Nothing Special   »   [go: up one dir, main page]

EP0523584A1 - Process for the regeneration of direct image offset printing forms - Google Patents

Process for the regeneration of direct image offset printing forms Download PDF

Info

Publication number
EP0523584A1
EP0523584A1 EP92111869A EP92111869A EP0523584A1 EP 0523584 A1 EP0523584 A1 EP 0523584A1 EP 92111869 A EP92111869 A EP 92111869A EP 92111869 A EP92111869 A EP 92111869A EP 0523584 A1 EP0523584 A1 EP 0523584A1
Authority
EP
European Patent Office
Prior art keywords
printing form
printing
gas
reaction chamber
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP92111869A
Other languages
German (de)
French (fr)
Other versions
EP0523584B1 (en
Inventor
Barbara Nüssel
Hartmut Fuhrmann
Horst Dauer
Reinhard Plaschka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Manroland AG
Original Assignee
MAN Roland Druckmaschinen AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MAN Roland Druckmaschinen AG filed Critical MAN Roland Druckmaschinen AG
Publication of EP0523584A1 publication Critical patent/EP0523584A1/en
Application granted granted Critical
Publication of EP0523584B1 publication Critical patent/EP0523584B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41CPROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
    • B41C1/00Forme preparation
    • B41C1/10Forme preparation for lithographic printing; Master sheets for transferring a lithographic image to the forme
    • B41C1/1075Mechanical aspects of on-press plate preparation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41NPRINTING PLATES OR FOILS; MATERIALS FOR SURFACES USED IN PRINTING MACHINES FOR PRINTING, INKING, DAMPING, OR THE LIKE; PREPARING SUCH SURFACES FOR USE AND CONSERVING THEM
    • B41N3/00Preparing for use and conserving printing surfaces
    • B41N3/006Cleaning, washing, rinsing or reclaiming of printing formes other than intaglio formes

Definitions

  • the invention relates to a method for the regeneration of a printing form, which is preferably previously directly imaged and is suitable for offset printing, which comprises removing the imaging on the printing form and hydrophilizing the surface of the printing form.
  • One way of transferring information to a printing plate or cylinder suitable for offset printing is to transfer electronically stored information, such as texts or images, directly.
  • electronically stored information such as texts or images
  • organic substances influencing the color guide are applied to parts of the printing form surface by means of a pixel transfer unit in accordance with digital image information.
  • the parts of the substance with their oleophilic properties mark the ink-bearing parts of the printed image.
  • the previously hydrophilic plate surface is made hydrophobic at the transfer points.
  • the application can be carried out, for example, by means of ink jet, electrostatic or, as proposed in DE-PS 39 37 844 by the same applicant, thermal transfer processes.
  • Both a printing plate, preferably anodized, hydrophilized aluminum plate, and a printing cylinder, the outer surface of which has hydrophilic properties, can serve as the printing form.
  • Both a pressure cylinder with a cylinder jacket made of ceramic (preferably Al2O3, but also Cr2O3, ZrSiO4 or Al-Mg-silicate), as well as a solid ceramic or glass cylinder can be used.
  • Cleaning methods known from surface technology often have the disadvantage that cleaning takes place in several stages and the material is subjected to high mechanical or abrasive loads.
  • aluminum surfaces if they are to be used as printing plates, subsequently require a hydrophilization treatment, so that the regeneration requires several process steps and is therefore complex.
  • the object of the invention is to develop a method for regenerating such printing forms, the removal of the imaging and the hydrophilization being able to be carried out without damaging or attacking the surface of the printing form, and the method having fewer steps.
  • the reactive species (oxygen ions and radicals) formed during the high-frequency excitation of the process gas and the resulting UV radiation are essentially responsible for the chemical reaction on the material surface.
  • High molecular weight, components of the imagewise applied material "crack" by oxidative and / or photolytic attack.
  • the resulting volatile reaction products are removed using a suction device. Any physical attack on the printing form surface is avoided.
  • the reactive cleaning processes for surfaces include, above all, corona treatment, UV radiation or treatment with a detonating gas flame.
  • low-pressure plasma and flame treatment are common methods for improving the adhesive strength of plastic surfaces in particular when painting, printing or coating.
  • plasma treatment is used, among other things. successfully used for photoresist stripping and surface cleaning.
  • Fig. 1 is a printing form cylinder and 2 is an actuating device which essentially has a nozzle burner 3 extending over the entire width of the printing form cylinder 1 and gas feed lines 4, 5 connected to the latter.
  • the printing form cylinder 1 moves under the loading device 2.
  • Hydrogen and oxygen are led by means of the gas supply line 4, 5 via the common line end piece 6 to the nozzle burner 3, where they burn.
  • the organic components of the imaging are burned off and essentially CO2 and water are formed as reaction products.
  • the water hydrophilizes the surface of the printing form.
  • the thermal load on the printing form is low.
  • the printing form cylinder to be deleted is preferably moved under the nozzle burner 3 at 20 mm per second.
  • the distance between the nozzle burner 3 and the surface of the printing form cylinder 1 is usually 10 to 50 mm.
  • the nozzles of the nozzle burner 3 are offset from one another in a row (see FIG. 2).
  • the volatile substances formed on the surface of the printing form 1 during the reactive deletion of the substance parts are discharged via a suction device, which is not shown for reasons of clarity and is connected downstream of the application device 2.
  • the nozzle burner 3 covers the entire width of the printing form 1.
  • a nozzle burner with only one punctiform nozzle opening which is moved axially along the printing form 1 while the printing form 1 passes underneath it rotates and the nozzle burner thus machined the surface of the printing form 1.
  • FIG. 3 shows a second example of a reactive method for regeneration of a printing form.
  • a printing form cylinder 8 moves under an application device 9 in the manner shown.
  • This essentially has a reaction chamber 10 which is arranged over the entire width of the surface of the printing form cylinder 8 in the manner shown and gas lines 11 which on the one hand open into the reaction chamber 10 and on the other hand connect the reaction chamber 10 to a plasma generation chamber 12.
  • a high-frequency generator magnet
  • gas is located in the plasma generation (remoat) chamber and can be loaded with a power of up to 600 W. Gases are introduced into the plasma generation chamber 12 at a pressure of 0.5 to 2 mbar, preferably 0.8 to 1.4 mbar.
  • Oxygen or an oxygen / CF4 mixture is preferably used as the reaction gas.
  • a gas discharge is ignited by applying a high-frequency alternating voltage in the GHz range in the microwave range of preferably 2.45 GHz. This creates the plasma.
  • the plasma also contains ions, electrons and uncharged reaction gas molecules.
  • UV light is created as a result of recombination processes.
  • This plasma is fed via the gas lines 11 to the reaction chamber 10, which is evacuated to approximately 0.5 mbar by means of a high vacuum pump 13.
  • the surface of the printing form cylinder 8 offers the chemical radicals the opportunity to make new connections.
  • the spatial separation of the plasma generator 12 and the reaction chamber 10 is due to the fact that the microwave sealing against a rotating cylinder is problematic. If the plasma generation chamber 12 and reaction chamber 10 are separated, only a static, microwave seal on the remoate chamber 12 is necessary. The seal the reaction chamber 10 against the rotating cylinder need only be a vacuum seal 14.
  • the required vacuum seal 14 of the reaction chamber 10 against the printing forme cylinder 8 takes place in the manner known from the sealing technology of rotary unions in the form of sliding seals or through the use of ferrofluids which are inserted into the gap between the housing of the reaction chamber 10 and the printing forme cylinder 8.
  • the illustrated areas e.g. be pretreated with ultrasound in various solvents or cleaning agents.
  • Post-treatment with ultrasound to remove inorganic constituents loosely adhering to the surface after the plasma treatment is also conceivable.
  • Aftertreatment of the printing form surface which can be wetted very well after the plasma treatment by means of UV radiation is also conceivable to prevent recontamination of the surface by organic contaminants. It is also possible to support the degradation reaction of the imaging layer initiated by radical attack during the plasma treatment by means of simultaneous UV radiation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Printing Plates And Materials Therefor (AREA)
  • Manufacture Or Reproduction Of Printing Formes (AREA)
  • Ink Jet (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

