Nothing Special   »   [go: up one dir, main page]

EP0426832B1 - Process for reducing dyes - Google Patents

Process for reducing dyes Download PDF

Info

Publication number
EP0426832B1
EP0426832B1 EP90908918A EP90908918A EP0426832B1 EP 0426832 B1 EP0426832 B1 EP 0426832B1 EP 90908918 A EP90908918 A EP 90908918A EP 90908918 A EP90908918 A EP 90908918A EP 0426832 B1 EP0426832 B1 EP 0426832B1
Authority
EP
European Patent Office
Prior art keywords
potential
dye
reducing agent
cathode
reduction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP90908918A
Other languages
German (de)
French (fr)
Other versions
EP0426832A1 (en
Inventor
Thomas Bechtold
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Verein Zur Forderung der Forschung u Entwicklung der Textilwirts
Original Assignee
Verein Zur Forderung der Forschung u Entwicklung der Textilwirts
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Verein Zur Forderung der Forschung u Entwicklung der Textilwirts filed Critical Verein Zur Forderung der Forschung u Entwicklung der Textilwirts
Priority to AT9090908918T priority Critical patent/ATE105345T1/en
Publication of EP0426832A1 publication Critical patent/EP0426832A1/en
Application granted granted Critical
Publication of EP0426832B1 publication Critical patent/EP0426832B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P1/00General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed
    • D06P1/22General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed using vat dyestuffs including indigo
    • D06P1/221Reducing systems; Reducing catalysts
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P5/00Other features in dyeing or printing textiles, or dyeing leather, furs, or solid macromolecular substances in any form
    • D06P5/20Physical treatments affecting dyeing, e.g. ultrasonic or electric
    • D06P5/2016Application of electric energy

