Nothing Special   »   [go: up one dir, main page]

EP0585203B1 - Plasma spray gun - Google Patents

Plasma spray gun Download PDF

Info

Publication number
EP0585203B1
EP0585203B1 EP93810576A EP93810576A EP0585203B1 EP 0585203 B1 EP0585203 B1 EP 0585203B1 EP 93810576 A EP93810576 A EP 93810576A EP 93810576 A EP93810576 A EP 93810576A EP 0585203 B1 EP0585203 B1 EP 0585203B1
Authority
EP
European Patent Office
Prior art keywords
burner
spray gun
plasma spray
cathode
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP93810576A
Other languages
German (de)
French (fr)
Other versions
EP0585203A1 (en
Inventor
Markus Dietiker
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oerlikon Metco AG
Original Assignee
Sulzer Metco AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sulzer Metco AG filed Critical Sulzer Metco AG
Publication of EP0585203A1 publication Critical patent/EP0585203A1/en
Application granted granted Critical
Publication of EP0585203B1 publication Critical patent/EP0585203B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/42Plasma torches using an arc with provisions for introducing materials into the plasma, e.g. powder, liquid
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/28Cooling arrangements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/34Details, e.g. electrodes, nozzles
    • H05H1/3423Connecting means, e.g. electrical connecting means or fluid connections

Definitions

  • the invention relates to a plasma spraying device for coating cavity walls according to claim 1 and to a burner head adapted to the plasma spraying device according to claim 25.
  • a major problem when coating cavity walls is the length of the bore or channel to be coated. Since the connection part of a plasma spraying device is generally much larger than the burner shaft with the burner placed at the end, it is not possible for the entire plasma spraying device to enter the bore to be coated be retracted. So that a small, handy device is available for short bores and a correspondingly long, adapted plasma spraying device is available for long bores, The length of the part of the plasma spraying device which is immersed in the bore should therefore also be able to be adapted accordingly for different bore depths.
  • the minimum bore or channel diameter of the inner surface to be coated is determined by the outside diameter of a plasma spraying device, in particular the burner shaft with the burner head placed at the end. This means that the more compact the burner and the shaft of such a plasma spraying device, the smaller the diameter of the tube to be coated can be.
  • the plasma jet of such a plasma spraying device should emerge radially from the burner.
  • Another problem is the heating of the parts of the plasma spraying device that reach into the pipe or the channel, since temperatures of ten thousand degrees and more are generated by the plasma flame. This problem arises to a far greater extent if coating is to be carried out in a vacuum atmosphere, since air or CO2 cannot be blown in for cooling purposes in a vacuum atmosphere, as is customary under atmospheric conditions. To damage the thermally highly stressed parts under atmospheric conditions and in particular under To avoid vacuum-like conditions, efficient cooling is essential.
  • the further problem is the dielectric strength or the insulation of the burner. Since in the case of a transferred arc, the shortest path of which is often not identical to the desired path between the cathode and the surface to be coated, for example a pipe wall, care must be taken to ensure that the burner is insulated on all sides.
  • the plasma spraying device should be designed in such a way that the insulation is unwanted even under extreme conditions Prevents transmission or striking of the arc.
  • a plasma spraying device is known for coating pipes and is marketed, for example, under the name "Type 7 MST-2" by Metco, Westbury, USA.
  • This known plasma spraying device essentially consists of a connecting piece and an extension which can be connected to it and which has an integrated burner (plasma mat) at its end.
  • the extension results in the supply of plasma gas and electrical current for the operation of the torch while the plasma powder is supplied outside the extension via a separate line.
  • a sleeve is pushed over the extension, which is screwed to the connector and thereby presses the extension onto the connector.
  • the plasma powder line itself is fastened to this by means of flanges comprising the extension.
  • a separate flange must be attached into which the plasma powder line is screwed.
  • This flange has a powder guide, via which the coating material, generally plasma powder, is fed to the actual plasma flame outside the actual burner head.
  • the plasma powder line is screwed to a powder supply line in the area of the connector.
  • the plasma torch itself which is integrated in the extension, is axially aligned with respect to the extension, so that the plasma jet also emerges axially.
  • a deflection nozzle is also provided, through which the plasma jet is deflected by approximately 40-50 degrees with respect to the longitudinal axis of the plasma spraying device.
  • a plasma torch which consists of a supply part, a supply adapter, quick-release couplings and a burner part.
  • the plasma jet emerges axially with respect to the longitudinal axis of the burner part. While the supply part is connected to the supply adapter by means of the quick-release coupling, a screw connection is provided for fastening the burner part.
  • a plasma spraying device is known from CH-A-647424.
  • the tubular extension piece is cylindrical and connects the connecting part to the burner head.
  • the connecting part is provided with a screwed-in coupling element, on which the extension piece can be connected to the burner rear part.
  • the extension piece also has a radially arranged connecting line which opens into the interior of the extension piece via a connecting channel. This connection line can be connected to a cooling gas source for cooling the extension piece.
  • a connection channel leads from the interior of the extension piece to the burner head.
  • the modular structure of the plasma spraying device means that one and the same burner head can be used, but with different shafts in terms of length. This practically allows an individual adjustment of the shaft length to the bore to be coated, the channel, etc. Thus, a short shaft can be used for a short bore and a correspondingly long shaft for a deep bore.
  • the modular design also reduces the changeover time to a minimum, making it much easier for the user to adapt the plasma spraying device.
  • the burner shaft has a shape deviating from a straight line.
  • the shape of the burner shaft can be adapted to the object to be coated, so that, for example, curved tubes can also be coated. It is also conceivable to use different burner shafts for coating a complex object, so that a respectively adapted burner shaft is used for partial surfaces of the object to be coated.
  • An advantageous embodiment of the plasma spraying device provides that both the anode nozzle and the cathode arrangement of the burner head are accessible from the outside, so that these parts can be replaced quickly and easily by the user himself in the event of a defect or appropriate wear.
  • the powder injector designed as a clamping jaw of the anode nozzle can also be removed or replaced by loosening a single screw. Since different powder injectors with different cross-sections are also available, the injection speed of the plasma powder can be varied by exchanging the powder injector.
  • the insulating body which is attached between the anode body and the cathode body in a preferred embodiment and which has flanges partially encompassing the anode body and the cathode body on the longitudinal side, ensures good insulation between the anode and cathode bodies.
  • such a plasma spraying device is particularly suitable for the interior coating of narrow pipes and in particular also for coatings in a vacuum.
  • Another preferred embodiment of the plasma spraying device provides a series connection of the cooling water circuit in the burner head. This means that the cathode arrangement and the anode nozzle are the same Cooling water circuit are connected. This favors a compact design of the plasma spraying device and also results in a minimized number of bushings and plug connections between the individual modules. This also ensures that the same amount of water flows around the anode nozzle and the cathode arrangement.
  • Claim 25 claims a burner head which is adapted to a plasma spray device designed according to the invention.
  • This plasma spray device essentially consists of three modular units. These three units are a connection element 1, a burner shaft 2 and a burner head 3. The burner shaft 2 is fastened to the connection element 1 by means of screws 6 and the burner head 3 is fastened to the burner shaft 2 by means of screws 7.
  • the media necessary for the operation of the plasma spraying device are supplied via supply lines (not shown) which are screwed or plugged onto connections 9.
  • the connections 9 attached to the connection element 1 are arranged radially with respect to the longitudinal axis of the plasma spraying device.
  • an anode nozzle 11 attached to the burner head 3, from which the plasma flame emerges radially opposite the longitudinal axis of the plasma spraying device during operation, and a protective shield 5 can be seen from this illustration.
  • 1b also shows a ceramic cap 4 which can be attached to the burner head 3 for its thermal and electrical insulation.
  • This ceramic cap 4 has an oval recess 8 and a bore 10. The recess 8 leaves the anode nozzle 11 free when the ceramic cap is attached.
  • the bore 10 serves to fasten the ceramic cap 4 to the burner head 3 by inserting a fastening screw through the bore 10 and screwing it into a corresponding thread in the burner head 3. Constructive details are not apparent from these figures, since these are explained below using further figures. However, this illustration is intended to illustrate the compact design of the plasma spraying device.
  • 2a to 2c show the parts or details essential for the attachment of the three structural units 1, 2, 3.
  • the three structural units 1, 2, 3 of the plasma spraying device are each shown individually in a view from the side.
  • 2d shows the connection element in the direction of arrow A from behind, in FIG. 2e the burner shaft 2 in arrow direction B also from behind and in FIG. 2f the burner head in arrow direction C from the front.
  • connection element 1 designed for the connection of burner medium supply lines consists of a round base body 15 angled by 90 °.
  • the burner shaft 2 is designed as a tubular extension for the supply of the burner media from the connection element 1 to the burner head 3.
  • the burner shaft 2 is just executed in this embodiment. Further embodiments are explained below.
  • the burner head 3 is responsible for generating a plasma flame.
  • This burner head 3 has a cylindrical basic shape and has approximately the same outer diameter as the burner shaft 2.
  • connection element 1 there is a round opening 17 directed towards the burner shaft 2, which corresponds to the outside diameter of the burner shaft 2 and serves to fix the same. At the bottom of this opening 17, a groove 18 is made.
  • the connection element 1 has three bores 19 distributed parallel to the longitudinal axis 25 of the plasma spraying device and concentrically around this longitudinal axis 25.
  • connections 20, 21, 22, 23 are attached, via which the media necessary for the operation of the plasma spraying device and the power supply are supplied.
  • the connections 20, 21 and 23 are provided with threads for fastening the supply lines and the connection 22 with a corresponding plug connection.
  • the lines and channels for the burner media, starting from the connections 20, 21, 22, 23 and leading through the connecting element 1 and the burner shaft 2, are not shown in these representations for the sake of clarity.
  • the tubular burner shaft 2 has a strip 26 at the rear end directed towards the connection element 1. Furthermore, the burner shaft 2 has a collar 27 which surrounds it. The distance of this collar 27 from the rear end of the burner shaft 2 corresponds to the depth of the opening 17 present in the connecting element 1. Three internal threads 28 are distributed around the periphery of the collar 27.
  • the burner shaft 2 has a cylindrical recess 30.
  • a groove 31 is in turn attached to the bottom of this recess 30.
  • Two blind threads 32 start from this groove 31.
  • the burner head 3 has a cylindrical shoulder 36, which corresponds in shape and position to the cylindrical recess 30 of the burner shaft 2.
  • a strip 34 is formed on the burner head 3, which corresponds in shape and position to the groove 31 of the burner shaft 2. At the level of this bar 34, two bores 33 run through the burner head 3 in the longitudinal direction.
  • the burner head 3 is fastened to the burner shaft 2 by passing the two screws 7 through the bores 33 of the burner head 3 and screwing them into the blind thread 31.
  • a certain centering and alignment of the burner head 3 results on the one hand from the shoulder 36 inserted into the cylindrical recess 30 and on the other hand through the ledge 34 engaging in the groove 31.
  • the burner shaft 2, which is designed as an extension, is then attached to the connecting element 1.
  • the screws 6 are inserted through the bores 19 of the connection element 1 and screwed into the internal thread 28 of the collar 27.
  • a certain alignment and centering of the burner shaft 2 with respect to the connection element 1 is again achieved here by the strip 26 engaging in the groove 18.
  • FIG. 2g to 2i show some further possible embodiments of burner shafts.
  • FIG. 2g shows a cranked burner shaft 102, while a curved burner shaft 202 is shown in FIG. 2h and a rounded burner shaft 302 is shown in FIG. 2i.
  • the burner shafts 102, 202, 302 designed in this way are fastened in the same way as was described with reference to FIGS. 2a to 2c.
  • its burner-side end 105 runs parallel to the connection element-side end 107.
  • the length and angle ⁇ of the angled part 117 of the burner shaft 102 can determine the parallel offset of the two ends 105, 107.
  • the angle b between the burner-side end 105 and the angled part 117 of the burner shaft 102 corresponds to the angle a.
  • the angle a is not equal to the angle b.
  • a burner shaft 102 designed according to FIG. 2g allows, for example, a cylindrical body, which has only a small opening, to be coated on the inside. Let the burner shaft 102 with the burner head attached to it rotating into the body about the longitudinal central axis 25 of the plasma spraying device, an inner cavity that is much larger than the opening can be coated in this way.
  • the position of the burner shaft 202 on the burner shaft 202 can be determined by the angle c between the longitudinal center axis 25 of the plasma spraying device and the longitudinal center axis 213 of the end 205 of the burner head vary the burner head to be attached. This angle c thus has a direct influence on the exit angle of the plasma jet.
  • the length of the angled part 211 can also influence the position of the burner head with respect to the longitudinal central axis 25 of the plasma spraying device.
  • FIG. 2i A further exemplary embodiment of the burner shaft 302 can be seen in FIG. 2i, in which a part 311 of the burner shaft 302 is bent. With such a configuration, even curved pipes and the like can be coated on the inside. It is thus possible to coat a wide variety of cavity walls using differently designed burner shafts 102, 202, 302.
  • the burner shafts 102, 202, 302 can be exchanged for coating intertwined cavities consisting of different partial surfaces, and the individual partial surfaces of a complex object can thus be coated.
  • angles a, b, c and radii r of these burner shafts 102, 202, 302 can vary within a wide range, and that other embodiments of the burner shafts 102, 202, 302 are also conceivable.
  • FIGS. 3a to 3c show a longitudinal section through the three structural units 1, 2, 3 to illustrate the one between the cooling water lines 40, 45, 52, 53 on the one hand and between the cooling water lines 52, 53 and the cooling water channels 135, 136 and each consisting of one Plugs 39, 44, 66, 67 and a socket 49, 50, 58, 60 existing plug connections.
  • FIGS. 3d to 3f in turn show a longitudinal section through the three structural units to illustrate the existing between the plasma gas lines 75, 76, 77 and the plasma powder lines 70, 71, 72 and each consisting of a sealing ring 84, 85; 86, 87 and a collar 79, 80; 81, 82 existing butt joints.
  • 3b and 3e each show the burner shaft 2.
  • This has an inserted end cap 56, 57 made of thermally highly resilient plastic at both ends.
  • These end caps 56, 57 are used to fasten the two cooling water lines 52, 53 and the plasma gas and plasma powder line 76, 71 in the burner shaft 2.
  • a special feature of the plasma spraying device is that the cooling water circulates in the cooling water lines 40, 45, 52, 53 and the cooling water channels 135, 136, and in addition that the electrical power supply is provided by the metal lines Burner head 3 takes place.
  • radial channels 91, 93 each lead from the bushes 49, 58 into the casing tube 92 of the burner shaft 2.
  • the cooling water at the inlet of the burner shaft 2 can exit from the line 52 or from the bush 49 and flow through the burner shaft 2.
  • the cooling water can then flow into the bushing 58 via the radial channels 93 and reach the cooling channel 135 via the plug 66.
  • the electrical connection between the two sockets 49, 58 is ensured by a rod-shaped current conductor 62.
  • the exact functioning of this cooling water circuit is described below with reference to FIGS. 4, 4a and 4b. Since the two cooling water lines 52, 53 are at different potential, the two end caps 56, 57 also serve as an insulator between the sockets 49, 50, 58, 60. Since the cooling water lines or the cooling water channels are also connected in series via the burner head, it is of course necessary to use an electrically non-conductive or poorly conductive medium, such as high-purity water, as the cooling medium.
  • the plasma powder lines 70, 71, 72 shown in FIGS. 3e to 3f and the plasma gas lines 75, 76, 77 can each be connected to one another by means of a butt connection.
  • the basic structure of the structural units has already been mentioned above, so that the following description of the figures is limited to the essential details of the plug or butt connections.
  • Plug connections are provided for connecting the cooling water lines 40, 45 leading through the connection element 1 to the corresponding lines 52, 53 leading through the burner shaft.
  • These plug connections each consist of a metal plug 39, 44 and a metal socket 49, 50.
  • the plugs 39, 44 are designed such that they have a collar 41, 46 at their rear end. If the plugs 39, 44 are now inserted into the corresponding sockets 49, 50 and the connection element 1 is screwed to the burner shaft 2, the collar 41, 46 comes to rest on the end faces 54, 55 of the sockets 49, 50 and thus arises one contact area each. The electrical current can now be transferred from one line to the other via these contact surfaces.
  • the plug connections for the cooling water and the electrical current which are in turn formed from plug core 66, 67 and sockets 58, 60, are also formed in the same way between the burner shaft 2 and the burner head 3.
  • the essential difference is that an anode base body 63 made of metal and a cathode base body 64 also made of metal are present on the burner head 3.
  • the cathode base 64 is designed such that it takes over the power supply to the cathode, while the anode base body 63 ensures the power supply to the anode.
  • the channels 135, 136 necessary for cooling the burner head 3 are embedded directly in these two bodies 63, 64. Since these two bodies also consist of metal, this ensures uniform cooling of the burner head 3.
  • the two plugs 66, 67 must have a collar, because when the sockets 58, 60 are plugged together with the plugs 66, 67, the end faces 59, 61 on the sockets 58, 60 with the anode base body 62 and come into contact with the cathode base body 64 and thus the electrical contact is also ensured.
  • the plugs 39, 44, 66, 67 engaging in the sockets 49, 50, 58, 60 also center the burner head 3 with respect to the burner shaft 2 and the burner shaft 2 with respect to the connecting element 1.
  • Sealing rings 68, 69 are in turn attached to the plugs 66, 67 as a seal for the cooling water.
  • the line connections between the plasma powder lines 70, 71, 72 and between the plasma gas lines 75, 76, 77 are formed as butt connections.
  • the two lines 71, 76 leading through the burner shaft 2 each have a collar 79, 80, 81, 82 at their ends, which, when the plasma spraying device is screwed together, connects to a corresponding sealing ring 84, 85 that includes the line 70, 72, 75, 77 , 86, 87 in the connection element 1 and comes to rest in the burner head 3 and is sealed by this.
  • the cooling water circuit in the plasma spraying device can be seen from FIG.
  • the three structural units 1, 2, 3 are again shown in a longitudinal section reduced to the essential. 4a and 4b, two details are also shown in enlarged sections. Cooling in a plasma spraying device is necessary above all for the burner head 3 and the burner shaft 2.
  • a serial cooling circuit was chosen so that the three structural units 1, 2, 3 of the plasma spraying device have as few lines and plug connections as possible. This means that in the burner head 3, the anode nozzle 11 and the cathode arrangement 12 are connected in series in terms of cooling technology and therefore the cooling water flows through them in succession.
  • the cooling water is supplied at the connection 23 via a line (not shown) and enters the cooling water supply line 40 of the connection element 1 radially to the longitudinal axis of the plasma spraying device.
  • the inflowing cooling water is first deflected by 90 °. Then the cooling water flows into the plug connection consisting of the plug 39 and the socket 49. Through the radial channels 91 present in the bushing 49, the cooling water can emerge from the line 40 and flow into the casing tube 92 of the burner shaft 2. The water can flow through the burner shaft 2 in the entire remaining cross section. At the end of the burner shaft 2, the cooling water in turn flows via radial channels 93 into the plug connection formed from the plug 66 and the socket 58.
  • the cooling water finally flows from this plug connection into the channel 135 of the burner head 3.
  • the sealing rings required in these plug connections are not shown for the sake of clarity.
  • the cooling water first flows through the channel 135 present in the anode base body 63 to the anode nozzle 11 and flows around it. Thereafter, the cooling water is deflected and thereby penetrates an insulating body 65 arranged between the anode base body 63 and the cathode base body 64, in order to subsequently reach the cathode arrangement 12 and flow around it.
  • the ring channels present on the anode nozzle 11 and on the cathode socket 13 cannot be seen from this illustration and will be explained in more detail later in the detailed description of the burner head 3.
  • the backflow of the cooling water from the burner head 3 takes place through a line 73 present in the burner shaft 2.
  • This line 73 has a sheath 96 which improves the electrical insulation between the two lines 62, 73 which are at different potential and thereby reduces any leakage currents.
  • the cooling water flows back into the connection element 1, where it finally exits the plasma spraying device via the connection 20.
  • Such a cooling water flow has the advantage that only a single cooling water circuit is necessary due to the cooling connection of the anode nozzle 11 and the cathode arrangement 12.
  • the condition for such a cooling water course is, of course, that high-purity or ultra-pure water is used as cooling water, so that it has a correspondingly low electrical conductivity.
  • the jacket tube 92 of the burner shaft 2 is flowed through in the entire available cross section and thus the entire burner shaft 2 is cooled correspondingly efficiently.
  • the burner shaft 2 can be seen in cross section in FIG. 5a, while a section of the burner shaft 2 is shown in longitudinal section in FIG. 5b.
  • the tubular cooling water line 73, the rod-shaped current conductor 62 and the plasma powder line 71 and the plasma gas line 76 can be seen in the casing tube 92 of the burner shaft 2.
  • the jacket 96 of the cooling water line 73, which is designed as electrical insulation, is also shown. From this representation it can be seen very well below that the jacket tube 92 of the burner shaft 2 is flowed through by the cooling water over a large area and that efficient cooling is thereby ensured. Both figures are shown enlarged compared to the previous representations for better illustration.
  • Figures 6a, 6b and 6c show an enlarged view of the burner head 3 in longitudinal section, in cross section and in an external view from the burner shaft.
  • the burner head 3 serves to generate a plasma flame, by means of which the supplied plasma powder is melted and accelerated, so that the plasma powder set in motion can thereby be applied to a workpiece to be coated. Electrical energy and various media are supplied to operate the burner.
  • the burner head 3 has a cylindrical basic shape, which essentially consists of a cathode base body 64 with a cathode arrangement 12 mounted therein, an anode base body 63 with an anode nozzle 11 fastened therein, and an anode base body 63 Insulating body 65 electrically separating from the cathode base body 64.
  • a shoulder 36 On its side facing the burner shank 2 there is a shoulder 36 which encompasses the entire burner head 3.
  • the anode base body 63 consisting of metal has essentially a rectangular basic shape, the surface 98 being rounded. This upper, rounded surface 98 also forms part of the outside of the burner head 3.
  • the cathode base body 64 which is also made of metal, has a shape which is approximately mirror-image to the anode base body 63 and in which the rounded part 99 forms a lower part of the outside of the Burner head 3 forms.
  • the insulating body 65 is arranged between the inner surface of the cathode base body 64 and the inner surface of the anode base body 63.
  • the insulating body 65 has a cylindrical segment-shaped flange 74 on each of its longitudinal sides, which partially encompass the anode base body 63 and the cathode base body 64 on their straight parts on the outside.
  • the burner head 3 also has an insulating cap 101 made of ceramic.
  • the mechanical cohesion of the burner head 3 is ensured by screws 97, which each connect the cathode base body 64 and the anode base body 63 to the insulating body 65.
  • screws 97 which each connect the cathode base body 64 and the anode base body 63 to the insulating body 65.
  • the two bodies 63, 64 are at different locations with the insulating body 65 screwed.
  • the cathode assembly 12 itself consists of a cylindrical cathode socket 13 with a cathode 14 which is in the form of a pin and is inserted from above.
  • the cathode socket 13 has an external thread 103 at its rear end, by means of which it is screwed into a corresponding thread 104 of the cathode base body 64.
  • the longitudinal axis of the cathode arrangement 12 comes to lie transversely to the longitudinal axis of the burner head 3.
  • the cathode socket 13 is enclosed at its upper end by a ceramic insulating disk 138.
  • the cathode socket 13 has a shoulder 106, which, by screwing in, rests with its end face on the cathode base body 64 in a defined manner.
  • the cathode socket 13 has an annular groove 108 which, together with a groove 109 embedded in the cathode base body 64 and corresponding in shape and position, results in a cooling ring channel 110.
  • a sealing ring 112 comprising the cathode socket 13 is provided above and below it.
  • the cathode socket 13 and the cathode base body 64 each have an annular groove 114, 115, which together, below the cooling ring channel 110, form an annular channel 116.
  • a plasma gas channel 127 extending from the end face 132 opens into this ring channel 116.
  • Longitudinal channels 118, which extend in the peripheral region of the cathode holder 13 of the cathode 14, finally emanate from this ring channel 116 run along and open at the front openings in the bore 120 of the anode nozzle 11.
  • the anode nozzle 11 has a cylindrical basic shape with a through bore 120, the bore 120 tapering at the beginning and at the end.
  • the anode nozzle 11 is inserted into the anode base body 63 from the outside, so that the longitudinal axis of the anode nozzle 11 is again transverse to the longitudinal axis of the burner head 3.
  • the current from the anode base body 63 is simultaneously transferred to the anode nozzle 11 via this end face.
  • the cathode 14 projects into the bore 120 of the anode nozzle 11.
  • the anode nozzle 11 is fixed in the anode base body 63 by means of a clamping jaw 122 which is screwed onto the anode base body 63 by means of a screw (not shown).
  • This clamping jaw 122 is designed such that it connects, via an internal bore 123, a powder channel 125 leading through the anode base body 63 to a bore 126 leading radially into the interior of the anode nozzle 11.
  • the anode nozzle 11 also has an annular groove 128 which, together with a groove 129 embedded in the anode base body 63, has a cooling ring channel 130 results.
  • Corresponding sealing rings 131 are in turn provided for sealing this cooling ring channel 130.
  • the plug 66 is provided for the inlet of cooling water. From this plug 66, a channel 135 for cooling water leads into the anode base body 63, where it first opens into the cooling ring channel 130 leading around the anode nozzle 11.
  • the cooling water channel 135 continues through the anode base body 63, is then deflected downward by 90 °, leads through the insulating body 65 into the cathode base body 64, is in turn deflected through 90 ° in order to finally open into the cooling ring channel 110 of the cathode socket 13.
  • the cooling water channel is designated 136.
  • the cooling water duct 136 leads out of the burner head 3 again via the plug 67.
  • the two tubular plugs 66, 67 are inserted into and connected to the cathode base body 64 and the anode base body 63 in such a way that good electrical contact with them is ensured.
  • an angled heat shield 5 provided which is mounted on the side of the anode nozzle 11, flush with the surface thereof, on the burner head 3.
  • the plasma gas which is passed through the channels 118 through the channels 118 in the peripheral area of the cathode socket 13 of the cathode 14, cools the cathode socket 13. Furthermore, the plasma gas is preheated by this feed, which results in an improvement in the efficiency.
  • the metal cathode base body 64 is used for supplying the electric current to the cathode 14.
  • the plug 67 is designed both as a plug for connecting the cooling lines and as a contact for the electrical current. Since both the cathode socket 13 and thus the cathode 14 itself and the plug 67 are in direct contact with the cathode base body 64, the electrical current is of course also transmitted accordingly.
  • the number of connecting lines can be reduced to a minimum.
  • a cooling liquid with a high specific electrical resistance is used as the cooling medium.
  • ultrapure or ultrapure water is ideal for this.
  • the connection of the plasma powder channel 125, which is designed as a clamping jaw 122, to the powder supply line 126, which opens radially into the anode nozzle 11, is interchangeable. If different clamping jaws 122 with different line cross sections are now available, the injection speed of the plasma powder which is fed to the plasma flame can be preselected or changed by exchanging this clamping jaw 122, which is designed as a powder injector.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Plasma Technology (AREA)
  • Nozzles (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

