EP0573585B1 - Two-step chemical/electrochemical process for coating magnesium - Google Patents
Two-step chemical/electrochemical process for coating magnesium Download PDFInfo
- Publication number
- EP0573585B1 EP0573585B1 EP92907909A EP92907909A EP0573585B1 EP 0573585 B1 EP0573585 B1 EP 0573585B1 EP 92907909 A EP92907909 A EP 92907909A EP 92907909 A EP92907909 A EP 92907909A EP 0573585 B1 EP0573585 B1 EP 0573585B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- article
- magnesium
- fluoride
- coating
- silicon oxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000576 coating method Methods 0.000 title claims abstract description 64
- 238000000034 method Methods 0.000 title claims abstract description 52
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 title claims abstract description 42
- 239000011777 magnesium Substances 0.000 title claims abstract description 42
- 229910052749 magnesium Inorganic materials 0.000 title claims abstract description 42
- 239000011248 coating agent Substances 0.000 title claims abstract description 37
- 239000000126 substance Substances 0.000 title description 12
- DDFHBQSCUXNBSA-UHFFFAOYSA-N 5-(5-carboxythiophen-2-yl)thiophene-2-carboxylic acid Chemical compound S1C(C(=O)O)=CC=C1C1=CC=C(C(O)=O)S1 DDFHBQSCUXNBSA-UHFFFAOYSA-N 0.000 claims abstract description 22
- 239000000203 mixture Substances 0.000 claims abstract description 16
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 claims abstract description 13
- 239000000243 solution Substances 0.000 claims abstract description 10
- 239000008151 electrolyte solution Substances 0.000 claims abstract description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 claims abstract description 7
- 229910052910 alkali metal silicate Inorganic materials 0.000 claims abstract description 6
- 239000007864 aqueous solution Substances 0.000 claims abstract description 6
- 238000005260 corrosion Methods 0.000 claims description 22
- 230000007797 corrosion Effects 0.000 claims description 22
- 229910052751 metal Inorganic materials 0.000 claims description 21
- 239000002184 metal Substances 0.000 claims description 21
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 19
- 239000000758 substrate Substances 0.000 claims description 19
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 18
- 239000002585 base Substances 0.000 claims description 16
- NROKBHXJSPEDAR-UHFFFAOYSA-M potassium fluoride Chemical compound [F-].[K+] NROKBHXJSPEDAR-UHFFFAOYSA-M 0.000 claims description 10
- -1 potassium fluorosilicate Chemical compound 0.000 claims description 8
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 claims description 7
- 238000005299 abrasion Methods 0.000 claims description 7
- 239000004111 Potassium silicate Substances 0.000 claims description 5
- 235000003270 potassium fluoride Nutrition 0.000 claims description 5
- 239000011698 potassium fluoride Substances 0.000 claims description 5
- NNHHDJVEYQHLHG-UHFFFAOYSA-N potassium silicate Chemical compound [K+].[K+].[O-][Si]([O-])=O NNHHDJVEYQHLHG-UHFFFAOYSA-N 0.000 claims description 5
- 229910052913 potassium silicate Inorganic materials 0.000 claims description 5
- 235000019353 potassium silicate Nutrition 0.000 claims description 5
- PUZPDOWCWNUUKD-UHFFFAOYSA-M sodium fluoride Chemical compound [F-].[Na+] PUZPDOWCWNUUKD-UHFFFAOYSA-M 0.000 claims description 5
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 claims description 4
- 229910052783 alkali metal Inorganic materials 0.000 claims description 4
- 150000001340 alkali metals Chemical class 0.000 claims description 4
- JOPOVCBBYLSVDA-UHFFFAOYSA-N chromium(6+) Chemical compound [Cr+6] JOPOVCBBYLSVDA-UHFFFAOYSA-N 0.000 claims description 4
- 150000002222 fluorine compounds Chemical class 0.000 claims description 4
- BJAHYFBKECKXCD-UHFFFAOYSA-N O(F)F.N Chemical compound O(F)F.N BJAHYFBKECKXCD-UHFFFAOYSA-N 0.000 claims description 3
- 229940104869 fluorosilicate Drugs 0.000 claims description 3
- PQXKHYXIUOZZFA-UHFFFAOYSA-M lithium fluoride Chemical compound [Li+].[F-] PQXKHYXIUOZZFA-UHFFFAOYSA-M 0.000 claims description 3
- 235000013024 sodium fluoride Nutrition 0.000 claims description 3
- 239000011775 sodium fluoride Substances 0.000 claims description 3
- 238000010998 test method Methods 0.000 claims description 3
- 239000004115 Sodium Silicate Substances 0.000 claims description 2
- 150000008044 alkali metal hydroxides Chemical class 0.000 claims description 2
- 229910052912 lithium silicate Inorganic materials 0.000 claims description 2
- 229910052911 sodium silicate Inorganic materials 0.000 claims description 2
- 238000007789 sealing Methods 0.000 claims 3
- XJHCXCQVJFPJIK-UHFFFAOYSA-M caesium fluoride Chemical compound [F-].[Cs+] XJHCXCQVJFPJIK-UHFFFAOYSA-M 0.000 claims 2
- AHLATJUETSFVIM-UHFFFAOYSA-M rubidium fluoride Chemical compound [F-].[Rb+] AHLATJUETSFVIM-UHFFFAOYSA-M 0.000 claims 2
- YELSEYVFKSMIBZ-UHFFFAOYSA-N FOF.N.[Mg+2] Chemical compound FOF.N.[Mg+2] YELSEYVFKSMIBZ-UHFFFAOYSA-N 0.000 claims 1
- CGQRESSVMOHCRU-UHFFFAOYSA-N [Mg].[F-].[NH4+] Chemical compound [Mg].[F-].[NH4+] CGQRESSVMOHCRU-UHFFFAOYSA-N 0.000 claims 1
- PAZHGORSDKKUPI-UHFFFAOYSA-N lithium metasilicate Chemical compound [Li+].[Li+].[O-][Si]([O-])=O PAZHGORSDKKUPI-UHFFFAOYSA-N 0.000 claims 1
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 claims 1
- 229910045601 alloy Inorganic materials 0.000 abstract description 6
- 239000000956 alloy Substances 0.000 abstract description 6
- 238000011282 treatment Methods 0.000 abstract description 3
- 239000010410 layer Substances 0.000 description 24
- 229910000861 Mg alloy Inorganic materials 0.000 description 10
- 238000012360 testing method Methods 0.000 description 10
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical group [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 9
- 239000005002 finish coating Substances 0.000 description 8
- 150000003839 salts Chemical class 0.000 description 8
- 150000001875 compounds Chemical class 0.000 description 6
- 239000003973 paint Substances 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 5
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 4
- 238000000151 deposition Methods 0.000 description 4
- 229910001385 heavy metal Inorganic materials 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000002351 wastewater Substances 0.000 description 4
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 3
- 230000008021 deposition Effects 0.000 description 3
- ZSLUVFAKFWKJRC-IGMARMGPSA-N 232Th Chemical compound [232Th] ZSLUVFAKFWKJRC-IGMARMGPSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical group [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 229910052776 Thorium Inorganic materials 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 229910001515 alkali metal fluoride Inorganic materials 0.000 description 2
- LDDQLRUQCUTJBB-UHFFFAOYSA-N ammonium fluoride Chemical class [NH4+].[F-] LDDQLRUQCUTJBB-UHFFFAOYSA-N 0.000 description 2
- ZCDOYSPFYFSLEW-UHFFFAOYSA-N chromate(2-) Chemical compound [O-][Cr]([O-])(=O)=O ZCDOYSPFYFSLEW-UHFFFAOYSA-N 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 230000001427 coherent effect Effects 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 229910000040 hydrogen fluoride Inorganic materials 0.000 description 2
- 229910052744 lithium Inorganic materials 0.000 description 2
- KMUONIBRACKNSN-UHFFFAOYSA-N potassium dichromate Chemical compound [K+].[K+].[O-][Cr](=O)(=O)O[Cr]([O-])(=O)=O KMUONIBRACKNSN-UHFFFAOYSA-N 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 229910052761 rare earth metal Inorganic materials 0.000 description 2
- 150000002910 rare earth metals Chemical class 0.000 description 2
- 239000000565 sealant Substances 0.000 description 2
- MIMUSZHMZBJBPO-UHFFFAOYSA-N 6-methoxy-8-nitroquinoline Chemical compound N1=CC=CC2=CC(OC)=CC([N+]([O-])=O)=C21 MIMUSZHMZBJBPO-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- VFZCPZOOBHMUBZ-UHFFFAOYSA-N [Mg].FOF Chemical class [Mg].FOF VFZCPZOOBHMUBZ-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000003377 acid catalyst Substances 0.000 description 1
- 238000004026 adhesive bonding Methods 0.000 description 1
- 229910000272 alkali metal oxide Inorganic materials 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000002048 anodisation reaction Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910021538 borax Inorganic materials 0.000 description 1