According to a process for repeated reversible regeneration of preferably direct-imaged offset printing forms, which process comprises removing the image on the printing form and hydrophilising the surface of the printing form, an ionised process gas is applied to the printing form by means of a charging device, reactive deletion of the image and simultaneous hydrophilisation being carried out in a single process step. The volatile reaction products thus formed are removed by means of a suction device. <IMAGE>

Description

Gegenstand der Erfindung ist ein Verfahren zur Regenerierung einer vorzugsweise vorher direkt bebilderten, für den Offsetdruck geeigneten Druckform, das die Entfernung der Bebilderung auf der Druckform und eine Hydrophilierung der Oberfläche der Druckform umfaßt.The invention relates to a method for the regeneration of a printing form, which is preferably previously directly imaged and is suitable for offset printing, which comprises removing the imaging on the printing form and hydrophilizing the surface of the printing form.

Eine Möglichkeit der Informationsübertragung auf eine für den Offsetdruck geeignete Druckplatte oder -zylinder besteht darin, elektronisch gespeicherte Informationen, wie Texte oder auch Bilder, direkt zu übertragen. Es werden beispielsweise auf eine anodisierte Alu-Platte, die eine hydrophile Oberfläche aufweist, bildadäquat die Farbführung beeinflussende organische Substanzen auf Teile der Druckformoberfläche mittels einer Bildpunkt-Übertragungseinheit entsprechend einer Digitalbildinformation aufgetragen. Die aufgebrachten Substanzteile mit ihrer oleophilen Eigenschaft markieren die farbführenden Druckbildteile. Die vorher hydrophile Plattenoberfläche wird an den Übertragungsstellen hydrophobiert. Das Auftragen kann zum Beispiel mittels Ink-Jet-, elektrostatischer oder, wie in der DE-PS 39 37 844 der gleichen Anmelderin vorgeschlagen, Thermotransferverfahren vorgenommen werden. Als Druckform kann dabei sowohl eine Druckplatte, vorzugsweise anodisierte, hydrophilierte Alu-Platte, als auch ein Druckzylinder, dessen äußere Mantelfläche hydrophile Eigenschaften aufweist, dienen. Dabei kann sowohl ein Druckzylinder mit einem Zylindermantel aus Keramik (vorzugsweise Al₂O₃, aber auch Cr₂O₃, ZrSiO₄ oder Al-Mg-Silikat), als auch ein massiver keramischer oder gläserner Zylinder verwendet werden.One way of transferring information to a printing plate or cylinder suitable for offset printing is to transfer electronically stored information, such as texts or images, directly. For example, on an anodized aluminum plate, which has a hydrophilic surface, organic substances influencing the color guide are applied to parts of the printing form surface by means of a pixel transfer unit in accordance with digital image information. The parts of the substance with their oleophilic properties mark the ink-bearing parts of the printed image. The previously hydrophilic plate surface is made hydrophobic at the transfer points. The application can be carried out, for example, by means of ink jet, electrostatic or, as proposed in DE-PS 39 37 844 by the same applicant, thermal transfer processes. Both a printing plate, preferably anodized, hydrophilized aluminum plate, and a printing cylinder, the outer surface of which has hydrophilic properties, can serve as the printing form. Both a pressure cylinder with a cylinder jacket made of ceramic (preferably Al₂O₃, but also Cr₂O₃, ZrSiO₄ or Al-Mg-silicate), as well as a solid ceramic or glass cylinder can be used.

Diese direkt bebilderten Druckformen müssen wiederholt verwendbar sein, was bei der Verwendung von Druckzylindern zwingend einleuchtet. Dazu müssen die in der oben beschriebenen Weise bebilderten Druckformen regeneriert werden, d.h. das die druckenden Stellen bildende Material muß entfernt bzw. gelöscht und danach die Druckformoberfläche einer Hydrophilierungsbehandlung unterworfen werden.These directly illustrated printing forms must be able to be used repeatedly, which is evident when using printing cylinders. To do this, do the above Imaged printing forms must be regenerated, ie the material forming the printing areas must be removed or deleted and then the printing form surface must be subjected to a hydrophilization treatment.

