | Biomet Manufacturing, Llc | Patient-specific glenoid guide with a reusable guide holder |
US9839436B2 (en) | 2014-06-03 | 2017-12-12 | Biomet Manufacturing, Llc | Patient-specific glenoid depth control |
US9907659B2 (en) | 2007-04-17 | 2018-03-06 | Biomet Manufacturing, Llc | Method and apparatus for manufacturing an implant |
US9918740B2 (en) | 2006-02-27 | 2018-03-20 | Biomet Manufacturing, Llc | Backup surgical instrument system and method |
US9968376B2 (en) | 2010-11-29 | 2018-05-15 | Biomet Manufacturing, Llc | Patient-specific orthopedic instruments |
US10034753B2 (en) | 2015-10-22 | 2018-07-31 | DePuy Synthes Products, Inc. | Customized patient-specific orthopaedic instruments for component placement in a total hip arthroplasty |
US10070973B2 (en) | 2012-03-31 | 2018-09-11 | Depuy Ireland Unlimited Company | Orthopaedic sensor module and system for determining joint forces of a patient's knee joint |
US10098761B2 (en) | 2012-03-31 | 2018-10-16 | DePuy Synthes Products, Inc. | System and method for validating an orthopaedic surgical plan |
US10206792B2 (en) | 2012-03-31 | 2019-02-19 | Depuy Ireland Unlimited Company | Orthopaedic surgical system for determining joint forces of a patients knee joint |
US10226262B2 (en) | 2015-06-25 | 2019-03-12 | Biomet Manufacturing, Llc | Patient-specific humeral guide designs |
US10282488B2 (en) | 2014-04-25 | 2019-05-07 | Biomet Manufacturing, Llc | HTO guide with optional guided ACL/PCL tunnels |
US10278711B2 (en) | 2006-02-27 | 2019-05-07 | Biomet Manufacturing, Llc | Patient-specific femoral guide |
US10492798B2 (en) | 2011-07-01 | 2019-12-03 | Biomet Manufacturing, Llc | Backup kit for a patient-specific arthroplasty kit assembly |
US10568647B2 (en) | 2015-06-25 | 2020-02-25 | Biomet Manufacturing, Llc | Patient-specific humeral guide designs |
US10603179B2 (en) | 2006-02-27 | 2020-03-31 | Biomet Manufacturing, Llc | Patient-specific augments |
US10722310B2 (en) | 2017-03-13 | 2020-07-28 | Zimmer Biomet CMF and Thoracic, LLC | Virtual surgery planning system and method |
US11051829B2 (en) | 2018-06-26 | 2021-07-06 | DePuy Synthes Products, Inc. | Customized patient-specific orthopaedic surgical instrument |
US11179165B2 (en) | 2013-10-21 | 2021-11-23 | Biomet Manufacturing, Llc | Ligament guide registration |
US11419618B2 (en) | 2011-10-27 | 2022-08-23 | Biomet Manufacturing, Llc | Patient-specific glenoid guides |
US12070231B2 (en) | 2007-09-27 | 2024-08-27 | DePuy Synthes Products, Inc. | Customized patient surgical plan |
Families Citing this family (143)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6695848B2 (en) | 1994-09-02 | 2004-02-24 | Hudson Surgical Design, Inc. | Methods for femoral and tibial resection |
US8083745B2 (en) | 2001-05-25 | 2011-12-27 | Conformis, Inc. | Surgical tools for arthroplasty |
US7634119B2 (en) | 2002-12-04 | 2009-12-15 | Conformis, Inc. | Fusion of multiple imaging planes for isotropic imaging in MRI and quantitative image analysis using isotropic or near-isotropic imaging |
US7468075B2 (en) | 2001-05-25 | 2008-12-23 | Conformis, Inc. | Methods and compositions for articular repair |
US9603711B2 (en) | 2001-05-25 | 2017-03-28 | Conformis, Inc. | Patient-adapted and improved articular implants, designs and related guide tools |
US7534263B2 (en) | 2001-05-25 | 2009-05-19 | Conformis, Inc. | Surgical tools facilitating increased accuracy, speed and simplicity in performing joint arthroplasty |
US8480754B2 (en) | 2001-05-25 | 2013-07-09 | Conformis, Inc. | Patient-adapted and improved articular implants, designs and related guide tools |
US8617242B2 (en) | 2001-05-25 | 2013-12-31 | Conformis, Inc. | Implant device and method for manufacture |
US8882847B2 (en) | 2001-05-25 | 2014-11-11 | Conformis, Inc. | Patient selectable knee joint arthroplasty devices |
US8545569B2 (en) | 2001-05-25 | 2013-10-01 | Conformis, Inc. | Patient selectable knee arthroplasty devices |
US8556983B2 (en) | 2001-05-25 | 2013-10-15 | Conformis, Inc. | Patient-adapted and improved orthopedic implants, designs and related tools |
JPH11178837A (ja) * | 1997-10-06 | 1999-07-06 | General Electric Co <Ge> | 基準構造構成システムおよび基準構造アセンブリ |
DE19747427C2 (de) * | 1997-10-28 | 1999-12-09 | Zeiss Carl Fa | Vorrichtung zur Knochensegmentnavigation |
US7239908B1 (en) | 1998-09-14 | 2007-07-03 | The Board Of Trustees Of The Leland Stanford Junior University | Assessing the condition of a joint and devising treatment |
ATE439806T1 (de) | 1998-09-14 | 2009-09-15 | Univ Leland Stanford Junior | Zustandsbestimmung eines gelenks und schadenvorsorge |
DE19954005A1 (de) * | 1999-11-10 | 2001-06-07 | Volkmar Jansson | System zur Steuerung von Operationsrobotern |
US7635390B1 (en) | 2000-01-14 | 2009-12-22 | Marctec, Llc | Joint replacement component having a modular articulating surface |
US6712856B1 (en) | 2000-03-17 | 2004-03-30 | Kinamed, Inc. | Custom replacement device for resurfacing a femur and method of making the same |
DE10035487B4 (de) * | 2000-07-21 | 2005-01-27 | Urs Universal Robot Systems Gmbh & Co. Kg | Chirurgisches Instrument zum Bearbeiten einer knöchernen Struktur |
ATE414310T1 (de) | 2000-09-14 | 2008-11-15 | Univ Leland Stanford Junior | Verfahren zur manipulation medizinischer bilder |
AU2001212621A1 (en) * | 2000-11-03 | 2002-05-15 | Hopital Sainte-Justine | Adjustable surgical templates |
US8062377B2 (en) | 2001-03-05 | 2011-11-22 | Hudson Surgical Design, Inc. | Methods and apparatus for knee arthroplasty |
US8439926B2 (en) | 2001-05-25 | 2013-05-14 | Conformis, Inc. | Patient selectable joint arthroplasty devices and surgical tools |
EP1389980B1 (fr) | 2001-05-25 | 2011-04-06 | Conformis, Inc. | Methodes et compositions d'arthroplastie |
US20170164957A1 (en) * | 2001-05-25 | 2017-06-15 | Conformis, Inc. | Patient Selectable Joint Arthroplasty Devices and Surgical Tools |
US20130211531A1 (en) * | 2001-05-25 | 2013-08-15 | Conformis, Inc. | Patient-adapted and improved articular implants, designs and related guide tools |
US7708741B1 (en) | 2001-08-28 | 2010-05-04 | Marctec, Llc | Method of preparing bones for knee replacement surgery |
GB2382777A (en) * | 2001-12-07 | 2003-06-11 | Wyman Kwong | Referencing marker for use in computer assisted surgery |
DE10207035B4 (de) * | 2002-02-20 | 2004-03-25 | Aesculap Ag & Co. Kg | Schablone zur Führung eines chirurgischen Bearbeitungswerkzeuges |
US8801720B2 (en) | 2002-05-15 | 2014-08-12 | Otismed Corporation | Total joint arthroplasty system |
