EP0599055A1 - Gasturbine combustor - Google Patents
Gasturbine combustor Download PDFInfo
- Publication number
- EP0599055A1 EP0599055A1 EP93116942A EP93116942A EP0599055A1 EP 0599055 A1 EP0599055 A1 EP 0599055A1 EP 93116942 A EP93116942 A EP 93116942A EP 93116942 A EP93116942 A EP 93116942A EP 0599055 A1 EP0599055 A1 EP 0599055A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- cooling
- height
- tubes
- combustion chamber
- baffle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23R—GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
- F23R3/00—Continuous combustion chambers using liquid or gaseous fuel
- F23R3/002—Wall structures
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23R—GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
- F23R3/00—Continuous combustion chambers using liquid or gaseous fuel
- F23R3/42—Continuous combustion chambers using liquid or gaseous fuel characterised by the arrangement or form of the flame tubes or combustion chambers
- F23R3/54—Reverse-flow combustion chambers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2260/00—Function
- F05B2260/20—Heat transfer, e.g. cooling
- F05B2260/201—Heat transfer, e.g. cooling by impingement of a fluid
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23R—GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
- F23R2900/00—Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
- F23R2900/03044—Impingement cooled combustion chamber walls or subassemblies
Definitions
- the invention relates to a gas turbine combustion chamber in which the combustion chamber wall is cooled by means of impingement cooling.
- Such gas turbine combustors are known.
- a perforated plate is used which generates a cooling gas jet in such a way that it strikes the underlying surface perpendicularly and cools it.
- the perforated plate and the baffle surface together form a channel in which the incoming cooling air mass is transported on.
- the heat transfer coefficient is greatest for the first cooling jet. It then decreases along the length of the impingement cooling duct, since the influence of the increasing cross-flow speed leads to an increasing deflection of the impingement jet.
- the invention tries to avoid all these disadvantages. It is based on the task of designing the cooling channel between the outer and inner jacket in a gas turbine combustion chamber for cooling the combustion chamber wall by means of impingement cooling in such a way that the cross-flow velocity in the cooling channel is constant and a uniform cooling effect is achieved. Furthermore, it is based on the additional task of achieving a targeted control of the cooling effect.
- this is done in a gas turbine combustion chamber in which the combustion chamber wall can be cooled by impingement cooling, the cooling gas jet hitting the impingement surface through a perforated plate, tubes are arranged on the holes of the perforated plate in the cooling duct, and the perforated plate and the Baffle form the cooling channel, achieved in that the height of the cooling channel in the cross-flow direction is continuously increasing in accordance with the cooling air supply and the undesired cross-flow is thereby kept small.
- the tubes are arranged in the cooling duct in such a way that the impact air strikes the impact surface perpendicularly, the height of the tubes in the cross-flow direction increasing so that the distance of the tubes from the impact surface is constant over the entire length of the cooling duct.
- the diameter of the holes, the spacing of the holes from one another and the height of the tubes are selected as a function of the desired cooling effect. So z. B. at the end of countercurrent cooling of an annular combustion chamber, the cooling can be intensified locally in order to dissipate the high heat flows near the burner.
- a gas turbine combustion chamber 1 part of a gas turbine combustion chamber 1 is shown. It is an annular combustion chamber with environmentally friendly burners 2 (double cone burners).
- the inner wall of the gas turbine combustion chamber 1 is cooled by convective cooling with subsequent impingement cooling, i.e. the impact cooling section II connects to the convective cooling section I.
- the transition to the burner inflow is designed as a small diffuser 8.
- the cooling channel 5 between the perforated plate 3 and the baffle surface 4 has a linearly increasing height in the cross-flow direction.
- This divergent cooling channel 5 causes a constant cross-flow velocity to arise, i.e. the mass supply via the perforated plate 3 is compensated for by a cross-sectional expansion. This measure leads to a reduction in the viscous pressure loss in the cooling channel 5 and a constant impingement jet speed due to the now constant pressure difference across the perforated plate 3.
- the heat transfer coefficient along the impingement cooling section II is kept constant, thus achieving a very uniform heat dissipation.