Aus der Oberflächentechnik bekannte Reinigungsmethoden haben häufig den Nachteil, daß die Reinigung mehrstufig erfolgt und das Material mechanisch oder abrassiv stark belastet wird. Insbesondere erfordern Aluminiumoberflächen, wenn sie als Druckplatten verwendet werden sollen, anschließend noch eine Hydrophilierungsbehandlung, so daß die Regenerierung mehrere Verfahrensschritte erfordert und somit aufwendig ist.Cleaning methods known from surface technology often have the disadvantage that cleaning takes place in several stages and the material is subjected to high mechanical or abrasive loads. In particular, aluminum surfaces, if they are to be used as printing plates, subsequently require a hydrophilization treatment, so that the regeneration requires several process steps and is therefore complex.

Ausgehend von diesem Stand der Technik liegt der Erfindung die Aufgabe zugrunde, ein Verfahren zur Regenerierung solcher Druckformen zu entwickeln, wobei die Entfernung der Bebilderung und die Hydrophilierung ohne Beschädigung oder Angriff der Oberfläche der Druckform durchgeführt werden kann und das Verfahren weniger Schritte aufweist.On the basis of this prior art, the object of the invention is to develop a method for regenerating such printing forms, the removal of the imaging and the hydrophilization being able to be carried out without damaging or attacking the surface of the printing form, and the method having fewer steps.

Diese Aufgabe wird durch die im kennzeichnenden Teil des Anspruchs 1 angegebenen Vorgehensweise gelöst.This object is achieved by the procedure specified in the characterizing part of claim 1.

Dadurch, daß die Druckform mit einem ionisierten Prozeßgas beaufschlagt wird, wird ein reaktiver Löschvorgang eingeleitet, d.h. es findet eine chemische Reaktion auf der Materialoberfläche statt, wobei die zu entfernenden organischen Substanzteile im wesentlichen in flüchtige Reaktionsprodukte wie H₂O und gasartiges CO₂ umgewandelt werden, so daß die Oberfläche gelöscht wird. In einem Prozeßschritt mit dem Löschen findet zugleich die Regeneration, d.h. die Hydrophilierung der Druckform statt, die auf die Ausbildung polarer Gruppen an der Druckformoberfläche (Oxidation durch das Prozeßgas) und auf die Adsorption des beim Löchvorgangs gebildeten H₂O an der Druckformoberfläche zurückzuführen ist.The fact that the printing form is charged with an ionized process gas, a reactive quenching process is initiated, ie there is a chemical reaction on the surface of the material, the organic substance parts to be removed are essentially converted into volatile reaction products such as H₂O and gaseous CO₂, so that the surface is deleted. In a process step with the extinguishing takes place at the same time the regeneration, ie the hydrophilization of the printing form, which is due to the formation of polar groups on the printing form surface (oxidation by the process gas) and to the adsorption of the H₂O formed during the punching process on the printing form surface.

Auf diesem Wege können beträchtliche Mengen an Säuren oder Lösungsmittel eingespart werden. Für die chemische Reaktion an der Materialoberfläche sind im wesentlichen die bei der Hochfrequenzanregung des Prozeßgases gebildeten reaktiven Spezies (Sauerstoffionen und -radikale) und die entstehende UV-Strahlung verantwortlich, die die organischen, z.T. hochmolekularen, Bestandteile des bildmäßig aufgebrachten Materials durch oxidativen und/oder photolythischen Angriff "cracken". Die dabei entstehenden flüchtigen Reaktionsprodukte werden mittels einer Absaugvorrichtung entfernt. Dabei wird jeglicher physikalische Angriff der Druckformoberfläche vermieden. Als reaktive Reinigungsverfahren für Oberflächen sind neben der Niederdruckplasmabehandlung vor allem die Korona-Behandlung, die UV-Bestrahlung oder die Behandlung mit einer Knallgasflamme zu nennen. In der Praxis (Automobil- und Verpackungsindustrie) sind die Niederdruckplasma- und die Flammenbehandlung gängige Verfahren zur Verbesserung der Haftfestigkeit von insbesondere Kunststoffoberflächen beim Lackieren, Bedrucken oder, Beschichten. In der Halbleitertechnologie wird die Plasmabehandlung u.a. erfolgreich zum Photolackstrippen und zur Oberflächenreinigung eingesetzt.In this way, considerable amounts of acids or solvents can be saved. The reactive species (oxygen ions and radicals) formed during the high-frequency excitation of the process gas and the resulting UV radiation are essentially responsible for the chemical reaction on the material surface. High molecular weight, components of the imagewise applied material "crack" by oxidative and / or photolytic attack. The resulting volatile reaction products are removed using a suction device. Any physical attack on the printing form surface is avoided. In addition to low-pressure plasma treatment, the reactive cleaning processes for surfaces include, above all, corona treatment, UV radiation or treatment with a detonating gas flame. In practice (automotive and packaging industry), low-pressure plasma and flame treatment are common methods for improving the adhesive strength of plastic surfaces in particular when painting, printing or coating. In semiconductor technology, plasma treatment is used, among other things. successfully used for photoresist stripping and surface cleaning.

Nachstehend sind zwei Ausführungsbeispiele für die Erfindung anhand der Zeichnung erklärt. Es zeigt stark schematisiert

Fig. 1
die Beaufschlagungsvorrichtung für eine Brenngasbehandlung der Oberfläche eines Druckformzylinders;
Fig. 2
eine Detailansicht der Beaufschlagungsvorrichtung gemäß Fig. 1;
Fig. 3
die Beaufschlagungsvorrichtung für eine Niederdruckplasmabehandlung der Oberfläche eines Druckformzylinders.
Two exemplary embodiments of the invention are explained below with reference to the drawing. It shows highly schematic
Fig. 1
the application device for a fuel gas treatment of the surface of a printing form cylinder;
Fig. 2
a detailed view of the loading device according to FIG. 1;
Fig. 3
the application device for a low-pressure plasma treatment of the surface of a printing form cylinder.