US7153303B2 (en) | 2002-06-19 | 2006-12-26 | Sdgi Holdings, Inc. | Guide and blade for contouring vertebral bodies |
US7796791B2 (en) | 2002-11-07 | 2010-09-14 | Conformis, Inc. | Methods for determining meniscal size and shape and for devising treatment |
ES2465090T3 (es) | 2002-12-20 | 2014-06-05 | Smith & Nephew, Inc. | Prótesis de rodilla de altas prestaciones |
US7112204B2 (en) * | 2003-02-06 | 2006-09-26 | Medicinelodge, Inc. | Tibial tubercle osteotomy for total knee arthroplasty and instruments and implants therefor |
US8287545B2 (en) | 2004-01-14 | 2012-10-16 | Hudson Surgical Design, Inc. | Methods and apparatus for enhanced retention of prosthetic implants |
DE102004042489B4 (de) * | 2004-08-31 | 2012-03-29 | Siemens Ag | Medizinische Untersuchungs- oder Behandlungseinrichtung mit dazugehörigem Verfahren |
DE602004019551D1 (de) | 2004-12-08 | 2009-04-02 | Perception Raisonnement Action | Vorrichtung zur Positionierung einer Knochenschnittführung |
WO2006081421A2 (fr) * | 2005-01-27 | 2006-08-03 | Nexgen Spine, Inc. | Remplacement de disque intervertebral et instruments chirurgicaux correspondants |
EP1948041A2 (fr) | 2005-10-24 | 2008-07-30 | Nexgen Spine, Inc. | Remplacement d'un disque intervertebral et instruments associes |
US8623026B2 (en) | 2006-02-06 | 2014-01-07 | Conformis, Inc. | Patient selectable joint arthroplasty devices and surgical tools incorporating anatomical relief |
CN102599960B (zh) | 2006-02-06 | 2015-08-12 | 康复米斯公司 | 患者可选择的关节成形术装置和手术器具 |
US9017336B2 (en) | 2006-02-15 | 2015-04-28 | Otismed Corporation | Arthroplasty devices and related methods |
US9808262B2 (en) | 2006-02-15 | 2017-11-07 | Howmedica Osteonics Corporation | Arthroplasty devices and related methods |
US9011441B2 (en) | 2006-02-17 | 2015-04-21 | Paradigm Spine, L.L.C. | Method and system for performing interspinous space preparation for receiving an implant |
US8858561B2 (en) | 2006-06-09 | 2014-10-14 | Blomet Manufacturing, LLC | Patient-specific alignment guide |
CA2656359C (fr) | 2006-06-30 | 2016-11-22 | Smith & Nephew, Inc. | Prothese articulee pour un mouvement anatomique |
WO2008039850A2 (fr) | 2006-09-26 | 2008-04-03 | Nexgen Spine, Inc. | Plaque d'extrémité de prothèse intervertébrale à double dôme et instruments chirurgicaux servant à l'implanter |
AR064013A1 (es) | 2006-11-30 | 2009-03-04 | Paradigm Spine Llc | Sistema de estabilizacion vertebral, interlaminar, interespinoso |
GB2447702A (en) | 2007-03-23 | 2008-09-24 | Univ Leeds | Surgical bone cutting template |
EP2157926B1 (fr) | 2007-05-14 | 2015-04-22 | Queen's University At Kingston | Outil de guidage chirurgical adapté au patient |
US9351744B2 (en) | 2007-05-14 | 2016-05-31 | Queen's University At Kingston | Patient-specific surgical guidance tool and method of use |
WO2008157412A2 (fr) | 2007-06-13 | 2008-12-24 | Conformis, Inc. | Guide d'incision chirurgical |
CN106214215A (zh) | 2007-07-11 | 2016-12-14 | 史密夫和内修有限公司 | 用于在髋关节外科手术中确定骨钉放置的方法和装置 |
WO2011106399A1 (fr) | 2010-02-25 | 2011-09-01 | Depuy Products, Inc. | Blocs de coupe osseuse spécifiques à un patient personnalisés |
US8357111B2 (en) | 2007-09-30 | 2013-01-22 | Depuy Products, Inc. | Method and system for designing patient-specific orthopaedic surgical instruments |
US9173662B2 (en) | 2007-09-30 | 2015-11-03 | DePuy Synthes Products, Inc. | Customized patient-specific tibial cutting blocks |
USD642263S1 (en) | 2007-10-25 | 2011-07-26 | Otismed Corporation | Arthroplasty jig blank |
US10582934B2 (en) | 2007-11-27 | 2020-03-10 | Howmedica Osteonics Corporation | Generating MRI images usable for the creation of 3D bone models employed to make customized arthroplasty jigs |
CA2732274C (fr) | 2007-12-06 | 2017-03-28 | Smith & Nephew, Inc. | Systemes et procedes pour determiner l'axe mecanique d'un femur |
US8160345B2 (en) | 2008-04-30 | 2012-04-17 | Otismed Corporation | System and method for image segmentation in generating computer models of a joint to undergo arthroplasty |
US8480679B2 (en) | 2008-04-29 | 2013-07-09 | Otismed Corporation | Generation of a computerized bone model representative of a pre-degenerated state and useable in the design and manufacture of arthroplasty devices |
US8617171B2 (en) | 2007-12-18 | 2013-12-31 | Otismed Corporation | Preoperatively planning an arthroplasty procedure and generating a corresponding patient specific arthroplasty resection guide |
US8777875B2 (en) | 2008-07-23 | 2014-07-15 | Otismed Corporation | System and method for manufacturing arthroplasty jigs having improved mating accuracy |
US8221430B2 (en) | 2007-12-18 | 2012-07-17 | Otismed Corporation | System and method for manufacturing arthroplasty jigs |
US8545509B2 (en) | 2007-12-18 | 2013-10-01 | Otismed Corporation | Arthroplasty system and related methods |
US8715291B2 (en) | 2007-12-18 | 2014-05-06 | Otismed Corporation | Arthroplasty system and related methods |
US8737700B2 (en) | 2007-12-18 | 2014-05-27 | Otismed Corporation | Preoperatively planning an arthroplasty procedure and generating a corresponding patient specific arthroplasty resection guide |
US8311306B2 (en) | 2008-04-30 | 2012-11-13 | Otismed Corporation | System and method for image segmentation in generating computer models of a joint to undergo arthroplasty |
US8734455B2 (en) | 2008-02-29 | 2014-05-27 | Otismed Corporation | Hip resurfacing surgical guide tool |
EP2265199A4 (fr) * | 2008-03-05 | 2012-03-07 | Conformis Inc | Dispositifs d arthroplastie articulaire sélectionnable par le patient et outils chirurgicaux |
US8682052B2 (en) | 2008-03-05 | 2014-03-25 | Conformis, Inc. | Implants for altering wear patterns of articular surfaces |
WO2009137518A1 (fr) | 2008-05-05 | 2009-11-12 | Nexgen Spine, Inc. | Plateau vertébral pour une prothèse intervertébrale et prothèse incorporant un tel plateau |
AU2009246474B2 (en) | 2008-05-12 | 2015-04-16 | Conformis, Inc. | Devices and methods for treatment of facet and other joints |
FR2932674B1 (fr) | 2008-06-20 | 2011-11-18 | Tornier Sa | Procede de modelisation d'une surface glenoidienne d'une omoplate, dispositif d'implantation d'un composant glenoidien d'une prothese d'epaule, et procede de fabrication d'un tel compose. |
US8617175B2 (en) | 2008-12-16 | 2013-12-31 | Otismed Corporation | Unicompartmental customized arthroplasty cutting jigs and methods of making the same |
US8078440B2 (en) | 2008-09-19 | 2011-12-13 | Smith & Nephew, Inc. | Operatively tuning implants for increased performance |
AU2009222469B2 (en) * | 2008-09-30 | 2015-02-26 | Depuy Products, Inc. | Customized patient-specific acetabular orthopaedic surgical instrument and method of use and fabrication |