A plasma spray gun for coating especially holes, channels (ducts) or the like consists essentially of a connecting piece (1), a burner shaft (2) and a burner head (3). These three components (1, 2, 3) of the plasma spray gun are in this case constructed as replaceable modules which can be replaced quickly and easily by the user. The burner head is mounted on the burner shaft (2) by means of two screws (7), and the burner shaft (2) is mounted on the connecting piece (1) by means of three screws (6). All the lines and channels which are required for operation of the burner in this case run through the interior of the burner shaft (2). The connections (9) for the burner media and electrical power are designed radially with respect to the longitudinal axis of the plasma spray gun. <IMAGE>

Description

Die Erfindung betrifft ein Plasmaspritzgerät zur Beschichtung von Hohlraumwandungen gemäss dem Anspruch 1 sowie einen an das Plasmaspritzgerät angepassten Brennerkopf gemäss dem Anspruch 25.The invention relates to a plasma spraying device for coating cavity walls according to claim 1 and to a burner head adapted to the plasma spraying device according to claim 25.

Das Beschichten von aussenliegenden, gut zugänglichen Flächen stellt mit bekannten Plasmaspritzgeräten im allgemeinen kein Problem dar. Sollen jedoch Hohlraumwandungen (innenliegende Flächen), wie sie z.B. bei Bohrungen und Kanälen vorkommen, mit den bekannten Plasmaspritzgeräten beschichtet werden, so ist mit diversen Problemen und Schwierigkeiten zu rechnen.The coating of external, easily accessible surfaces is generally not a problem with known plasma spraying devices. However, should cavity walls (internal surfaces), as e.g. in the case of bores and channels, which are coated with the known plasma sprayers, various problems and difficulties can be expected.

Ein Hauptproblem beim Beschichten von Hohlraumwandungen stellt die Länge der zu beschichtenden Bohrung bzw. des Kanals dar. Da der Anschlussteil eines Plasmaspritzgerätes im allgemeinen wesentlich grösser als der Brennerschaft mit dem am Ende plazierten Brenner ist, kann nicht mit dem gesamten Plasmaspritzgerät in die zu beschichtende Bohrung eingefahren werden. Damit für kurze Bohrungen ein kleines handliches Gerät und für lange Bohrungen ein entsprechend langes, angepasstes Plasmaspritzgerät zur Verfügung steht, sollte somit für unterschiedliche Bohrungstiefen auch die Länge des in die Bohrung eintauchenden Teils des Plasmaspritzgerätes entsprechend angepasst werden können.A major problem when coating cavity walls is the length of the bore or channel to be coated. Since the connection part of a plasma spraying device is generally much larger than the burner shaft with the burner placed at the end, it is not possible for the entire plasma spraying device to enter the bore to be coated be retracted. So that a small, handy device is available for short bores and a correspondingly long, adapted plasma spraying device is available for long bores, The length of the part of the plasma spraying device which is immersed in the bore should therefore also be able to be adapted accordingly for different bore depths.

Durch den Aussendurchmesser eines Plasmaspritzgerätes, insbesondere des Brennerschafts mit dem am Ende plazierten Brennerkopf, wird der minimale Bohrungs- bzw. Kanaldurchmesser der zu beschichtenden Innenfläche (Hohlraumwandung) bestimmt. Das heisst also, je kompakter der Brenner und der Schaft eines solchen Plasmaspritzgerätes ausgebildet sind, desto kleiner kann der Durchmesser des zu beschichtenden Rohres sein.The minimum bore or channel diameter of the inner surface to be coated (cavity wall) is determined by the outside diameter of a plasma spraying device, in particular the burner shaft with the burner head placed at the end. This means that the more compact the burner and the shaft of such a plasma spraying device, the smaller the diameter of the tube to be coated can be.

Um eine homogene Beschichtung, insbesondere auch von verwinkelten Stellen wie z.B. Absätzen zu ermöglichen, sollte der Plasmastrahl eines solchen Plasmaspritzgerätes radial aus dem Brenner austreten.In order to achieve a homogeneous coating, especially of angled areas such as To enable sales, the plasma jet of such a plasma spraying device should emerge radially from the burner.

Ein weiteres Problem stellt die Erwärmung der in das Rohr bzw. den Kanal hineinreichenden Teile des Plasmaspritzgerätes dar, da durch die Plasmaflamme Temperaturen von zehntausend Grad und mehr erzeugt werden. Diese Problematik stellt sich noch in weit grösserem Masse, wenn in einer Unterdruckatmosphäre beschichtet werden soll, da in einer Unterdruckatmosphäre nicht, wie unter atmosphärischen Bedingungen üblich, Luft oder CO₂ zu Kühlzwecken eingeblasen werden kann. Um eine Beschädigung der thermisch hochbelasteten Teile unter atmosphärischen Bedingungen sowie insbesondere auch unter vakuumähnlichen Bedingungen zu vermeiden, ist daher eine effiziente Kühlung unumgänglich.Another problem is the heating of the parts of the plasma spraying device that reach into the pipe or the channel, since temperatures of ten thousand degrees and more are generated by the plasma flame. This problem arises to a far greater extent if coating is to be carried out in a vacuum atmosphere, since air or CO₂ cannot be blown in for cooling purposes in a vacuum atmosphere, as is customary under atmospheric conditions. To damage the thermally highly stressed parts under atmospheric conditions and in particular under To avoid vacuum-like conditions, efficient cooling is essential.

Bei der Beschichtung von engen Rohren und dergleichen stellt sich im weiteren das Problem der Durchschlagfestigkeit bzw. der Isolation des Brenners. Da bei einem transferierten Lichtbogen, dessen kürzester Weg oft nicht mit dem gewünschten Weg zwischen der Kathode und der zu beschichtenden Fläche, beispielsweise einer Rohrwandung, identisch ist, muss darauf geachtet werden, dass der Brenner eine allseitige Isolation aufweist.When coating narrow pipes and the like, the further problem is the dielectric strength or the insulation of the burner. Since in the case of a transferred arc, the shortest path of which is often not identical to the desired path between the cathode and the surface to be coated, for example a pipe wall, care must be taken to ensure that the burner is insulated on all sides.