In Fig. 1 ist mit 1 ein Druckformzylinder und mit 2 eine Beaufschlagungsvorrichtung, die im wesentlichen einen sich über die gesamte Breite des Druckformzylinders 1 erstreckenden Düsenbrenner 3 und mit diesem verbundene Gaszuleitungen 4, 5 aufweist. Der Druckformzylinder 1 bewegt sich unter der Beaufschlagungsvorrichtung 2 hinweg. Wasserstoff und Sauerstoff werden mittels der Gaszuleitung 4, 5 über das gemeinsame Leitungsendstück 6 zum Düsenbrenner 3 geführt, wo sie verbrennen. Dabei werden die organischen Bestandsteile der Bebilderung abgebrannt und es entstehen im wesentlichen CO₂ und Wasser als Reaktionsprodukte. Das Wasser leistet die Hydrophilierung der Oberfläche der Druckform. Die thermische Belastung der Druckform ist gering.In Fig. 1, 1 is a printing form cylinder and 2 is an actuating device which essentially has a nozzle burner 3 extending over the entire width of the printing form cylinder 1 and gas feed lines 4, 5 connected to the latter. The printing form cylinder 1 moves under the loading device 2. Hydrogen and oxygen are led by means of the gas supply line 4, 5 via the common line end piece 6 to the nozzle burner 3, where they burn. The organic components of the imaging are burned off and essentially CO₂ and water are formed as reaction products. The water hydrophilizes the surface of the printing form. The thermal load on the printing form is low.

Als besonders geeignet hat sich dabei eine sauerstoffreiche Sauerstoff-Wasserstoff-Flamme erwiesen. Der zu löschende Druckformzylinder wird vorzugsweise mit 20 mm pro Sekunde unter dem Düsenbrenner 3 hindurchbewegt. Der Abstand des Düsenbrenners 3 zur Oberfläche des Druckformzylinders 1 beträgt üblicherweise 10 bis 50 mm. Um eine möglichst gleichmäßige Löschung zu erzielen, sind die Düsen des Düsenbrenners 3 zeilenförmig gegeneinander versetzt (siehe Fig. 2).An oxygen-rich oxygen-hydrogen flame has proven to be particularly suitable. The printing form cylinder to be deleted is preferably moved under the nozzle burner 3 at 20 mm per second. The distance between the nozzle burner 3 and the surface of the printing form cylinder 1 is usually 10 to 50 mm. In order to achieve the most uniform extinguishing possible, the nozzles of the nozzle burner 3 are offset from one another in a row (see FIG. 2).

Die beim reaktiven Löschen der Substanzteile auf der Oberfläche der Druckform 1 entstehenden flüchtigen Stoffe werden über eine aus Übersichtlichkeitsfründen nicht dargestellte, der Beaufschlagungsvorrichtung 2 nachgeschalteten Absaugvorrichtung abgeführt.The volatile substances formed on the surface of the printing form 1 during the reactive deletion of the substance parts are discharged via a suction device, which is not shown for reasons of clarity and is connected downstream of the application device 2.

Im Ausführungsbeispiel überdeckt der Düsenbrenner 3 die gesamte Breite der Druckform 1. Im Rahmen der Erfindung ist es jedoch auch denkbar, einen Düsenbrenner mit nur einer punktförmigen Düsenöffnung zu verwenden, der axial entlang der Druckform 1 bewegt wird, während die Druckform 1 sich unter ihm hindurch dreht und der Düsenbrenner somit die Oberfläche der Druckform 1 wendelförmig bearbeitet.In the exemplary embodiment, the nozzle burner 3 covers the entire width of the printing form 1. Within the scope of the invention, however, it is also conceivable to use a nozzle burner with only one punctiform nozzle opening, which is moved axially along the printing form 1 while the printing form 1 passes underneath it rotates and the nozzle burner thus machined the surface of the printing form 1.

Ein zweites Beispiel für ein reaktives Verfahren zur Regeneration einer Druckform zeigt Fig. 3. Ein Druckformzylinder 8 bewegt sich in der dargestellten Weise unter einer Beaufschlagungsvorrichtung 9 hinweg. Diese weist im wesentlichen eine Reaktionskammer 10, die über die gesamte Breite der Oberfläche des Druckformzylinders 8 in der dargestellten Weise angeordnet ist und Gasleitungen 11 die einerseits in die Reaktionskammer 10 münden, andererseits die Reaktionskammer 10 mit einer Plasmaerzeugungskammer 12 verbinden, auf. In der Plasmaerzeugungs (Remoat) -Kammer befindet sich ein Hochfrequenzgenerator (Magnetron) der mit einer Leistung bis zu 600 W belastet werden kann. In die Plasmaerzeugungskammer 12 werden bei einem Druck von 0,5 bis 2 mbar, vorzugsweise 0,8 bis 1,4 mbar, Gase eingeleitet. Als Reaktionsgas wird vorzugsweise Sauerstoff oder ein Sauerstoff/CF₄-Gemisch verwendet. Durch Anlegen einer hochfrequenten Wechselspannung im GHz-Bereich im Mikrowellenbereich von vorzugsweise 2,45 GHz wird eine Gasentladung gezündet. Dabei entsteht das Plasma. Im Plasma sind neben Radikalen noch Ionen, Elektronen und ungeladene Reaktionsgasmoleküle enthalten. Ferner entsteht als Ergebnis von Rekombinationsprozessen UV-Licht. Dieses Plasma wird über die Gasleitungen 11 der Reaktionskammer 10, die mittels einer Hochvakuumpumpe 13 auf etwa 0,5 mbar evakuiert wird, zugeführt. Hier bietet die Oberfläche des Druckformzylinders 8 den chemischen Radikalen die Möglichkeit, neue Verbindungen einzugehen. Dabei werden zum einen Sauerstoffspezies unmittelbar an der Oberfläche gebunden, es entstehen polare Oberflächengruppen, wodurch sich die Oberflächenenergie des Druckformzylinders 8 erhöht, seine Oberfläche wird hydrophil. Zum anderen reagieren die chemischen Radikale mit dem bildmäßig aufgebrachten, organischem Material. Die dabei entstehenden flüchtigen Verbindungen werden durch die Vakuumpumpe 13 abgesaugt.FIG. 3 shows a second example of a reactive method for regeneration of a printing form. A printing form cylinder 8 moves under an application device 9 in the manner shown. This essentially has a reaction chamber 10 which is arranged over the entire width of the surface of the printing form cylinder 8 in the manner shown and gas lines 11 which on the one hand open into the reaction chamber 10 and on the other hand connect the reaction chamber 10 to a plasma generation chamber 12. A high-frequency generator (magnetron) is located in the plasma generation (remoat) chamber and can be loaded with a power of up to 600 W. Gases are introduced into the plasma generation chamber 12 at a pressure of 0.5 to 2 mbar, preferably 0.8 to 1.4 mbar. Oxygen or an oxygen / CF₄ mixture is preferably used as the reaction gas. A gas discharge is ignited by applying a high-frequency alternating voltage in the GHz range in the microwave range of preferably 2.45 GHz. This creates the plasma. In addition to radicals, the plasma also contains ions, electrons and uncharged reaction gas molecules. Furthermore, UV light is created as a result of recombination processes. This plasma is fed via the gas lines 11 to the reaction chamber 10, which is evacuated to approximately 0.5 mbar by means of a high vacuum pump 13. Here, the surface of the printing form cylinder 8 offers the chemical radicals the opportunity to make new connections. On the one hand, oxygen species are bound directly to the surface, polar surface groups are formed, which increases the surface energy of the printing form cylinder 8, and its surface becomes hydrophilic. On the other hand, the chemical radicals react with the organic material imaged. The resulting volatile compounds are sucked off by the vacuum pump 13.