- the cooling effect can be influenced in a targeted manner by a suitable choice of the height of the tubes 7 and the diameter as well as the spacing of the holes 6, so that, for example, towards the end of countercurrent cooling of the combustion chamber 1 with environmentally friendly burners 2, the cooling can be intensified locally in order to accommodate the high heat flows dissipate near the burner 2.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
Abstract
Description
Die Erfindung betrifft eine Gasturbinenbrennkammer, bei welcher die Brennkammerwand mittels Prallkühlung gekühlt wird.The invention relates to a gas turbine combustion chamber in which the combustion chamber wall is cooled by means of impingement cooling.
Derartige Gasturbinenbrennkammern sind bekannt. Zur Realisierung des Prallkühlungskonzepts, z. B. zur Kühlung einer Ringbrennkammerwand, wird mit einer Lochplatte gearbeitet, die einen Kühlgasstrahl derart erzeugt, dass er senkrecht auf die darunter liegende Oberfläche trifft und diese kühlt. Die Lochplatte und die Prallfläche bilden zusammen einen Kanal, in dem die einströmende Kühlluftmasse weitertransportiert wird.Such gas turbine combustors are known. To implement the impingement cooling concept, e.g. B. for cooling an annular combustion chamber wall, a perforated plate is used which generates a cooling gas jet in such a way that it strikes the underlying surface perpendicularly and cools it. The perforated plate and the baffle surface together form a channel in which the incoming cooling air mass is transported on.
Der Wärmeübergangskoeffizient ist für den ersten Kühlstrahl am grössten. Er nimmt dann entlang der Lauflänge des Prallkühlungskanals ab, da der Einfluss der wachsenden Querströmungsgeschwindigkeit zu einer zunehmenden Ablenkung des Prallstrahles führt.The heat transfer coefficient is greatest for the first cooling jet. It then decreases along the length of the impingement cooling duct, since the influence of the increasing cross-flow speed leads to an increasing deflection of the impingement jet.
Nach einer längeren Laufstrecke ist deshalb die Kühlwirkung bei dieser Prallkühlung nur noch geringfügig besser als bei einer reinen Konvektivkühlung.After a longer running distance, the cooling effect is only slightly better with this impingement cooling than with pure convective cooling.
Um dennoch über eine bestimmte Distanz eine einigermassen gleichmässige Kühlwirkung zu erreichen, wurden bisher die Prallkühlungsströmungen jeweils neu gestartet, so dass für den Wärmeübergangskoeffizienten in etwa ein sägezahnartiger Verlauf um einen geforderten Mittelwert erreicht wird.In order to nevertheless achieve a reasonably uniform cooling effect over a certain distance, the impingement cooling flows have been restarted so far, so that a sawtooth-like course around a required average value is achieved for the heat transfer coefficient.
Die Nachteile des Standes der Technik bestehen darin, dass keine gleichmässige Kühlwirkung über die gesamte Länge der Kühlstrecke erzielt wird und dass ein zusätzlicher Aufwand zum Neustart der Prallkühlungsströmungen getrieben werden muss.The disadvantages of the prior art are that no uniform cooling effect is achieved over the entire length of the cooling section and that additional effort has to be made to restart the impingement cooling flows.
Diese Nachteile können auch nicht mit der bekannten technischen Lösung aus DE-OS 28 36 539, bei der zur Verbesserung der Prallkühlwirkung in einem Heissgasgehäuse für Gasturbinen in die Öffnungen der Lochplatte Kühlluftführungen in Form von Röhrchen einer konstanten Länge eingesetzt werden, beseitigt werden.These disadvantages can also not be eliminated with the known technical solution from DE-OS 28 36 539, in which cooling air guides in the form of tubes of a constant length are used in the openings of the perforated plate to improve the impact cooling effect in a hot gas housing for gas turbines.