WO2010099231A2 (fr) | 2009-02-24 | 2010-09-02 | Conformis, Inc. | Systèmes automatisés de fabrication d'implants orthopédiques spécifiques au patient et instrumentation |
US9017334B2 (en) | 2009-02-24 | 2015-04-28 | Microport Orthopedics Holdings Inc. | Patient specific surgical guide locator and mount |
US8808303B2 (en) | 2009-02-24 | 2014-08-19 | Microport Orthopedics Holdings Inc. | Orthopedic surgical guide |
US8808297B2 (en) | 2009-02-24 | 2014-08-19 | Microport Orthopedics Holdings Inc. | Orthopedic surgical guide |
AU2010236263A1 (en) | 2009-04-16 | 2011-11-10 | Conformis, Inc. | Patient-specific joint arthroplasty devices for ligament repair |
CA2760948A1 (fr) | 2009-05-07 | 2010-11-11 | Smith & Nephew, Inc. | Guide d'alignement propre a un patient pour femur proximal |
EP2493396B1 (fr) | 2009-10-29 | 2016-11-23 | Zimmer, Inc. | Guide de fraisage spécifique d'un patient |
AU2010321626A1 (en) | 2009-11-17 | 2012-06-07 | Queen's University At Kingston | Patient-specific guide for acetabular cup placement |
AU2010327987B2 (en) | 2009-12-11 | 2015-04-02 | Conformis, Inc. | Patient-specific and patient-engineered orthopedic implants |
EP2538855A4 (fr) | 2010-02-25 | 2016-08-03 | Depuy Products Inc | Blocs de coupe tibiale spécifiques à un patient personnalisés |
WO2011106407A1 (fr) | 2010-02-25 | 2011-09-01 | Depuy Products, Inc. | Procédé de fabrication de blocs de coupe osseuse spécifiques à un patient personnalisés |
US9615834B2 (en) | 2010-06-11 | 2017-04-11 | Smith & Nephew, Inc. | Systems and methods utilizing patient-matched instruments |
WO2012021702A2 (fr) | 2010-08-12 | 2012-02-16 | Smith & Nephew, Inc. | Structures servant à fixer un implant orthopédique et procédés d'installation sur un os |
CA2816339C (fr) * | 2010-10-29 | 2020-09-15 | The Cleveland Clinic Foundation | Systeme de planification preoperatoire et de fourniture d'aides chirurgicales specifiques du patient |
JP5638373B2 (ja) * | 2010-12-13 | 2014-12-10 | 大阪冶金興業株式会社 | 椎弓根プローブの刺入を支援するガイド |
AU2012217654B2 (en) | 2011-02-15 | 2016-09-22 | Conformis, Inc. | Patient-adapted and improved articular implants, procedures and tools to address, assess, correct, modify and/or accommodate anatomical variation and/or asymmetry |
ITPI20110040A1 (it) * | 2011-04-08 | 2012-10-09 | Univ Pisa | Maschera di foratura per impiantare una vite transpeduncolare |
EP2720631B1 (fr) | 2011-06-16 | 2022-01-26 | Smith&Nephew, Inc. | Alignement chirurgical à l'aide de références |
US9408686B1 (en) | 2012-01-20 | 2016-08-09 | Conformis, Inc. | Devices, systems and methods for manufacturing orthopedic implants |
US9486226B2 (en) | 2012-04-18 | 2016-11-08 | Conformis, Inc. | Tibial guides, tools, and techniques for resecting the tibial plateau |
US9138247B2 (en) | 2012-05-04 | 2015-09-22 | DePuy Synthes Products, Inc. | Customized patient-specific orthopaedic pin guides |
US9675471B2 (en) | 2012-06-11 | 2017-06-13 | Conformis, Inc. | Devices, techniques and methods for assessing joint spacing, balancing soft tissues and obtaining desired kinematics for joint implant components |
US9636229B2 (en) | 2012-09-20 | 2017-05-02 | Conformis, Inc. | Solid freeform fabrication of implant components |
JP2015532858A (ja) | 2012-09-21 | 2015-11-16 | コンフォーミス・インコーポレイテッドConforMIS, Inc. | 固体自由造形製造を使用してインプラント構成要素の設計および製造を最適化するための方法およびシステム |
US9402637B2 (en) | 2012-10-11 | 2016-08-02 | Howmedica Osteonics Corporation | Customized arthroplasty cutting guides and surgical methods using the same |
EP2870934A1 (fr) | 2013-11-08 | 2015-05-13 | Orthotaxy | Procédé pour construire un guide chirurgical adapté au patient |
WO2015071757A1 (fr) | 2013-11-13 | 2015-05-21 | Tornier Sas | Instrument spécifique à l'épaule d'un patient |
DE102014107481A1 (de) | 2014-05-27 | 2015-12-03 | Aesculap Ag | Medizinisches System |
GB201414171D0 (en) * | 2014-08-11 | 2014-09-24 | Depuy Ireland | Surgical instrument and system of surgical instruments |
US10154239B2 (en) | 2014-12-30 | 2018-12-11 | Onpoint Medical, Inc. | Image-guided surgery with surface reconstruction and augmented reality visualization |
DE102015003576A1 (de) * | 2015-03-19 | 2016-09-22 | Rainer Ebid | 3 D-Osteotom - Gerätschaft zur Durchtrennung von Knochen zur Erzielung einer dreidimensionalen Schnittfläche |
US10105145B2 (en) | 2015-03-24 | 2018-10-23 | Orthotaxy | Method for constructing a patient-specific surgical guide |
CN104739501B (zh) * | 2015-03-31 | 2017-02-01 | 首都医科大学附属北京友谊医院 | 3d打印的颈椎椎弓根螺钉导向植入板及其制备方法 |
CN104688323B (zh) * | 2015-03-31 | 2017-01-18 | 首都医科大学附属北京友谊医院 | 3d打印的颈椎侧块螺钉导向植入板及其制备方法 |
WO2016166372A1 (fr) * | 2015-04-16 | 2016-10-20 | Orthotaxy | Guide chirurgical spécifique à un patient |
EP3095398B8 (fr) | 2015-05-22 | 2023-08-02 | Medivation AG | Instrument spécifique au patient pour référencer des parties du corps |
US10182829B2 (en) | 2015-09-04 | 2019-01-22 | Depuy Ireland Unlimited Company | Surgical instrument and system of surgical instruments |
EP3162316B1 (fr) | 2015-11-02 | 2023-01-11 | Medivation AG | Système d'instrument chirurgical |
EP3389513A1 (fr) | 2015-12-16 | 2018-10-24 | Tornier, Inc. | Instruments spécifiques à un patient et procédés de prothèse articulaire |
EP3195833B1 (fr) | 2016-01-19 | 2022-01-12 | K2M, Inc. | Instruments chirurgicaux |
CN109310476B (zh) | 2016-03-12 | 2020-04-03 | P·K·朗 | 用于手术的装置与方法 |
DE102016105208B3 (de) * | 2016-03-21 | 2017-07-06 | Gottfried Wilhelm Leibniz Universität Hannover | Medizinisches Instrumentarium |
US10722309B2 (en) | 2016-07-11 | 2020-07-28 | Bullseye Hip Replacement, Llc | Methods to assist with medical procedures by utilizing patient-specific devices |
JP2018015306A (ja) * | 2016-07-28 | 2018-02-01 | 株式会社ニューロデザイン | ドリルガイド、スクリューガイドシステム、穿孔方法、及び脊椎固定手術方法 |
EP3493759A4 (fr) * | 2016-08-10 | 2020-03-25 | Australian Institute of Robotic Orthopaedics Pty Ltd | Système chirurgical laser assisté par robot |
IT201600095900A1 (it) | 2016-09-23 | 2018-03-23 | Medacta Int Sa | Dispositivo di guida monouso per la chirurgia spinale |
IT201600095913A1 (it) | 2016-09-23 | 2018-03-23 | Medacta Int Sa | Guida di navigazione specifica per paziente |
CA3049662A1 (fr) | 2017-01-16 | 2018-07-19 | Philipp K. Lang | Guidage optique pour procedures chirurgicales, medicales et dentaires |
WO2018202529A1 (fr) | 2017-05-02 | 2018-11-08 | Medivation Ag | Système d'instruments chirurgicaux |
WO2019014281A1 (fr) | 2017-07-11 | 2019-01-17 | Tornier, Inc. | Guides de coupe humérale spécifiques à un patient |