Die räumliche Trennung des Plasmaerzeugers 12 und der Reaktionskammer 10 hat ihre Ursache darin, daß die Mirkrowellenabdichtung gegen einen rotierenden Zylinder problematisch ist. Trennt man Plasmaerzeugungskammer 12 und Reaktionskammer 10, so ist nur eine, statische, Mikrowellenabdichtung an der Remoat-Kammer 12 nötig. Die Abdichtung der Reaktionskammer 10 gegen den rotierenden Zylinder muß nur eine Vakuumdichtung 14 sein.The spatial separation of the plasma generator 12 and the reaction chamber 10 is due to the fact that the microwave sealing against a rotating cylinder is problematic. If the plasma generation chamber 12 and reaction chamber 10 are separated, only a static, microwave seal on the remoate chamber 12 is necessary. The seal the reaction chamber 10 against the rotating cylinder need only be a vacuum seal 14.

Der besondere Vorteil der sogenannten Niederdruckplasmabehandlung ist darin zu sehen, daß die Reaktionen in einem Temperaturbereich von etwa 30°C bis 100°C ablaufen können, die bei Atmosphärendruck erst bei mehreren 100°C möglich sind. Somit werden schädliche Temperaturen an der Oberfläche der Druckform 8 von vornherein vermieden.The particular advantage of the so-called low-pressure plasma treatment can be seen in the fact that the reactions can take place in a temperature range from about 30 ° C to 100 ° C, which are only possible at several 100 ° C at atmospheric pressure. Harmful temperatures on the surface of the printing form 8 are thus avoided from the outset.

Die erforderliche Vakuumabdichtung 14 der Reaktionskammer 10 gegen den Druckformzylinder 8 geschieht in der aus der Dichttechnik von Drehdurchführungen bekannten Weise in Form von Gleitdichtungen oder durch den Einsatz von Ferrofluiden, die in den Spalt zwischen dem Gehäuse der Reaktionskammer 10 und des Druckformzylinders 8 eingesetzt werden.The required vacuum seal 14 of the reaction chamber 10 against the printing forme cylinder 8 takes place in the manner known from the sealing technology of rotary unions in the form of sliding seals or through the use of ferrofluids which are inserted into the gap between the housing of the reaction chamber 10 and the printing forme cylinder 8.

Zur Unterstützung der Niederdruckplasmabehandlung können die bebilderten Stellen, z.B. mit Ultraschall in verschiedenen Lösungs- oder Reinigungsmitteln vorbehandelt werden. Auch eine Nachbehandlung mit Ultraschall zur Entfernung von nach der Plasmabehandlung lose an der Oberfläche haftenden anorganischen Bestandteilen ist denkbar. Des weiteren ist eine Nachbehandlung der nach der Plasmabehandlung sehr gut benetzbaren Druckformoberfläche durch UV-Bestrahlung zur Verhinderung der Rekontamination der Oberfläche durch organische Verunreinigungen denkbar. Auch eine Unterstützung der durch radikalischen Angriff iniziierten Abbaureaktion der Bebilderungsschicht bei der Plasmabehandlung durch gleichzeitige UV-Bestrahlung ist möglich.To support the low pressure plasma treatment, the illustrated areas, e.g. be pretreated with ultrasound in various solvents or cleaning agents. Post-treatment with ultrasound to remove inorganic constituents loosely adhering to the surface after the plasma treatment is also conceivable. Aftertreatment of the printing form surface which can be wetted very well after the plasma treatment by means of UV radiation is also conceivable to prevent recontamination of the surface by organic contaminants. It is also possible to support the degradation reaction of the imaging layer initiated by radical attack during the plasma treatment by means of simultaneous UV radiation.

Stellt man die möglichen reaktiven Oberflächenbehandlungen einer Druckform, bei denen ein Reaktionsgas verwendet wird der Niederdruckplasmabehandlung gegenüber, so zeigt sich, daß zwar alle in der Wirkungsweise sich sehr ähneln, jedoch liegt die Effektivität der Reaktion bei der Niederdruckplasmabehandlung höher. Der Grund dafür ist mit der höheren Lebensdauer der aktiven Teilchen bei vermindertem Druck zu erklären. Des weiteren zeichnet sich insbesondere die Plasmabehandlung mit einem durch Mikrowellen angeregten Plasma durch besondere Effektivität aus, da die Konzentration der reaktiven Spezies in einem mittels Mikrowellen angeregtem Plasma höher ist als in niederfrequenter angeregten Plasmen.If one compares the possible reactive surface treatments of a printing form in which a reaction gas is used with the low-pressure plasma treatment, it can be seen that although all of them are very similar in their mode of action, the effectiveness of the reaction in the low-pressure plasma treatment is higher. The reason for this is due to the longer life of the active particles to explain reduced pressure. Furthermore, plasma treatment with a plasma excited by microwaves is particularly effective because the concentration of the reactive species in a plasma excited by microwaves is higher than in low-frequency excited plasmas.