Da bei herkömmlichen Plasmabrennern zudem schon geringe, durch Beschädigung der Isolation oder durch hohen Staubniederschlag hervorgerufene Nebenschlüsse eine ungewollte Übertragung des Lichtbogens auf das Werkstück, insbesondere auch im Vakuum, begünstigen, sollte das Plasmaspritzgerät so konstruiert sein, dass die Isolation auch unter extremen Bedingungen ein ungewolltes Übertragen bzw. Durchschlagen des Lichtbogens verhindert.Since, with conventional plasma torches, even small shunts, caused by damage to the insulation or high dust precipitation, promote unwanted transmission of the arc to the workpiece, especially in a vacuum, the plasma spraying device should be designed in such a way that the insulation is unwanted even under extreme conditions Prevents transmission or striking of the arc.

Zum Beschichten von Rohren ist ein Plasmaspritzgerät bekannt, welches z.B. unter der Bezeichnung "Type 7 MST-2" von der Fa. Metco, Westbury, USA, vertrieben wird. Dieses bekannte Plasmaspritzgerät besteht im wesentlichen aus einem Anschlußstück und einer daran anschliessbaren Verlängerung, welche an ihrem Ende einen integrierten Brenner (Plasmatron) aufweist. Durch die Verlängerung erfolgt die Zufuhr von Plasmagas sowie von elektrischem Strom für den Betrieb des Brenners, währenddem die Zufuhr von Plasmapulver ausserhalb der Verlängerung über eine getrennte Leitung erfolgt.A plasma spraying device is known for coating pipes and is marketed, for example, under the name "Type 7 MST-2" by Metco, Westbury, USA. This known plasma spraying device essentially consists of a connecting piece and an extension which can be connected to it and which has an integrated burner (plasma mat) at its end. The extension results in the supply of plasma gas and electrical current for the operation of the torch while the plasma powder is supplied outside the extension via a separate line.

Zum Befestigen der Verlängerung wird eine Hülse über die Verlängerung geschoben, welche mit dem Anschlußstück verschraubt wird und dadurch die Verlängerung an das Anschlußstück presst.To attach the extension, a sleeve is pushed over the extension, which is screwed to the connector and thereby presses the extension onto the connector.

Die Plasmapulverleitung selber wird mittels die Verlängerung umfassenden Flanschen an dieser befestigt. Am Ende der Verlängerung muss ein separater Flansch befestigt werden, in welchen die Plasmapulverleitung eingeschraubt wird. Dieser Flansch besitzt eine Pulverführung, über welche der eigentlichen Plasmaflamme das Beschichtungsmaterial, im allgemeinen Plasmapulver, ausserhalb des eigentlichen Brennerkopfs zugeführt wird. Am anderen Ende wird die Plasmapulverleitung im Bereich des Anschlußstücks an eine Pulverzufuhrleitung angeschraubt.The plasma powder line itself is fastened to this by means of flanges comprising the extension. At the end of the extension, a separate flange must be attached into which the plasma powder line is screwed. This flange has a powder guide, via which the coating material, generally plasma powder, is fed to the actual plasma flame outside the actual burner head. At the other end, the plasma powder line is screwed to a powder supply line in the area of the connector.

Der in die Verlängerung integrierte Plasmabrenner selber ist in Bezug auf die Verlängerung achsial fluchtend angeordnet, so dass der Austritt des Plasmastrahls ebenfalls achsial erfolgt. Um den Plasmastrahl umlenken zu können, ist im weiteren eine Umlenkdüse vorgesehen, durch welche der Plasmastrahl um ca. 40-50 Grad gegenüber der Längsachse des Plasmaspritzgerätes abgelenkt wird.The plasma torch itself, which is integrated in the extension, is axially aligned with respect to the extension, so that the plasma jet also emerges axially. In order to be able to deflect the plasma jet, a deflection nozzle is also provided, through which the plasma jet is deflected by approximately 40-50 degrees with respect to the longitudinal axis of the plasma spraying device.

Der Aufbau dieses Plasmaspritzgerätes bringt einige gravierende Nachteile mit sich:

  • Da jede Verlängerung einen integrierten Brenner aufweist, ist die Ersatzteilhaltung sehr teuer.
  • Durch den achsialen Austritt des Plasmastrahls sind verwinkelte Stellen innerhalb einer Bohrung praktisch nicht zu Beschichten. Auch durch die Ablenkdüse, welche den Plasmastrahl um ca. 40-50 Grad gegenüber der Längsachse ablenkt, können Absätze und dergleichen innerhalb einer Bohrung, insbesondere wenn diese nur von einer Seite zugänglich sind, schlecht oder nur ungenügend beschichtet werden.
  • Ein Austausch von einzelnen Komponenten wie beispielsweise der Anode oder Kathode durch den Benutzer ist nicht oder nur mit grossem Aufwand möglich.
  • Die Kühlung, insbesondere der ausserhalb der Verlängerung geführten Pulverleitung, ist schlecht.
  • Das Austauschen des Verlängerungsstücks ist aufwendig und zeitraubend.
  • Zu jedem Verlängerungsstück muss eine entsprechende, korrespondierende Plasmapulverleitung vorhanden sein, welche zudem noch separat mittels Flanschen an der Verlängerung befestigt werden muss. Zudem muss die Pulverleitung auf der einen Seite noch an eine Plasmapulverzufuhrleitung und auf der anderen Seite in den vordersten Flansch eingeschraubt werden.
  • Durch die aussen an der Verlängerung zur Befestigung der Pulverleitung angebrachten Befestigungsflansche können Wärmestaus der aus der Bohrung austretenden heissen Gase entstehen. Ausserdem sind diese Befestigungsflansche durch ihre exponierte Lage extrem der Verschmutzung sowie einer erhöhten Beschädigungsgefahr ausgesetzt.
The construction of this plasma spraying device has several serious disadvantages:
  • Since each extension has an integrated burner, the spare parts inventory is very expensive.
  • Due to the axial exit of the plasma jet, angled areas within a hole are practically impossible to coat. Even through the deflection nozzle, which deflects the plasma jet by approximately 40-50 degrees with respect to the longitudinal axis, shoulders and the like can be poorly or insufficiently coated within a bore, especially if they are only accessible from one side.
  • An exchange of individual components such as the anode or cathode by the user is not possible or only possible with great effort.
  • The cooling, especially of the powder line routed outside the extension, is poor.
  • Replacing the extension piece is complex and time-consuming.
  • A corresponding, corresponding plasma powder line must be available for each extension piece, which must also be attached to the extension separately by means of flanges. In addition, the powder line must be screwed on one side to a plasma powder supply line and on the other side into the foremost flange.
  • The mounting flanges on the outside of the extension for attaching the powder line can cause heat build-up from the hot gases escaping from the bore. In addition, due to their exposed position, these mounting flanges are extremely exposed to contamination and an increased risk of damage.

Aus der EP-A- 0 079 019 ist ein Plasmabrenner bekannt, welcher aus einem Versorgungsteil, einem Versorgungszwischenstück, Schnellverschlusskupplungen sowie einem Brennerteil besteht. Der Plasmastrahl tritt in Bezug auf die Längsachse des Brennerteils axial aus. Währenddem der Versorgungsteil mittels der Schnellverschlusskupplung mit dem Versorgungszwischenstück verbunden wird, ist zur Befestigung des Brennerteils eine Schraubverbindung vorgesehen.From EP-A-0 079 019 a plasma torch is known, which consists of a supply part, a supply adapter, quick-release couplings and a burner part. The plasma jet emerges axially with respect to the longitudinal axis of the burner part. While the supply part is connected to the supply adapter by means of the quick-release coupling, a screw connection is provided for fastening the burner part.

Aus der CH-A-647424 ist ein Plasmaspritzgerät bekannt. Das rohrförmige Verlängerungsstück ist zylindrisch ausgebildet und verbindet den Anschlussteil mit dem Brennerkopf. Der Anschlussteil ist mit einem eingeschraubten Kupplungselement versehen, an welchem das Verlängerungsstück mit dem Brennerhinterteil verbunden werden kann. Das Verlängerungsstück weist zudem eine radial angeordnete Anschlussleitung auf, welche über einen Verbindungskanal in den Innenraum des Verlängerungsstücks mündet. Diese Anschlussleitung kann zur Kühlung des Verlängerungsstück mit einer Kühlgasquelle verbunden werden. Vom Innenraum des Verlängerungsstücks führt zudem ein Verbindungskanal zum Brennerkopf.A plasma spraying device is known from CH-A-647424. The tubular extension piece is cylindrical and connects the connecting part to the burner head. The connecting part is provided with a screwed-in coupling element, on which the extension piece can be connected to the burner rear part. The extension piece also has a radially arranged connecting line which opens into the interior of the extension piece via a connecting channel. This connection line can be connected to a cooling gas source for cooling the extension piece. A connection channel leads from the interior of the extension piece to the burner head.

Es ist somit die Aufgabe der Erfindung, ein Plasmaspritzgerät der gattungsgemässen Art so weiter zu entwickeln, dass es physisch auf einfache Art und Weise unterschiedlichen Beschichtungsaufgaben angepasst werden kann und somit zur Beschichtung von unterschiedlichsten Hohlraumwandungen, wie sie in Rohren, Kanälen und dergleichen vor kommen, mit unterschiedlichen Bohrungstiefen eingesetzt werden kann, dass der Brennerkopf ausreichend gekühlt ist, und dass die einzelnen Baueinheiten schnell und einfach ausgetauscht werden können.It is therefore the object of the invention to further develop a plasma spraying device of the generic type in such a way that it can be physically easily adapted to different coating tasks and thus to coat a wide variety of cavity walls, such as those in pipes, channels and the like come with different drilling depths, that the burner head is sufficiently cooled, and that the individual components can be replaced quickly and easily.

Diese Aufgabe wird durch die im kennzeichnenden Teil des Patentanspruchs 1 aufgeführten Merkmale gelöst.This object is achieved by the features listed in the characterizing part of patent claim 1.

Durch den modularen Aufbau des Plasmaspritzgerätes kann jeweils ein und derselbe Brennerkopf, jedoch mit in der Länge unterschiedlichen Schäften, eingesetzt werden. Dies erlaubt praktisch eine individuelle Anpassung der Schaftlänge an die zu beschichtende Bohrung, den Kanal etc. Somit kann für eine kurze Bohrung ein kurzer Schaft und für eine tiefe Bohrung ein entsprechend langer Schaft eingesetzt werden. Dies hat den Vorteil, dass ein solches Gerät eine den Gegebenheiten entsprechende, optimale Handlichkeit aufweist. Durch den vom Brennerschaft unabhängigen Brennerkopf brauchen zudem nur verschieden lange Schäfte an Lager gehalten zu werden, um das Plasmaspritzgerät umzurüsten und somit den unterschiedlichen Beschichtungsaufgaben anzupassen. Dadurch können natürlich die Lagerhaltungskosten ganz erheblich gesenkt werden. Durch den modularen Aufbau wird ausserdem die Umrüstzeit auf ein Minimum reduziert und damit dem Benutzer die Anpassung des Plasmaspritzgerätes wesentlich erleichtert.The modular structure of the plasma spraying device means that one and the same burner head can be used, but with different shafts in terms of length. This practically allows an individual adjustment of the shaft length to the bore to be coated, the channel, etc. Thus, a short shaft can be used for a short bore and a correspondingly long shaft for a deep bore. This has the advantage of being one Device has an optimal handling that corresponds to the circumstances Thanks to the burner head, which is independent of the burner, only shafts of different lengths need to be kept in stock in order to convert the plasma spraying device and thus adapt it to the different coating tasks. This can of course significantly reduce inventory costs. The modular design also reduces the changeover time to a minimum, making it much easier for the user to adapt the plasma spraying device.

Eine weitere Ausführungsform sieht zudem vor, dass der Brennerschaft eine von einer Geraden abweichende Form aufweist. Auf diese Weise kann die Form des Brennerschafts dem zu beschichtenden Objekt angepasst werden, so dass beispielsweise auch bogenförmige Rohre beschichtet werden können. Auch ist es denkbar, verschiedene Brennerschäfte zum Beschichten eines komplexen Objektes einzusetzen, so dass für zu beschichtende Teilflächen des Objektes ein jeweils angepasster Brennerschaft zum Einsatz kommt.Another embodiment also provides that the burner shaft has a shape deviating from a straight line. In this way, the shape of the burner shaft can be adapted to the object to be coated, so that, for example, curved tubes can also be coated. It is also conceivable to use different burner shafts for coating a complex object, so that a respectively adapted burner shaft is used for partial surfaces of the object to be coated.

Um eine effiziente Kühlung zu gewährleisten, ist es vorteilhaft, den gesamten zur Verfügung stehenden Rohrquerschnitt des Brennerschaftes mit Kühlwasser zu beaufschlagen, denn dadurch wird der Brennerschaft ausreichend und gleichmässig gekühlt und ausserdem kann durch den geringen Widerstand eine entsprechend grosse Wassermenge zirkulieren. Somit kann ein solchermassen ausgebildetes Plasmaspritzgerät auch in einer Unterdruckatmosphäre bedenkenlos eingesetzt werden.In order to ensure efficient cooling, it is advantageous to apply cooling water to the entire available tube cross section of the burner shaft, because this cools the burner shaft sufficiently and uniformly and, due to the low resistance, a correspondingly large amount of water can circulate. A plasma spraying device designed in this way can therefore also be used without hesitation in a vacuum atmosphere.

Eine vorteilhafte Ausführungsform des Plasmaspritzgerätes sieht vor, dass sowohl die Anodendüse wie auch die Kathodenanordnung des Brennerkopfs von aussen zugänglich sind, so dass diese Teile, im Falle eines Defekts oder bei entsprechendem Verschleiss, vom Benutzer schnell und einfach selber ausgewechselt werden können. Auch der als Klemmbacke der Anodendüse ausgebildete Pulverinjektor kann durch Lösen einer einzigen Schraube entfernt bzw. ausgetauscht werden. Da zudem verschiedene Pulverinjektoren mit verschiedenen Querschnitten zur Verfügung stehen, kann durch den Austausch des Pulverinjektors die Injektionsgeschwindigkeit des Plasmapulvers variiert werden.An advantageous embodiment of the plasma spraying device provides that both the anode nozzle and the cathode arrangement of the burner head are accessible from the outside, so that these parts can be replaced quickly and easily by the user himself in the event of a defect or appropriate wear. The powder injector designed as a clamping jaw of the anode nozzle can also be removed or replaced by loosening a single screw. Since different powder injectors with different cross-sections are also available, the injection speed of the plasma powder can be varied by exchanging the powder injector.

Der in einer bevorzugten Ausführungsform zwischen dem Anodenkörper und dem Kathodenkörper angebrachte Isolierkörper, welcher längsseitig den Anodenkörper und den Kathodenkörper teilweise umgreifende Flansche aufweist, gewährleistet eine gute Isolation zwischen dem Anoden- und Kathodenkörper.The insulating body, which is attached between the anode body and the cathode body in a preferred embodiment and which has flanges partially encompassing the anode body and the cathode body on the longitudinal side, ensures good insulation between the anode and cathode bodies.

In einer weiteren, bevorzugten Ausführungsform, in welcher der Brennerkopf nebst dem Isolierkörper noch eine aufsteckbare, keramische Schutzhaube aufweist, eignet sich ein solches Plasmaspritzgerät besonders für die Innenbeschichtung von engen Rohren und insbesondere auch für Beschichtungen im Vakuum.In a further preferred embodiment, in which the burner head, in addition to the insulating body, also has an attachable, ceramic protective hood, such a plasma spraying device is particularly suitable for the interior coating of narrow pipes and in particular also for coatings in a vacuum.

Eine weitere bevorzugte Ausführungsform des Plasmaspritzgerätes sieht eine Reihenschaltung des Kühlwasserkreislaufes im Brennerkopf vor. Das heisst, dass die Kathodenanordnung und die Anodendüse am gleichen Kühlwasserkreislauf angeschlossen sind. Dadurch wird eine kompakte Bauform des Plasmaspritzgerätes begünstigt und ausserdem resultiert daraus eine minimierte Anzahl Durchführungen und Steckverbindungen zwischen den einzelnen Modulen. Im weiteren wird dadurch sichergestellt, dass die Anodendüse und die Kathodenanordnung von derselben Wassermenge umspült werden.Another preferred embodiment of the plasma spraying device provides a series connection of the cooling water circuit in the burner head. This means that the cathode arrangement and the anode nozzle are the same Cooling water circuit are connected. This favors a compact design of the plasma spraying device and also results in a minimized number of bushings and plug connections between the individual modules. This also ensures that the same amount of water flows around the anode nozzle and the cathode arrangement.