- 150000001642 boronic acid derivatives Chemical class 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 239000008199 coating composition Substances 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 238000007739 conversion coating Methods 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 210000003298 dental enamel Anatomy 0.000 description 1
- 238000005137 deposition process Methods 0.000 description 1
- ZPWVASYFFYYZEW-UHFFFAOYSA-L dipotassium hydrogen phosphate Chemical compound [K+].[K+].OP([O-])([O-])=O ZPWVASYFFYYZEW-UHFFFAOYSA-L 0.000 description 1
- 235000019797 dipotassium phosphate Nutrition 0.000 description 1
- 229910000396 dipotassium phosphate Inorganic materials 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000002848 electrochemical method Methods 0.000 description 1
- 238000004070 electrodeposition Methods 0.000 description 1
- 231100001261 hazardous Toxicity 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- ORUIBWPALBXDOA-UHFFFAOYSA-L magnesium fluoride Chemical class [F-].[F-].[Mg+2] ORUIBWPALBXDOA-UHFFFAOYSA-L 0.000 description 1
- 235000012245 magnesium oxide Nutrition 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical class [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005007 materials handling Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 235000021317 phosphate Nutrition 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 229920000151 polyglycol Polymers 0.000 description 1
- 239000010695 polyglycol Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 239000012286 potassium permanganate Substances 0.000 description 1
- 239000011253 protective coating Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 150000004760 silicates Chemical class 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical class [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- FQENQNTWSFEDLI-UHFFFAOYSA-J sodium diphosphate Chemical compound [Na+].[Na+].[Na+].[Na+].[O-]P([O-])(=O)OP([O-])([O-])=O FQENQNTWSFEDLI-UHFFFAOYSA-J 0.000 description 1
- 229940048086 sodium pyrophosphate Drugs 0.000 description 1
- 235000010339 sodium tetraborate Nutrition 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 235000019818 tetrasodium diphosphate Nutrition 0.000 description 1
- 239000001577 tetrasodium phosphonato phosphate Substances 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- BSVBQGMMJUBVOD-UHFFFAOYSA-N trisodium borate Chemical compound [Na+].[Na+].[Na+].[O-]B([O-])[O-] BSVBQGMMJUBVOD-UHFFFAOYSA-N 0.000 description 1
- LSGOVYNHVSXFFJ-UHFFFAOYSA-N vanadate(3-) Chemical class [O-][V]([O-])([O-])=O LSGOVYNHVSXFFJ-UHFFFAOYSA-N 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D11/00—Electrolytic coating by surface reaction, i.e. forming conversion layers
- C25D11/02—Anodisation
- C25D11/30—Anodisation of magnesium or alloys based thereon
Definitions
- the invention relates to a process for forming an inorganic coating on a magnesium alloy and to a product formed by this process.
- the invention relates to a method comprising pretreating an article comprising a magnesium alloy in a chemical bath at a neutral pH followed by an electrolytically coating the pretreated article in an aqueous solution.
- Magnesium is generally alloyed with any of aluminum, manganese, thorium, lithium, tin, zirconium, zinc, rare earth metals or other alloys to increase its structural stability. Such magnesium alloys are often used where a high strength to weight ratio is required. The appropriate magnesium alloy can also offer the highest strength to weight ratio of the ultra light metals at elevated temperatures. Further, alloys with rare earth or thorium can retain significant strength up to temperatures of 315°C and higher. Structural magnesium alloys may be assembled in many of the conventional manners including riveting and bolting, arc and electric resistance welding, braising, soldering and adhesive bonding.
- the magnesium-containing articles have uses in the aircraft and aerospace industries, military equipment, electronics, automotive bodies and parts, hand tools and in materials handling. While magnesium and its alloys exhibit good stability in the presence of a number of chemical substances, there is a need to further protect the metal, especially in acidic environments and in salt water conditions. Therefore, especially in marine applications, it is necessary to provide a coating to protect the metal from corrosion.
- coatings for magnesium There are many different types of coatings for magnesium which have been developed and used. The most common coatings are chemical treatments or conversion coatings which are used as a paint base and provide some corrosion protection. Both chemical and electrochemical methods are used for the conversion of magnesium surfaces. Chromate films are the most commonly used surface treatment for magnesium alloys. These films of hydrated, gel-like structures of polychromates provide a surface which is a good paint base but which provides limited corrosion protection.
- Anodization of magnesium alloys is an alternative electrochemical approach to provide a protective coating.
- At least two low voltage anodic processes, Dow 17 and HAE have been commercially employed.
- the Dow 17 process utilizes potassium dichromate, a chromium (VI) compound, which is acutely toxic and strictly regulated.
- the key ingredient in the HAE anodic coating is potassium permanganate, it is necessary to use a chromate sealant with this coating in order to obtain acceptable corrosion resistance.
- chromium (VI) is necessary in the overall process in order to achieve a desirable corrosion resistant coating. This use of chromium (VI) means that waste disposal from these processes is a significant problem.
- metallic and ceramic-like coatings have been developed. These coatings may be formed by electroless or electrochemical processes.
- the electroless deposition of nickel on magnesium and magnesium alloys using chemical reducing agents in coating formulation is well known in the art.
- this process also results in the creation of large quantities of hazardous heavy metal contaminated waste water which must be treated before it can be discharged.
- Electrochemical coating processes can be used to produce both metallic and nonmetallic coatings. The metallic coating processes again suffer from the creation of heavy metal contaminated waste water.
- Non-metallic coating processes have been developed, in part, to overcome problems involving the heavy metal contamination of waste water.
- Kozak, U.S. Patent No. 4,184,926, discloses a two-step process for forming an anti-corrosive coating on magnesium and its alloys.
- the first step is an acidic chemical pickling or treatment of the magnesium work piece using hydrofluoric acid at about room temperature to form a fluoro-magnesium layer on the metal surface.
- the second step involves the electrochemical coating of the work piece in a solution comprising an alkali metal silicate and an alkali metal hydroxide.
- a voltage potential from about 150-300 volts is applied across the electrodes, and a current density of about 50-200 mA/cm2 is maintained in the bath.
- the first step of this process is a straight forward acid pickling step, while the second step proceeds in an electrochemical bath which contains no source of fluoride. Tests of this process indicate that there is a need for increased corrosion resistance and coating integrity.
- U.S. Patent No. 4,620,904 discloses a one-step method of coating articles of magnesium using an electrolytic bath comprising an alkali metal silicate, an alkali metal hydroxide and a fluoride.
- the bath is maintained at a temperature of about 5-70°C and a pH of about 12-14.
- the electrochemical coating is carried out under a voltage potential from about 150-400 volts. Tests of this process also indicates that there remains a need for increased corrosion resistance.
- the present invention is directed to a process for coating a magnesium-containing article.
- the article is pretreated in an aqueous solution comprising 0.2 to 5 molar ammonium fluoride having a pH of 5 to 8 and a temperature of 40 to 100°C. This pretreatment step cleans the article and creates an ammonium fluoride-containing layer at the surface of the article to form a pretreated article.