Claims (7)

Verfahren zur wiederholten, reversiblen Regenerierung von vorzugsweise vorher direkt bebilderten, für den Offsetdruck geeigneten Druckformen, das die Entfernung der Bebilderung auf der Druckform und eine Hydrophilierung der Oberfläche der Druckform umfaßt, dadurch gekennzeichnet, daß auf die Druckform (1, 8) ein ionisiertes Prozeßgas mittels einer Beaufschlagungsvorrichtung (2, 9) gebracht wird, wobei ein reaktives Löschen der Bebilderung und die gleichzeitige Hydrophilierung in einem Prozeßschritt vorgenommen wird und die dabei entstehenden flüchtigen Reaktionsprodukte mittels einer Absaugvorrichtung (13) abgeführt werden.Process for the repeated, reversible regeneration of printing forms which are preferably directly imaged and suitable for offset printing, which comprises removing the imaging on the printing form and hydrophilizing the surface of the printing form, characterized in that an ionized process gas is applied to the printing form (1, 8) is brought by means of an application device (2, 9), a reactive deletion of the images and the simultaneous hydrophilization being carried out in one process step and the resulting volatile reaction products being removed by means of a suction device (13). Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß als Prozeßgas Brenngas verwendet wird, wobei die Druckform (1) mittels eines Düsenbrenners (3) über die gesamte Breite beaufschlagt wird, während die Druckform (1) sich unter dem Düsenbrenner (3) hindurchbewegt.Method according to Claim 1, characterized in that fuel gas is used as the process gas, the printing forme (1) being acted upon over the entire width by means of a nozzle burner (3), while the printing forme (1) moves under the nozzle burner (3). Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß als Brenngas vorzugsweise ein sauerstoffreiches Sauerstoff/Wasserstoff-Gemisch verwendet wird und der Druckformzylinder (1) vorzugsweise mit einer Geschwindigkeit von 20 mm pro Sekunde unter dem Düsenbrenner (3) hindurchbewegt wird, wobei der Abstand des Düsenbrenners (3) zur Oberfläche der Druckform (1) vorzugsweise 10 bis 50 mm beträgt.A method according to claim 2, characterized in that an oxygen-rich oxygen / hydrogen mixture is preferably used as the fuel gas and the printing form cylinder (1) is preferably moved under the nozzle burner (3) at a speed of 20 mm per second, the distance between the nozzle burner (3) to the surface of the printing form (1) is preferably 10 to 50 mm. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß als Prozeßgas Plasma verwendet wird, das mittels einer evakuierten Reaktionskammer (10), die sich über die gesamte Breite der Druckform (8) erstreckt und mittels einer Vakuumabdichtung (14) gegen die Druckform (8) abgedichtet ist, auf die Druckform (8) geleitet wird.A method according to claim 1, characterized in that plasma is used as the process gas, which is sealed against the printing form (8) by means of an evacuated reaction chamber (10) which extends over the entire width of the printing form (8) and by means of a vacuum seal (14) is directed to the printing form (8). Verfahren nach Anspruch 4, dadurch gekennzeichnet, daß das Plasma in einem von der Reaktionskammer (10) örtlich getrennten Plasmaerzeuger (12), vorzugsweise mittels einer hochfrequenten Wechselspannung im GHz-Bereich hergestellt wird und über Gasleitungen (11) der Reaktionskammer (10) zugeführt wird.Method according to Claim 4, characterized in that the plasma is produced in a plasma generator (12) which is spatially separate from the reaction chamber (10), preferably by means of a high-frequency alternating voltage in the GHz range, and is fed to the reaction chamber (10) via gas lines (11) . Verfahren nach Anspruch 4, dadurch gekennzeichnet, daß zur Plasmaherstellung vorzugsweise Sauerstoff oder ein Sauerstoff/CF₄-Gasgemisch verwendet wird.A method according to claim 4, characterized in that oxygen or an oxygen / CF₄ gas mixture is preferably used for plasma production. Verfahren nach Anspruch 4, dadurch gekennzeichnet, daß die Reaktionskammer (10) mittels einer Hochvakuumpumpe (13) auf einen Druck von vorzugsweise 0,5 mbar evakuiert wird.Method according to claim 4, characterized in that the reaction chamber (10) is evacuated to a pressure of preferably 0.5 mbar by means of a high vacuum pump (13).
EP92111869A 1991-07-19 1992-07-13 Process for the regeneration of direct image offset printing forms Expired - Lifetime EP0523584B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4123959 1991-07-19
DE4123959A DE4123959C1 (en) 1991-07-19 1991-07-19

Publications (2)

Publication Number Publication Date
EP0523584A1 true EP0523584A1 (en) 1993-01-20
EP0523584B1 EP0523584B1 (en) 1995-08-23

Family

ID=6436542

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92111869A Expired - Lifetime EP0523584B1 (en) 1991-07-19 1992-07-13 Process for the regeneration of direct image offset printing forms

Country Status (5)

Country Link
US (1) US5317970A (en)
EP (1) EP0523584B1 (en)
JP (1) JP3217464B2 (en)
CA (1) CA2071773C (en)
DE (2) DE4123959C1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0570879A2 (en) * 1992-05-20 1993-11-24 MAN Roland Druckmaschinen AG Process and device for erasing the ink-bearing layer on the surface of an imaged printing form
EP0693371A1 (en) * 1994-07-22 1996-01-24 MAN Roland Druckmaschinen AG Erasable printing form and process for the erasure and regeneration of forms
US5816161A (en) * 1994-07-22 1998-10-06 Man Roland Druckmaschinen Ag Erasable printing plate having a smooth pore free metallic surface
US5826511A (en) * 1996-01-12 1998-10-27 Heidelberger Druckmaschinen Ag Device for cleaning directly imaged printing forms in a printing press
US6006666A (en) * 1992-05-20 1999-12-28 Man Roland Druckmaschinen Ag Method and apparatus for erasing the ink-carrying layer from the surface of an image-containing printing form
EP1080942B2 (en) 1999-08-31 2009-10-14 Agfa Graphics N.V. Method for erasing a lithographic printing master