Definitions

  • the invention relates to a process for the reduction of dyes in aqueous solution with pH> 9, using a reducing agent with a redox potential of over 400 mV, which is present in a reduced and oxidized form, a pair of electrodes being introduced into the solution, the Cathode potential is kept below the value at which hydrogen evolution occurs.
  • vat dyes for dyeing cellulose fibers have a considerable market share (approx. 12.5%, world consumption approx. 25,000 t / year).
  • This dye class is one of the high-quality dyes, particularly due to its high fastness properties.
  • the primarily non-fiber-insoluble dye particles are reduced to their alkali-soluble leuco form by reduction.
  • the reduced dye has a high affinity for the substrate and is now quickly absorbed by the dye.
  • the pull-up phase has ended, the leuco form is oxidized to fix the dye, forming the water-insoluble pigment.
  • the basic chemical structure of the dyes is often anthraquinone or indigoide.
  • sulfur dyes are inferior to vat dyes, but their price is very cheap, so that they have a relatively large market share in cellulose dyeing (25%, 50,000 t / year).
  • the sulfur dyes are used analogously to the vat dyes, with the reduction of the sulfur dyes being possible even at lower redox potentials.
  • Reducing agents are also used to destroy excess bleaching agents, reductive bleaching (wool) and reductive wastewater treatment (decolorization).
  • the main reducing agent for vat dyeing and for the reductive cleavage of azo dyes is Na2S2O4 sodium dithionite ("Hydro"), which has a reduction potential of approximately -1000 mV in an alkaline environment.
  • Sulfinic acid derivatives (Rongalit types BASF) are used for reductions at higher temperatures (steaming processes, HT processes) (reduction potential at 50 o C approx. -1000 mV).
  • Sulfinic acid derivatives can be activated through the use of heavy metal compounds such as Ni-cyano complexes, Co complexes etc.
  • the use of anthraquinone compounds as accelerators for the reducing agents used has been proposed, but is practically not carried out.
  • reducing agents are thiourea dioxide (-1100 mV), hydroxyacetone (-810 mV) and sodium borohydride (-1100 mV).
  • indigo lies between the vat dyes and sulfur dyes.
  • hydroxyacetone / sodium hydroxide solution can also be used here as a reducing agent.
  • iron vitriol (FeSO4) lime vats, zinc lime vats and fermentation vats were used.
  • other reducing agents can also be used for sulfur dyeing.
  • the main reducing agents are Na2S and NaHS (reduction potential approx. -500 mV). Mixtures of glucose and sodium hydroxide were also used.
  • Na2S2O4 is a relatively expensive chemical that has to be imported by many countries.
  • a large excess of Na2S2O4 based on the amount theoretically required for the reduction, must be used.
  • the oxygen present in the liquor must first be removed, only then can the dye reduction begin.
  • atmospheric oxygen from the environment continuously consumes Na2S2O4.
  • the quantities used are approx. 1.25 to 2.5 kg of reducing agent per kg of dye.
  • the amount of reducing agent must be in the dyebath sufficient for complete reduction to complete the dyeing process.
  • the dye bath is therefore drained off with a relatively large amount of reducing agent. The oxidation therefore takes place in a new treatment bath, since otherwise the entire excess of reducing agent still present in the dye bath must also be oxidized.
  • the reducing agent bath leads to considerable oxygen consumption in the wastewater, which leads to wastewater problems.
  • the procurement costs are relatively low, but the wastewater problem is becoming increasingly important here, since not only oxygen depletion, but also considerable toxicity and odor problems occur.
  • the invention has for its object to avoid the disadvantages of the previous reducing agents. This is achieved in that a reducing agent is used whose redox potential (half-stage potential), increased by the charge transfer overvoltage for the return of the oxidized form of the reducing agent to the reduced one below the cathode potential.
  • the dye is therefore not reduced directly at the electrode, which has already been proposed, but has not proven successful. Rather, a reducing agent is used which reduces the dye in a conventional manner, is oxidized in the process and reaches the cathode in this oxidized form, where it is returned to its original state.
  • Redox systems of this type are called mediators in electrochemistry. The use of such mediators for the reduction of dyes was not obvious for several reasons. So far, mediators have hardly been watery per se
  • the cathode thus reduces the reversible redox system which, in turn, is able to reduce the dye after the reduction potential of the dye has been reached.