- the pretreated article is immersed in an aqueous electrolytic solution having a pH of at least 12.5 and which solution comprises 2 to 12 g/L of a aqueous soluble hydroxide, 2 to 15 g/L of a fluoride-containing composition selected from the group consisting of fluorides and fluorosilicates, and 5 to 30 g/L of a alkali metal silicate.
- a voltage differential of at least 100 volts is established between an anode comprising the pretreated article and a cathode also in contact with the electrolytic solution to create a current density of 2 to 90 mA/cm2.
- a silicon oxide-containing coating is formed on the magnesium-containing article.
- magnesium-containing article means a metallic article having surfaces which are in whole or in part metallic magnesium per se or a magnesium alloy.
- the article is formed of metallic magnesium or a magnesium alloy and comprises a significant amount of magnesium. More preferably, the article comprises a magnesium-rich alloy comprising at least about 50 wt-% magnesium, and most preferably, the article comprises at least about 80 wt-% magnesium.
- Figure 1 illustrates the coated magnesium-containing article of the invention.
- FIG. 2 is a block diagram of the present invention.
- FIG. 3 is a diagram of the electrochemical process of the invention.
- Figure 4 is a scanning electron photomicrograph of a cross section through the magnesium-containing substrate and a coating according to the invention.
- FIG. 1 illustrates a cross section of a magnesium-containing article having been coated using the process of the present invention.
- the magnesium-containing article 10 is shown with a first ammonium fluoride-containing layer 12 and a second ceramic-like layer 14.
- the layers 12 and 14 combine to form a corrosion resistant coating on the surface of the magnesium-containing article.
- Coatings include ceramic-like, silicon oxide containing coatings.
- Figure 2 illustrates the steps used to produce these coated articles.
- An untreated article 20 is first placed in a chemical bath 22 which cleans and forms an ammonium fluoride-containing layer on the article.
- the article is treated in an electrochemical bath 24 resulting in the production of a coated article 26.
- the chemical bath 22 comprises an aqueous ammonium fluoride solution.
- the bath comprises 0.2 to 5 molar ammonium fluoride in water, preferably, 0.3 to 2.0 molar ammonium fluoride and, more preferably, about 0.5 to 1.2 molar ammonium fluoride.
- the reaction conditions are indicated below in Table I.
- Table I Condition According to the invention Preferred More Preferred pH 5-8 5-7 6-7 Temperature (°C) 40-100 55-90 70-85 Time (minutes) 15-60 30-45 30-40
- the magnesium-containing article is maintained in the chemical bath for a time sufficient to clean impurities at the surface of the article and to form an ammonium fluoride-containing base layer on the magnesium-containing article.
- Too brief a residence time in the chemical bath results in an insufficient fluoride containing base layer and/or insufficient cleaning of the magnesium-containing article. This will ultimately result in the reduced corrosion resistance of the coated article. Longer residence times tend to be uneconomical as the process time is increased with little improvement of the base layer.
- This base layer is generally uniform in composition and thickness across the surface of the article and provides an excellent base upon which a second, ceramic-like layer may be deposited.
- the thickness of this fluoride containing layer is about 1 to 2 ⁇ m.
- the first chemical bath is beneficial as it provides a base layer which firmly bonds to and protects the substrate, which is compatible with the composition which will form the second layer and which adheres the second layer to the substrate.
- the base layer comprises metal ammonium fluorides and oxofluorides which strongly adhere to the metallic substrate. It appears that the compatibility of these compounds with those of the second layer permits the deposition of silicon oxide, among other compounds, in a uniform manner without appreciable etching of the metal substrate.
- This base layer provides some protection to the metallic substrate, but it does not provide the abrasion resistance and hardness that the complete, two-layered coating provides.
- the silicon oxide-containing layer is applied to the metallic substrate without first depositing the base layer, the corrosion and abrasion resistance of the coating is reduced as the silicon oxide-containing layer does not adhere well to the substrate.
- the pretreated article is preferably thoroughly washed with water to remove any unreacted ammonium fluoride. This cleaning prevents the contamination of the electrochemical bath 24.
- the cleaned, pretreated article is then subjected to an electrochemical coating process shown in Figure 3.
- the electrochemical bath 26 comprises an aqueous electrolytic solution comprising 2 to 12 g/L of a soluble hydroxide compound, 2 to 15 g/L of a soluble fluoride-containing compound selected from the group consisting of fluorides and fluorosilicates and 5 to 30 g/L of an alkali metal silicate.
- Preferred hydroxides include alkali metal hydroxides. More preferably, the alkali metal is lithium, sodium or potassium, and most preferably, the hydroxide is potassium hydroxide.
- the fluoride-containing compound may be a fluoride such as an alkali metal fluoride, such as lithium, sodium and potassium fluoride or an acid fluoride such as hydrogen fluoride or ammonium bifluoride. Fluorosilicates such as potassium fluorosilicate or sodium fluorosilicate may also be used.
- the fluoride-containing compound comprises an alkali metal fluoride, an alkali metal fluorosilicate, hydrogen fluoride or mixtures thereof. Most preferably, the fluoride-containing compound comprises potassium fluoride.
- the electrochemical bath also contains a silicate.
- silicates include alkali metal silicates and/or alkali metal fluorosilicates. More preferably, the silicate comprises lithium, sodium or potassium silicate, and most preferably, the silicate is potassium silicate.
- Table II Composition ranges for the aqueous electrolytic solution are shown below in Table II.
- Table II Component According to the invention Preferred More Preferred Hydroxide 2-12 g/L 4-8 g/L 5-7 g/L Fluoride 2-15 g/L 3-10 g/L 8-10 g/L Silicate 5-30 g/L 10-25 g/L 15-20 g/L
- the pretreated article 30 is immersed in the electrochemical bath 24 as an anode.
- the vessel 32 which contains the electrochemical bath 24 may be used as the cathode.
- the anode may be connected through a switch 34 to a rectifier 36 while the vessel 32 may be directly connected to the rectifier 36.
- the rectifier 36 rectifies the voltage from a voltage source 38, to provide a direct current source to the electrochemical bath.
- the rectifier 36 and switch 34 may be placed in communication with a microprocessor control 40 for purposes of controlling the electrochemical composition.
- the rectifier provides a pulsed DC signal to drive the deposition process.
- the conditions of the electrochemical deposition process are a pH of at least 12.5 and a current density of 2-90 mA/cm2, preferably they are as illustrated below in Table III.
- Table III Component Preferred More Preferred Most Preferred pH 12.5-14 12.5-13 12.5-13 Temperature (°C) 5-30 10-25 10-20 Time (minutes) 5-80 15-60 20-30 Current Density (mA/cm2) 2-90 5-70 10-50
- Coatings produced according to the above-described process are ceramic-like and have excellent corrosion and abrasion resistance and hardness characteristics. While not wishing to be held to this theory, it appears that these properties are the result of the morphology and adhesion of the coating on the metal substrate.
- the preferred coatings comprise a mixture of fused silicon oxide and fluoride along with an alkali metal oxide.
- the adhesion of the coating of the invention appears to perform considerably better than any known commercial coatings. This is a result of a coherent interface between the metal substrate and the coating.
- coherent interface it is meant that the interface comprises a continuum of magnesium, magnesium oxides, magnesium oxofluorides, magnesium fluorides and silicon oxides.
- the continuous interface is shown in Figure 4, a scanning electron photomicrograph.
- the metal substrate has an irregular surface, and an interfacial boundary comprising an ammonium fluoride-containing base layer is formed at the surface of the substrate.
- the silicon oxide-containing layer formed on the base layer shows excellent integrity, and both coating layers and therefore provide a superior corrosion and abrasion resistant surface.
- Abrasion resistance can be measured according to Federal Test Method Std. No. 141C, Method 6192.1.