US11234721B2 (en) | 2017-07-11 | 2022-02-01 | Howmedica Osteonics Corp. | Guides and instruments for improving accuracy of glenoid implant placement |
WO2019051464A1 (fr) | 2017-09-11 | 2019-03-14 | Lang Philipp K | Affichage à réalité augmentée pour interventions vasculaires et autres, compensation du mouvement cardiaque et respiratoire |
EP3727166B1 (fr) | 2017-12-22 | 2024-10-09 | Medacta International SA | Guide de coupe pour ostéotomie périacétabulaire et kit pour ostéotomie périacétabulaire |
AU2018389761B2 (en) | 2017-12-22 | 2021-04-22 | Medacta International Sa | Cutting guide for periacetabular osteotomy and kit for periacetabular osteotomy |
US11348257B2 (en) | 2018-01-29 | 2022-05-31 | Philipp K. Lang | Augmented reality guidance for orthopedic and other surgical procedures |
IT201800005435A1 (it) | 2018-05-16 | 2019-11-16 | Dispositivo di guida monouso specifico per la chirurgia spinale | |
JP2022502232A (ja) | 2018-10-08 | 2022-01-11 | メダクタ・インターナショナル・ソシエテ・アノニム | 患者固有のナビゲーションガイド |
US11553969B1 (en) | 2019-02-14 | 2023-01-17 | Onpoint Medical, Inc. | System for computation of object coordinates accounting for movement of a surgical site for spinal and other procedures |
IT201900002575A1 (it) | 2019-02-22 | 2020-08-22 | Medacta Int Sa | Guida di taglio per osteotomia spinale |
AU2020283377B2 (en) | 2019-05-29 | 2022-08-04 | Wright Medical Technology, Inc. | Preparing a tibia for receiving tibial implant component of a replacement ankle |
EP4081136A4 (fr) * | 2019-12-27 | 2024-06-05 | Blue Fury Consulting, LLC | Foret à os anti-biseau |
AU2021319021A1 (en) * | 2020-07-31 | 2023-02-16 | Ganymed Robotics | Retractable cutting guide |
US11819280B2 (en) | 2020-09-30 | 2023-11-21 | DePuy Synthes Products, Inc. | Customized patient-specific orthopaedic surgical instrument using patient-specific contacting bodies and parametric fixed geometry |
US12053247B1 (en) | 2020-12-04 | 2024-08-06 | Onpoint Medical, Inc. | System for multi-directional tracking of head mounted displays for real-time augmented reality guidance of surgical procedures |
EP4304490A1 (fr) | 2021-03-10 | 2024-01-17 | Onpoint Medical, Inc. | Guidage de réalité augmentée pour systèmes d'imagerie et chirurgie robotique |
FR3132202A1 (fr) * | 2022-02-03 | 2023-08-04 | Amplitude | Procédé et système de coupe osseuse comportant un asservissement du plan de coupe |
Family Cites Families (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2919935C2 (de) * | 1979-05-17 | 1983-01-13 | Gerhard Hug Gmbh, 7801 Umkirch | Vorrichtung zur Führung chirurgischer Instrumente bei Operationen an Röhrenknochen |
US4567885A (en) * | 1981-11-03 | 1986-02-04 | Androphy Gary W | Triplanar knee resection system |
DE3211153A1 (de) * | 1982-03-26 | 1983-09-29 | Peter Dr. 8403 Lengfeld Holzhauser | Vorrichtung zum einstellen und festlegen der schnittebene bei knochenschnitten |
DE3339259C1 (de) * | 1983-10-28 | 1985-03-14 | Reinhold 8000 München Schmieding | Vorrichtung zur Positionierung eines chirurgischen Bohrwerkzeuges |
US4565191A (en) * | 1984-01-12 | 1986-01-21 | Slocum D Barclay | Apparatus and method for performing cuneiform osteotomy |
US4565192A (en) * | 1984-04-12 | 1986-01-21 | Shapiro James A | Device for cutting a patella and method therefor |
DE3447163A1 (de) * | 1984-12-22 | 1986-07-03 | Johannes 4408 Dülmen Hönig | Saegeschablone mit fixierung am aufsteigenden ast des unterkiefers zur behandlung von malokklusionen am unterkiefer |
DE3538654A1 (de) * | 1985-10-28 | 1987-04-30 | Mecron Med Prod Gmbh | Bohrsystem, enthaltend eine bohrlehre zum einsetzen einer endoprothese sowie zugehoerige prothese |
EP0243410A1 (fr) * | 1985-10-28 | 1987-11-04 | ROGER, Greogory James | Procede et appareil pour enlever le ciment prothetique |
US4721104A (en) * | 1985-12-02 | 1988-01-26 | Dow Corning Wright Corporation | Femoral surface shaping apparatus for posterior-stabilized knee implants |
FI74205C (fi) * | 1986-01-30 | 1988-01-11 | Pekka Johannes Jokio | Passare vid skenbensoperationer foer korrigering av felstaellningar av knae. |
US4703751A (en) * | 1986-03-27 | 1987-11-03 | Pohl Kenneth P | Method and apparatus for resecting a distal femoral surface |
US4841975A (en) * | 1987-04-15 | 1989-06-27 | Cemax, Inc. | Preoperative planning of bone cuts and joint replacement using radiant energy scan imaging |
US4822362A (en) * | 1987-05-19 | 1989-04-18 | Walker Peter S | Process and apparatus for tibial plateau compenent |
DE3717871C3 (de) * | 1987-05-27 | 1995-05-04 | Georg Prof Dr Schloendorff | Verfahren und Vorrichtung zum reproduzierbaren optischen Darstellen eines chirururgischen Eingriffes |
US4979949A (en) * | 1988-04-26 | 1990-12-25 | The Board Of Regents Of The University Of Washington | Robot-aided system for surgery |
US4860735A (en) * | 1988-08-08 | 1989-08-29 | The General Hospital Corporation | Drill alignment guide for osteoplastic surgery |
DE3842645A1 (de) * | 1988-12-14 | 1990-06-28 | Mecron Med Prod Gmbh | Saegelehrensystem |
IT1227847B (it) * | 1989-01-11 | 1991-05-10 | Cremascoli Spa G | Apparecchiatura per la corretta resezione femorale e per l'applicazione di protesi sostitutive dell'articolazione del ginocchio. |
DE3902249A1 (de) * | 1989-01-26 | 1990-08-02 | Bodenseewerk Geraetetech | Verfahren zur festlegung der lage von vorgegebenen stellen im menschlichen koerper |
US4907577A (en) * | 1989-04-03 | 1990-03-13 | Wu Shing Sheng | Spinal transpedicle drill jig |
FR2651114B1 (fr) * | 1989-08-29 | 1991-10-18 | Commissariat Energie Atomique | Dispositif de positionnement et de guidage de la lame d'une scie chirurgicale. |
DE4016704C1 (en) * | 1990-05-24 | 1991-09-12 | Aesculap Ag, 7200 Tuttlingen, De | Drill guide for femoral endoprosthesis - has drill supported on base plate with guide for vertical slide |
-
1992
- 1992-06-18 DE DE4219939A patent/DE4219939C2/de not_active Expired - Lifetime
-
1993
- 1993-06-17 WO PCT/EP1993/001540 patent/WO1993025157A1/fr not_active Application Discontinuation
- 1993-06-17 EP EP93914666A patent/EP0645984A1/fr not_active Withdrawn
Non-Patent Citations (1)
Title |
---|
See references of WO9325157A1 * |
Cited By (183)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8591516B2 (en) | 2006-02-27 | 2013-11-26 | Biomet Manufacturing, Llc | Patient-specific orthopedic instruments |
US9113971B2 (en) | 2006-02-27 | 2015-08-25 | Biomet Manufacturing, Llc | Femoral acetabular impingement guide |
US9662127B2 (en) | 2006-02-27 | 2017-05-30 | Biomet Manufacturing, Llc | Patient-specific acetabular guides and associated instruments |