Im Anspruch 25 wird ein Brennerkopf beansprucht, der an ein erfindungsgemäss ausgebildetes Plasmaspritzgerät angepasst ist.Claim 25 claims a burner head which is adapted to a plasma spray device designed according to the invention.

Im Anspruch 26 werden schliesslich bevorzugte Ausführungen des Brennerkopfs definiert.Finally, preferred embodiments of the burner head are defined in claim 26.

Nachfolgend wird ein Ausführungsbeispiel eines erfindungsgemässen Plasmaspritzgerätes anhand der beiliegenden Zeichnungen näher erläutert. In den Zeichnungen zeigen:

Fig.1a und 1b
Eine schematische Darstellung des Plasmaspritzgerätes;
Fig.2a bis 2f
eine schematische Darstellung der drei Module des Plasmaspritzgerätes und deren Befestigungsart;
Fig.2g bis 2i
eine schematische Darstellung möglicher Ausführungsformen von Brennerschäften;
Fig.3a bis 3f
einen Längsschnitt durch das Plasmaspritzgerät zur Veranschaulichung der Steck- bzw. Stossverbindungen;
Fig.4, 4a und 4b
eine schematische Darstellung der drei Module des Plasmaspritzgerätes im Längsschnitt zur Veranschaulichung der Kühlung;
Fig.5a und 5b
einen Längs- und Querschnitt durch den Brennerschaft, und
Fig.6a bis 6c
einen Längs- und Querschnitt durch den Brennerkopf sowie eine Aussenansicht des Brennerkopfs.
An exemplary embodiment of a plasma spraying device according to the invention is explained in more detail below with reference to the accompanying drawings. The drawings show:
Fig.1a and 1b
A schematic representation of the plasma spraying device;
2a to 2f
is a schematic representation of the three modules of the plasma spraying device and their type of attachment;
Fig.2g to 2i
a schematic representation of possible embodiments of burner shafts;
3a to 3f
a longitudinal section through the plasma spray gun to illustrate the plug or butt connections;
Fig. 4, 4a and 4b
is a schematic representation of the three modules of the plasma spraying device in longitudinal section to illustrate the cooling;
Fig.5a and 5b
a longitudinal and cross section through the burner shaft, and
Fig.6a to 6c
a longitudinal and cross section through the burner head and an exterior view of the burner head.

Aus der Fig. 1a ist ein Plasmaspritzgerät im zusammengebauten, betriebsbereiten Zustand ersichtlich. Dieses Plasmaspritzgerät besteht im wesentlichen aus drei modularen Baueinheiten. Diese drei Baueinheiten sind ein Anschlusselement 1, ein Brennerschaft 2 sowie ein Brennerkopf 3. Der Brennerschaft 2 ist mittels Schrauben 6 am Anschlusselement 1 und der Brennerkopf 3 mittels Schrauben 7 am Brennerschaft 2 befestigt. Die Zufuhr der für den Betrieb des Plasmaspritzgerätes notwendigen Medien erfolgt über nicht eingezeichnete Zufuhrleitungen, welche an Anschlüssen 9 angeschraubt bzw. angesteckt werden. Die am Anschlusselement 1 angebrachten Anschlüsse 9 sind gegenüber der Längsachse des Plasmaspritzgerätes radial angeordnet. Im weiteren ist aus dieser Darstellung eine am Brennerkopf 3 angebrachte Anodendüse 11, aus welcher im Betrieb die Plasmaflamme radial gegenüber der Längsachse des Plasmaspritzgerätes austritt, sowie ein Schutzschild 5 zu sehen. In der Fig. 1b ist ausserdem eine Keramikkappe 4 dargestellt, welche am Brennerkopf 3 zu dessen thermischer wie elektrischer Isolation angebracht werden kann. Diese Keramikkappe 4 besitzt eine ovale Aussparung 8 sowie eine Bohrung 10. Die Aussparung 8 lässt die Anodendüse 11 bei aufgesetzter Keramikkappe frei. Die Bohrung 10 dient der Befestigung der Keramikkappe 4 am Brennerkopf 3, indem eine Befestigungsschraube durch die Bohrung 10 gesteckt und in ein entsprechendes Gewinde im Brennerkopf 3 eingeschraubt werden kann. Konstruktive Details sind aus diesen Figuren nicht ersichtlich, da diese nachfolgend anhand weiterer Figuren erläutert werden. Diese Darstellung soll jedoch die kompakte Bauweise des Plasmaspritzgerätes verdeutlichen.1a shows a plasma spraying device in the assembled, ready-to-use state. This plasma spray device essentially consists of three modular units. These three units are a connection element 1, a burner shaft 2 and a burner head 3. The burner shaft 2 is fastened to the connection element 1 by means of screws 6 and the burner head 3 is fastened to the burner shaft 2 by means of screws 7. The media necessary for the operation of the plasma spraying device are supplied via supply lines (not shown) which are screwed or plugged onto connections 9. The connections 9 attached to the connection element 1 are arranged radially with respect to the longitudinal axis of the plasma spraying device. Furthermore, an anode nozzle 11 attached to the burner head 3, from which the plasma flame emerges radially opposite the longitudinal axis of the plasma spraying device during operation, and a protective shield 5 can be seen from this illustration. 1b also shows a ceramic cap 4 which can be attached to the burner head 3 for its thermal and electrical insulation. This ceramic cap 4 has an oval recess 8 and a bore 10. The recess 8 leaves the anode nozzle 11 free when the ceramic cap is attached. The bore 10 serves to fasten the ceramic cap 4 to the burner head 3 by inserting a fastening screw through the bore 10 and screwing it into a corresponding thread in the burner head 3. Constructive details are not apparent from these figures, since these are explained below using further figures. However, this illustration is intended to illustrate the compact design of the plasma spraying device.

Aus den Fig. 2a bis 2c sind die für die Befestigung der drei Baueinheiten 1, 2, 3 wesentlichen Teile bzw. Details zu sehen. Dazu sind die drei Baueinheiten 1, 2, 3 des Plasmaspritzgerätes jeweils einzeln in einer Ansicht von der Seite dargestellt. Im weiteren ist in der Fig. 2d das Anschlusselement in Richtung des Pfeiles A von hinten, in Fig. 2e der Brennerschaft 2 in Pfeilrichtung B ebenfalls von hinten und in Fig. 2f der Brennerkopf in Pfeilrichtung C von vorne dargestellt.2a to 2c show the parts or details essential for the attachment of the three structural units 1, 2, 3. For this purpose, the three structural units 1, 2, 3 of the plasma spraying device are each shown individually in a view from the side. 2d shows the connection element in the direction of arrow A from behind, in FIG. 2e the burner shaft 2 in arrow direction B also from behind and in FIG. 2f the burner head in arrow direction C from the front.

Das für den Anschluss von Brennermedien-Zufuhrleitungen ausgebildete Anschlusselement 1 besteht aus einem runden, um 90° abgewinkelten Grundkörper 15. Der Brennerschaft 2 ist als rohrförmige Verlängerung für die Zufuhr der Brennermedien vom Anschlusselement 1 zum Brennerkopf 3 ausgebildet. Der Brennerschaft 2 ist in diesem Ausführungsbeispiel gerade ausgeführt. Weitere Ausführungsformen werden nachfolgend noch erläutert. Für die Erzeugung einer Plasmaflamme schliesslich ist der Brennerkopf 3 zuständig. Dieser Brennerkopf 3 besitzt eine zylindrische Grundform und weist in etwa den gleichen Aussendurchmesser wie der Brennerschaft 2 auf.The connection element 1 designed for the connection of burner medium supply lines consists of a round base body 15 angled by 90 °. The burner shaft 2 is designed as a tubular extension for the supply of the burner media from the connection element 1 to the burner head 3. The burner shaft 2 is just executed in this embodiment. Further embodiments are explained below. Finally, the burner head 3 is responsible for generating a plasma flame. This burner head 3 has a cylindrical basic shape and has approximately the same outer diameter as the burner shaft 2.

Im Anschlusselement 1 ist eine runde, gegen den Brennerschaft 2 gerichtete Öffnung 17 vorhanden, welche mit dem Aussendurchmesser des Brennerschafts 2 korrespondiert und der Fixierung desselben dient. Am Boden dieser Öffnung 17 ist eine Nut 18 angebracht. Für die Durchführung der zur Befestigung des Brennerschaftes 2 am Anschlusselement 1 notwendigen Schrauben 6 weist das Anschlusselement 1 drei parallel zur Längsachse 25 des Plasmaspritzgerätes konzentrisch um diese Längsachse 25 verteilte Bohrungen 19 auf. Am unteren Ende des Anschlusselements 1 sind vier Anschlüsse 20, 21, 22, 23 angebracht, Über welche die Zufuhr der zum Betrieb des Plasmaspritzgerätes notwendigen Medien sowie die Stromzufuhr erfolgt. Die Anschlüsse 20, 21 und 23 sind dabei mit Gewinden zum Befestigen der Zufuhrleitungen und der Anschluss 22 mit einer entsprechenden Steckverbindung versehen. Die von den Anschlüssen 20, 21, 22, 23 ausgehenden und durch das Anschlusselement 1 und den Brennerschaft 2 führenden Leitungen und Kanäle für die Brennermedien sind der besseren Übersichtlichkeit wegen in diesen Darstellungen nicht eingezeichnet.In the connection element 1 there is a round opening 17 directed towards the burner shaft 2, which corresponds to the outside diameter of the burner shaft 2 and serves to fix the same. At the bottom of this opening 17, a groove 18 is made. To carry out the screws 6 necessary for fastening the burner shaft 2 to the connection element 1, the connection element 1 has three bores 19 distributed parallel to the longitudinal axis 25 of the plasma spraying device and concentrically around this longitudinal axis 25. At the lower end of the connection element 1, four connections 20, 21, 22, 23 are attached, via which the media necessary for the operation of the plasma spraying device and the power supply are supplied. The connections 20, 21 and 23 are provided with threads for fastening the supply lines and the connection 22 with a corresponding plug connection. The lines and channels for the burner media, starting from the connections 20, 21, 22, 23 and leading through the connecting element 1 and the burner shaft 2, are not shown in these representations for the sake of clarity.

Der rohrförmige Brennerschaft 2 weist am hinteren, gegen das Anschlusselement 1 gerichteten Ende eine Leiste 26 auf. Im weiteren besitzt der Brennerschaft 2 einen ihn umfassenden Bund 27. Der Abstand dieses Bundes 27 vom hinteren Ende des Brennerschafts 2 entspricht dabei der Tiefe der im Anschlusselement 1 vorhandenen Öffnung 17. Am Umfang des Bundes 27 sind drei Innengewinde 28 verteilt angeordnet.The tubular burner shaft 2 has a strip 26 at the rear end directed towards the connection element 1. Furthermore, the burner shaft 2 has a collar 27 which surrounds it. The distance of this collar 27 from the rear end of the burner shaft 2 corresponds to the depth of the opening 17 present in the connecting element 1. Three internal threads 28 are distributed around the periphery of the collar 27.

Am anderen, dem Anschlusselement 1 abgewandten Ende besitzt der Brennerschaft 2 eine zylindrische Vertiefung 30. Am Boden dieser Vertiefung 30 ist wiederum eine Nut 31 angebracht. Von dieser Nut 31 gehen zwei Sackgewinde 32 aus. Der Brennerkopf 3 schliesslich weist einen zylindrischen Absatz 36 auf, welcher in Form und Lage mit der zylindrischen Vertiefung 30 des Brennerschafts 2 korrespondiert. Im weiteren ist am Brennerkopf 3 eine Leiste 34 angeformt, welche in Form und Lage mit der Nut 31 des Brennerschaftes 2 korrespondiert. Auf der Höhe dieser Leiste 34 führen zwei Bohrungen 33 in Längsrichtung durch den Brennerkopf 3.At the other end facing away from the connection element 1, the burner shaft 2 has a cylindrical recess 30. A groove 31 is in turn attached to the bottom of this recess 30. Two blind threads 32 start from this groove 31. Finally, the burner head 3 has a cylindrical shoulder 36, which corresponds in shape and position to the cylindrical recess 30 of the burner shaft 2. Furthermore, a strip 34 is formed on the burner head 3, which corresponds in shape and position to the groove 31 of the burner shaft 2. At the level of this bar 34, two bores 33 run through the burner head 3 in the longitudinal direction.

Um die drei Baueinheiten 1, 2, 3 zu einem Plasmaspritzgerät zusammenzufügen, wird der Brennerkopf 3 am Brennerschaft 2 befestigt, indem die zwei Schrauben 7 durch die Bohrungen 33 des Brennerkopfs 3 geführt und in die Sackgewinde 31 eingeschraubt werden. Eine gewisse Zentrierung und Ausrichtung des Brennerkopfs 3 ergibt sich dabei einerseits durch den in die zylindrische Vertiefung 30 eingeführten Absatz 36 sowie andererseits durch die in die Nut 31 eingreifende Leiste 34. Danach wird der als Verlängerung ausgebildeten Brennerschaft 2 am Anschlusselement 1 befestigt. Dazu werden die Schrauben 6 durch die Bohrungen 19 des Anschlusselements 1 gesteckt und in die Innengewinde 28 des Bundes 27 eingeschraubt. Eine gewisse Ausrichtung und Zentrierung des Brennerschafts 2 gegenüber dem Anschlusselement 1 ergibt sich auch hier wiederum durch die in die Nut 18 eingreifende Leiste 26. Die genaue Zentrierung und Ausrichtung sowohl des Brennerkopfs 3 gegenüber dem Brennerschaft 2 wie auch des Brennerschafts 2 gegenüber dem Anschlusselement 1 ergibt sich, wie nachfolgend noch ausführlich beschrieben wird, aus in Buchsen eingreifenden Steckern. Der Zusammenbau der Baueinheiten kann natürlich auch in umgekehrter Reihenfolge erfolgen.In order to assemble the three structural units 1, 2, 3 into a plasma spraying device, the burner head 3 is fastened to the burner shaft 2 by passing the two screws 7 through the bores 33 of the burner head 3 and screwing them into the blind thread 31. A certain centering and alignment of the burner head 3 results on the one hand from the shoulder 36 inserted into the cylindrical recess 30 and on the other hand through the ledge 34 engaging in the groove 31. The burner shaft 2, which is designed as an extension, is then attached to the connecting element 1. For this purpose, the screws 6 are inserted through the bores 19 of the connection element 1 and screwed into the internal thread 28 of the collar 27. A certain alignment and centering of the burner shaft 2 with respect to the connection element 1 is again achieved here by the strip 26 engaging in the groove 18. The exact centering and alignment of both the burner head 3 with respect to the burner shaft 2 as well as the burner shaft 2 relative to the connection element 1 results, as will be described in detail below, from plugs engaging in sockets. The assembly of the units can of course also be done in reverse order.

In den Fig. 2g bis 2i sind einige weitere mögliche Ausführungsformen von Brennerschäften dargestellt. Fig. 2g zeigt einen gekröpften Brennerschaft 102 währenddem in Fig. 2h ein gebogener Brennerschaft 202 und in Fig. 2i ein abgerundeter Brennerschaft 302 dargestellt ist. Die Befestigung der solcherart ausgestalteten Brennerschäfte 102, 202, 302 erfolgt auf dieselbe Art, wie sie anhand der Fig. 2a bis 2c beschrieben wurde. Bei dem in Fig. 2g dargestellten gekröpften Brennerschaft 102 verläuft dessen brennerseitiges Ende 105 parallel zum Anschlusselement-seitigen Ende 107. Durch die Länge und den Winkel a des abgewinkelten Teils 117 des Brennerschafts 102 kann der parallele Versatz der beiden Enden 105, 107 bestimmt werden. Der Winkel b zwischen dem Brenner-seitigen Ende 105 und dem abgewinkelten Teil 117 des Brennerschafts 102 entspricht dabei dem Winkel a. Natürlich ist es auch denkbar, dass der Winkel a ungleich dem Winkel b ausgebildet ist. Dadurch kann die Winkellage bezüglich der Längsmittelachse 113 des am Brennerseitigen Endes 105 zu befestigenden Brennerkopfs verändert werden. Ein nach der Fig. 2g ausgestalteter Brennerschaft 102 erlaubt beispielsweise einen zylindrisch ausgebildeten Körper, welcher nur über eine kleine Öffnung verfügt, innen zu beschichten. Lässt man den Brennerschaft 102 mit dem daran befestigten Brennerkopf nach dem Eintauchen in den Körper um die Längsmittelachse 25 des Plasmaspritzgerätes rotieren, so kann auf diese Art und Weise ein gegenüber der Öffnung viel grösserer innerer Hohlraum beschichtet werden.2g to 2i show some further possible embodiments of burner shafts. FIG. 2g shows a cranked burner shaft 102, while a curved burner shaft 202 is shown in FIG. 2h and a rounded burner shaft 302 is shown in FIG. 2i. The burner shafts 102, 202, 302 designed in this way are fastened in the same way as was described with reference to FIGS. 2a to 2c. In the cranked burner shaft 102 shown in FIG. 2g, its burner-side end 105 runs parallel to the connection element-side end 107. The length and angle α of the angled part 117 of the burner shaft 102 can determine the parallel offset of the two ends 105, 107. The angle b between the burner-side end 105 and the angled part 117 of the burner shaft 102 corresponds to the angle a. Of course, it is also conceivable that the angle a is not equal to the angle b. As a result, the angular position with respect to the longitudinal center axis 113 of the burner head to be fastened to the end 105 on the burner side can be changed. A burner shaft 102 designed according to FIG. 2g allows, for example, a cylindrical body, which has only a small opening, to be coated on the inside. Let the burner shaft 102 with the burner head attached to it rotating into the body about the longitudinal central axis 25 of the plasma spraying device, an inner cavity that is much larger than the opening can be coated in this way.