  • the upstream reversible redox system has the task of generating a continuously regenerable reduction potential in the dye liquor, as a result of which no further reducing agent has to be added to the dye liquor.
  • the proportion of reducing agent consumed by air oxidation is continuously renewed at the cathode. There are no secondary products from the addition of reducing agents in the dyeing liquor. Enrichment by the usually necessary addition of reducing agent does not occur either.
  • the dye bath After removing the unfixed dye (centrifugation, filtration, ..), the dye bath can be reused, only the liquor volume lost with the goods having to be replaced. Chemical consumption in the usual sense does not occur. Even the dye reoxidation can be carried out in the dye bath, which according to the literature should lead to an improvement in the rub fastness of the dye (doubtful). This procedure is not economically justifiable with the reducing agents currently used, since at the end of the dyeing process large amounts of reducing agent remain in the dye liquor and draining the dye liquor is more cost-effective. A closed recycling of the entire dyeing liquor without time-consuming reprocessing is out of the question, also because of the ongoing enrichment with secondary reducing agent products.
  • Various upstream redox systems can be used for indirect electrochemical dye reduction:
  • organic compounds with which the redox system can be implemented in particular those with an anthrachinoid basic structure have been investigated.
  • Experiments with anthraquinone mono- and disulfonic acids, hydroxyanthraquinones and mixed substituted products enabled the reduction of sulfur dyes and vat dyes with the corresponding potential.
  • the quantities of anthrachinoid compound used are between 0.5. 10 ⁇ 3 mol / l and 3. 10 ⁇ 3 mol / l, with concentrations of about 1.5. 10 ⁇ 3 mol / l are cheap.
  • the oxygen input from the air must also be taken into account. The amount of catalyst required can be reduced by a closed apparatus.
  • Inorganic compounds for the invention Can be used, one has to look above all under the metal complex salts.
  • the system Fe (II / III) triethanolamine sodium hydroxide solution is suitable as a reduction mediator.
  • the achievable potentials of up to -980 mV enable the reduction of all common vat dyes, indigoid dyes, sulfur dyes, azo dyes without the use of other reducing substances.
  • the device shown comprises a container 11, on the bottom of which there is a working cathode 1 made of copper.
  • a magnetic stirrer 8 is located above the working cathode 1 to accelerate the removal of the reduction products.
  • a reference electrode 4 (Ag / AgCl) is provided for measuring the cathode potential by means of the voltmeter 5.
  • the potential in solution is measured using a separate measuring electrode 3 made of copper or platinum, which is connected to the reference electrode. As a result, the potential increase in the solution can be tracked as a result of the reduction system that is building up.
  • a container 10 filled with textiles to be dyed is introduced into the electrolysis chamber on the cathode side with respect to the diaphragm 7, through which the solution is sucked by means of the liquor circulation pump 9, whereupon it returns to the container 11.
  • the temperatures were between 40 and 50 o C, but in itself the entire temperature range from 20 to 90 o C could be used.
  • the potential in the solution rises to -940 mV within 20 minutes and is held there for 1 hour.
  • the reduced dye on the goods is oxidized by rinsing.
  • the dyeing is completed by boiling soap according to the dye manufacturer's instructions.
  • the color depth achieved during coloring corresponds to the guide values of the dye manufacturers.
  • the potential in the solution rises to over -800 mV within 20 min and is held there for 40 min.
  • the dyeing temperature was increased to approx. 60 ° C
  • the working current rises to 60 mA
  • the potential in the solution reaches -870 mV.
  • the reduced dye on the goods is oxidized by rinsing.
  • the dyeing is completed by boiling soap according to the instructions of the dye manufacturer The color depth achieved corresponds to the guide values of the dye manufacturers.
  • the potential in the solution rises to over -870 mV within 60 min, especially after the addition of Na2SO4.
  • the dyeing temperature is increased to approx. 45 ° C.
  • the reduced dye on the goods is oxidized by rinsing.
  • the dyeing is completed by boiling soap according to the dye manufacturer's instructions.
  • the color depth achieved during coloring corresponds to the guide values of the dye manufacturers.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Coloring (AREA)