US8133234B2 (en) | 2006-02-27 | 2012-03-13 | Biomet Manufacturing Corp. | Patient specific acetabular guide and method |
US9662216B2 (en) | 2006-02-27 | 2017-05-30 | Biomet Manufacturing, Llc | Patient-specific hip joint devices |
US8241293B2 (en) | 2006-02-27 | 2012-08-14 | Biomet Manufacturing Corp. | Patient specific high tibia osteotomy |
US8282646B2 (en) | 2006-02-27 | 2012-10-09 | Biomet Manufacturing Corp. | Patient specific knee alignment guide and associated method |
US10603179B2 (en) | 2006-02-27 | 2020-03-31 | Biomet Manufacturing, Llc | Patient-specific augments |
US10743937B2 (en) | 2006-02-27 | 2020-08-18 | Biomet Manufacturing, Llc | Backup surgical instrument system and method |
US9700329B2 (en) | 2006-02-27 | 2017-07-11 | Biomet Manufacturing, Llc | Patient-specific orthopedic instruments |
US10507029B2 (en) | 2006-02-27 | 2019-12-17 | Biomet Manufacturing, Llc | Patient-specific acetabular guides and associated instruments |
US9539013B2 (en) | 2006-02-27 | 2017-01-10 | Biomet Manufacturing, Llc | Patient-specific elbow guides and associated methods |
US9522010B2 (en) | 2006-02-27 | 2016-12-20 | Biomet Manufacturing, Llc | Patient-specific orthopedic instruments |
US8377066B2 (en) | 2006-02-27 | 2013-02-19 | Biomet Manufacturing Corp. | Patient-specific elbow guides and associated methods |
US9913734B2 (en) | 2006-02-27 | 2018-03-13 | Biomet Manufacturing, Llc | Patient-specific acetabular alignment guides |
US10206695B2 (en) | 2006-02-27 | 2019-02-19 | Biomet Manufacturing, Llc | Femoral acetabular impingement guide |
US9918740B2 (en) | 2006-02-27 | 2018-03-20 | Biomet Manufacturing, Llc | Backup surgical instrument system and method |
US10426492B2 (en) | 2006-02-27 | 2019-10-01 | Biomet Manufacturing, Llc | Patient specific alignment guide with cutting surface and laser indicator |
US9480490B2 (en) | 2006-02-27 | 2016-11-01 | Biomet Manufacturing, Llc | Patient-specific guides |
US9480580B2 (en) | 2006-02-27 | 2016-11-01 | Biomet Manufacturing, Llc | Patient-specific acetabular alignment guides |
US9289253B2 (en) | 2006-02-27 | 2016-03-22 | Biomet Manufacturing, Llc | Patient-specific shoulder guide |
US9005297B2 (en) | 2006-02-27 | 2015-04-14 | Biomet Manufacturing, Llc | Patient-specific elbow guides and associated methods |
US10390845B2 (en) | 2006-02-27 | 2019-08-27 | Biomet Manufacturing, Llc | Patient-specific shoulder guide |
US10278711B2 (en) | 2006-02-27 | 2019-05-07 | Biomet Manufacturing, Llc | Patient-specific femoral guide |
US9173661B2 (en) | 2006-02-27 | 2015-11-03 | Biomet Manufacturing, Llc | Patient specific alignment guide with cutting surface and laser indicator |
US8568487B2 (en) | 2006-02-27 | 2013-10-29 | Biomet Manufacturing, Llc | Patient-specific hip joint devices |
US8535387B2 (en) | 2006-02-27 | 2013-09-17 | Biomet Manufacturing, Llc | Patient-specific tools and implants |
US11534313B2 (en) | 2006-02-27 | 2022-12-27 | Biomet Manufacturing, Llc | Patient-specific pre-operative planning |
US8900244B2 (en) | 2006-02-27 | 2014-12-02 | Biomet Manufacturing, Llc | Patient-specific acetabular guide and method |
US8603180B2 (en) | 2006-02-27 | 2013-12-10 | Biomet Manufacturing, Llc | Patient-specific acetabular alignment guides |
US8608749B2 (en) | 2006-02-27 | 2013-12-17 | Biomet Manufacturing, Llc | Patient-specific acetabular guides and associated instruments |
US8608748B2 (en) | 2006-02-27 | 2013-12-17 | Biomet Manufacturing, Llc | Patient specific guides |
US8070752B2 (en) | 2006-02-27 | 2011-12-06 | Biomet Manufacturing Corp. | Patient specific alignment guide and inter-operative adjustment |
US9345548B2 (en) | 2006-02-27 | 2016-05-24 | Biomet Manufacturing, Llc | Patient-specific pre-operative planning |
US8864769B2 (en) | 2006-02-27 | 2014-10-21 | Biomet Manufacturing, Llc | Alignment guides with patient-specific anchoring elements |
US9339278B2 (en) | 2006-02-27 | 2016-05-17 | Biomet Manufacturing, Llc | Patient-specific acetabular guides and associated instruments |
US8828087B2 (en) | 2006-02-27 | 2014-09-09 | Biomet Manufacturing, Llc | Patient-specific high tibia osteotomy |
US9861387B2 (en) | 2006-06-09 | 2018-01-09 | Biomet Manufacturing, Llc | Patient-specific knee alignment guide and associated method |
US8398646B2 (en) | 2006-06-09 | 2013-03-19 | Biomet Manufacturing Corp. | Patient-specific knee alignment guide and associated method |
US10893879B2 (en) | 2006-06-09 | 2021-01-19 | Biomet Manufacturing, Llc | Patient-specific knee alignment guide and associated method |
US9993344B2 (en) | 2006-06-09 | 2018-06-12 | Biomet Manufacturing, Llc | Patient-modified implant |
US8092465B2 (en) | 2006-06-09 | 2012-01-10 | Biomet Manufacturing Corp. | Patient specific knee alignment guide and associated method |
US8979936B2 (en) | 2006-06-09 | 2015-03-17 | Biomet Manufacturing, Llc | Patient-modified implant |
US8298237B2 (en) | 2006-06-09 | 2012-10-30 | Biomet Manufacturing Corp. | Patient-specific alignment guide for multiple incisions |
US9795399B2 (en) | 2006-06-09 | 2017-10-24 | Biomet Manufacturing, Llc | Patient-specific knee alignment guide and associated method |
US10206697B2 (en) | 2006-06-09 | 2019-02-19 | Biomet Manufacturing, Llc | Patient-specific knee alignment guide and associated method |
US11576689B2 (en) | 2006-06-09 | 2023-02-14 | Biomet Manufacturing, Llc | Patient-specific knee alignment guide and associated method |
US8486150B2 (en) | 2007-04-17 | 2013-07-16 | Biomet Manufacturing Corp. | Patient-modified implant |
US9907659B2 (en) | 2007-04-17 | 2018-03-06 | Biomet Manufacturing, Llc | Method and apparatus for manufacturing an implant |
US11554019B2 (en) | 2007-04-17 | 2023-01-17 | Biomet Manufacturing, Llc | Method and apparatus for manufacturing an implant |
US8407067B2 (en) | 2007-04-17 | 2013-03-26 | Biomet Manufacturing Corp. | Method and apparatus for manufacturing an implant |
US8473305B2 (en) | 2007-04-17 | 2013-06-25 | Biomet Manufacturing Corp. | Method and apparatus for manufacturing an implant |
US12070231B2 (en) | 2007-09-27 | 2024-08-27 | DePuy Synthes Products, Inc. | Customized patient surgical plan |
US10828046B2 (en) | 2007-09-30 | 2020-11-10 | DePuy Synthes Products, Inc. | Apparatus and method for fabricating a customized patient-specific orthopaedic instrument |
US8377068B2 (en) | 2007-09-30 | 2013-02-19 | DePuy Synthes Products, LLC. | Customized patient-specific instrumentation for use in orthopaedic surgical procedures |
US8425524B2 (en) | 2007-09-30 | 2013-04-23 | DePuy Synthes Products, LLC | Customized patient-specific multi-cutting blocks |