Fig. 2h zeigt einen gegen das Brennerkopf-seitige Ende 205 hin abgewinkelten Brennerschaft 202. Bei diesem Ausführungsbeispiel lässt sich über den Winkel c zwischen der Längsmittelachse 25 des Plasmaspritzgerätes und der Längsmittelachse 213 des Brennerkopfseitigen Endes 205 des Brennerschafts 202, die Lage des am Brennerschaft 202 zu befestigenden Brennerkopfs variieren. Dieser Winkel c hat somit einen direkten Einfluss auf den Austrittswinkel des Plasmastrahls. Durch die Länge des abgewinkelten Teils 211 lässt sich zudem die Lage des Brennerkopfs bezüglich der Längsmittelachse 25 des Plasmaspritzgerätes beeinflussen.2h shows a burner shaft 202 which is angled towards the burner head-side end 205. In this exemplary embodiment, the position of the burner shaft 202 on the burner shaft 202 can be determined by the angle c between the longitudinal center axis 25 of the plasma spraying device and the longitudinal center axis 213 of the end 205 of the burner head vary the burner head to be attached. This angle c thus has a direct influence on the exit angle of the plasma jet. The length of the angled part 211 can also influence the position of the burner head with respect to the longitudinal central axis 25 of the plasma spraying device.

In der Fig. 2i ist ein weiteres Ausführungsbeispiel des Brennerschafts 302 zu sehen, bei welchem ein Teil 311 des Brennerschafts 302 gebogen ist. Durch eine solche Ausgestaltung können selbst gekrümmte Rohre und dergleichen innenbeschichtet werden. Somit ist es möglich, durch verschiedenartig ausgestaltete Brennerschäfte 102, 202, 302 unterschiedlichste Hohlraumwandungen zu beschichten. Zum Beschichten von verschlungenen, aus verschiedenen Teilflächen bestehenden Hohlräumen, können die Brennerschäfte 102, 202, 302 ausgetauscht werden und so die einzelnen Teilflächen eines komplexen Objektes beschichtet werden. Es versteht sich von selbst, dass die Winkel a, b, c und Radien r dieser Brennerschäfte 102, 202, 302 in einem weiten Bereich variieren können, und dass auch noch andere Ausführungsformen der Brennerschäfte 102, 202, 302 denkbar sind.A further exemplary embodiment of the burner shaft 302 can be seen in FIG. 2i, in which a part 311 of the burner shaft 302 is bent. With such a configuration, even curved pipes and the like can be coated on the inside. It is thus possible to coat a wide variety of cavity walls using differently designed burner shafts 102, 202, 302. The burner shafts 102, 202, 302 can be exchanged for coating intertwined cavities consisting of different partial surfaces, and the individual partial surfaces of a complex object can thus be coated. It goes without saying that the angles a, b, c and radii r of these burner shafts 102, 202, 302 can vary within a wide range, and that other embodiments of the burner shafts 102, 202, 302 are also conceivable.

Die Figuren 3a bis 3c zeigen einen Längsschnitt durch die drei Baueinheiten 1, 2, 3 zur Veranschaulichung der zwischen den Kühlwasserleitungen 40, 45, 52, 53 einerseits sowie zwischen den Kühlwasserleitungen 52, 53 und den Kühlwasserkanälen 135, 136 andererseits vorhandenen und jeweils aus einem Stecker 39, 44, 66, 67 und einer Buchse 49, 50, 58, 60 bestehenden Steckverbindungen. Die Fig. 3d bis 3f zeigen wiederum einen Längsschnitt durch die drei Baueinheiten zur Veranschaulichung der zwischen den Plasmagasleitungen 75, 76, 77 und den Plasmapulverleitungen 70, 71, 72 vorhandenen und jeweils aus einem Dichtring 84, 85; 86, 87 und einem Bund 79, 80; 81, 82 bestehenden Stossverbindungen.Figures 3a to 3c show a longitudinal section through the three structural units 1, 2, 3 to illustrate the one between the cooling water lines 40, 45, 52, 53 on the one hand and between the cooling water lines 52, 53 and the cooling water channels 135, 136 and each consisting of one Plugs 39, 44, 66, 67 and a socket 49, 50, 58, 60 existing plug connections. FIGS. 3d to 3f in turn show a longitudinal section through the three structural units to illustrate the existing between the plasma gas lines 75, 76, 77 and the plasma powder lines 70, 71, 72 and each consisting of a sealing ring 84, 85; 86, 87 and a collar 79, 80; 81, 82 existing butt joints.

In den Fig. 3b und 3e ist jeweils der Brennerschaft 2 dargestellt. Dieser besitzt an beiden Enden eine eingesetzte und aus thermisch hoch belastbarem Kunststoff bestehende Abschlusskappe 56, 57. Diese Abschlusskappen 56, 57 dienen der Befestigung der beiden Kühlwasserleitungen 52, 53 sowie der Plasmagas- und Plasmapulverleitung 76, 71 im Brennerschaft 2.3b and 3e each show the burner shaft 2. This has an inserted end cap 56, 57 made of thermally highly resilient plastic at both ends. These end caps 56, 57 are used to fasten the two cooling water lines 52, 53 and the plasma gas and plasma powder line 76, 71 in the burner shaft 2.

Eine Besonderheit des Plasmaspritzgerätes besteht darin, dass in den Kühlwasserleitungen 40, 45, 52, 53 bzw. den Kühlwasserkanälen 135, 136 das Kühlwasser zirkuliert, und dass im weiteren durch die aus Metall bestehenden Leitungen die elektrische Stromzufuhr zum Brennerkopf 3 erfolgt. Im Brennerschaft 2 führen von den Buchsen 49, 58 jeweils radiale Kanäle 91, 93 in das Mantelrohr 92 des Brennerschafts 2. Dadurch kann das Kühlwasser am Eingang des Brennerschafts 2 aus der Leitung 52 bzw. aus der Buchse 49 austreten und den Brennerschaft 2 durchströmen. Am Ende des Brennerschafts 2 kann das Kühlwasser dann über die radialen Kanäle 93 in die Buchse 58 einfliessen und über den Stecker 66 in den Kühlkanal 135 gelangen. Die elektrische Verbindung zwischen den beiden Buchsen 49, 58 wird durch einen stabförmigen Stromleiter 62 gewährleistet. Die genaue Funktionsweise dieses Kühlwasserkreislaufes wird nachfolgend noch anhand der Figuren 4, 4a und 4b beschrieben. Da die beiden Kühlwasserleitungen 52, 53 auf unterschiedlichem Potential liegen, dienen die beiden Abschlusskappen 56, 57 gleichzeitig auch als Isolator zwischen den Buchsen 49, 50, 58, 60. Da die Kühlwasserleitungen bzw. die Kühlwasserkanäle über den Brennerkopf zudem in Reihe geschaltet sind, ist es natürlich notwendig, dass als Kühlmedium ein elektrisch nicht- bzw. schlecht leitendes Medium wie beispielsweise hochreines Wasser zum Einsatz kommt.A special feature of the plasma spraying device is that the cooling water circulates in the cooling water lines 40, 45, 52, 53 and the cooling water channels 135, 136, and in addition that the electrical power supply is provided by the metal lines Burner head 3 takes place. In the burner shaft 2, radial channels 91, 93 each lead from the bushes 49, 58 into the casing tube 92 of the burner shaft 2. As a result, the cooling water at the inlet of the burner shaft 2 can exit from the line 52 or from the bush 49 and flow through the burner shaft 2. At the end of the burner shaft 2, the cooling water can then flow into the bushing 58 via the radial channels 93 and reach the cooling channel 135 via the plug 66. The electrical connection between the two sockets 49, 58 is ensured by a rod-shaped current conductor 62. The exact functioning of this cooling water circuit is described below with reference to FIGS. 4, 4a and 4b. Since the two cooling water lines 52, 53 are at different potential, the two end caps 56, 57 also serve as an insulator between the sockets 49, 50, 58, 60. Since the cooling water lines or the cooling water channels are also connected in series via the burner head, it is of course necessary to use an electrically non-conductive or poorly conductive medium, such as high-purity water, as the cooling medium.

Die in den Fig. 3e bis 3f dargestellten Plasmapulverleitungen 70, 71, 72 sowie die Plasmagasleitungen 75, 76, 77 sind untereinander jeweils mittels einer Stossverbindung verbindbar. Der prinzipielle Aufbau der Baueinheiten wurde bereits vorgängig erwähnt, so dass sich die nachfolgenden Figurenbeschreibungen auf die wesentlichen Details der Steck- bzw. Stossverbindungen beschränken.The plasma powder lines 70, 71, 72 shown in FIGS. 3e to 3f and the plasma gas lines 75, 76, 77 can each be connected to one another by means of a butt connection. The basic structure of the structural units has already been mentioned above, so that the following description of the figures is limited to the essential details of the plug or butt connections.

Für die Verbindung der durch das Anschlusselement 1 führenden Kühlwasserleitungen 40, 45, mit den entsprechenden, durch den Brennerschaft führenden Leitungen 52, 53, sind Steckverbindungen vorgesehen. Diese Steckverbindungen bestehen jeweils aus einem metallenen Stecker 39, 44 und einer metallenen Buchse 49, 50. Die Stecker 39, 44 sind dabei so ausgebildet, dass sie an ihrem hinteren Ende einen Bund 41, 46 aufweisen. Werden nun die Stecker 39, 44 in die entsprechenden Buchsen 49, 50 gesteckt und das Anschlusselement 1 mit dem Brennerschaft 2 verschraubt, so kommt jeweils der Bund 41, 46 an die Stirnseiten 54, 55 der Buchsen 49, 50 zu liegen und es entsteht somit jeweils eine Kontaktfläche. Über diese Kontaktflächen kann nun der elektrische Strom von der einen Leitung auf die andere übertragen werden. Durch die beiden im Bereich der jeweiligen Steckverbindungen in die Nuten 18, 31 eingreifenden Leisten 26, 34 wird zudem eine gute elektrische Isolation zwischen den auf unterschiedlichem Potential liegenden Steckverbindungen gewährleistet. Zur Abdichtung der Steckverbindungen bezüglich des darin zirkulierenden Kühlwassers sind Dichtringe 42, 43 vorgesehen.Plug connections are provided for connecting the cooling water lines 40, 45 leading through the connection element 1 to the corresponding lines 52, 53 leading through the burner shaft. These plug connections each consist of a metal plug 39, 44 and a metal socket 49, 50. The plugs 39, 44 are designed such that they have a collar 41, 46 at their rear end. If the plugs 39, 44 are now inserted into the corresponding sockets 49, 50 and the connection element 1 is screwed to the burner shaft 2, the collar 41, 46 comes to rest on the end faces 54, 55 of the sockets 49, 50 and thus arises one contact area each. The electrical current can now be transferred from one line to the other via these contact surfaces. The two strips 26, 34 engaging in the grooves 18, 31 in the area of the respective plug connections also ensure good electrical insulation between the plug connections which are at different potentials. Sealing rings 42, 43 are provided for sealing the plug connections with respect to the cooling water circulating therein.

Sinngemäss auf dieselbe Art und Weise sind die wiederum aus Stekkern 66, 67 und Buchsen 58, 60 gebildeten Steckverbindungen für das Kühlwasser sowie den elektrischen Strom auch zwischen dem Brennerschaft 2 und dem Brennerkopf 3 ausgebildet. Der wesentliche Unterschied besteht darin, dass am Brennerkopf 3 ein aus Metall bestehender Anodenbasiskörper 63 sowie ein ebenfalls aus Metall bestehender Kathodenbasiskörper 64 vorhanden sind. Der Kathodenbasiskörper 64 ist dabei so ausgebildet, dass er die Stromzufuhr zur Kathode übernimmt, während der Anodenbasiskörper 63 die Stromzufuhr zur Anode gewährleistet. Anstelle einer separaten Leitung sind die für die Kühlung des Brennerkopfs 3 notwendigen Kanäle 135, 136 direkt in diese beiden Körper 63, 64 eingelassen. Da diese beiden Körper zudem aus Metall bestehen, ist dadurch eine gleichmässige Kühlung des Brennerkopfes 3 gewährleistet. Im weiteren erübrigt es sich, dass die beiden Stecker 66, 67 einen Bund aufweisen müssen, da nämlich beim Zusammenstecken der Buchsen 58, 60 mit den Steckern 66, 67, die an den Buchsen 58, 60 vorhandenen Stirnflächen 59, 61 mit dem Anodenbasiskörper 62 und dem Kathodenbasiskörper 64 in Berührung kommen und somit der elektrische Kontakt ebenfalls gewährleistet ist. Die in die Buchsen 49, 50, 58, 60 eingreifenden Stecker 39, 44, 66, 67 zentrieren zudem den Brennerkopf 3 gegenüber dem Brennerschaft 2 und den Brennerschaft 2 gegenüber dem Anschlusselement 1.The plug connections for the cooling water and the electrical current, which are in turn formed from plug core 66, 67 and sockets 58, 60, are also formed in the same way between the burner shaft 2 and the burner head 3. The essential difference is that an anode base body 63 made of metal and a cathode base body 64 also made of metal are present on the burner head 3. The cathode base 64 is designed such that it takes over the power supply to the cathode, while the anode base body 63 ensures the power supply to the anode. Instead of a separate line, the channels 135, 136 necessary for cooling the burner head 3 are embedded directly in these two bodies 63, 64. Since these two bodies also consist of metal, this ensures uniform cooling of the burner head 3. Furthermore, it is unnecessary that the two plugs 66, 67 must have a collar, because when the sockets 58, 60 are plugged together with the plugs 66, 67, the end faces 59, 61 on the sockets 58, 60 with the anode base body 62 and come into contact with the cathode base body 64 and thus the electrical contact is also ensured. The plugs 39, 44, 66, 67 engaging in the sockets 49, 50, 58, 60 also center the burner head 3 with respect to the burner shaft 2 and the burner shaft 2 with respect to the connecting element 1.

Als Abdichtung für das Kühlwasser sind an den Steckern 66, 67 wiederum Dichtringe 68, 69 angebracht.Sealing rings 68, 69 are in turn attached to the plugs 66, 67 as a seal for the cooling water.

Die Leitungsverbindungen zwischen den Plasmapulverleitungen 70, 71, 72 sowie zwischen den Plasmagasleitungen 75, 76, 77 sind als Stossverbindungen ausgebildet. Dazu besitzen die beiden durch den Brennerschaft 2 führenden Leitungen 71, 76 an ihren Enden jeweils einen Bund 79, 80, 81, 82, der beim Zusammenschrauben des Plasmaspritzgerätes an einen entsprechenden, die Leitung 70, 72, 75, 77 umfassenden Dichtring 84, 85, 86, 87 im Anschlusselement 1 sowie im Brennerkopf 3 zu liegen kommt und durch diesen abgedichtet wird.The line connections between the plasma powder lines 70, 71, 72 and between the plasma gas lines 75, 76, 77 are formed as butt connections. For this purpose, the two lines 71, 76 leading through the burner shaft 2 each have a collar 79, 80, 81, 82 at their ends, which, when the plasma spraying device is screwed together, connects to a corresponding sealing ring 84, 85 that includes the line 70, 72, 75, 77 , 86, 87 in the connection element 1 and comes to rest in the burner head 3 and is sealed by this.

Da ein solches Plasmaspritzgerät durch die Plasmaflamme eine sehr hohe Temperatur erzeugt, muss einerseits der Brennerkopf 3 und andererseits aber auch der Brennerschaft 2 gekühlt werden. Dies trifft im besonderen beim Beschichten von Rohren, Bohrungen und dergleichen zu, wo die erzeugte Wärme nur schlecht abfliessen kann. Insbesondere trifft dies auch für Beschichtungen im Vakuum zu.Since such a plasma spraying device generates a very high temperature through the plasma flame, on the one hand the burner head 3 and on the other hand also the burner shaft 2 must be cooled. This applies in particular to the coating of pipes, bores and the like, where the heat generated can only flow off poorly. This is particularly true for vacuum coatings.