Abstract

In a process for reducing dyes in aqueous solution, a pair of electrodes is immersed in the solution. The cathode potential is maintained below the value at which hydrogen is evolved. A reducing agent is then used, the redox potential of which, increased by the charge transfer overvoltage required for the reduction of the oxidized form of the reducing agent to the reduced form at the cathode, is less than the cathode potential.

Description

Die Erfindung bezieht sich auf ein Verfahren zur Reduktion von Farbstoffen in wäßriger Lösung mit pH >9, unter Verwendung eines Reduktionsmittels mit einem Redoxpotential von über 400 mV, das in reduzierter und oxidierter Form gelöst vorliegt, wobei ein Elektrodenpaar in die Lösung eingebracht wird, dessen Kathodenpotential unterhalb des Wertes gehalten wird, bei dem Wasserstoffentwicklung auftritt.The invention relates to a process for the reduction of dyes in aqueous solution with pH> 9, using a reducing agent with a redox potential of over 400 mV, which is present in a reduced and oxidized form, a pair of electrodes being introduced into the solution, the Cathode potential is kept below the value at which hydrogen evolution occurs.

In der Textilveredlung besitzen Küpenfarbstoffe zur Färbung von Cellulosefasern einen beachtlichen Marktanteil (ca. 12,5 %, Weltverbrauch ca. 25 000 t/Jahr). Insbesondere aufgrund der hohen Echtheiten zählt diese Farbstoffklasse zu den hochwertigen Farbstoffen. Bei der Anwendung in der Färberei werden die primär nicht faseraffinen, unlöslichen Farbstoffpartikel durch Reduktion in ihre laugenlösliche Leukoform übergeführt. Der reduzierte Farbstoff besitzt hohe Affinität zum Substrat und zieht nun rasch auf das Färbegut auf. Ist die Aufziehphase beendet, erfolgt die Oxidation der Leukoform zur Fixierung des Farbstoffs, wobei sich das wasserunlösliche Pigment bildet. Die Farbstoffe sind in ihrer chemischen Grundstruktur häufig anthrachinoide oder indigoide Typen. Schwefelfarbstoffe sind den Küpenfarbstoffen in qualitativer Sicht unterlegen, preislich aber sehr günstig, sodaß sie einen relativ großen Marktanteil in der Cellulosefärberei besitzen (25 %, 50 000 t/Jahr). Die Anwendung der Schwefelfarbstoffe erfolgt analog den Küpenfarbstoffen, wobei die Reduktion der Schwefelfarbstoffe bereits bei niedrigeren Redoxpotentialen möglich ist.In textile finishing, vat dyes for dyeing cellulose fibers have a considerable market share (approx. 12.5%, world consumption approx. 25,000 t / year). This dye class is one of the high-quality dyes, particularly due to its high fastness properties. When used in dyeing, the primarily non-fiber-insoluble dye particles are reduced to their alkali-soluble leuco form by reduction. The reduced dye has a high affinity for the substrate and is now quickly absorbed by the dye. When the pull-up phase has ended, the leuco form is oxidized to fix the dye, forming the water-insoluble pigment. The basic chemical structure of the dyes is often anthraquinone or indigoide. In terms of quality, sulfur dyes are inferior to vat dyes, but their price is very cheap, so that they have a relatively large market share in cellulose dyeing (25%, 50,000 t / year). The sulfur dyes are used analogously to the vat dyes, with the reduction of the sulfur dyes being possible even at lower redox potentials.

Viele Textilfarbstoffe anderer Farbstoffklassen besitzen in ihren farbgebenden Molekülteilen Azo-Gruppen. Diese Azogruppen lassen sich reduktiv irreversibel spalten, was zur Zerstörung von Farbstoffen (Abziehen und Korrektur von Fehlfärbungen) ausgenutzt werden kann.Many textile dyes of other classes of dyes have azo groups in their coloring molecule parts. These azo groups can be reductively irreversible cleave what can be used to destroy dyes (peeling off and correcting incorrect stains).

Reduktionsmittel werden auch zur Zerstörung überschüssiger Bleichmittel, zur reduktiven Bleiche (Wolle) und reduktiven Abwasserbehandlung (Entfärbung) eingesetzt.Reducing agents are also used to destroy excess bleaching agents, reductive bleaching (wool) and reductive wastewater treatment (decolorization).