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2700296B1 (en) * 1993-01-14 1995-02-24 Nipson Printing process and press for implementation.
US5743188A (en) * 1995-10-20 1998-04-28 Eastman Kodak Company Method of imaging a zirconia ceramic surface to produce a lithographic printing plate
US5836249A (en) * 1995-10-20 1998-11-17 Eastman Kodak Company Laser ablation imaging of zirconia-alumina composite ceramic printing member
US5855173A (en) * 1995-10-20 1999-01-05 Eastman Kodak Company Zirconia alloy cylinders and sleeves for imaging and lithographic printing methods
US5839369A (en) * 1995-10-20 1998-11-24 Eastman Kodak Company Method of controlled laser imaging of zirconia alloy ceramic lithographic member to provide localized melting in exposed areas
US5839370A (en) * 1995-10-20 1998-11-24 Eastman Kodak Company Flexible zirconia alloy ceramic lithographic printing tape and method of using same
US5870956A (en) * 1995-12-21 1999-02-16 Eastman Kodak Company Zirconia ceramic lithographic printing plate
DE19600846C1 (en) * 1996-01-12 1997-04-03 Heidelberger Druckmasch Ag Cleaning device for laser image printing plate
DE19602328A1 (en) * 1996-01-24 1997-07-31 Roland Man Druckmasch Process for imaging an erasable printing form
US5836248A (en) * 1997-05-01 1998-11-17 Eastman Kodak Company Zirconia-alumina composite ceramic lithographic printing member
US5893328A (en) * 1997-05-01 1999-04-13 Eastman Kodak Company Method of controlled laser imaging of zirconia-alumina composite ceramic lithographic printing member to provide localized melting in exposed areas
US5927207A (en) * 1998-04-07 1999-07-27 Eastman Kodak Company Zirconia ceramic imaging member with hydrophilic surface layer and methods of use
DE19826377A1 (en) * 1998-06-12 1999-12-16 Heidelberger Druckmasch Ag Printing press and printing process
DE19932071A1 (en) * 1998-07-22 2000-01-27 Heidelberger Druckmasch Ag Simple and robust imaging head preparing surface of offset printing plate, has fine matrix of insulated pins selectively connected to HF power source
US6408755B1 (en) 1999-08-31 2002-06-25 Agfa-Gavaert Method for erasing a lithographic printing master
DE10037998A1 (en) * 2000-08-04 2002-02-14 Heidelberger Druckmasch Ag Method and device for deleting a reimageable printing form
DE10039818A1 (en) * 2000-08-09 2002-02-21 Koenig & Bauer Ag Process for producing a printing press
DE10115435B8 (en) * 2001-03-29 2007-02-08 Maschinenfabrik Wifag Method for producing a printed image and / or deleting a printed image of a wet offset printing form with photothermally changeable material
DE10132204A1 (en) * 2001-07-03 2003-01-30 Oce Printing Systems Gmbh Production of different printed images with the same print substrate using a printer with an integral cleaning device so that the same print substrate can be used for different images without renewal or removal
US6610458B2 (en) 2001-07-23 2003-08-26 Kodak Polychrome Graphics Llc Method and system for direct-to-press imaging
DE10227332A1 (en) 2002-06-19 2004-01-15 Akt Electron Beam Technology Gmbh Control device with improved test properties
US6981767B2 (en) * 2003-01-15 2006-01-03 Ssgii, Inc. Printed item having an image with a high durability and/or resolution
US20040135828A1 (en) * 2003-01-15 2004-07-15 Schmitt Stephen E. Printer and method for printing an item with a high durability and/or resolution image
DE602004014110D1 (en) * 2003-03-13 2008-07-10 Ajinomoto Kk Image extinguishing method, apparatus therefor and recycle method for recording medium
US6833717B1 (en) 2004-02-12 2004-12-21 Applied Materials, Inc. Electron beam test system with integrated substrate transfer module
US7319335B2 (en) 2004-02-12 2008-01-15 Applied Materials, Inc. Configurable prober for TFT LCD array testing
US20050229800A1 (en) * 2004-04-20 2005-10-20 Heidelberger Druckmaschinen Ag Plate cylinder with larger diameter central image area
US7535238B2 (en) 2005-04-29 2009-05-19 Applied Materials, Inc. In-line electron beam test system
DE102005028817A1 (en) * 2005-06-22 2007-01-11 Man Roland Druckmaschinen Ag Process for the production of printing plates
US7786742B2 (en) 2006-05-31 2010-08-31 Applied Materials, Inc. Prober for electronic device testing on large area substrates
TW200814170A (en) * 2006-09-13 2008-03-16 Ind Tech Res Inst Method of adjusting surface characteristic of a substrate
US20080136887A1 (en) * 2006-12-11 2008-06-12 Schmitt Stephen E Printed item having an image with a high durability and/or resolution
DE102007024611A1 (en) * 2007-05-25 2008-11-27 Manroland Ag Method and device for producing a permanent and erasable image on a printing form
DE102010013100A1 (en) * 2009-11-06 2011-05-12 Christian Maass Feinstaubabsaugeeinrichtung
JP2016037419A (en) 2014-08-08 2016-03-22 日本碍子株式会社 Ozone generator
JP2016037420A (en) 2014-08-08 2016-03-22 日本碍子株式会社 Ozone generator and fault diagnosis method for the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4777109A (en) * 1987-05-11 1988-10-11 Robert Gumbinner RF plasma treated photosensitive lithographic printing plates
DE3713801A1 (en) * 1987-04-24 1988-11-10 Forschungsgesellschaft Fuer Dr Printing forme material for lithoprinting

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5535278B2 (en) * 1974-03-18 1980-09-12
DE3008176C2 (en) * 1979-03-07 1986-02-20 Crosfield Electronics Ltd., London Engraving of printing cylinders
US4292397A (en) * 1980-04-17 1981-09-29 Dai Nippon Printing Co., Ltd. Method for preparing dry planographic plates with plasma
US4718340A (en) * 1982-08-09 1988-01-12 Milliken Research Corporation Printing method
US5062364A (en) * 1989-03-29 1991-11-05 Presstek, Inc. Plasma-jet imaging method
DE3917844C1 (en) * 1989-06-01 1990-10-31 Man Roland Druckmaschinen Ag, 6050 Offenbach, De
US5187046A (en) * 1991-03-18 1993-02-16 Aluminum Company Of America Arc-grained lithoplate
US5129321A (en) * 1991-07-08 1992-07-14 Rockwell International Corporation Direct-to-press imaging system for use in lithographic printing

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3713801A1 (en) * 1987-04-24 1988-11-10 Forschungsgesellschaft Fuer Dr Printing forme material for lithoprinting
US4777109A (en) * 1987-05-11 1988-10-11 Robert Gumbinner RF plasma treated photosensitive lithographic printing plates