Aus der Figur 4 ist der Kühlwasserkreislauf im Plasmaspritzgerät ersichtlich. Dazu sind wiederum die drei Baueinheiten 1, 2, 3 in einem auf das wesentliche reduzierten Längsschnitt dargestellt. In den Fig. 4a und 4b sind zudem zwei Details in vergrösserten Ausschnitten dargestellt. Eine Kühlung bei einem Plasmaspritzgerät ist vor allem für den Brennerkopf 3 sowie den Brennerschaft 2 notwendig.The cooling water circuit in the plasma spraying device can be seen from FIG. For this purpose, the three structural units 1, 2, 3 are again shown in a longitudinal section reduced to the essential. 4a and 4b, two details are also shown in enlarged sections. Cooling in a plasma spraying device is necessary above all for the burner head 3 and the burner shaft 2.

Damit die drei Baueinheiten 1, 2, 3 des Plasmaspritzgeräts möglichst wenig Leitungen und Steckverbindungen aufweisen, wurde ein serieller Kühlkreislauf gewählt. Das heisst, dass im Brennerkopf 3 die Anodendüse 11 sowie die Kathodenanordnung 12 kühltechnisch in Reihe geschaltet sind und daher vom Kühlwasser nacheinander durchflossen werden.A serial cooling circuit was chosen so that the three structural units 1, 2, 3 of the plasma spraying device have as few lines and plug connections as possible. This means that in the burner head 3, the anode nozzle 11 and the cathode arrangement 12 are connected in series in terms of cooling technology and therefore the cooling water flows through them in succession.

Das Kühlwasser wird am Anschluss 23 über eine nicht eingezeichnete Leitung zugeführt und tritt da radial zur Längsachse des Plasmaspritzgerätes in die Kühlwasserzuleitung 40 des Anschlusselements 1 ein. Im Anschlusselement 1 selber wird das einfliessende Kühlwasser zuerst um 90° umgelenkt. Danach fliesst das Kühlwasser in die aus dem Stecker 39 sowie der Buchse 49 bestehende Steckverbindung ein. Durch die in der Buchse 49 vorhandenen, radialen Kanäle 91 kann das Kühlwasser aus der Leitung 40 austreten und in das Mantelrohr 92 des Brennerschafts 2 einfliessen. Das Wasser kann dadurch den Brennerschaft 2 im ganzen, verbleibenden Querschnitt durchströmen. Am Ende des Brennerschafts 2 fliesst das Kühlwasser wiederum über radiale Kanäle 93 in die aus dem Stecker 66 und der Buchse 58 gebildete Steckverbindung ein. Von dieser Steckverbindung fliesst das Kühlwasser schliesslich in den Kanal 135 des Brennerkopfs 3. Die in diesen Steckverbindungen notwendigen Dichtringe sind der besseren Übersichtlichkeit nicht eingezeichnet. Im Brennerkopf 3 fliesst das Kühlwasser über den im Anodenbasiskörper 63 vorhandenen Kanal 135 zuerst zur Anodendüse 11 und umspült diese. Danach wird das Kühlwasser umgelenkt und durchdringt dabei einen zwischen dem Anodenbasiskörper 63 und dem Kathodenbasiskörper 64 angebrachten Isolierkörper 65, um anschliessend zur Kathodenanordnung 12 zu gelangen und diese zu umströmen. Die an der Anodendüse 11 sowie an der Kathodenfassung 13 vorhandenen Ringkanäle sind aus dieser Darstellung nicht ersichtlich und werden später bei der detaillierten Beschreibung des Brennerkopfs 3 noch genauer erläutert.The cooling water is supplied at the connection 23 via a line (not shown) and enters the cooling water supply line 40 of the connection element 1 radially to the longitudinal axis of the plasma spraying device. In the connecting element 1 itself, the inflowing cooling water is first deflected by 90 °. Then the cooling water flows into the plug connection consisting of the plug 39 and the socket 49. Through the radial channels 91 present in the bushing 49, the cooling water can emerge from the line 40 and flow into the casing tube 92 of the burner shaft 2. The water can flow through the burner shaft 2 in the entire remaining cross section. At the end of the burner shaft 2, the cooling water in turn flows via radial channels 93 into the plug connection formed from the plug 66 and the socket 58. The cooling water finally flows from this plug connection into the channel 135 of the burner head 3. The sealing rings required in these plug connections are not shown for the sake of clarity. In the burner head 3, the cooling water first flows through the channel 135 present in the anode base body 63 to the anode nozzle 11 and flows around it. Thereafter, the cooling water is deflected and thereby penetrates an insulating body 65 arranged between the anode base body 63 and the cathode base body 64, in order to subsequently reach the cathode arrangement 12 and flow around it. The ring channels present on the anode nozzle 11 and on the cathode socket 13 cannot be seen from this illustration and will be explained in more detail later in the detailed description of the burner head 3.

Der Rückfluss des Kühlwassers aus dem Brennerkopf 3 erfolgt durch eine im Brennerschaft 2 vorhandene Leitung 73. Diese Leitung 73 besitzt eine Ummantelung 96, welche die elektrische Isolation zwischen den beiden auf unterschiedlichem Potential liegenden Leitungen 62, 73 verbessert und dadurch allfällige Kriechströme reduziert. Von der Leitung 72 fliesst das Kühlwasser wieder in das Anschlusselement 1 ein, wo es schliesslich über den Anschluss 20 aus dem Plasmaspritzgerät austritt.The backflow of the cooling water from the burner head 3 takes place through a line 73 present in the burner shaft 2. This line 73 has a sheath 96 which improves the electrical insulation between the two lines 62, 73 which are at different potential and thereby reduces any leakage currents. From the line 72, the cooling water flows back into the connection element 1, where it finally exits the plasma spraying device via the connection 20.

Ein solcher Kühlwasserfluss hat den Vorteil, dass durch die kühltechnische Serieschaltung der Anodendüse 11 und der Kathodenanordnung 12 nur ein einzelner Kühlwasserkreislauf notwendig ist. Bedingung für einen solchen Kühlwasserverlauf ist natürlich, dass als Kühlwasser hochreines oder ultrareines Wasser verwendet wird, so dass dieses eine entsprechend geringe elektrische Leitfähigkeit besitzt. Im weiteren wird das Mantelrohr 92 des Brennerschafts 2 im ganzen zur Verfügung stehenden Querschnitt durchströmt und somit der gesamte Brennerschaft 2 entsprechend effizient gekühlt.Such a cooling water flow has the advantage that only a single cooling water circuit is necessary due to the cooling connection of the anode nozzle 11 and the cathode arrangement 12. The condition for such a cooling water course is, of course, that high-purity or ultra-pure water is used as cooling water, so that it has a correspondingly low electrical conductivity. Furthermore, the jacket tube 92 of the burner shaft 2 is flowed through in the entire available cross section and thus the entire burner shaft 2 is cooled correspondingly efficiently.

Bei den Fig. 4, 4a und 4b ist zu berücksichtigen, dass, zur besseren Veranschaulichung der Kühlung, das Plasmaspritzgerät in einem Schnitt durch zwei verschiedene und in dieser Darstellung kombinierte Ebenen dargestellt ist. Ausserdem sind bei diesen Figuren die Plasmagasleitung sowie die Plasmapulverleitung, der besseren Übersichtlichkeit wegen, weggelassen worden.4, 4a and 4b, it should be taken into account that, for better illustration of the cooling, the plasma spraying device is shown in a section through two different planes combined in this representation. In addition, the plasma gas line and the plasma powder line have been omitted from these figures for the sake of clarity.

In der Figur 5a ist der Brennerschaft 2 im Querschnitt zu sehen, während in der Figur 5b ein Ausschnitt des Brennerschafts 2 im Längsschnitt dargestellt ist. Im Mantelrohr 92 des Brennerschafts 2 sind die rohrförmige Kühlwasserleitung 73, der stabförmige Stromleiter 62 sowie die Plasmapulverleitung 71 und die Plasmagasleitung 76 zu sehen. Die als elektrische Isolation ausgebildete Ummantelung 96 der Kühlwasserleitung 73 ist ebenfalls eingezeichnet. Aus dieser Darstellung ist im weiteren sehr gut zu ersehen, dass das Mantelrohr 92 des Brennerschafts 2 grossflächig vom Kühlwasser durchströmt wird und dass dadurch eine effiziente Kühlung gewährleistet wird. Beide Figuren sind dabei gegenüber den vorhergehenden Darstellungen zur besseren Veranschaulichung vergrössert dargestellt.The burner shaft 2 can be seen in cross section in FIG. 5a, while a section of the burner shaft 2 is shown in longitudinal section in FIG. 5b. The tubular cooling water line 73, the rod-shaped current conductor 62 and the plasma powder line 71 and the plasma gas line 76 can be seen in the casing tube 92 of the burner shaft 2. The jacket 96 of the cooling water line 73, which is designed as electrical insulation, is also shown. From this representation it can be seen very well below that the jacket tube 92 of the burner shaft 2 is flowed through by the cooling water over a large area and that efficient cooling is thereby ensured. Both figures are shown enlarged compared to the previous representations for better illustration.

Die Figuren 6a, 6b und 6c zeigen in einer vergrösserten Darstellung den Brennerkopf 3 im Längsschnitt, im Querschnitt sowie in einer Aussenansicht vom Brennerschaft her. Der Brennerkopf 3 dient der Erzeugung einer Plasmaflamme, mittels welcher zugeführtes Plasmapulver geschmolzen und beschleunigt wird, so dass das in Bewegung versetzte Plasmapulver dadurch auf ein zu beschichtendes Werkstück aufgetragen werden kann. Für den Betrieb des Brenners werden elektrische Energie sowie verschiedene Medien zugeführt.Figures 6a, 6b and 6c show an enlarged view of the burner head 3 in longitudinal section, in cross section and in an external view from the burner shaft. The burner head 3 serves to generate a plasma flame, by means of which the supplied plasma powder is melted and accelerated, so that the plasma powder set in motion can thereby be applied to a workpiece to be coated. Electrical energy and various media are supplied to operate the burner.

Der Brennerkopf 3 weist eine zylindrische Grundform auf, welche im wesentlichen aus einem Kathodenbasiskörper 64 mit darin angebrachter Kathodenanordnung 12, einem Anodenbasiskörper 63 mit darin befestigter Anodendüse 11, sowie einem den Anodenbasiskörper 63 elektrisch vom Kathodenbasiskörper 64 trennenden Isolierkörper 65 besteht. Auf seiner dem Brennerschaft 2 zugewandten Seite ist ein den gesamten Brennerkopf 3 umfassender Absatz 36 vorhanden. Der aus Metall bestehende Anodenbasiskörper 63 besitzt im wesentlichen eine rechteckige Grundform, wobei die eine Fläche 98 abgerundet ist. Diese obere, abgerundete Fläche 98 bildet gleichzeitig einen Teil der Aussenseite des Brennerkopfs 3. Der ebenfalls aus Metall bestehende Kathodenbasiskörper 64 weist eine Form auf, die in etwa spiegelbildlich zum Anodenbasiskörper 63 ausgebildet ist und bei der der abgerundete Teil 99 einen unteren Teil der Aussenseite des Brennerkopfs 3 bildet. Der Isolierkörper 65 ist dabei zwischen der Innenfläche des Kathodenbasiskörpers 64 und der Innenfläche des Anodenbasiskörpers 63 angeordnet. Um die elektrische Isolation zwischen dem Kathodenbasiskörper 64 und dem Anodenbasiskörper 63 zu optimieren, weist der Isolierkörper 65 an seinen Längsseiten je einen zylindersegmentförmigen Flansch 74 auf, welche den Anodenbasiskörper 63 und den Kathodenbasiskörper 64 an deren geraden Teilen der Aussenseiten teilweise umgreifen. An seinem dem Brennerschaft 2 abgewandten Ende weist der Brennerkopf 3 zudem eine aus Keramik bestehende Isolierkappe 101 auf.The burner head 3 has a cylindrical basic shape, which essentially consists of a cathode base body 64 with a cathode arrangement 12 mounted therein, an anode base body 63 with an anode nozzle 11 fastened therein, and an anode base body 63 Insulating body 65 electrically separating from the cathode base body 64. On its side facing the burner shank 2 there is a shoulder 36 which encompasses the entire burner head 3. The anode base body 63 consisting of metal has essentially a rectangular basic shape, the surface 98 being rounded. This upper, rounded surface 98 also forms part of the outside of the burner head 3. The cathode base body 64, which is also made of metal, has a shape which is approximately mirror-image to the anode base body 63 and in which the rounded part 99 forms a lower part of the outside of the Burner head 3 forms. The insulating body 65 is arranged between the inner surface of the cathode base body 64 and the inner surface of the anode base body 63. In order to optimize the electrical insulation between the cathode base body 64 and the anode base body 63, the insulating body 65 has a cylindrical segment-shaped flange 74 on each of its longitudinal sides, which partially encompass the anode base body 63 and the cathode base body 64 on their straight parts on the outside. At its end facing away from the burner shaft 2, the burner head 3 also has an insulating cap 101 made of ceramic.

Der mechanische Zusammenhalt des Brennerkopfs 3 wird durch Schrauben 97 gewährleistet, welche jeweils den Kathodenbasiskörper 64 und den Anodenbasiskörper 63 mit dem Isolierkörper 65 verbinden. Um die gute Isolation zwischen dem Kathodenbasiskörper 64 und dem Anodenbasiskörper 63 nicht zu beeinträchtigen, sind die beiden Körper 63, 64 an verschiedenen Stellen mit dem Isolierkörper 65 verschraubt. Die Kathodenanordnung 12 selber besteht aus einer zylindrischen Kathodenfassung 13 mit einer von oben eingesetzten, stiftförmigen und aus Wolfram bestehenden Kathode 14. Die Kathodenfassung 13 besitzt an ihrem hinteren Ende ein Aussengewinde 103, mittels welchem sie in ein entsprechendes Gewinde 104 des Kathodenbasiskörpers 64 eingeschraubt ist. Durch diese Gewinde 103, 104 ist auch ein sicherer elektrischer Kontakt zwischen dem Kathodenbasiskörper 64 und der Kathodenanordnung 12 gewährleistet. Die Längsachse der Kathodenanordnung 12 kommt dabei quer zur Längsachse des Brennerkopfs 3 zu liegen. Die Kathodenfassung 13 wird an ihrem oberen Ende von einer keramischen Isolierscheibe 138 umfasst. Um die achsiale Lage der Kathodenanordnung 12 zu bestimmen, weist die Kathodenfassung 13 eine Schulter 106 auf, welche durch das Einschrauben mit ihrer Stirnseite definiert am Kathodenbasiskörper 64 aufliegt. Auf der Höhe der Kühlwasserbohrung 136 besitzt die Kathodenfassung 13 eine Ringnut 108, welche zusammen mit einer in den Kathodenbasiskörper 64 eingelassenen und in Form und Lage korrespondierenden Nut 109 einen Kühlringkanal 110 ergibt. Um diesen Kühlringkanal 110 abzudichten, ist jeweils ober- und unterhalb desselben ein die Kathodenfassung 13 umfassender Dichtring 112 vorgesehen. Für die Zufuhr von Plasmagas weisen die Kathodenfassung 13 und der Kathodenbasiskörper 64 jeweils eine Ringnut 114, 115 auf, welche sich zusammen, unterhalb des Kühlringkanals 110, zu einem Ringkanal 116 ergänzen. In diesen Ringkanal 116 mündet ein von der Stirnseite 132 ausgehender Plasmagaskanal 127. Von diesem Ringkanal 116 gehen schliesslich Längskanäle 118 aus, welche im peripheren Bereich der Kathodenfassung 13 der Kathode 14 entlang führen und an stirnseitigen Öffnungen in die Bohrung 120 der Anodendüse 11 münden.The mechanical cohesion of the burner head 3 is ensured by screws 97, which each connect the cathode base body 64 and the anode base body 63 to the insulating body 65. In order not to impair the good insulation between the cathode base body 64 and the anode base body 63, the two bodies 63, 64 are at different locations with the insulating body 65 screwed. The cathode assembly 12 itself consists of a cylindrical cathode socket 13 with a cathode 14 which is in the form of a pin and is inserted from above. The cathode socket 13 has an external thread 103 at its rear end, by means of which it is screwed into a corresponding thread 104 of the cathode base body 64. These threads 103, 104 also ensure reliable electrical contact between the cathode base body 64 and the cathode arrangement 12. The longitudinal axis of the cathode arrangement 12 comes to lie transversely to the longitudinal axis of the burner head 3. The cathode socket 13 is enclosed at its upper end by a ceramic insulating disk 138. In order to determine the axial position of the cathode arrangement 12, the cathode socket 13 has a shoulder 106, which, by screwing in, rests with its end face on the cathode base body 64 in a defined manner. At the level of the cooling water bore 136, the cathode socket 13 has an annular groove 108 which, together with a groove 109 embedded in the cathode base body 64 and corresponding in shape and position, results in a cooling ring channel 110. In order to seal this cooling ring channel 110, a sealing ring 112 comprising the cathode socket 13 is provided above and below it. For the supply of plasma gas, the cathode socket 13 and the cathode base body 64 each have an annular groove 114, 115, which together, below the cooling ring channel 110, form an annular channel 116. A plasma gas channel 127 extending from the end face 132 opens into this ring channel 116. Longitudinal channels 118, which extend in the peripheral region of the cathode holder 13 of the cathode 14, finally emanate from this ring channel 116 run along and open at the front openings in the bore 120 of the anode nozzle 11.