Das Hauptreduktionsmittel für Küpenfärbungen und zur reduktiven Spaltung von Azofarbstoffen ist Na₂S₂O₄ Natriumdithionit ("Hydro"), das im alkalischen Milieu ein Reduktionspotential von ca. -1000 mV aufweist. Sulfinsäurederivate (Rongalit-Typen BASF) werden für Reduktionen bei höheren Temperaturen (Dämpfprozesse, HT-Verfahren) eingesetzt (Reduktionspotential bei 50oC ca. -1000 mV). Sulfinsäurederivate können durch den Einsatz von Schwermetallverbindungen, wie Ni-Cyanokomplexen, Co-Komplexen etc. aktiviert werden. Der Einsatz von Anthrachinon-Verbindungen als Beschleuniger für die eingesetzten Reduktionsmittel wurde vorgeschlagen, wird aber praktisch wenig durchgeführt.
Andere Reduktionsmittel sind Thioharnstoffdioxid (-1100 mV), Hydroxyaceton (-810 mV) und Natriumborhydrid (-1100 mV). Indigo liegt bezüglich des erforderlichen Reduktionspotentials (ca. -600 mV) zwischen den Küpenfarbstoffen und Schwefelfarbstoffen. Hier können neben "Hydro" auch Hydroxyaceton/Natronlauge als Reduktionsmittel eingesetzt werden. Historisch wurden Eisenvitriol (FeSO₄)-Kalk-Küpen, Zink-Kalk-Küpen und Gärungsküpen eingesetzt.
Für Schwefelfärbungen können aufgrund des niedrigeren erforderlichen Reduktionspotentials auch andere Reduktionsmittel verwendet werden. Hauptreduktionsmittel sind Na₂S und NaHS (Reduktionspotential ca. -500 mV). Auch Glucose/Natronlauge Mischungen wurden eingesetzt.
The main reducing agent for vat dyeing and for the reductive cleavage of azo dyes is Na₂S₂O₄ sodium dithionite ("Hydro"), which has a reduction potential of approximately -1000 mV in an alkaline environment. Sulfinic acid derivatives (Rongalit types BASF) are used for reductions at higher temperatures (steaming processes, HT processes) (reduction potential at 50 o C approx. -1000 mV). Sulfinic acid derivatives can be activated through the use of heavy metal compounds such as Ni-cyano complexes, Co complexes etc. The use of anthraquinone compounds as accelerators for the reducing agents used has been proposed, but is practically not carried out.
Other reducing agents are thiourea dioxide (-1100 mV), hydroxyacetone (-810 mV) and sodium borohydride (-1100 mV). With regard to the required reduction potential (approx. -600 mV), indigo lies between the vat dyes and sulfur dyes. In addition to "hydro", hydroxyacetone / sodium hydroxide solution can also be used here as a reducing agent. Historically, iron vitriol (FeSO₄) lime vats, zinc lime vats and fermentation vats were used.
Because of the lower reduction potential required, other reducing agents can also be used for sulfur dyeing. The main reducing agents are Na₂S and NaHS (reduction potential approx. -500 mV). Mixtures of glucose and sodium hydroxide were also used.

In verschiedenen indischen Arbeiten (vgl. "Dyeing with less chemicals" E. H. Daruwalla in TEXTILE ASIA, September 1975, Seiten 165-169) wurde bereits ein Verfahren der eingangs charakterisierten Art vorgeschlagen, bei welchem durch das Anlegen einer Gleichspannung der Verbrauch von Natriumdithionit verringert wird. Diese Verringerung ist darauf zurückzuführen, daß das Reduktionsmittel an der Kathode in eine Form übergeführt wird, welche ein erhöhtes Reduktionsvermögen aufweist. Durch die Reaktion mit dem Farbstoff zerfällt dieser Stoff in dieselben Produkte wie das Natriumdithionit selbst. Diese Produkte können bei der angelegten Spannung an der Kathode nicht regeneriert werden. Dabei liegt diese Spannung ohnedies in einer Höhe, die nur bei der verwendeten Quecksilberelektrode brauchbar ist, bei praktisch anwendbaren Elektrodenmaterialien aber bereits zu schädlicher Wasserstoffentwicklung führen würde.In various Indian works (cf. "Dyeing with less chemicals" EH Daruwalla in TEXTILE ASIA, September 1975, pages 165-169), a process of the type characterized at the beginning has been proposed, in which the consumption of sodium dithionite is reduced by applying a DC voltage . This reduction is due to the fact that the reducing agent is converted at the cathode into a form which has an increased reducing power. Due to the reaction with the dye, this substance breaks down into the same products as the sodium dithionite itself. These products cannot be regenerated with the voltage applied to the cathode. This voltage is in any case at a level which is only usable with the mercury electrode used, but which would already lead to harmful hydrogen evolution in practical electrode materials.