- coatings produced according to the invention having a thickness of 12.7-25.4 ⁇ m (0.5 to 1.0 mil) will withstand at least 1,000 wear cycles before the appearance of the bare metal substrate using a 1.0 kg load on a CS-17 abrading wheel. More preferably, the coatings will withstand at least about 2,000 wear cycles before the appearance of the metal substrate, and most preferably, the coatings will withstand at least about 4,000 wear cycles using a 1.0 kg load on a CS-17 abrading wheel.
- Corrosion resistance can be measured according to ASTM standards. Included in these tests is the salt fog test, ASTM B117, as evaluated by ASTM D1654, procedures A and B.
- coatings produced according to the invention achieve a rating of at least about 9 after 24 hours in salt fog. More preferably, the coatings achieve a rating of at least about 9 after 100 hours, and most preferably, at least about 9 after 200 hours in salt fog.
- the magnesium-containing articles may be used as is, offering a superb finish and excellent corrosion resistant properties, or they may be further coated using an optional finish coating such as a paint or a sealant.
- an optional finish coating such as a paint or a sealant.
- the structure and morphology of the silicon oxide-containing coating readily permit the use of a wide number of additional finish coatings which offer further corrosion resistance or decorative properties to the magnesium containing articles.
- the silicon oxide-containing coating provides an excellent paint base having excellent corrosion resistance and offering excellent adhesion under both wet and dry conditions, for instance, the water immersion test, ASTM D3359, test method B.
- the optional finish coatings may include organic and inorganic compositions as well as paints and other decorative and protective organic coatings.
- any paint which adheres well to glassy and metallic surfaces may be used as the optional finish coating.
- Representative, non-limiting inorganic compositions for use as an outer coating include additional alkali metal silicates, phosphates, borates, molydates and vanadates.
- Representative, non-limiting organic outer coatings include polymers such as polyfluoroethylene, polyurethane and polyglycol. Additional finish coating materials will be known to those skilled in the art. Again, these optional finish coatings are not necessary to obtain excellent corrosion resistance, their use may achieve decorative or further improve the protective qualities of the coating.
- coatings produced according to the invention having an optional finish coating, achieve a rating of at least about 8 after 700 hours in salt fog. More preferably, the coatings achieve a rating of at least about 9 after 700 hours, and most preferably, at least about 10 after 700 hours in salt fog.
- Magnesium test panels (AZ91D) were cleaned immersing them in an aqueous solution of sodium pyrophosphate, sodium borate and sodium fluoride at about 70°C and a pH of about 10.5 for about 5 minutes. The panels were then placed in a 0.5 M ammonium fluoride bath at 70° for 30 minutes. The panels were then rinsed and placed in a silicate-containing bath. The silicate bath was prepared by first dissolving 50 g potassium hydroxide in 10 L water. 200 milliliters of a commercially available potassium silicate concentrate (20% w/w SiO2) was then added to the above solution. Finally 50 g of potassium fluoride was added to the above solution.
- the bath then has a pH of about 12.5 and a concentration of potassium hydroxide about 5 g/L, about 16 g/L potassium silicate and about 5 g/L potassium fluoride.
- the panels were then placed in the bath and connected to the positive lead of a rectifier.
- a stainless steel panel served as the cathode and was connected to the negative lead of the rectifier capable of delivering a pulsed DC signal.
- the voltage was increased over a 30 second period to 150 V and then the current adjusted to sustain a current density of 30 mA/cm2. After 30 minutes, the silicon oxide-containing coating was approximately 20 ⁇ m thick.
- Examples II-VIII were prepared according to the process of Example I with the quantities of components as shown in Tables IV and V below.
- Abrasion resistance testing (141C) of these test panels resulted in wear cycles of at least about 2,000 before the appearance of the metal substrate using a 1.0 kg load on CS-17 abrading wheels.
- Test panels coated according to Examples I and IX were primed with an acid catalyst primer and then painted with a high temperature enamel. The panels were then immersed in water for four (4) days at 38°C (100°F) and subjected to ASTM D3359, method B. The panels achieved a rating of 5/5, the highest possible rating as no flaking of the coatings could be observed.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Engineering & Computer Science (AREA)
- Chemical Treatment Of Metals (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Application Of Or Painting With Fluid Materials (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
- Electroplating Methods And Accessories (AREA)
- Electroplating And Plating Baths Therefor (AREA)
Abstract
Description
- The invention relates to a process for forming an inorganic coating on a magnesium alloy and to a product formed by this process. In particular, the invention relates to a method comprising pretreating an article comprising a magnesium alloy in a chemical bath at a neutral pH followed by an electrolytically coating the pretreated article in an aqueous solution.
- The use of magnesium in structural applications is growing rapidly. Magnesium is generally alloyed with any of aluminum, manganese, thorium, lithium, tin, zirconium, zinc, rare earth metals or other alloys to increase its structural stability. Such magnesium alloys are often used where a high strength to weight ratio is required. The appropriate magnesium alloy can also offer the highest strength to weight ratio of the ultra light metals at elevated temperatures. Further, alloys with rare earth or thorium can retain significant strength up to temperatures of 315°C and higher. Structural magnesium alloys may be assembled in many of the conventional manners including riveting and bolting, arc and electric resistance welding, braising, soldering and adhesive bonding. The magnesium-containing articles have uses in the aircraft and aerospace industries, military equipment, electronics, automotive bodies and parts, hand tools and in materials handling. While magnesium and its alloys exhibit good stability in the presence of a number of chemical substances, there is a need to further protect the metal, especially in acidic environments and in salt water conditions. Therefore, especially in marine applications, it is necessary to provide a coating to protect the metal from corrosion.
- There are many different types of coatings for magnesium which have been developed and used. The most common coatings are chemical treatments or conversion coatings which are used as a paint base and provide some corrosion protection. Both chemical and electrochemical methods are used for the conversion of magnesium surfaces. Chromate films are the most commonly used surface treatment for magnesium alloys. These films of hydrated, gel-like structures of polychromates provide a surface which is a good paint base but which provides limited corrosion protection.
- Anodization of magnesium alloys is an alternative electrochemical approach to provide a protective coating. At least two low voltage anodic processes, Dow 17 and HAE, have been commercially employed. However, the corrosion protection provided by these treatments remains limited. The Dow 17 process utilizes potassium dichromate, a chromium (VI) compound, which is acutely toxic and strictly regulated. Although the key ingredient in the HAE anodic coating is potassium permanganate, it is necessary to use a chromate sealant with this coating in order to obtain acceptable corrosion resistance. Thus in either case, chromium (VI) is necessary in the overall process in order to achieve a desirable corrosion resistant coating. This use of chromium (VI) means that waste disposal from these processes is a significant problem.
- More recently, metallic and ceramic-like coatings have been developed. These coatings may be formed by electroless or electrochemical processes. The electroless deposition of nickel on magnesium and magnesium alloys using chemical reducing agents in coating formulation is well known in the art. However, this process also results in the creation of large quantities of hazardous heavy metal contaminated waste water which must be treated before it can be discharged. Electrochemical coating processes can be used to produce both metallic and nonmetallic coatings. The metallic coating processes again suffer from the creation of heavy metal contaminated waste water.
- Non-metallic coating processes have been developed, in part, to overcome problems involving the heavy metal contamination of waste water. Kozak, U.S. Patent No. 4,184,926, discloses a two-step process for forming an anti-corrosive coating on magnesium and its alloys. The first step is an acidic chemical pickling or treatment of the magnesium work piece using hydrofluoric acid at about room temperature to form a fluoro-magnesium layer on the metal surface. The second step involves the electrochemical coating of the work piece in a solution comprising an alkali metal silicate and an alkali metal hydroxide. A voltage potential from about 150-300 volts is applied across the electrodes, and a current density of about 50-200 mA/cm² is maintained in the bath. The first step of this process is a straight forward acid pickling step, while the second step proceeds in an electrochemical bath which contains no source of fluoride. Tests of this process indicate that there is a need for increased corrosion resistance and coating integrity.