Die Erfindung versucht, all diese Nachteile zu vermeiden. Ihr liegt die Aufgabe zugrunde, bei einer Gasturbinenbrennkammer zur Kühlung der Brennkammerwand mittels Prallkühlung den Kühlkanal zwischen Aussen- und Innenmantel so zu gestalten, dass die Querströmungsgeschwindigkeit im Kühlkanal konstant ist und eine gleichmässige Kühlwirkung erzielt wird. Desweiteren liegt ihr die zusätzliche Aufgabe zugrunde, eine gezielte Steuerung der Kühlwirkung zu erreichen.The invention tries to avoid all these disadvantages. It is based on the task of designing the cooling channel between the outer and inner jacket in a gas turbine combustion chamber for cooling the combustion chamber wall by means of impingement cooling in such a way that the cross-flow velocity in the cooling channel is constant and a uniform cooling effect is achieved. Furthermore, it is based on the additional task of achieving a targeted control of the cooling effect.
Erfindungsgemäss wird dies bei einer Gasturbinenbrennkammer, bei welcher die Brennkammerwand mittels Prallkühlung kühlbar ist, wobei der Kühlgasstrahl durch eine Lochplatte auf die Prallfläche trifft, auf den Löchern der Lochplatte im Kühlkanal Röhrchen angeordnet sind und die Lochplatte und die Prallfläche den Kühlkanal bilden, dadurch erreicht, dass die Höhe des Kühlkanals in Querströmungsrichtung entsprechend der Kühlluftzufuhr stetig zunehmend ist und dadurch die unerwünschte Querströmung klein gehalten wird. Ausserdem sind die Röhrchen im Kühlkanal derart angeordnet, dass die Pralluft senkrecht auf die Prallfläche auftrifft, wobei die Höhe der Röhrchen in Querströmungsrichtung so zunehmend ist, dass der Abstand der Röhrchen von der Prallfläche über die gesamte Länge des Kühlkanals konstant ist.According to the invention, this is done in a gas turbine combustion chamber in which the combustion chamber wall can be cooled by impingement cooling, the cooling gas jet hitting the impingement surface through a perforated plate, tubes are arranged on the holes of the perforated plate in the cooling duct, and the perforated plate and the Baffle form the cooling channel, achieved in that the height of the cooling channel in the cross-flow direction is continuously increasing in accordance with the cooling air supply and the undesired cross-flow is thereby kept small. In addition, the tubes are arranged in the cooling duct in such a way that the impact air strikes the impact surface perpendicularly, the height of the tubes in the cross-flow direction increasing so that the distance of the tubes from the impact surface is constant over the entire length of the cooling duct.
Die Vorteile der Erfindung sind unter anderem darin zu sehen, dass im Kühlkanal eine konstante Querströmungsgeschwindigkeit herrscht, der viskose Druckverlust im Kühlkanal verringert wird und sich eine konstante Prallstrahlgeschwindigkeit einstellt. Entlang der Prallkühlstrecke wird der Wärmeübergangskoeffizient konstant gehalten, so dass eine sehr gleichmässige Wärmeabfuhr ermöglicht wird.The advantages of the invention can be seen, inter alia, in the fact that there is a constant cross-flow velocity in the cooling duct, the viscous pressure loss in the cooling duct is reduced and a constant impingement jet velocity is established. The heat transfer coefficient is kept constant along the impingement cooling section, so that very uniform heat dissipation is made possible.
Es ist zweckmässig, wenn die Höhe des Kühlkanals und die Höhe der Röhrchen linear zunehmend sind.It is expedient if the height of the cooling channel and the height of the tubes increase linearly.
Ferner ist es vorteilhaft, wenn der Durchmesser der Löcher, der Abstand der Löcher voneinander und die Höhe der Röhrchen in Abhängigkeit von der gewünschten Kühlwirkung gewählt werden. So kann z. B. am Ende der Gegenstromkühlung einer Ringbrennkammer die Kühlung lokal intensiviert werden, um die hohen Wärmeströme in Brennernähe abzuführen.It is also advantageous if the diameter of the holes, the spacing of the holes from one another and the height of the tubes are selected as a function of the desired cooling effect. So z. B. at the end of countercurrent cooling of an annular combustion chamber, the cooling can be intensified locally in order to dissipate the high heat flows near the burner.