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SHUZO FUJIMURA, ET AL.: "RESIST STRIPPING IN AN O2+H2O PLASMA DOWNSTREAM.", JOURNAL OF VACUUM SCIENCE AND TECHNOLOGY: PART B., AVS / AIP, MELVILLE, NEW YORK, NY., US, vol. 09., no. 02., 1 March 1991 (1991-03-01), US, pages 357 - 361., XP000266430, ISSN: 1071-1023, DOI: 10.1116/1.585575 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0570879A2 (en) * 1992-05-20 1993-11-24 MAN Roland Druckmaschinen AG Process and device for erasing the ink-bearing layer on the surface of an imaged printing form
EP0570879B1 (en) * 1992-05-20 1997-01-02 MAN Roland Druckmaschinen AG Process and device for erasing the ink-bearing layer on the surface of an imaged printing form
US6006666A (en) * 1992-05-20 1999-12-28 Man Roland Druckmaschinen Ag Method and apparatus for erasing the ink-carrying layer from the surface of an image-containing printing form
EP0693371A1 (en) * 1994-07-22 1996-01-24 MAN Roland Druckmaschinen AG Erasable printing form and process for the erasure and regeneration of forms
US5816161A (en) * 1994-07-22 1998-10-06 Man Roland Druckmaschinen Ag Erasable printing plate having a smooth pore free metallic surface
US6016750A (en) * 1994-07-22 2000-01-25 Man Roland Druckmaschinen Ag Erasable printing plate and a process and apparatus for erasing and regenerating the printing plate
US6125756A (en) * 1994-07-22 2000-10-03 Man Roland Druckmaschinen Ag Erasable printing plate having a smooth pore free ceramic or glass surface
US5826511A (en) * 1996-01-12 1998-10-27 Heidelberger Druckmaschinen Ag Device for cleaning directly imaged printing forms in a printing press
EP1080942B2 (en) 1999-08-31 2009-10-14 Agfa Graphics N.V. Method for erasing a lithographic printing master

Also Published As

Publication number Publication date
US5317970A (en) 1994-06-07
EP0523584B1 (en) 1995-08-23
JP3217464B2 (en) 2001-10-09
JPH05193086A (en) 1993-08-03
CA2071773A1 (en) 1993-01-20
DE59203363D1 (en) 1995-09-28
DE4123959C1 (en) 1993-02-04
CA2071773C (en) 1996-09-17

Similar Documents

Publication Publication Date Title
EP0523584B1 (en) Process for the regeneration of direct image offset printing forms
EP1902156B1 (en) Method for treating plasma and/or covering plasma of workpieces under continuous atmospheric pressure
DE69532853T2 (en) METHOD AND DEVICE FOR MICROWAVE PLASMA PRODUCTION
DE69700945T2 (en) METHOD FOR PRODUCING A SINTERED STRUCTURE ON A SUBSTRATE
EP1177914B1 (en) Method to reclaim a reusable printing plate
DE10227054B4 (en) Reusable printing form, printing unit and printing machine with it as well as methods for imaging the printing form
DE2531812B2 (en) Gas discharge device
DE19602328A1 (en) Process for imaging an erasable printing form
EP1233854B1 (en) Method for modifying wooden surfaces by electrical discharges at atmospheric pressure
DE3821093A1 (en) METHOD AND DEVICE FOR TREATING SURFACES
DE69701363T2 (en) METHOD FOR TREATING A SURFACE BY A DRY PROCESS, AND DEVICE FOR CARRYING OUT THE METHOD
DE60308484T2 (en) PROCESS FOR CLEANING A MATERIAL SURFACE COATED WITH AN ORGANIC SUBSTANCE, GENERATOR AND DEVICE FOR CARRYING OUT THE METHOD
EP0402798A2 (en) Coating device
EP0510503A2 (en) Process for the treatment of surfaces
DE3416405A1 (en) METHOD AND DEVICE FOR TREATING THE SURFACE OF FILM FILMS
EP1971448B1 (en) Method and apparatus for treating a surface in order to free it of impurities
DE2152100A1 (en) Cascade pump - for electron beam welding appts
DE2842407C2 (en) Device for the surface treatment of workpieces by discharging ionized gases and method for operating the device
DE69706573T2 (en) Process for cleaning a vulcanization mold
DE3120793A1 (en) &#34;METHOD AND DEVICE FOR THE DECONTAMINATION OF SOLID BODIES&#34;
EP1050395B1 (en) Open uv/vuv excimer radiator and method for surface modification of polymers
DE102019101997A1 (en) Process and printing machine in each case for printing a metallic printing material
DE69421250T2 (en) Method and device for the dry treatment of metallic surfaces
DE3618872A1 (en) Process and apparatus for the elimination of pattern-forming polymers on printing stencils
DE2433690A1 (en) DEVICE FOR THE SURFACE TREATMENT OF A METALLOGRAPHIC SAMPLE

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19930203

17Q First examination report despatched

Effective date: 19940923

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

ITF It: translation for a ep patent filed
AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI NL SE

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19950829

REF Corresponds to:

Ref document number: 59203363

Country of ref document: DE

Date of ref document: 19950928

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20030630

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20030708

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040714

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050201

EUG Se: european patent has lapsed
NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20050201

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: M.A.N.-ROLAND DRUCKMASCHINEN AKTIENGESELLSCHAFT

Free format text: M.A.N.-ROLAND DRUCKMASCHINEN AKTIENGESELLSCHAFT#MUEHLHEIMERSTRASSE 341#D-63075 OFFENBACH A.M. (DE) -TRANSFER TO- M.A.N.-ROLAND DRUCKMASCHINEN AKTIENGESELLSCHAFT#MUEHLHEIMERSTRASSE 341#D-63075 OFFENBACH A.M. (DE)

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: MANROLAND AG

Free format text: M.A.N.-ROLAND DRUCKMASCHINEN AKTIENGESELLSCHAFT#MUEHLHEIMERSTRASSE 341#D-63075 OFFENBACH A.M. (DE) -TRANSFER TO- MANROLAND AG#MUEHLHEIMER STRA?E 341#63075 OFFENBACH (DE)

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20080715

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20080725

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20080722

Year of fee payment: 17

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20090713

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090713

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20100723

Year of fee payment: 19

Ref country code: FR

Payment date: 20100805

Year of fee payment: 19

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090713

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20120330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120201

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110801

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59203363

Country of ref document: DE

Effective date: 20120201