Die Anodendüse 11 besitzt eine zylindrische Grundform mit einer durchgehenden Bohrung 120, wobei die Bohrung 120 am Anfang und am Ende konisch ausläuft. Die Anodendüse 11 ist von aussen in den Anodenbasiskörper 63 eingesetzt, so dass die Längsachse der Anodendüse 11 wiederum quer zur Längsachse des Brennerkopfs 3 liegt. Um die achsiale Lage der Anodendüse 11 definieren, weist sie einen als Anschlag ausgebildeten Bund 121 auf, welcher beim Einsetzen der Anodendüse 11 auf einer Stirnfläche einer Bohrung 100 im Anodenbasiskörper 63 zu liegen kommt. Über diese Stirnfläche wird gleichzeitig auch der Strom vom Anodenbasiskörper 63 auf die Anodendüse 11 übertragen. Im eingesetzten Zustand ragt dabei die Kathode 14 in die Bohrung 120 der Anodendüse 11. Die Fixierung der Anodendüse 11 im Anodenbasiskörper 63 erfolgt durch eine Klemmbacke 122, welche mittels einer nicht eingezeichneten Schraube am Anodenbasiskörper 63 angeschraubt ist. Diese Klemmbacke 122 ist dabei so ausgebildet, dass sie über eine interne Bohrung 123 einen durch den Anodenbasiskörper 63 führenden Pulverkanal 125 mit einer radial in den Innenraum der Anodendüse 11 führenden Bohrung 126 verbindet.The anode nozzle 11 has a cylindrical basic shape with a through bore 120, the bore 120 tapering at the beginning and at the end. The anode nozzle 11 is inserted into the anode base body 63 from the outside, so that the longitudinal axis of the anode nozzle 11 is again transverse to the longitudinal axis of the burner head 3. To define the axial position of the anode nozzle 11, it has a collar 121 designed as a stop, which comes to rest on an end face of a bore 100 in the anode base body 63 when the anode nozzle 11 is inserted. The current from the anode base body 63 is simultaneously transferred to the anode nozzle 11 via this end face. In the inserted state, the cathode 14 projects into the bore 120 of the anode nozzle 11. The anode nozzle 11 is fixed in the anode base body 63 by means of a clamping jaw 122 which is screwed onto the anode base body 63 by means of a screw (not shown). This clamping jaw 122 is designed such that it connects, via an internal bore 123, a powder channel 125 leading through the anode base body 63 to a bore 126 leading radially into the interior of the anode nozzle 11.

Wie schon bei der Kathodenfassung 13 beschrieben, besitzt die Anodendüse 11 ebenfalls eine Ringnut 128, welche zusammen mit einer in den Anodenbasiskörper 63 eingelassenen Nut 129 einen Kühlringkanal 130 ergibt. Zum Abdichten dieses Kühlringkanals 130 sind wiederum entsprechende Dichtringe 131 vorhanden.As already described for the cathode socket 13, the anode nozzle 11 also has an annular groove 128 which, together with a groove 129 embedded in the anode base body 63, has a cooling ring channel 130 results. Corresponding sealing rings 131 are in turn provided for sealing this cooling ring channel 130.

Auf der dem Brennerschaft 2 zugewandten Stirnseite 132 ist wiederum die in eine entsprechende Nut des Brennerschafts eingreifende Leiste 34 zu sehen. Auf dieser Stirnseite 132 münden ausserdem alle Anschlüsse für Zufuhrleitungen der Brennermedien in Steck- bzw. Stossverbindungen. Für den Einlass von Kühlwasser ist der Stecker 66 vorgesehen. Von diesem Stecker 66 aus führt ein Kanal 135 für Kühlwasser in den Anodenbasiskörper 63 hinein, wo er als erstes in den um die Anodendüse 11 führenden Kühlringkanal 130 mündet. Danach führt der Kühlwasserkanal 135 weiter durch den Anodenbasiskörper 63, wird dann um 90° nach unten umgelenkt, führt durch den Isolierkörper 65 in den Kathodenbasiskörper 64, wird da wiederum um 90° umgelenkt, um schliesslich in den Kühlringkanal 110 der Kathodenfassung 13 zu münden. Ab dem Übergang vom Isolierkörper in den Kathodenbasiskörper 64 wird der Kühlwasserkanal mit 136 bezeichnet. Über den Stecker 67 schliesslich führt der Kühlwasserkanal 136 wieder aus dem Brennerkopf 3 hinaus.On the end face 132 facing the burner shaft 2, the bar 34 engaging in a corresponding groove of the burner shaft can again be seen. All connections for supply lines for the burner media also lead to plug or butt connections on this end face 132. The plug 66 is provided for the inlet of cooling water. From this plug 66, a channel 135 for cooling water leads into the anode base body 63, where it first opens into the cooling ring channel 130 leading around the anode nozzle 11. Thereafter, the cooling water channel 135 continues through the anode base body 63, is then deflected downward by 90 °, leads through the insulating body 65 into the cathode base body 64, is in turn deflected through 90 ° in order to finally open into the cooling ring channel 110 of the cathode socket 13. From the transition from the insulating body into the cathode base body 64, the cooling water channel is designated 136. Finally, the cooling water duct 136 leads out of the burner head 3 again via the plug 67.

Die beiden rohrförmig ausgebildeten Stecker 66, 67 sind so in den Kathodenbasiskörper 64 bzw. den Anodenbasiskörper 63 eingesetzt und mit diesen verbunden, dass ein guter elektrischer Kontakt mit diesen gewährleistet ist.The two tubular plugs 66, 67 are inserted into and connected to the cathode base body 64 and the anode base body 63 in such a way that good electrical contact with them is ensured.

Um den Brennerkopf 3 gegen Hitzeeinwirkung möglichst gut abzuschirmen, ist schliesslich ein abgewinkeltes Hitzeschutzschild 5 vorgesehen, welches auf der Seite der Anodendüse 11, bündig mit deren Oberfläche, am Brennerkopf 3 angebracht ist.Finally, in order to shield the burner head 3 as well as possible against heat, there is an angled heat shield 5 provided which is mounted on the side of the anode nozzle 11, flush with the surface thereof, on the burner head 3.

Die Funktionsweise eines solchen Brennerkopfs 3 ist hinlänglich bekannt, weshalb hier nur auf einige Besonderheiten und Vorteile der vorgängig beschriebenen Ausbildungsart hingewiesen wird. Ein wesentlicher Vorteil eines solchermassen ausgebildeten Brennerkopfs 3 ist, dass sowohl die Anodendüse 11 wie auch die Kathodenanordnung 12 von aussen zugänglich sind und daher vom Benutzer auf einfache Art und Weise schnell ausgetauscht werden können. Durch den Quereinbau des Plasmatrons tritt der Plasmastrahl, bezogen auf die Längsachse des Brennerkopfs 3, radial aus diesem aus. Dadurch können, insbesondere beim Innenbeschichten von Rohren und dergleichen, auch allfällig vorhandene, verwinkelte Stellen gleichmässig und homogen beschichtet werden. Das durch die im peripheren Bereich der Kathodenfassung 13 der Kathode 14 entlang durch die Kanäle 118 geleitete Plasmagas kühlt die Kathodenfassung 13. Im weiteren wird durch diese Zuführung das Plasmagas vorgewärmt, was eine Verbesserung des Wirkungsgrads zur Folge hat. Der aus Metall bestehende Kathodenbasiskörper 64 wird für die Zuführung des elektrischen Stroms zur Kathode 14 benutzt. Der Stecker 67 ist dabei, wie bereits vorgängig beschrieben, sowohl als Stecker für die Verbindung der Kühlleitungen wie auch als Kontakt für den elektrischen Strom ausgebildet. Da sowohl die Kathodenfassung 13 und damit die Kathode 14 selber als auch der Stecker 67 in direktem Kontakt mit dem Kathodenbasiskörper 64 stehen, wird natürlich auch der elektrische Strom entsprechend übertragen.The operation of such a burner head 3 is well known, which is why only a few special features and advantages of the type of training described above are referred to here. An essential advantage of such a burner head 3 is that both the anode nozzle 11 and the cathode arrangement 12 are accessible from the outside and can therefore be quickly replaced by the user in a simple manner. Due to the transverse installation of the plasma cartridge, the plasma jet emerges radially from the burner head 3 with respect to the longitudinal axis. As a result, in particular when coating pipes and the like internally, any existing, angled points can also be coated uniformly and homogeneously. The plasma gas, which is passed through the channels 118 through the channels 118 in the peripheral area of the cathode socket 13 of the cathode 14, cools the cathode socket 13. Furthermore, the plasma gas is preheated by this feed, which results in an improvement in the efficiency. The metal cathode base body 64 is used for supplying the electric current to the cathode 14. As already described above, the plug 67 is designed both as a plug for connecting the cooling lines and as a contact for the electrical current. Since both the cathode socket 13 and thus the cathode 14 itself and the plug 67 are in direct contact with the cathode base body 64, the electrical current is of course also transmitted accordingly.

Durch eine bezogen auf den Kühlwasserkreislauf serielle Schaltung der Kathodenkühlung und der Anodenkühlung kann die Anzahl der Verbindungsleitungen auf ein Minimum reduziert werden. Um die gegenüber der Kathodenanordnung 12 auf unterschiedlichem Potential liegende Anodendüse 11 über das Kühlmedium miteinander zu verbinden, wird natürlich vorausgesetzt, dass als Kühlmedium eine Kühlflüssigkeit mit einem hohen spezifischen, elektrischen Widerstand eingesetzt wird. Ideal dafür ist, wie bereits vorgängig erwähnt, hochreines oder ultrareines Wasser.By connecting the cathode cooling and the anode cooling in series with respect to the cooling water circuit, the number of connecting lines can be reduced to a minimum. In order to connect the anode nozzle 11, which is at a different potential with respect to the cathode arrangement 12, via the cooling medium, it is of course assumed that a cooling liquid with a high specific electrical resistance is used as the cooling medium. As already mentioned, ultrapure or ultrapure water is ideal for this.

Die als Klemmbacke 122 ausgebildete Verbindung des Plasmapulverkanals 125 mit der radial in die Anodendüse 11 mündenden Pulverzufuhrleitung 126 ist austauschbar. Wenn nun verschiedene Klemmbacken 122 mit unterschiedlichen Leitungsquerschnitten zur Verfügung stehen, kann durch den Austausch dieser als Pulverinjektor ausgebildeten Klemmbacke 122 die Injektionsgeschwindigkeit des Plasmapulvers, welches der Plasmaflamme zugeführt wird, vorgewählt bzw. verändert werden.The connection of the plasma powder channel 125, which is designed as a clamping jaw 122, to the powder supply line 126, which opens radially into the anode nozzle 11, is interchangeable. If different clamping jaws 122 with different line cross sections are now available, the injection speed of the plasma powder which is fed to the plasma flame can be preselected or changed by exchanging this clamping jaw 122, which is designed as a powder injector.

Claims (26)

  1. Plasma spray gun for the coating of cavity walls, characterized by the combination of the following features:
    - the plasma spray gun has a connecting element (1), a burner shaft (2) and a burner head (3) which are located behind each other in an axis (25) forming the longitudinal axis of the plasma spray gun;
    - the connecting element (1), the burner shaft (2) and the burner head (3) are constructed as individually exchangeable modules which are connected to each other interchangeably by the user;
    - all leads and channels (52, 53, 71, 76) necessary for the operation of the burner run right through the interior of the burner shaft (2),
    - the burner head is constructed in such a way that the plasma beam goes out radially;
    - the burner head is fitted with cooling ducts;
    - the burner shaft (2) has a sleeve pipe (92) of metal, which is equipped at both ends with connecting sections (49, 50, 58, 60, 79, 80, 81, 82) and contains in the interior conductors (62, 71, 73, 76) for the current supply and derivation for the supply and derivation of the coolant, for feeding plasma gas and for the supply of coating material;
    - the connection of all leads and channels between the connecting element (1) and the burner shaft (2) on the one hand and between the burner shaft (2) and the burner head (3) on the other hand are made through plug and/or junction connections (39, 49; 44, 50; 58, 66; 60, 67; 79, 84; 80, 85; 81, 86; 82, 87).
  2. Plasma spray gun according to Claim 1, characterized in that, in the burner shaft (2) for the current feed to the burner head (3), a rod-shaped conductor (62) and for the current derivation from the burner head (3) a tubular current conductor (73) are provided, and that for the supply of the coolant, the sleeve pipe (92) with its whole remaining cross-section is used, and for the derivation of the coolant, the tubular current conductor (73) is used.
  3. Plasma spray gun according to Claim 1 or Claim 2, characterized in that at least one of the two current conductors (62, 73) has a sheathing (96) designed as electrical insulation.
  4. Plasma spray gun according to Claim 2 or 3, characterized in that the connecting section of the burner shaft (2) facing the burner head (3) has a closing cap (57) and two bushes (58, 60) located in it, which fit on each plug (66, 67) of the burner head (64), located on an anode-based body (63) or a cathode-based body (64) of the burner head (3), and that the one bush (58) is connected to the rod-shaped current conductor (62) and the other bush (60) to the tubular current conductor (73), the cavity of the bush (58) connected to the rod-shaped current conductor (62) is connected by radial channels (93) to the interior of the sleeve pipe (92).
  5. Plasma spray gun according to Claim 1, characterized in that the burner head (3) is fixed by two screws (7) to the burner shaft (2) and the burner shaft (2) by means of three screws (6) to the connecting element (1).
  6. Plasma spray gun according to Claim 1, characterized in that connections (20, 21, 22, 23) for burner-medium leads are present on the connecting element (1), which are located radially opposite the longitudinal axis (25) of the plasma spray gun.
  7. Plasma spray gun according to one of the above claims, characterized in that the burner shaft has a shape differing from a straight line, especially an at least partly offset, cranked or arched shape.
  8. Plasma spray gun according to one of the above claims, characterized in that the burner head has an anode-based body (63) which carries an anode nozzle (11), a cathode-based body (64) which carries a cathode (14) protruding into the anode nozzle (11), and an insulator (65) inserted between the cathode-based body (64) and the anode-based body (63), that the cathode-based body (64), the anode-based body (63) and the insulator (65) are connected to each other along planes running parallel to the longitudinal axis (25) of the plasma spray gun, with the cathode-based body (64) and the anode-based body (63) forming sections of the outside of the burner head (3), and that the cathode (14) and the anode nozzle (11) are inserted from outside transversely to the longitudinal axis (25) of the plasma spray gun into the cathode-based body (64) or anode-based body (63).
  9. Plasma spray gun according to Claim 8, characterized in that the insulator (65) has flanges (74) on its longitudinal sides which partially encompass the cathode-based body (64) and the anode-based body (63) on their outer sides.
  10. Plasma spray gun according to Claim 8, characterized in that connecting channels (125, 127) for the supply of plasma gas and plasma powder are provided inside the burner head (3), which run outside the insulator (65).
  11. Plasma spray gun according to Claim 8, characterized in that the cathode-based body (64), the anode-based body (63) and the insulator (65) of the burner head (3) together form an essentially cylinder-shaped assembly, the longitudinal axis of which coincides with the longitudinal axis (25) of the plasma spray gun.
  12. Plasma spray gun according to Claim 8, characterized in that the cathode-based body (64) and the anode-based body (63) have cooling channels (135, 136) for a liquid coolant, which are connected in series through a passage in the insulator (65) and lead to connecting elements (66, 67) which are located on the burner-shaft-side face (132) of the burner head (3).
  13. Plasma spray gun according to Claims 10 and 12, characterized in that on one face side (132) of the burner head (3) all connections (66, 67, 88, 89) for connecting channls (125, 127) and also for the cooling channels (135, 136) are provided, and that the other face side (137) turned away from the burner shaft (2) are sealed off by an insulating cap (101).
  14. Plasma spray gun according to Claim 8, characterized in that the burner head (3) has a cap (101) embracing the face side (137).
  15. Plasma spray gun according to Claim 8, characterized in that the cathode-based body (64) on the one hand and the anode-based body (63) on the other hand are screwed to the insulator (65) at various points.
  16. Plasma spray gun according to Claim 8, characterized in that a protective hood (4) of ceramic material is provided which can be pushed onto the burner head (3), leaving the anode nozzle (11) free.
  17. Plasma spray gun according to one of Claims 8 to 16, characterized in that the cathode (14) is constructed in a pin shape, and that, for receiving the cathode (14), a cylindrical cathode holder (13) is provided, which is screwed into the cathode-based body (64) and passes through its coolant channel (136).
  18. Plasma spray gun according to Claim 17, characterized in that the cathode-based body (64) and the cylindrical cathode holder (13) have annular grooves (114, 115) which are expanded into an annular channel (116), into which the supply pipe (127) for the plasma gas opens.
  19. Plasma spray gun according to Claim 18, characterized in that there are longitudinal channels (118) in the peripheral zone of the cathode holder (13), which, starting out from the annular channel (16) lead along the cathode (14) and open out at apertures on the face side in the interior space (120) of the anode nozzle (11).
  20. Plasma spray gun according to one of Claims 17 to 19, characterized in that the cathode (14) is made of doped tungsten.
  21. Plasma spray gun according to Claim 8, characterized in that the anode-based body (63) has a cylindrical drilled hole into which the anode nozzle (11) is pushed, the anode nozzle (11) being fixed by a gripping die (122) acting on a collar (121) of the anode nozzle (11), screwed on the anode-based body (63).
  22. Plasma spray gun according to Claim 8, characterized in that the anode nozzle (11) has a radial channel (126) situated outside the anode-based body (63), through which the supply of the plasma powder provided as coating material takes place into the interior space (120) of the anode nozzle (11).
  23. Plasma spray gun according to Claims 21 and 22, characterized in that the gripping die (122) has a connecting channel (123) which joins the plasma powder channel (125) leading through the anode-based body (63) to the radial channel (126) leading into the anode nozzle (11).
  24. Plasma spray gun according to Claim 8, characterized in that an offset protective screen (5) is provided on the burner head (3) on the side of the anode nozzle (11).
  25. Burner head with all the features of the burner head described in Claim 8, adapted in such a manner that it can be used in a plasma spray gun according to one of Claims 1 to 7.
  26. Burner head according to Claim 25, in which the burner head is provided additionally with the features of at least one burner head described in one of Claims 9 to 24.
EP93810576A 1992-08-24 1993-08-16 Plasma spray gun Expired - Lifetime EP0585203B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4228064A DE4228064A1 (en) 1992-08-24 1992-08-24 Plasma spray gun
DE4228064 1992-08-24