In der Zeichnung ist ein Ausführungsbeispiel der Erfindung dargestellt. Die einzige Figur zeigt einen Teillängsschnitt durch eine Ringbrennkammer mit umweltfreundlichen Brennern (Doppelkegelbrenner). Es sind nur die für das Verständnis der Erfindung wesentlichen Elemente gezeigt. Die Strömungsrichtung der Arbeitsmittel ist mit Pfeilen bezeichnet.In the drawing, an embodiment of the invention is shown. The only figure shows a partial longitudinal section through an annular combustion chamber with environmentally friendly burners (double-cone burners). It is only for understanding the Invention essential elements shown. The direction of flow of the work equipment is indicated by arrows.
Nachfolgend wird die Erfindung anhand eines Ausführungsbeispieles näher erläutert. In der Figur ist ein Teil einer Gasturbinenbrennkammer 1 dargestellt. Es ist eine Ringbrennkammer mit umweltfreundlichen Brennern 2 (Doppelkegelbrenner). Die Innenwand der Gasturbinenbrennkammer 1 wird durch eine Konvektivkühlung mit anschliessender Prallkühlung gekühlt, d.h. an die Konvektivkühlstrecke I schliesst sich die Prallkühlstrecke II an. Um den Gesamtdruckverlust zu reduzieren, ist der Übergang zur Brennereinströmung als Kleindiffusor 8 ausgebildet.The invention is explained in more detail below using an exemplary embodiment. In the figure, part of a gas
Der Kühlkanal 5 zwischen Lochplatte 3 und Prallfläche 4 weist eine in Querströmungsrichtung linear zunehmende Höhe auf. Dieser divergente Kühlkanal 5 bewirkt, dass eine konstante Querströmungsgeschwindigkeit entsteht, d.h. die Massenzufuhr über die Lochplatte 3 wird durch eine Querschnittserweiterung ausgeglichen. Diese Massnahme führt zu einer Verringerung des viskosen Druckverlustes im Kühlkanal 5 sowie einer konstanten Prallstrahlgeschwindigkeit auf Grund der nun konstanten Druckdifferenz über die Lochplatte 3.The
Allerdings verlängert sich dadurch auch der Weg des Kühlstrahles bis zum Auftreffen auf die Prallfläche 4, so dass auch eine geringe, entlang dieses Weges wirkende Querströmung den Kühlstrahl ablenken und damit die Kühlwirkung vermindern kann. Eine Kompensation wird dadurch erreicht, dass auf der Lochplatte 3 auf den Löchern 6 die Röhrchen 7 so aufgebracht werden, dass der Abstand zur Prallfläche 4 im Kühlkanal 5 konstant ist und die Pralluft in den Kanälen der Röhrchen 7 bis nahe an die Kühloberfläche (Prallfläche 4) herangebracht wird und dann senkrecht auf die Prallfläche 4 auftrifft.However, this also extends the path of the cooling jet until it strikes the
Durch die Kombination der beiden Massnahmen wird der Wärmeübergangskoeffizient entlang der Prallkühlstrecke II konstant gehalten und damit eine sehr gleichmässige Wärmeabfuhr erzielt.By combining the two measures, the heat transfer coefficient along the impingement cooling section II is kept constant, thus achieving a very uniform heat dissipation.
Durch geeignete Wahl der Höhe der Röhrchen 7 und des Durchmessers sowie des Abstandes der Löcher 6 voneinander kann die Kühlwirkung gezielt beeinflusst werden, so dass beispielsweise gegen Ende der Gegenstromkühlung der Brennkammer 1 mit umweltfreundlichen Brennern 2 die Kühlung lokal intensiviert werden kann, um die hohen Wärmeströme in der Nähe der Brenner 2 abzuführen.The cooling effect can be influenced in a targeted manner by a suitable choice of the height of the
- 11
- GasturbinenbrennkammerGas turbine combustion chamber
- 22nd
- Brennerburner
- 33rd
- LochplattePerforated plate
- 44th
- PrallflächeBaffle
- 55
- KühlkanalCooling channel
- 66
- LöcherHoles
- 77
- Röhrchentube
- 88th
- KleindiffusorSmall diffuser
- II.