US8425523B2 (en) | 2007-09-30 | 2013-04-23 | DePuy Synthes Products, LLC | Customized patient-specific instrumentation for use in orthopaedic surgical procedures |
US9786022B2 (en) | 2007-09-30 | 2017-10-10 | DePuy Synthes Products, Inc. | Customized patient-specific bone cutting blocks |
US8323288B2 (en) | 2007-09-30 | 2012-12-04 | Depuy Products, Inc. | Customized patient-specific bone cutting blocks |
US8343159B2 (en) | 2007-09-30 | 2013-01-01 | Depuy Products, Inc. | Orthopaedic bone saw and method of use thereof |
US10028750B2 (en) | 2007-09-30 | 2018-07-24 | DePuy Synthes Products, Inc. | Apparatus and method for fabricating a customized patient-specific orthopaedic instrument |
US8357166B2 (en) | 2007-09-30 | 2013-01-22 | Depuy Products, Inc. | Customized patient-specific instrumentation and method for performing a bone re-cut |
US8361076B2 (en) | 2007-09-30 | 2013-01-29 | Depuy Products, Inc. | Patient-customizable device and system for performing an orthopaedic surgical procedure |
US11696768B2 (en) | 2007-09-30 | 2023-07-11 | DePuy Synthes Products, Inc. | Apparatus and method for fabricating a customized patient-specific orthopaedic instrument |
US8419740B2 (en) | 2007-09-30 | 2013-04-16 | DePuy Synthes Products, LLC. | Customized patient-specific bone cutting instrumentation |
US11931049B2 (en) | 2007-09-30 | 2024-03-19 | DePuy Synthes Products, Inc. | Apparatus and method for fabricating a customized patient-specific orthopaedic instrument |
US8594395B2 (en) | 2007-09-30 | 2013-11-26 | DePuy Synthes Products, LLC | System and method for fabricating a customized patient-specific surgical instrument |
US8398645B2 (en) | 2007-09-30 | 2013-03-19 | DePuy Synthes Products, LLC | Femoral tibial customized patient-specific orthopaedic surgical instrumentation |
US10159498B2 (en) | 2008-04-16 | 2018-12-25 | Biomet Manufacturing, Llc | Method and apparatus for manufacturing an implant |
US9492182B2 (en) | 2008-09-30 | 2016-11-15 | DePuy Synthes Products, Inc. | Customized patient-specific acetabular orthopaedic surgical instrument and method of use and fabrication |
US8992538B2 (en) | 2008-09-30 | 2015-03-31 | DePuy Synthes Products, Inc. | Customized patient-specific acetabular orthopaedic surgical instrument and method of use and fabrication |
US9445903B2 (en) | 2008-11-24 | 2016-09-20 | Biomet Manufacturing, Llc | Multi-bearing acetabular prosthesis |
US8123815B2 (en) | 2008-11-24 | 2012-02-28 | Biomet Manufacturing Corp. | Multiple bearing acetabular prosthesis |
US8170641B2 (en) | 2009-02-20 | 2012-05-01 | Biomet Manufacturing Corp. | Method of imaging an extremity of a patient |
US9538953B2 (en) | 2009-03-31 | 2017-01-10 | Depuy Ireland Unlimited Company | Device and method for determining force of a knee joint |
US9649119B2 (en) | 2009-03-31 | 2017-05-16 | Depuy Ireland Unlimited Company | Method for performing an orthopaedic surgical procedure |
US8308810B2 (en) | 2009-07-14 | 2012-11-13 | Biomet Manufacturing Corp. | Multiple bearing acetabular prosthesis |
US9445904B2 (en) | 2009-07-14 | 2016-09-20 | Biomet Manufacturing, Llc | Multiple bearing acetabular prosthesis |
US9839433B2 (en) | 2009-08-13 | 2017-12-12 | Biomet Manufacturing, Llc | Device for the resection of bones, method for producing such a device, endoprosthesis suited for this purpose and method for producing such an endoprosthesis |
US10052110B2 (en) | 2009-08-13 | 2018-08-21 | Biomet Manufacturing, Llc | Device for the resection of bones, method for producing such a device, endoprosthesis suited for this purpose and method for producing such an endoprosthesis |
US9393028B2 (en) | 2009-08-13 | 2016-07-19 | Biomet Manufacturing, Llc | Device for the resection of bones, method for producing such a device, endoprosthesis suited for this purpose and method for producing such an endoprosthesis |
US11324522B2 (en) | 2009-10-01 | 2022-05-10 | Biomet Manufacturing, Llc | Patient specific alignment guide with cutting surface and laser indicator |
US9456833B2 (en) | 2010-02-26 | 2016-10-04 | Biomet Sports Medicine, Llc | Patient-specific osteotomy devices and methods |
US8632547B2 (en) | 2010-02-26 | 2014-01-21 | Biomet Sports Medicine, Llc | Patient-specific osteotomy devices and methods |
US9066727B2 (en) | 2010-03-04 | 2015-06-30 | Materialise Nv | Patient-specific computed tomography guides |
US9579112B2 (en) | 2010-03-04 | 2017-02-28 | Materialise N.V. | Patient-specific computed tomography guides |
US10893876B2 (en) | 2010-03-05 | 2021-01-19 | Biomet Manufacturing, Llc | Method and apparatus for manufacturing an implant |
US9168048B2 (en) | 2010-08-12 | 2015-10-27 | DePuy Synthes Products, Inc. | Customized patient-specific acetabular orthopaedic surgical instrument and method of use and fabrication |
US10098648B2 (en) | 2010-09-29 | 2018-10-16 | Biomet Manufacturing, Llc | Patient-specific guide for partial acetabular socket replacement |
US9271744B2 (en) | 2010-09-29 | 2016-03-01 | Biomet Manufacturing, Llc | Patient-specific guide for partial acetabular socket replacement |
US11234719B2 (en) | 2010-11-03 | 2022-02-01 | Biomet Manufacturing, Llc | Patient-specific shoulder guide |
US9968376B2 (en) | 2010-11-29 | 2018-05-15 | Biomet Manufacturing, Llc | Patient-specific orthopedic instruments |
US9241745B2 (en) | 2011-03-07 | 2016-01-26 | Biomet Manufacturing, Llc | Patient-specific femoral version guide |
US9743935B2 (en) | 2011-03-07 | 2017-08-29 | Biomet Manufacturing, Llc | Patient-specific femoral version guide |
US9445907B2 (en) | 2011-03-07 | 2016-09-20 | Biomet Manufacturing, Llc | Patient-specific tools and implants |
US9717510B2 (en) | 2011-04-15 | 2017-08-01 | Biomet Manufacturing, Llc | Patient-specific numerically controlled instrument |
US8715289B2 (en) | 2011-04-15 | 2014-05-06 | Biomet Manufacturing, Llc | Patient-specific numerically controlled instrument |
US10251690B2 (en) | 2011-04-19 | 2019-04-09 | Biomet Manufacturing, Llc | Patient-specific fracture fixation instrumentation and method |
US9675400B2 (en) | 2011-04-19 | 2017-06-13 | Biomet Manufacturing, Llc | Patient-specific fracture fixation instrumentation and method |
US9474539B2 (en) | 2011-04-29 | 2016-10-25 | Biomet Manufacturing, Llc | Patient-specific convertible guides |
US8668700B2 (en) | 2011-04-29 | 2014-03-11 | Biomet Manufacturing, Llc | Patient-specific convertible guides |
US8956364B2 (en) | 2011-04-29 | 2015-02-17 | Biomet Manufacturing, Llc | Patient-specific partial knee guides and other instruments |