Publications (2)

Publication Number Publication Date
EP0585203A1 EP0585203A1 (en) 1994-03-02
EP0585203B1 true EP0585203B1 (en) 1996-03-27

Family

ID=6466282

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93810576A Expired - Lifetime EP0585203B1 (en) 1992-08-24 1993-08-16 Plasma spray gun

Country Status (7)

Country Link
US (1) US5328516A (en)
EP (1) EP0585203B1 (en)
JP (1) JP3229082B2 (en)
AT (1) ATE136191T1 (en)
CA (1) CA2104543C (en)
DE (2) DE4228064A1 (en)
TW (1) TW225085B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012003306A1 (en) 2012-02-18 2013-08-22 Amt Ag Device for performing plasma coating on surface of substrate, for use in manufacturing of e.g. cylinder bore, has wire-shaped or powder material that is selectively processed in region of electrode which generates auxiliary voltage arc

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4240991A1 (en) * 1992-12-05 1994-06-09 Plasma Technik Ag Plasma spray gun
US5624586A (en) * 1995-01-04 1997-04-29 Hypertherm, Inc. Alignment device and method for a plasma arc torch system
US5874707A (en) * 1995-01-31 1999-02-23 Komatsu Ltd. Processing torch having a separably assembled torch base and torch head
TW315340B (en) * 1995-02-13 1997-09-11 Komatsu Mfg Co Ltd
DE19532412C2 (en) * 1995-09-01 1999-09-30 Agrodyn Hochspannungstechnik G Device for surface pretreatment of workpieces
US5948704A (en) * 1996-06-05 1999-09-07 Lam Research Corporation High flow vacuum chamber including equipment modules such as a plasma generating source, vacuum pumping arrangement and/or cantilevered substrate support
DE19733204B4 (en) 1997-08-01 2005-06-09 Daimlerchrysler Ag Coating of a hypereutectic aluminum / silicon alloy, spray powder for their production and their use
AT406243B (en) * 1998-01-28 2000-03-27 Inocon Technologie Gmbh DEVICE WITH A PLASMA MACHINE
US6215090B1 (en) * 1998-03-06 2001-04-10 The Esab Group, Inc. Plasma arc torch
DE19841617A1 (en) * 1998-09-11 2000-03-23 Daimler Chrysler Ag Apparatus for thermally coating the inner walls of e.g. car cylinder bores has a hollow wire electric arc inner burner having a burner head with two wires extending from the feeding mechanism
DE19842074B4 (en) * 1998-09-15 2004-06-03 Castolin S.A. Anode for plasma application torches
CH693083A5 (en) * 1998-12-21 2003-02-14 Sulzer Metco Ag Nozzle and nozzle assembly for a burner head of a plasma spray device.
EP1065914B1 (en) * 1999-06-30 2004-01-21 Sulzer Metco AG Plasma spray device
CA2356583C (en) * 2001-03-28 2007-10-16 Nippon Welding Rod Co., Ltd. Torch for powder plasma buildup welding
US6472631B1 (en) 2001-05-04 2002-10-29 Hypertherm, Inc. Strain relief mechanism for a plasma arc torch
JP3543149B2 (en) * 2001-09-03 2004-07-14 島津工業有限会社 Torch head for plasma spraying
US6861101B1 (en) * 2002-01-08 2005-03-01 Flame Spray Industries, Inc. Plasma spray method for applying a coating utilizing particle kinetics
US6986471B1 (en) * 2002-01-08 2006-01-17 Flame Spray Industries, Inc. Rotary plasma spray method and apparatus for applying a coating utilizing particle kinetics
WO2005057994A1 (en) 2003-12-09 2005-06-23 Amt Ag Plasma spraying device
US20060070677A1 (en) * 2004-09-28 2006-04-06 Tokai Rubber Industries, Ltd. Hose with sealing layer, direct-connect assembly including the same, and method of manufacturing the same
FR2897747B1 (en) * 2006-02-23 2008-09-19 Commissariat Energie Atomique ARC PLASMA TORCH TRANSFER
US20070284342A1 (en) * 2006-06-09 2007-12-13 Morten Jorgensen Plasma treatment method and apparatus
US7547861B2 (en) * 2006-06-09 2009-06-16 Morten Jorgensen Vortex generator for plasma treatment
US10098217B2 (en) 2012-07-19 2018-10-09 Hypertherm, Inc. Composite consumables for a plasma arc torch
US8624150B2 (en) * 2010-09-09 2014-01-07 Hypertherm, Inc. Adapter for a plasma arc torch
US9560732B2 (en) 2006-09-13 2017-01-31 Hypertherm, Inc. High access consumables for a plasma arc cutting system
US10194516B2 (en) 2006-09-13 2019-01-29 Hypertherm, Inc. High access consumables for a plasma arc cutting system
US9662747B2 (en) 2006-09-13 2017-05-30 Hypertherm, Inc. Composite consumables for a plasma arc torch
DE102006044091A1 (en) * 2006-09-20 2008-04-03 Carl Zeiss Microimaging Gmbh Control module and control system for influencing sample environment parameters of an incubation system, method for controlling a microscope assembly and computer program product
KR100967016B1 (en) * 2007-09-20 2010-06-30 주식회사 포스코 Plasma Torch Devide and Method for Treating Return Ores by using Plasma
US8237079B2 (en) * 2009-09-01 2012-08-07 General Electric Company Adjustable plasma spray gun
FR2949698A1 (en) * 2009-09-10 2011-03-11 Air Liquide Welding France Torch for plasma arc cutting a metal piece including e.g. carbon steel and stainless steel, comprises a torch body, a torch head removably attached to the body, and a fixation unit for joining the torch head with the torch body
CA2785781A1 (en) * 2010-01-26 2011-08-04 Sulzer Metco (Us) Inc. Plume shroud for laminar plasma guns
US20120171374A1 (en) * 2011-01-03 2012-07-05 General Electric Company Nozzle for use with a spray coating gun
FR2980383A1 (en) * 2011-09-22 2013-03-29 Air Liquide Assembly, useful for co-operating torch with connection block, comprises torch with torch body with external peripheral wall, internal coolant circuit, internal drain of gas supply, and connection block that is provided with front face
DE102012003563B4 (en) * 2012-02-23 2017-07-06 Drägerwerk AG & Co. KGaA Device for disinfecting wound treatment
AT14885U1 (en) * 2015-07-03 2016-08-15 Plansee Se Tube with internal coating
US10129969B2 (en) 2016-04-11 2018-11-13 Hypertherm, Inc. Arc cutting system, including coolant tubes and other consumables, and related operational methods
WO2018165102A1 (en) * 2017-03-07 2018-09-13 Hypertherm, Inc. Connecting plasma arc torches and related systems and methods
ES2868176T3 (en) * 2017-05-29 2021-10-21 Oerlikon Metco Ag Wohlen Plasma coating lance for interior coatings
EP3756423B1 (en) * 2018-02-20 2024-04-24 Oerlikon Metco (US) Inc. Single arc cascaded low pressure coating gun utilizing a neutrode stack as a method of plasma arc control
EP3840541A1 (en) * 2019-12-20 2021-06-23 Molecular Plasma Group SA Improved shield for atmospheric pressure plasma jet coating deposition on a substrate
DE102023000417A1 (en) * 2023-02-07 2024-08-08 Oerlikon Metco (Us) Inc. Plasma torch head for internal coatings

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL279638A (en) * 1961-06-13
DE1256816B (en) * 1965-04-09 1967-12-21 Inst Badan Jadrowych Arc plasma torch
DE1639325A1 (en) * 1968-02-08 1971-02-04 Montedison Spa Versatile plasma jet generator and process for its manufacture
US4423304A (en) * 1981-02-20 1983-12-27 Bass Harold E Plasma welding torch
US4445021A (en) * 1981-08-14 1984-04-24 Metco, Inc. Heavy duty plasma spray gun
DE8132660U1 (en) * 1981-11-07 1983-04-28 Haferkamp, Heinz, Prof. Dr.-Ing., 3340 Wolfenbüttel Plasma cutting torch
CH647424A5 (en) * 1982-07-09 1985-01-31 Castolin Sa Gun extension piece for a powder-spray torch
DE3331216A1 (en) * 1983-08-30 1985-03-14 Castolin Gmbh, 6239 Kriftel DEVICE FOR THERMAL SPRAYING OF FOLDING WELDING MATERIALS
DE3430383A1 (en) * 1984-08-17 1986-02-27 Plasmainvent AG, Zug PLASMA SPRAY BURNER FOR INTERNAL COATINGS
FR2587258B1 (en) * 1985-09-16 1989-12-01 Soudure Autogene Francaise ARC WORK EQUIPMENT
DE3642375A1 (en) * 1986-12-11 1988-06-23 Castolin Sa METHOD FOR APPLYING AN INTERNAL COATING INTO TUBES OD. DGL. CAVITY NARROW CROSS SECTION AND PLASMA SPLASH BURNER DAFUER
US4830702A (en) * 1987-07-02 1989-05-16 General Electric Company Hollow cathode plasma assisted apparatus and method of diamond synthesis
US5120930A (en) * 1988-06-07 1992-06-09 Hypertherm, Inc. Plasma arc torch with improved nozzle shield and step flow
US5099788A (en) * 1989-07-05 1992-03-31 Nippon Soken, Inc. Method and apparatus for forming a diamond film
US5074802A (en) * 1989-09-12 1991-12-24 Hypertherm, Inc. Pneumatic-electric quick disconnect connector for a plasma arc torch

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012003306A1 (en) 2012-02-18 2013-08-22 Amt Ag Device for performing plasma coating on surface of substrate, for use in manufacturing of e.g. cylinder bore, has wire-shaped or powder material that is selectively processed in region of electrode which generates auxiliary voltage arc
DE102012003306B4 (en) 2012-02-18 2024-03-21 Amt Ag Plasma coating device

Also Published As

Publication number Publication date
DE4228064A1 (en) 1994-03-03
EP0585203A1 (en) 1994-03-02
ATE136191T1 (en) 1996-04-15
DE59302029D1 (en) 1996-05-02
CA2104543A1 (en) 1994-02-25
JP3229082B2 (en) 2001-11-12
TW225085B (en) 1994-06-11
CA2104543C (en) 1998-09-29
JPH06168795A (en) 1994-06-14
US5328516A (en) 1994-07-12

Similar Documents

Publication Publication Date Title
EP0585203B1 (en) Plasma spray gun
DE102009016932B4 (en) Cooling tubes and electrode holder for an arc plasma torch and arrangements of the same and arc plasma torch with the same
EP0645946B1 (en) Burner head for plasma spray guns
DE68911457T2 (en) Plasma spray gun extension for the application of layers in grooves.
EP0271032A2 (en) Method for depositing an inner coating in tubes or similar hollow spaces with a small diameter, and plasma spray gun therefor
DE3202465A1 (en) PLASMA TORCH
EP2804450B1 (en) Insulating member for a plasma arc torch consisting of several parts, torch and related assemblies equipped with the same and associated method
DE69325802T2 (en) HIGH TEMPERATURE PLASMA SPRAY GUN
EP2213402B1 (en) TIG welding torch, electrode unit for and method for operating the Torch
EP1065914B1 (en) Plasma spray device
EP2855071B1 (en) Torch for tungsten inert gas welding
DE1540860B1 (en) FLEXIBLE DEVICE FOR SUPPLYING WELDING WIRE, WELDING CURRENT, PROTECTIVE GAS AND COMPRESSED GAS TO A WELDING GUN
EP0074106A1 (en) Water-cooled protective gas welding torch for automatic welding appliances with a gas nozzle with internal blow-out facilities
EP2168409B1 (en) Apparatus for generating a plasma jet
EP2407267B1 (en) Welding torch with a neck comprising an insulated conduit
EP3658325B1 (en) Exchangeable wearing part for an arc welding torch, holder for an exchangeable wearing part, and an arc welding torch having such a corresponding wearing part and holder
EP0933982B1 (en) Plasma generator device
DE102017121722B4 (en) Burner body for thermal joining, burner with burner body and joining device
EP0849026A1 (en) Welding torch using protective gas
EP3765227A1 (en) Welding torch
DE9218876U1 (en) Plasma spray gun
EP1692922B1 (en) Plasma spraying device
DE69708861T2 (en) Mounting system for an electrode in a welding torch
EP3846960A1 (en) Mig/mag welding torch body, wig welding torch body, mig/mag welding torch handle, and mig/mag welding torch comprising such a mig/mag welding torch body and mig/mag welding torch handle
EP1543910B1 (en) Welding nozzle

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE

17P Request for examination filed

Effective date: 19940502

17Q First examination report despatched

Effective date: 19950523

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SULZER METCO AG

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19960327

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 19960327

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19960327

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19960327

Ref country code: DK

Effective date: 19960327

Ref country code: BE

Effective date: 19960327

REF Corresponds to:

Ref document number: 136191

Country of ref document: AT

Date of ref document: 19960415

Kind code of ref document: T

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: 67746

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19960328

REF Corresponds to:

Ref document number: 59302029

Country of ref document: DE

Date of ref document: 19960502

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19960627

Ref country code: PT

Effective date: 19960627

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19960816

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19960831

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19961107

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

Ref document number: 67746

Country of ref document: IE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Effective date: 19970228

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

Ref country code: CH

Ref legal event code: NV

Representative=s name: SULZER MANAGEMENT AG

Ref country code: CH

Ref legal event code: NV

Representative=s name: ROTTMANN, ZIMMERMANN + PARTNER AG

Ref country code: CH

Ref legal event code: EP

Ref country code: CH

Ref legal event code: AEN

Free format text: DAS PATENT IST AUFGRUND DES WEITERBEHANDLUNGSANTRAGS VOM 04.04.2003 REAKTIVIERT WORDEN.

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20110824

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20120821

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20120822

Year of fee payment: 20

Ref country code: FR

Payment date: 20120906

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59302029

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20130815

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20130817

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20130815