- KonvektivkühlstreckeConvective cooling section
- IIII
- PrallkühlstreckeImpact cooling section
Claims (3)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE4239856A DE4239856A1 (en) | 1992-11-27 | 1992-11-27 | Gas turbine combustion chamber |
DE4239856 | 1992-11-27 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0599055A1 true EP0599055A1 (en) | 1994-06-01 |
EP0599055B1 EP0599055B1 (en) | 1997-06-11 |
Family
ID=6473763
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP93116942A Expired - Lifetime EP0599055B1 (en) | 1992-11-27 | 1993-10-20 | Gasturbine combustor |
Country Status (4)
Country | Link |
---|---|
US (1) | US5388412A (en) |
EP (1) | EP0599055B1 (en) |
JP (1) | JP3414806B2 (en) |
DE (2) | DE4239856A1 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1996018849A1 (en) * | 1994-12-15 | 1996-06-20 | United Technologies Corporation | Combustor liner arrangement |
WO2009103671A1 (en) * | 2008-02-20 | 2009-08-27 | Alstom Technology Ltd | Gas turbine having an improved cooling architecture |
CH699309A1 (en) * | 2008-08-14 | 2010-02-15 | Alstom Technology Ltd | Thermal machine with air cooled, annular combustion chamber. |
EP3098386A1 (en) * | 2015-05-29 | 2016-11-30 | General Electric Company | Impingement insert |
US9849510B2 (en) | 2015-04-16 | 2017-12-26 | General Electric Company | Article and method of forming an article |
US10087776B2 (en) | 2015-09-08 | 2018-10-02 | General Electric Company | Article and method of forming an article |
US10253986B2 (en) | 2015-09-08 | 2019-04-09 | General Electric Company | Article and method of forming an article |
US10739087B2 (en) | 2015-09-08 | 2020-08-11 | General Electric Company | Article, component, and method of forming an article |
Families Citing this family (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4244301C2 (en) * | 1992-12-28 | 2001-09-13 | Abb Research Ltd | Impact cooling device |
DE19720786A1 (en) * | 1997-05-17 | 1998-11-19 | Abb Research Ltd | Combustion chamber |
DE19751299C2 (en) | 1997-11-19 | 1999-09-09 | Siemens Ag | Combustion chamber and method for steam cooling a combustion chamber |
SE9801822L (en) * | 1998-05-25 | 1999-11-26 | Abb Ab | combustion device |
US6484505B1 (en) * | 2000-02-25 | 2002-11-26 | General Electric Company | Combustor liner cooling thimbles and related method |
US6536201B2 (en) * | 2000-12-11 | 2003-03-25 | Pratt & Whitney Canada Corp. | Combustor turbine successive dual cooling |
DE10064264B4 (en) * | 2000-12-22 | 2017-03-23 | General Electric Technology Gmbh | Arrangement for cooling a component |
US6438959B1 (en) * | 2000-12-28 | 2002-08-27 | General Electric Company | Combustion cap with integral air diffuser and related method |
EP1270874B1 (en) * | 2001-06-18 | 2005-08-31 | Siemens Aktiengesellschaft | Gas turbine with an air compressor |
GB2379499B (en) * | 2001-09-11 | 2004-01-28 | Rolls Royce Plc | Gas turbine engine combustor |
KR20030076848A (en) * | 2002-03-23 | 2003-09-29 | 조형희 | Combustor liner of a gas turbine engine using impingement/effusion cooling method with pin-fin |
GB0504445D0 (en) * | 2005-03-03 | 2005-04-06 | Univ Cambridge Tech | Oxygen generation apparatus and method |
US8151570B2 (en) * | 2007-12-06 | 2012-04-10 | Alstom Technology Ltd | Transition duct cooling feed tubes |
US8166764B2 (en) * | 2008-07-21 | 2012-05-01 | United Technologies Corporation | Flow sleeve impingement cooling using a plenum ring |
US8291711B2 (en) | 2008-07-25 | 2012-10-23 | United Technologies Corporation | Flow sleeve impingement cooling baffles |
US9423132B2 (en) * | 2010-11-09 | 2016-08-23 | Opra Technologies B.V. | Ultra low emissions gas turbine combustor |
JP2012145098A (en) * | 2010-12-21 | 2012-08-02 | Toshiba Corp | Transition piece, and gas turbine |