US9743940B2 (en) | 2011-04-29 | 2017-08-29 | Biomet Manufacturing, Llc | Patient-specific partial knee guides and other instruments |
US8532807B2 (en) | 2011-06-06 | 2013-09-10 | Biomet Manufacturing, Llc | Pre-operative planning and manufacturing method for orthopedic procedure |
US8903530B2 (en) | 2011-06-06 | 2014-12-02 | Biomet Manufacturing, Llc | Pre-operative planning and manufacturing method for orthopedic procedure |
US9757238B2 (en) | 2011-06-06 | 2017-09-12 | Biomet Manufacturing, Llc | Pre-operative planning and manufacturing method for orthopedic procedure |
US9084618B2 (en) | 2011-06-13 | 2015-07-21 | Biomet Manufacturing, Llc | Drill guides for confirming alignment of patient-specific alignment guides |
US9687261B2 (en) | 2011-06-13 | 2017-06-27 | Biomet Manufacturing, Llc | Drill guides for confirming alignment of patient-specific alignment guides |
US9095355B2 (en) | 2011-06-30 | 2015-08-04 | DePuy Synthes Products, Inc. | Customized patient-specific orthopaedic pin guides |
US8641721B2 (en) | 2011-06-30 | 2014-02-04 | DePuy Synthes Products, LLC | Customized patient-specific orthopaedic pin guides |
US9561039B2 (en) | 2011-06-30 | 2017-02-07 | DePuy Synthes Products, Inc. | Customized patient-specific orthopaedic pin guides |
US9668747B2 (en) | 2011-07-01 | 2017-06-06 | Biomet Manufacturing, Llc | Patient-specific-bone-cutting guidance instruments and methods |
US9173666B2 (en) | 2011-07-01 | 2015-11-03 | Biomet Manufacturing, Llc | Patient-specific-bone-cutting guidance instruments and methods |
US11253269B2 (en) | 2011-07-01 | 2022-02-22 | Biomet Manufacturing, Llc | Backup kit for a patient-specific arthroplasty kit assembly |
US10492798B2 (en) | 2011-07-01 | 2019-12-03 | Biomet Manufacturing, Llc | Backup kit for a patient-specific arthroplasty kit assembly |
US8764760B2 (en) | 2011-07-01 | 2014-07-01 | Biomet Manufacturing, Llc | Patient-specific bone-cutting guidance instruments and methods |
US8597365B2 (en) | 2011-08-04 | 2013-12-03 | Biomet Manufacturing, Llc | Patient-specific pelvic implants for acetabular reconstruction |
US9427320B2 (en) | 2011-08-04 | 2016-08-30 | Biomet Manufacturing, Llc | Patient-specific pelvic implants for acetabular reconstruction |
US9295497B2 (en) | 2011-08-31 | 2016-03-29 | Biomet Manufacturing, Llc | Patient-specific sacroiliac and pedicle guides |
US9066734B2 (en) | 2011-08-31 | 2015-06-30 | Biomet Manufacturing, Llc | Patient-specific sacroiliac guides and associated methods |
US9603613B2 (en) | 2011-08-31 | 2017-03-28 | Biomet Manufacturing, Llc | Patient-specific sacroiliac guides and associated methods |
US9439659B2 (en) | 2011-08-31 | 2016-09-13 | Biomet Manufacturing, Llc | Patient-specific sacroiliac guides and associated methods |
US9386993B2 (en) | 2011-09-29 | 2016-07-12 | Biomet Manufacturing, Llc | Patient-specific femoroacetabular impingement instruments and methods |
US11406398B2 (en) | 2011-09-29 | 2022-08-09 | Biomet Manufacturing, Llc | Patient-specific femoroacetabular impingement instruments and methods |
US10456205B2 (en) | 2011-09-29 | 2019-10-29 | Biomet Manufacturing, Llc | Patient-specific femoroacetabular impingement instruments and methods |
US10426549B2 (en) | 2011-10-27 | 2019-10-01 | Biomet Manufacturing, Llc | Methods for patient-specific shoulder arthroplasty |
US11419618B2 (en) | 2011-10-27 | 2022-08-23 | Biomet Manufacturing, Llc | Patient-specific glenoid guides |
US10842510B2 (en) | 2011-10-27 | 2020-11-24 | Biomet Manufacturing, Llc | Patient specific glenoid guide |
US9936962B2 (en) | 2011-10-27 | 2018-04-10 | Biomet Manufacturing, Llc | Patient specific glenoid guide |
US12089898B2 (en) | 2011-10-27 | 2024-09-17 | Biomet Manufacturing, Llc | Methods for patient-specific shoulder arthroplasty |
US9301812B2 (en) | 2011-10-27 | 2016-04-05 | Biomet Manufacturing, Llc | Methods for patient-specific shoulder arthroplasty |
US10426493B2 (en) | 2011-10-27 | 2019-10-01 | Biomet Manufacturing, Llc | Patient-specific glenoid guides |
US11602360B2 (en) | 2011-10-27 | 2023-03-14 | Biomet Manufacturing, Llc | Patient specific glenoid guide |
US11298188B2 (en) | 2011-10-27 | 2022-04-12 | Biomet Manufacturing, Llc | Methods for patient-specific shoulder arthroplasty |
US9451973B2 (en) | 2011-10-27 | 2016-09-27 | Biomet Manufacturing, Llc | Patient specific glenoid guide |
US9554910B2 (en) | 2011-10-27 | 2017-01-31 | Biomet Manufacturing, Llc | Patient-specific glenoid guide and implants |
US9351743B2 (en) | 2011-10-27 | 2016-05-31 | Biomet Manufacturing, Llc | Patient-specific glenoid guides |
US9237950B2 (en) | 2012-02-02 | 2016-01-19 | Biomet Manufacturing, Llc | Implant with patient-specific porous structure |
US9827106B2 (en) | 2012-02-02 | 2017-11-28 | Biomet Manufacturing, Llc | Implant with patient-specific porous structure |
US9381011B2 (en) | 2012-03-29 | 2016-07-05 | Depuy (Ireland) | Orthopedic surgical instrument for knee surgery |
US11589857B2 (en) | 2012-03-29 | 2023-02-28 | Depuy Ireland Unlimited Company | Orthopedic surgical instrument for knee surgery |
US10485530B2 (en) | 2012-03-29 | 2019-11-26 | Depuy Ireland Unlimited Company | Orthopedic surgical instrument for knee surgery |
US11051955B2 (en) | 2012-03-31 | 2021-07-06 | DePuy Synthes Products, Inc. | System and method for validating an orthopaedic surgical plan |
US9545459B2 (en) | 2012-03-31 | 2017-01-17 | Depuy Ireland Unlimited Company | Container for surgical instruments and system including same |
US10070973B2 (en) | 2012-03-31 | 2018-09-11 | Depuy Ireland Unlimited Company | Orthopaedic sensor module and system for determining joint forces of a patient's knee joint |
US10206792B2 (en) | 2012-03-31 | 2019-02-19 | Depuy Ireland Unlimited Company | Orthopaedic surgical system for determining joint forces of a patients knee joint |
US10098761B2 (en) | 2012-03-31 | 2018-10-16 | DePuy Synthes Products, Inc. | System and method for validating an orthopaedic surgical plan |
US9204977B2 (en) | 2012-12-11 | 2015-12-08 | Biomet Manufacturing, Llc | Patient-specific acetabular guide for anterior approach |
US9597201B2 (en) | 2012-12-11 | 2017-03-21 | Biomet Manufacturing, Llc | Patient-specific acetabular guide for anterior approach |
US9060788B2 (en) | 2012-12-11 | 2015-06-23 | Biomet Manufacturing, Llc | Patient-specific acetabular guide for anterior approach |
US9839438B2 (en) | 2013-03-11 | 2017-12-12 | Biomet Manufacturing, Llc | Patient-specific glenoid guide with a reusable guide holder |