- Kozak, U.S. Patent No. 4,620,904, discloses a one-step method of coating articles of magnesium using an electrolytic bath comprising an alkali metal silicate, an alkali metal hydroxide and a fluoride. The bath is maintained at a temperature of about 5-70°C and a pH of about 12-14. The electrochemical coating is carried out under a voltage potential from about 150-400 volts. Tests of this process also indicates that there remains a need for increased corrosion resistance.
- Based on the teachings of the prior art, a process for the coating of magnesium-containing articles is needed which results in a uniform coating with increased corrosion resistance. Further, a more economical coating process is needed which has reduced apparatus demands and which does not result in the production of heavy metal contaminated waste water.
- The present invention is directed to a process for coating a magnesium-containing article. The article is pretreated in an aqueous solution comprising 0.2 to 5 molar ammonium fluoride having a pH of 5 to 8 and a temperature of 40 to 100°C. This pretreatment step cleans the article and creates an ammonium fluoride-containing layer at the surface of the article to form a pretreated article. Next, the pretreated article is immersed in an aqueous electrolytic solution having a pH of at least 12.5 and which solution comprises 2 to 12 g/L of a aqueous soluble hydroxide, 2 to 15 g/L of a fluoride-containing composition selected from the group consisting of fluorides and fluorosilicates, and 5 to 30 g/L of a alkali metal silicate. A voltage differential of at least 100 volts is established between an anode comprising the pretreated article and a cathode also in contact with the electrolytic solution to create a current density of 2 to 90 mA/cm². Through this process, a silicon oxide-containing coating is formed on the magnesium-containing article.
- The term "magnesium-containing article", as used in the specification and the claims, means a metallic article having surfaces which are in whole or in part metallic magnesium per se or a magnesium alloy. Preferably, the article is formed of metallic magnesium or a magnesium alloy and comprises a significant amount of magnesium. More preferably, the article comprises a magnesium-rich alloy comprising at least about 50 wt-% magnesium, and most preferably, the article comprises at least about 80 wt-% magnesium.
- Figure 1 illustrates the coated magnesium-containing article of the invention.
- Figure 2 is a block diagram of the present invention.
- Figure 3 is a diagram of the electrochemical process of the invention.
- Figure 4 is a scanning electron photomicrograph of a cross section through the magnesium-containing substrate and a coating according to the invention.
- Figure 1 illustrates a cross section of a magnesium-containing article having been coated using the process of the present invention. The magnesium-containing
article 10 is shown with a first ammonium fluoride-containinglayer 12 and a second ceramic-like layer 14. Thelayers - Coatings include ceramic-like, silicon oxide containing coatings. Figure 2 illustrates the steps used to produce these coated articles. An
untreated article 20 is first placed in achemical bath 22 which cleans and forms an ammonium fluoride-containing layer on the article. Next, the article is treated in anelectrochemical bath 24 resulting in the production of a coatedarticle 26. - The
chemical bath 22 comprises an aqueous ammonium fluoride solution. The bath comprises 0.2 to 5 molar ammonium fluoride in water, preferably, 0.3 to 2.0 molar ammonium fluoride and, more preferably, about 0.5 to 1.2 molar ammonium fluoride. The reaction conditions are indicated below in Table I.Table I Condition According to the invention Preferred More Preferred pH 5-8 5-7 6-7 Temperature (°C) 40-100 55-90 70-85 Time (minutes) 15-60 30-45 30-40 - If the bath is too acidic or too hot, too vigorous of an oxidation (etching) reaction occurs, and if the bath is too alkaline or too cool, the reaction proceeds too slowly for practical production of coated articles.
- The magnesium-containing article is maintained in the chemical bath for a time sufficient to clean impurities at the surface of the article and to form an ammonium fluoride-containing base layer on the magnesium-containing article. This results in the production of a magnesium-containing article which is coated with a predominately metal ammonium fluoride and/or metal ammonium oxofluoride containing layer, most of the metal being magnesium depending on the nature of the alloy. Too brief a residence time in the chemical bath results in an insufficient fluoride containing base layer and/or insufficient cleaning of the magnesium-containing article. This will ultimately result in the reduced corrosion resistance of the coated article. Longer residence times tend to be uneconomical as the process time is increased with little improvement of the base layer. This base layer is generally uniform in composition and thickness across the surface of the article and provides an excellent base upon which a second, ceramic-like layer may be deposited. Preferably, the thickness of this fluoride containing layer is about 1 to 2 µm.
- While we do not wish to be confined to this theory, it appears that the first chemical bath is beneficial as it provides a base layer which firmly bonds to and protects the substrate, which is compatible with the composition which will form the second layer and which adheres the second layer to the substrate. It appears that the base layer comprises metal ammonium fluorides and oxofluorides which strongly adhere to the metallic substrate. It appears that the compatibility of these compounds with those of the second layer permits the deposition of silicon oxide, among other compounds, in a uniform manner without appreciable etching of the metal substrate.
- This base layer provides some protection to the metallic substrate, but it does not provide the abrasion resistance and hardness that the complete, two-layered coating provides. On the other hand, if the silicon oxide-containing layer is applied to the metallic substrate without first depositing the base layer, the corrosion and abrasion resistance of the coating is reduced as the silicon oxide-containing layer does not adhere well to the substrate.
- Between the
chemical bath 22 and theelectrochemical bath 24, the pretreated article is preferably thoroughly washed with water to remove any unreacted ammonium fluoride. This cleaning prevents the contamination of theelectrochemical bath 24. - The cleaned, pretreated article is then subjected to an electrochemical coating process shown in Figure 3. The
electrochemical bath 26 comprises an aqueous electrolytic solution comprising 2 to 12 g/L of a soluble hydroxide compound, 2 to 15 g/L of a soluble fluoride-containing compound selected from the group consisting of fluorides and fluorosilicates and 5 to 30 g/L of an alkali metal silicate. Preferred hydroxides include alkali metal hydroxides. More preferably, the alkali metal is lithium, sodium or potassium, and most preferably, the hydroxide is potassium hydroxide. - The fluoride-containing compound may be a fluoride such as an alkali metal fluoride, such as lithium, sodium and potassium fluoride or an acid fluoride such as hydrogen fluoride or ammonium bifluoride. Fluorosilicates such as potassium fluorosilicate or sodium fluorosilicate may also be used. Preferably, the fluoride-containing compound comprises an alkali metal fluoride, an alkali metal fluorosilicate, hydrogen fluoride or mixtures thereof. Most preferably, the fluoride-containing compound comprises potassium fluoride.
- The electrochemical bath also contains a silicate. Useful silicates include alkali metal silicates and/or alkali metal fluorosilicates. More preferably, the silicate comprises lithium, sodium or potassium silicate, and most preferably, the silicate is potassium silicate.
- Composition ranges for the aqueous electrolytic solution are shown below in Table II.
Table II Component According to the invention Preferred More Preferred Hydroxide 2-12 g/L 4-8 g/L 5-7 g/L Fluoride 2-15 g/L 3-10 g/L 8-10 g/L Silicate 5-30 g/L 10-25 g/L 15-20 g/L - The pretreated
article 30 is immersed in theelectrochemical bath 24 as an anode. Thevessel 32 which contains theelectrochemical bath 24 may be used as the cathode. The anode may be connected through aswitch 34 to arectifier 36 while thevessel 32 may be directly connected to therectifier 36. Therectifier 36, rectifies the voltage from avoltage source 38, to provide a direct current source to the electrochemical bath. Therectifier 36 and switch 34 may be placed in communication with amicroprocessor control 40 for purposes of controlling the electrochemical composition. Preferably, the rectifier provides a pulsed DC signal to drive the deposition process. - The conditions of the electrochemical deposition process are a pH of at least 12.5 and a current density of 2-90 mA/cm², preferably they are as illustrated below in Table III.