US8966903B2 (en) * | 2011-08-17 | 2015-03-03 | General Electric Company | Combustor resonator with non-uniform resonator passages |
EP2738469B1 (en) * | 2012-11-30 | 2019-04-17 | Ansaldo Energia IP UK Limited | Combustor part of a gas turbine comprising a near wall cooling arrangement |
US9010125B2 (en) | 2013-08-01 | 2015-04-21 | Siemens Energy, Inc. | Regeneratively cooled transition duct with transversely buffered impingement nozzles |
DE102017125051A1 (en) * | 2017-10-26 | 2019-05-02 | Man Diesel & Turbo Se | flow machine |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB849255A (en) * | 1956-11-01 | 1960-09-21 | Josef Cermak | Method of and arrangements for cooling the walls of combustion spaces and other spaces subject to high thermal stresses |
DE1938326A1 (en) * | 1968-08-02 | 1970-02-19 | Rolls Royce | Flame tube for gas turbine jet engines |
DE2836539A1 (en) * | 1978-08-03 | 1980-02-14 | Bbc Brown Boveri & Cie | GAS TURBINE HOUSING |
EP0203431A1 (en) * | 1985-05-14 | 1986-12-03 | General Electric Company | Impingement cooled transition duct |
EP0239020A2 (en) * | 1986-03-20 | 1987-09-30 | Hitachi, Ltd. | Gas turbine combustion apparatus |
GB2216645A (en) * | 1988-03-25 | 1989-10-11 | Gen Electric | Cooling of wall members of structures |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1356114A (en) * | 1970-09-03 | 1974-06-12 | Lage J R | Method of and apparatus for heat transfer |
DE2339366A1 (en) * | 1972-08-15 | 1974-02-28 | Stal Laval Turbin Ab | COMBUSTION CHAMBER FOR GAS TURBINE |
FR2624953B1 (en) * | 1987-12-16 | 1990-04-20 | Snecma | COMBUSTION CHAMBER FOR TURBOMACHINES HAVING A DOUBLE WALL CONVERGENT |
GB2219653B (en) * | 1987-12-18 | 1991-12-11 | Rolls Royce Plc | Improvements in or relating to combustors for gas turbine engines |
-
1992
- 1992-11-27 DE DE4239856A patent/DE4239856A1/en not_active Withdrawn
-
1993
- 1993-10-20 DE DE59306732T patent/DE59306732D1/en not_active Expired - Lifetime
- 1993-10-20 EP EP93116942A patent/EP0599055B1/en not_active Expired - Lifetime
- 1993-11-15 US US08/151,797 patent/US5388412A/en not_active Expired - Lifetime
- 1993-11-24 JP JP29312093A patent/JP3414806B2/en not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB849255A (en) * | 1956-11-01 | 1960-09-21 | Josef Cermak | Method of and arrangements for cooling the walls of combustion spaces and other spaces subject to high thermal stresses |
DE1938326A1 (en) * | 1968-08-02 | 1970-02-19 | Rolls Royce | Flame tube for gas turbine jet engines |
DE2836539A1 (en) * | 1978-08-03 | 1980-02-14 | Bbc Brown Boveri & Cie | GAS TURBINE HOUSING |
EP0203431A1 (en) * | 1985-05-14 | 1986-12-03 | General Electric Company | Impingement cooled transition duct |
EP0239020A2 (en) * | 1986-03-20 | 1987-09-30 | Hitachi, Ltd. | Gas turbine combustion apparatus |
GB2216645A (en) * | 1988-03-25 | 1989-10-11 | Gen Electric | Cooling of wall members of structures |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1996018849A1 (en) * | 1994-12-15 | 1996-06-20 | United Technologies Corporation | Combustor liner arrangement |
WO2009103671A1 (en) * | 2008-02-20 | 2009-08-27 | Alstom Technology Ltd | Gas turbine having an improved cooling architecture |
US8413449B2 (en) | 2008-02-20 | 2013-04-09 | Alstom Technology Ltd | Gas turbine having an improved cooling architecture |
CH699309A1 (en) * | 2008-08-14 | 2010-02-15 | Alstom Technology Ltd | Thermal machine with air cooled, annular combustion chamber. |
EP2154431A2 (en) * | 2008-08-14 | 2010-02-17 | Alstom Technology Ltd | Thermal machine |
EP2154431A3 (en) * | 2008-08-14 | 2010-08-04 | Alstom Technology Ltd | Thermal machine |
US9849510B2 (en) | 2015-04-16 | 2017-12-26 | General Electric Company | Article and method of forming an article |
EP3098386A1 (en) * | 2015-05-29 | 2016-11-30 | General Electric Company | Impingement insert |