US9398919B2 (en) | 2013-03-11 | 2016-07-26 | DePuy Synthes Products, Inc. | Customized patient-specific revision surgical instruments and method |
US9820821B2 (en) | 2013-03-11 | 2017-11-21 | DePuy Synthes Products, Inc. | Customized patient-specific revision surgical instruments and method |
US11617591B2 (en) | 2013-03-11 | 2023-04-04 | Biomet Manufacturing, Llc | Patient-specific glenoid guide with a reusable guide holder |
US9131945B2 (en) | 2013-03-11 | 2015-09-15 | DePuy Synthes Products, Inc. | Customized patient-specific revision surgical instruments and method |
US10441298B2 (en) | 2013-03-11 | 2019-10-15 | Biomet Manufacturing, Llc | Patient-specific glenoid guide with a reusable guide holder |
US10201357B2 (en) | 2013-03-11 | 2019-02-12 | DePuy Synthes Products, Inc. | Customized patient-specific revision surgical instruments and method |
US9579107B2 (en) | 2013-03-12 | 2017-02-28 | Biomet Manufacturing, Llc | Multi-point fit for patient specific guide |
US9700325B2 (en) | 2013-03-12 | 2017-07-11 | Biomet Manufacturing, Llc | Multi-point fit for patient specific guide |
US10376270B2 (en) | 2013-03-13 | 2019-08-13 | Biomet Manufacturing, Llc | Universal acetabular guide and associated hardware |
US10426491B2 (en) | 2013-03-13 | 2019-10-01 | Biomet Manufacturing, Llc | Tangential fit of patient-specific guides |
US9826981B2 (en) | 2013-03-13 | 2017-11-28 | Biomet Manufacturing, Llc | Tangential fit of patient-specific guides |
US11191549B2 (en) | 2013-03-13 | 2021-12-07 | Biomet Manufacturing, Llc | Tangential fit of patient-specific guides |
US9498233B2 (en) | 2013-03-13 | 2016-11-22 | Biomet Manufacturing, Llc. | Universal acetabular guide and associated hardware |
US9517145B2 (en) | 2013-03-15 | 2016-12-13 | Biomet Manufacturing, Llc | Guide alignment system and method |
US11179165B2 (en) | 2013-10-21 | 2021-11-23 | Biomet Manufacturing, Llc | Ligament guide registration |
US10282488B2 (en) | 2014-04-25 | 2019-05-07 | Biomet Manufacturing, Llc | HTO guide with optional guided ACL/PCL tunnels |
US9408616B2 (en) | 2014-05-12 | 2016-08-09 | Biomet Manufacturing, Llc | Humeral cut guide |
US9839436B2 (en) | 2014-06-03 | 2017-12-12 | Biomet Manufacturing, Llc | Patient-specific glenoid depth control |
US9561040B2 (en) | 2014-06-03 | 2017-02-07 | Biomet Manufacturing, Llc | Patient-specific glenoid depth control |
US9833245B2 (en) | 2014-09-29 | 2017-12-05 | Biomet Sports Medicine, Llc | Tibial tubercule osteotomy |
US10335162B2 (en) | 2014-09-29 | 2019-07-02 | Biomet Sports Medicine, Llc | Tibial tubercle osteotomy |
US11026699B2 (en) | 2014-09-29 | 2021-06-08 | Biomet Manufacturing, Llc | Tibial tubercule osteotomy |
US9826994B2 (en) | 2014-09-29 | 2017-11-28 | Biomet Manufacturing, Llc | Adjustable glenoid pin insertion guide |
US9820868B2 (en) | 2015-03-30 | 2017-11-21 | Biomet Manufacturing, Llc | Method and apparatus for a pin apparatus |
US10226262B2 (en) | 2015-06-25 | 2019-03-12 | Biomet Manufacturing, Llc | Patient-specific humeral guide designs |
US10568647B2 (en) | 2015-06-25 | 2020-02-25 | Biomet Manufacturing, Llc | Patient-specific humeral guide designs |
US11801064B2 (en) | 2015-06-25 | 2023-10-31 | Biomet Manufacturing, Llc | Patient-specific humeral guide designs |
US10925622B2 (en) | 2015-06-25 | 2021-02-23 | Biomet Manufacturing, Llc | Patient-specific humeral guide designs |
US10034753B2 (en) | 2015-10-22 | 2018-07-31 | DePuy Synthes Products, Inc. | Customized patient-specific orthopaedic instruments for component placement in a total hip arthroplasty |
US10722310B2 (en) | 2017-03-13 | 2020-07-28 | Zimmer Biomet CMF and Thoracic, LLC | Virtual surgery planning system and method |
US11950786B2 (en) | 2018-06-26 | 2024-04-09 | DePuy Synthes Products, Inc. | Customized patient-specific orthopaedic surgical instrument |
US11051829B2 (en) | 2018-06-26 | 2021-07-06 | DePuy Synthes Products, Inc. | Customized patient-specific orthopaedic surgical instrument |
Also Published As
Publication number | Publication date |
---|---|
WO1993025157A1 (fr) | 1993-12-23 |
DE4219939A1 (de) | 1993-12-23 |
DE4219939C2 (de) | 1995-10-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0645984A1 (fr) | Gabarit pour outils de traitement et procede de traitement de structures osseuses | |
US5806518A (en) | Method and system for positioning surgical robot | |
Cleary et al. | State of the art in surgical robotics: clinical applications and technology challenges | |
EP1190675B1 (fr) | Système pour l'orientation d'éléments sur un corps assistée par ordinateur | |
US5752962A (en) | Surgical procedures | |
AU2016359274A1 (en) | Active robotic pin placement in total knee arthroplasty | |
US20200297440A1 (en) | Interactive anatomical positioner and a robotic system therewith | |
Korb et al. | Development and first patient trial of a surgical robot for complex trajectory milling | |
KR20220056191A (ko) | 보강된 고관절성형술들을 위한 로봇 수술 시스템 | |
Kavanagh | Applications of image‐directed robotics in otolaryngologic surgery | |
Rembold et al. | Surgical robotics: An introduction | |
US20190175283A1 (en) | Pinless femoral tracking | |
US20230000558A1 (en) | System and method for aligning a tool with an axis to perform a medical procedure | |
Harris et al. | Intra-operative application of a robotic knee surgery system | |
US20210378765A1 (en) | Miniature bone-mounted robot for in-situ three-dimensional bioprinting | |
Kinzle et al. | An integrated CAD-robotics system for total knee replacement surgery | |
EP1016030A1 (fr) | Procede et systeme d'alignement de la position d'un systeme chirurgical avec une image osseuse preoperatoire | |
JP7562573B2 (ja) | ロック可能な手術システム | |
Davies et al. | Hands-on robotic surgery: is this the future? | |
Phillips et al. | Computer and robotic assisted osteotomy around the knee | |
Portaccio et al. | Design of a positioning system for orienting surgical cannulae during Minimally Invasive Spine Surgery | |
Kienzle et al. | An integrated CAD-robotics system for total knee replacement surgery | |
Darwood et al. | Intraoperative manufacturing of patient-specific instrumentation for shoulder arthroplasty: a novel mechatronic approach | |
Smith | Development of Force-Space Navigation for Surgical Robotics | |
Davies et al. | Robotic surgery at imperial college london |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19950105 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH DE FR GB LI NL |
|
17Q | First examination report despatched |
Effective date: 19970905 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 19980317 |