Table III Component Preferred More Preferred Most Preferred pH 12.5-14 12.5-13 12.5-13 Temperature (°C) 5-30 10-25 10-20 Time (minutes) 5-80 15-60 20-30 Current Density (mA/cm²) 2-90 5-70 10-50 - These reaction conditions allow the formation of a ceramic-like coating of up to about 40 µm in about 80 minutes or less. Maintaining the voltage differential for longer periods of time will allow for the deposition of thicker coatings. However, for most practical purposes, coatings of about 10 to 30 µm in thickness are preferred and can be obtained through a coating time of about 10 to 30 minutes.
- Coatings produced according to the above-described process are ceramic-like and have excellent corrosion and abrasion resistance and hardness characteristics. While not wishing to be held to this theory, it appears that these properties are the result of the morphology and adhesion of the coating on the metal substrate. The preferred coatings comprise a mixture of fused silicon oxide and fluoride along with an alkali metal oxide.
- The adhesion of the coating of the invention appears to perform considerably better than any known commercial coatings. This is a result of a coherent interface between the metal substrate and the coating. By coherent interface, it is meant that the interface comprises a continuum of magnesium, magnesium oxides, magnesium oxofluorides, magnesium fluorides and silicon oxides.
- The continuous interface is shown in Figure 4, a scanning electron photomicrograph. The metal substrate has an irregular surface, and an interfacial boundary comprising an ammonium fluoride-containing base layer is formed at the surface of the substrate. The silicon oxide-containing layer formed on the base layer shows excellent integrity, and both coating layers and therefore provide a superior corrosion and abrasion resistant surface.
- Abrasion resistance can be measured according to Federal Test Method Std. No. 141C, Method 6192.1. Preferably, coatings produced according to the invention having a thickness of 12.7-25.4 µm (0.5 to 1.0 mil) will withstand at least 1,000 wear cycles before the appearance of the bare metal substrate using a 1.0 kg load on a CS-17 abrading wheel. More preferably, the coatings will withstand at least about 2,000 wear cycles before the appearance of the metal substrate, and most preferably, the coatings will withstand at least about 4,000 wear cycles using a 1.0 kg load on a CS-17 abrading wheel.
- Corrosion resistance can be measured according to ASTM standards. Included in these tests is the salt fog test, ASTM B117, as evaluated by ASTM D1654, procedures A and B. Preferably, as measured according to procedure B, coatings produced according to the invention achieve a rating of at least about 9 after 24 hours in salt fog. More preferably, the coatings achieve a rating of at least about 9 after 100 hours, and most preferably, at least about 9 after 200 hours in salt fog.
- After the magnesium-containing articles have been coated according to the present process, they may be used as is, offering a superb finish and excellent corrosion resistant properties, or they may be further coated using an optional finish coating such as a paint or a sealant. The structure and morphology of the silicon oxide-containing coating readily permit the use of a wide number of additional finish coatings which offer further corrosion resistance or decorative properties to the magnesium containing articles. Indeed, the silicon oxide-containing coating provides an excellent paint base having excellent corrosion resistance and offering excellent adhesion under both wet and dry conditions, for instance, the water immersion test, ASTM D3359, test method B. The optional finish coatings may include organic and inorganic compositions as well as paints and other decorative and protective organic coatings. Any paint which adheres well to glassy and metallic surfaces may be used as the optional finish coating. Representative, non-limiting inorganic compositions for use as an outer coating include additional alkali metal silicates, phosphates, borates, molydates and vanadates. Representative, non-limiting organic outer coatings include polymers such as polyfluoroethylene, polyurethane and polyglycol. Additional finish coating materials will be known to those skilled in the art. Again, these optional finish coatings are not necessary to obtain excellent corrosion resistance, their use may achieve decorative or further improve the protective qualities of the coating.
- Excellent corrosion resistance occurs after further application of an optional finish coating. Preferably, as measured according to procedure B, coatings produced according to the invention, having an optional finish coating, achieve a rating of at least about 8 after 700 hours in salt fog. More preferably, the coatings achieve a rating of at least about 9 after 700 hours, and most preferably, at least about 10 after 700 hours in salt fog.
- The following specific examples, which contain the best mode, can be used to further illustrate the invention. These examples are merely illustrative of the invention and do not limit its scope.
- Magnesium test panels (AZ91D) were cleaned immersing them in an aqueous solution of sodium pyrophosphate, sodium borate and sodium fluoride at about 70°C and a pH of about 10.5 for about 5 minutes. The panels were then placed in a 0.5 M ammonium fluoride bath at 70° for 30 minutes. The panels were then rinsed and placed in a silicate-containing bath. The silicate bath was prepared by first dissolving 50 g potassium hydroxide in 10 L water. 200 milliliters of a commercially available potassium silicate concentrate (20% w/w SiO₂) was then added to the above solution. Finally 50 g of potassium fluoride was added to the above solution. The bath then has a pH of about 12.5 and a concentration of potassium hydroxide about 5 g/L, about 16 g/L potassium silicate and about 5 g/L potassium fluoride. The panels were then placed in the bath and connected to the positive lead of a rectifier. A stainless steel panel served as the cathode and was connected to the negative lead of the rectifier capable of delivering a pulsed DC signal. The voltage was increased over a 30 second period to 150 V and then the current adjusted to sustain a current density of 30 mA/cm². After 30 minutes, the silicon oxide-containing coating was approximately 20 µm thick.
- Examples II-VIII were prepared according to the process of Example I with the quantities of components as shown in Tables IV and V below.
Table IV Chemical Bath Example NH₄F Concentration (M) Bath Temperature (°C) Residence Time (min) II 1.0 70 30 III 1.5 60 30 IV 0.7 80 30 V 1.0 80 20 VI 1.0 70 30 VII 0.8 80 40 VIII 1.2 60 30
Abrasion resistance testing (141C) of these test panels resulted in wear cycles of at least about 2,000 before the appearance of the metal substrate using a 1.0 kg load on CS-17 abrading wheels. - A magnesium test panel was coated as in Example I. Upon drying, an optional coating was applied in the following manner. The panel was immersed in a 12% solution of potassium hydrogen phosphate (pH=7.2) for five (5) minutes at 60°C. The panel was rinsed and dried and subjected to salt fog ASTM B117 testing. The panel achieved a rating of 10 after 700 hours in salt fog.
- Test panels coated according to Examples I and IX were primed with an acid catalyst primer and then painted with a high temperature enamel. The panels were then immersed in water for four (4) days at 38°C (100°F) and subjected to ASTM D3359, method B. The panels achieved a rating of 5/5, the highest possible rating as no flaking of the coatings could be observed.
- The foregoing description, Examples and data are illustrative of the invention described herein, and they should not be used to unduly limit the scope of the invention or the claims. Since many embodiments and variations can be made while remaining within the spirit and scope of the invention, the invention resides wholly in the claims hereinafter appended.
Claims (30)
- A process for forming an improved corrosion resistant coating on a magnesium-containing article, which process comprises:(a) treating the article with a first aqueous solution, at a pH of 5 to 8 and a temperature of 40 to 100°C, which solution comprises 0.2 to 5 molar ammonium fluoride to create a metal ammonium fluoride-containing layer at the surface of the article to form a pretreated article;(b) placing the pretreated article into a second aqueous electrolytic solution having a pH of at least 12.5 which comprises:(i) 2 to 12 g/L of an aqueous soluble hydroxide;(ii) 2 to 15 g/L of an aqueous soluble fluoride-containing composition selected from the group consisting of fluorides, fluorosilicates and mixtures thereof; and(iii) 5 to 30 g/L of an alkali metal silicate;(c) establishing a voltage differential between an anode comprising the pretreated article and a cathode in the electrolytic solution of at least 100 volts to create a current density of 2 to 90 mA/cm²;wherein a silicon oxide-containing coating is formed on the article.
- The process of claim 1 wherein the pH of step (a) is 6.3 to 6.7.
- The process of claim 1 wherein the temperature of the first solution is 55 to 85°C.