US9976441B2 (en) | 2015-05-29 | 2018-05-22 | General Electric Company | Article, component, and method of forming an article |
US10087776B2 (en) | 2015-09-08 | 2018-10-02 | General Electric Company | Article and method of forming an article |
US10253986B2 (en) | 2015-09-08 | 2019-04-09 | General Electric Company | Article and method of forming an article |
US10739087B2 (en) | 2015-09-08 | 2020-08-11 | General Electric Company | Article, component, and method of forming an article |
Also Published As
Publication number | Publication date |
---|---|
EP0599055B1 (en) | 1997-06-11 |
DE59306732D1 (en) | 1997-07-17 |
DE4239856A1 (en) | 1994-06-01 |
JPH06213002A (en) | 1994-08-02 |
JP3414806B2 (en) | 2003-06-09 |
US5388412A (en) | 1995-02-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0599055B1 (en) | Gasturbine combustor | |
DE60113620T2 (en) | Gas burner nozzle and method of cooling same | |
EP0985882B1 (en) | Vibration damping in combustors | |
DE102005023536B4 (en) | Premix burner with impact-cooled centerbody and method of cooling the centerbody | |
DE60111682T2 (en) | Gas turbine combustor | |
DE1626138C3 (en) | Twin-flow gas turbine jet engine with at least one additional combustion device | |
EP0638769A2 (en) | Fuel injector for liquid and/or gaseous fuels and method for its operation | |
EP0781967A2 (en) | Annular combustion chamber for gas turbine | |
EP3134677B1 (en) | Combustor having a fluidic oscillator, for a gas turbine, and gas turbine having the combustor | |
EP0924470B1 (en) | Premix combustor for a gas turbine | |
EP0577862A1 (en) | Afterburner | |
EP1207350B1 (en) | Combustor and method for operating the same | |
EP1483536A1 (en) | Gas turbine | |
DE102004018725B4 (en) | Damping of vibrations of a combustion chamber by resonators | |
DE2116429A1 (en) | Combustion chamber for gas turbine engines | |
EP0602384A1 (en) | Gasturbine combustor | |
DE4336096A1 (en) | Device for redn. of vibrations in combustion chamber for gas turbine systems - has equal number of burners in flow direction of gases displaced by specific distance which is determined by formula | |
EP0711953A2 (en) | Premix burner | |
EP0718550A1 (en) | Injection nozzle | |
EP2462379B1 (en) | Stabilising of the flame of a burner | |
EP0483554A1 (en) | Method for minimising the NOx emissions from a combustion | |
EP0882932B1 (en) | Combustor | |
DE19535370B4 (en) | Process for low-emission premix combustion in gas turbine combustion chambers | |
DE1288487B (en) | Control for rocket engines | |
DE4325802B4 (en) | Method for operating a gas turbine plant with liquid or gaseous fuel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE FR GB |
|
17P | Request for examination filed |
Effective date: 19941115 |
|
17Q | First examination report despatched |
Effective date: 19960226 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB |
|
REF | Corresponds to: |
Ref document number: 59306732 Country of ref document: DE Date of ref document: 19970717 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19970820 |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: CD Ref country code: FR Ref legal event code: CA |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: TP |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20091030 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20101004 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20100923 Year of fee payment: 18 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF THE APPLICANT RENOUNCES Effective date: 20101025 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20111020 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20120629 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20111020 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20111102 |