- The process of claim 1 comprising 0.3 to 2.0 molar ammonium fluoride.
- The process of claim 1 wherein the pH of step (b) is 12.5 to 13.
- The process of claim 1 wherein the hydroxide of step (b) is an alkali metal hydroxide.
- The process of claim 1 wherein the fluoride-containing composition of step (b) is selected from the group consisting of sodium fluoride, potassium fluoride, hydrofluoric acid, lithium fluoride, rubidium fluoride, cesium fluoride and a mixture thereof.
- The process of claim 1 wherein the fluorosilicate of step (b) is selected from the group consisting of potassium fluorosilicate, sodium fluorosilicate, lithium fluorosilicate and a mixture thereof.
- The process of claim 1 wherein the silicate of step (b) is selected from the group consisting of potassium silicate, sodium silicate, lithium silicate, and a mixture thereof.
- The process of claim 1 wherein the temperature of the second solution is 5 to 30°C.
- The process of claim 1 wherein the voltage differential of step (c) is 200 to 400 volts.
- The process of claim 1 wherein the current density of step (c) is 5 to 70 mA/cm².
- The process of claim 1 further comprising connecting the anode and cathode to a power source.
- The process of claim 13 wherein the power source is a rectified alternating current power source.
- The process of claim 14 wherein the rectified alternating current power source is a pulsed full wave rectified power source.
- The process of claim 1 further comprising sealing the silicon oxide-containing coating.
- The process of claim 16 wherein the silicon oxide-containing coating is sealed with an inorganic coating.
- The process of claim 16 wherein the silicon oxide-containing coating is sealed with an organic coating.
- The process of claim 1 which process is substantially free of chromium (VI).
- A magnesium-containing substrate coated according to the process of claim 1.
- A process for forming an improved corrosion resistant coating on a magnesium-containing article, which process comprises:(a) treating the article with a first aqueous solution, at a pH of 5 to 8 and a temperature of 40 to 100°C, which solution comprises 0.2 to 5 molar ammonium fluoride to create a metal ammonium fluoride-containing layer at the surface of the article to form a pretreated article;(b) placing the pretreated article into a second aqueous electrolytic solution having a pH of at least 12.5 which comprises:(i) 2 to 12 g/L of an aqueous soluble hydroxide; and(ii) 2 to 30 g/L of an alkali metal fluorosilicate; and(c) establishing a voltage differential between an anode comprising the pretreated article and a cathode in the electrolytic solution of at least 100 volts to create a current density of 2 to 90 mA/cm²;wherein a silicon oxide-containing coating is formed on the article.
- A magnesium-containing article offering improved corrosion and abrasion resistance, the article comprising a magnesium-containing substrate, a first, base layer comprising a metal ammonium fluoride and a second, outer layer comprising a silicon oxide.
- The article of claim 22 wherein the metal ammonium fluoride comprises magnesium ammonium fluoride.
- The article of claim 22 wherein the base layer additionally comprises a metal ammonium oxofluoride.
- The article of claim 24 wherein the metal ammonium oxofluoride comprises magnesium ammonium oxofluoride.
- The article of claim 22 further comprising a third, sealing layer disposed upon the second, outer layer.
- The article of claim 22 further comprising a fourth, finish layer disposed upon the second, outer layer.
- The article of claim 27 further comprising a fourth, finish layer disposed upon the third, sealing layer.
- The article of claim 22 which is substantially free of chromium (VI).
- A magnesium-containing article comprising a magnesium-containing substrate, a first, base layer comprising a metal ammonium fluoride and a second, outer layer comprising a silicon oxide wherein the article having a coating thickness of 12.7 µm (0.5 mil) will withstand at least 1,000 wear cycles before the appearance of the substrate using a 1.0 kg load on a CS-17 abrading wheel according to Federal Test Method Std. No. 141C, Method 6192.1.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US66150391A | 1991-02-26 | 1991-02-26 | |
US661503 | 1991-02-26 | ||
PCT/US1992/001495 WO1992014868A1 (en) | 1991-02-26 | 1992-02-25 | Two-step chemical/electrochemical process for coating magnesium |
CN92105170A CN1049701C (en) | 1991-02-26 | 1992-06-26 | Two-step chemical/electrochemical magnesium coating process |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0573585A1 EP0573585A1 (en) | 1993-12-15 |
EP0573585B1 true EP0573585B1 (en) | 1994-12-14 |
Family
ID=25742761
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP92907909A Expired - Lifetime EP0573585B1 (en) | 1991-02-26 | 1992-02-25 | Two-step chemical/electrochemical process for coating magnesium |
Country Status (13)
Country | Link |
---|---|
EP (1) | EP0573585B1 (en) |
JP (1) | JP3183512B2 (en) |
CN (1) | CN1049701C (en) |
AT (1) | ATE115653T1 (en) |
AU (1) | AU1535392A (en) |
BR (1) | BR9205679A (en) |
CA (1) | CA2100168C (en) |
DE (1) | DE69200922T2 (en) |
DK (1) | DK0573585T3 (en) |
ES (1) | ES2068710T3 (en) |
GR (1) | GR3015377T3 (en) |
NO (1) | NO308907B1 (en) |
WO (1) | WO1992014868A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE112009001005B4 (en) * | 2008-04-25 | 2017-06-14 | GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) | A method of protecting an article against corrosion and a method of protecting a magnesium surface |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5266412A (en) * | 1991-07-15 | 1993-11-30 | Technology Applications Group, Inc. | Coated magnesium alloys |
JP4417106B2 (en) * | 2001-08-14 | 2010-02-17 | ケロナイト・インターナショナル・リミテッド | Magnesium anodizing system and method |
US7578921B2 (en) | 2001-10-02 | 2009-08-25 | Henkel Kgaa | Process for anodically coating aluminum and/or titanium with ceramic oxides |
US7569132B2 (en) | 2001-10-02 | 2009-08-04 | Henkel Kgaa | Process for anodically coating an aluminum substrate with ceramic oxides prior to polytetrafluoroethylene or silicone coating |
US7452454B2 (en) | 2001-10-02 | 2008-11-18 | Henkel Kgaa | Anodized coating over aluminum and aluminum alloy coated substrates |
US6916414B2 (en) * | 2001-10-02 | 2005-07-12 | Henkel Kommanditgesellschaft Auf Aktien | Light metal anodization |
US6495267B1 (en) * | 2001-10-04 | 2002-12-17 | Briggs & Stratton Corporation | Anodized magnesium or magnesium alloy piston and method for manufacturing the same |
JP2007009319A (en) * | 2005-06-01 | 2007-01-18 | Meira Corp | Composition for forming protective film, method for manufacturing metal-molded body, and metal-molded body |
US9701177B2 (en) | 2009-04-02 | 2017-07-11 | Henkel Ag & Co. Kgaa | Ceramic coated automotive heat exchanger components |
JP5595874B2 (en) * | 2010-11-04 | 2014-09-24 | 三井金属鉱業株式会社 | Magnesium alloy surface treatment method |
CN103088385A (en) * | 2012-12-01 | 2013-05-08 | 江门市华恒灯饰有限公司 | Microarc oxidation electrolyte formula |
CN105324520B (en) * | 2013-06-19 | 2017-10-27 | 堀金属表面处理工业股份有限公司 | The manufacture method of magnesium alloy product |
KR20170029545A (en) * | 2014-07-17 | 2017-03-15 | 헨켈 아게 운트 코. 카게아아 | Electroceramic coating for magnesium alloys |
JP6659961B2 (en) * | 2016-08-10 | 2020-03-04 | 富士通株式会社 | Magnesium alloy substrate, electronic device, and method of forming corrosion-resistant coating |
CN106835227B (en) * | 2016-12-05 | 2018-11-13 | 浙江工业大学 | A method of titanium-base alloy high temperature oxidation resistance is improved based on halide effect and ceramic coating |
CN106906505B (en) * | 2016-12-31 | 2019-01-08 | 浙江工业大学 | A method of ceramic coating is obtained based on halide effect and pretreatment and improves titanium-base alloy high temperature oxidation resistance |
US11180832B2 (en) | 2018-12-17 | 2021-11-23 | Canon Kabushiki Kaisha | Magnesium-lithium alloy member, manufacturing method thereof, optical apparatus, imaging apparatus, electronic apparatus and mobile object |
JP7418117B2 (en) * | 2018-12-17 | 2024-01-19 | キヤノン株式会社 | Magnesium-lithium alloy member and manufacturing method thereof |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4184926A (en) * | 1979-01-17 | 1980-01-22 | Otto Kozak | Anti-corrosive coating on magnesium and its alloys |
US4620904A (en) * | 1985-10-25 | 1986-11-04 | Otto Kozak | Method of coating articles of magnesium and an electrolytic bath therefor |
US4744872A (en) * | 1986-05-30 | 1988-05-17 | Ube Industries, Ltd. | Anodizing solution for anodic oxidation of magnesium or its alloys |
JPS63277793A (en) * | 1987-05-08 | 1988-11-15 | Ube Ind Ltd | Anodic oxidizing solution for magnesium or alloy thereof |
-
1992
- 1992-02-25 WO PCT/US1992/001495 patent/WO1992014868A1/en active IP Right Grant
- 1992-02-25 DE DE69200922T patent/DE69200922T2/en not_active Expired - Fee Related
- 1992-02-25 JP JP50738392A patent/JP3183512B2/en not_active Expired - Fee Related
- 1992-02-25 DK DK92907909.3T patent/DK0573585T3/en active
- 1992-02-25 BR BR9205679A patent/BR9205679A/en not_active Application Discontinuation
- 1992-02-25 EP EP92907909A patent/EP0573585B1/en not_active Expired - Lifetime
- 1992-02-25 CA CA002100168A patent/CA2100168C/en not_active Expired - Lifetime
- 1992-02-25 AT AT92907909T patent/ATE115653T1/en not_active IP Right Cessation
- 1992-02-25 AU AU15353/92A patent/AU1535392A/en not_active Abandoned
- 1992-02-25 ES ES92907909T patent/ES2068710T3/en not_active Expired - Lifetime
- 1992-06-26 CN CN92105170A patent/CN1049701C/en not_active Expired - Fee Related
-
1993
- 1993-08-25 NO NO933024A patent/NO308907B1/en not_active IP Right Cessation
-
1995
- 1995-03-13 GR GR940404119T patent/GR3015377T3/en unknown
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE112009001005B4 (en) * | 2008-04-25 | 2017-06-14 | GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) | A method of protecting an article against corrosion and a method of protecting a magnesium surface |
Also Published As
Publication number | Publication date |
---|---|
JPH06504815A (en) | 1994-06-02 |
CA2100168A1 (en) | 1992-08-27 |
ES2068710T3 (en) | 1995-04-16 |
CA2100168C (en) | 2004-09-14 |
EP0573585A1 (en) | 1993-12-15 |
GR3015377T3 (en) | 1995-06-30 |
CN1080671A (en) | 1994-01-12 |
DK0573585T3 (en) | 1995-03-06 |
DE69200922D1 (en) | 1995-01-26 |
AU1535392A (en) | 1992-09-15 |
WO1992014868A1 (en) | 1992-09-03 |
BR9205679A (en) | 1994-06-21 |
NO933024D0 (en) | 1993-08-25 |
CN1049701C (en) | 2000-02-23 |
DE69200922T2 (en) | 1995-05-04 |
NO933024L (en) | 1993-10-14 |
JP3183512B2 (en) | 2001-07-09 |
ATE115653T1 (en) | 1994-12-15 |
NO308907B1 (en) | 2000-11-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5264113A (en) | Two-step electrochemical process for coating magnesium alloys | |
US5470664A (en) | Hard anodic coating for magnesium alloys | |
EP0573585B1 (en) | Two-step chemical/electrochemical process for coating magnesium | |
US5240589A (en) | Two-step chemical/electrochemical process for coating magnesium alloys | |
EP0688370B1 (en) | Two-step electrochemical process for coating magnesium | |
US7578921B2 (en) | Process for anodically coating aluminum and/or titanium with ceramic oxides | |
EP1824675B1 (en) | Article of manufacture and process for anodically coating an aluminum substrate with ceramic oxides prior to organic or inorganic coating | |
KR100768565B1 (en) | An energy enhanced process for treating a conductive surface | |
EP0958410B1 (en) | An electrolytic process for forming a mineral containing coating | |
EP0243473A4 (en) | Method of coating articles of magnesium and an electrolytic bath therefor. | |
WO1998033960A9 (en) | An electrolytic process for forming a mineral containing coating | |
WO2006110756A1 (en) | Corrosion resistant article and method of production thereof | |
US5503733A (en) | Process for phosphating galvanized steel surfaces | |
Yerokhin et al. | Anodising of light alloys | |
CA2155566C (en) | Two-step electrochemical process for coating magnesium | |
KR100226274B1 (en) | Two-step chemical/electrochemical process for coating magnesium | |
AU2011211399B2 (en) | Article of manufacturing and process for anodically coating aluminum and/or titanium with ceramic oxides | |
Pearlstein et al. | Selection & Application of Inorganic Finishes: Anodic Coatings for" Other" Metals | |
MXPA99006963A (en) | An electrolytic process for forming a mineral containing coating | |
EP1785510A1 (en) | Electrodeposition medium | |
MX2007004380A (en) | Article of manufacturing and process for anodically coating aluminum and/or titanium with ceramic oxides |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19930911 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU MC NL SE |
|
17Q | First examination report despatched |
Effective date: 19940202 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU MC NL SE |
|
REF | Corresponds to: |
Ref document number: 115653 Country of ref document: AT Date of ref document: 19941215 Kind code of ref document: T |
|
ITF | It: translation for a ep patent filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: LU Payment date: 19950101 Year of fee payment: 4 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: MC Payment date: 19950116 Year of fee payment: 4 Ref country code: DK Payment date: 19950116 Year of fee payment: 4 |
|
REF | Corresponds to: |
Ref document number: 69200922 Country of ref document: DE Date of ref document: 19950126 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GR Payment date: 19950127 Year of fee payment: 4 |
|
EAL | Se: european patent in force in sweden |
Ref document number: 92907909.3 |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 |
|
ET | Fr: translation filed | ||
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2068710 Country of ref document: ES Kind code of ref document: T3 |
|
REG | Reference to a national code |
Ref country code: GR Ref legal event code: FG4A Free format text: 3015377 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19960225 Ref country code: DK Effective date: 19960225 |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: EBP |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Effective date: 19960831 Ref country code: GR Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY Effective date: 19960831 |
|
REG | Reference to a national code |
Ref country code: GR Ref legal event code: MM2A Free format text: 3015377 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20081031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080229 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20090216 Year of fee payment: 18 Ref country code: AT Payment date: 20090107 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20090210 Year of fee payment: 18 Ref country code: DE Payment date: 20090227 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20090106 Year of fee payment: 18 Ref country code: CH Payment date: 20090122 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20090318 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20090206 Year of fee payment: 18 Ref country code: IT Payment date: 20090213 Year of fee payment: 18 |
|
BERE | Be: lapsed |
Owner name: *TECHNOLOGY APPLICATIONS GROUP INC. Effective date: 20100228 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: V1 Effective date: 20100901 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
EUG | Se: european patent has lapsed | ||
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20100225 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100228 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100225 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100901 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100901 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100228 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20110308 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100225 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100225 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110307 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100226 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100226 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: D3 Effective date: 20131202 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20090206 Year of fee payment: 18 |
|
PGRI | Patent reinstated in contracting state [announced from national office to epo] |
Ref country code: FR Effective date: 20131202 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20140213 |
|
PGRI | Patent reinstated in contracting state [announced from national office to epo] |
Ref country code: FR Effective date: 20131202 |