Aus der DE-A-13 95 67 und im wesentlichen auch aus der inhaltsähnlichen FR-A-319 390 ist ein Verfahren bekannt, bei dem durch die Einwirkung des elektrischen Stromes aus Natriumhydrogensulfit das Reduktionsmittel Natriumdithionit erzeugt wird, welches nun in der Lage ist, Indigo zu reduzieren. Beim bekannten Verfahren wird die Reduktion im sauren pH-Bereich begonnen und der pH-Wert wandert erst im Laufe des Verfahrens in den schwach alkalischen Bereich ab, wodurch eine Küpe entsteht. Entsprechend den Erkenntnissen über die Elektrolyse von Sulfitlösungen kommt dabei die kathodische Reduktion des Sulfits zum Erliegen, sodaß kein reversibles Redoxsystem mehr vorliegt. Die elektrochemische Bildung von Natriumdithionit aus Natriumhydrogensulfit/-sulfit gelingt also nur in sauren Lösungen, in alkalischen Lösungen liegt kein reversibles Redoxsystem im Sinne eines Mediators vor.From DE-A-13 95 67 and essentially also from the similar FR-A-319 390 a method is known in which the reducing agent sodium dithionite is produced by the action of the electric current from sodium bisulfite, which is now able to Reduce indigo. In the known method, the reduction is started in the acidic pH range and the pH value only migrates to the weakly alkaline range in the course of the process, as a result of which a vat is formed. According to the knowledge of the electrolysis of sulfite solutions, the cathodic reduction of the sulfite comes to a standstill, so that there is no longer a reversible redox system. The electrochemical formation of sodium dithionite from sodium hydrogen sulfite / sulfite is therefore only successful in acidic solutions, in alkaline solutions are not a reversible redox system in the sense of a mediator.

Die derzeit eingesetzten Reduktionsmittel führen zu verschiedenen Nachteilen bei ihrer Anwendung: Na₂S₂O₄ ist eine relativ teure Chemikalie, die von vielen Ländern eingeführt werden muß. Bei den Färbevorgängen muß ein großer Überschuß an Na₂S₂O₄, bezogen auf die theoretisch zur Reduktion benötigte Menge, eingesetzt werden. Im Färbebad muß zuerst der in der Flotte vorhandene Sauerstoff entfernt werden, erst danach kann die Farbstoffreduktion beginnen. Während des Färbevorganges wird durch Luftsauerstoff aus der Umgebung laufend Na₂S₂O₄ verbraucht. Die Einsatzmengen betragen pro kg Farbstoff ca. 1,25 bis 2,5 kg Reduktionsmittel.The reducing agents currently used lead to various disadvantages in their application: Na₂S₂O₄ is a relatively expensive chemical that has to be imported by many countries. In the dyeing processes, a large excess of Na₂S₂O₄, based on the amount theoretically required for the reduction, must be used. In the dye bath, the oxygen present in the liquor must first be removed, only then can the dye reduction begin. During the dyeing process, atmospheric oxygen from the environment continuously consumes Na₂S₂O₄. The quantities used are approx. 1.25 to 2.5 kg of reducing agent per kg of dye.

Durch die hohen Einsatzmengen kommt es zu einer Anreicherung von Oxidationsprodukten des Reduktionsmittels in der Färbeflotte. Eine Wiederverwertung der Färbeflotte wird dadurch nur in den wenigsten Fällen möglich. Die Reduktionsmittelmenge muß im Färbebad bis zur Beendigung des Färbevorgangs zur vollständigen Reduktion ausreichen. Das Färbebad wird daher mit einer relativ großen Reduktionsmittelmenge abgelassen. Die Oxidation erfolgt daher in einem neuen Behandlungsbad, da sonst der gesamte noch vorhandene Reduktionsmittelüberschuß im Färbebad mit oxidiert werden muß.The high amounts used lead to an accumulation of oxidation products of the reducing agent in the dyeing liquor. This means that the dyeing liquor can only be recycled in very few cases. The amount of reducing agent must be in the dyebath sufficient for complete reduction to complete the dyeing process. The dye bath is therefore drained off with a relatively large amount of reducing agent. The oxidation therefore takes place in a new treatment bath, since otherwise the entire excess of reducing agent still present in the dye bath must also be oxidized.

Das Reduktionsmittelbad führt im Abwasser zu einer beachtlichen Sauerstoffzehrung, was zu Abwasserproblemen führt. Bei der Verwendung von Sulfiden als Reduktionsmittel sind die Beschaffungskosten relativ gering, die Abwasserproblematik gewinnt hier aber laufend an Bedeutung, da hier neben der Sauerstoffzehrung auch beachtliche Toxizität und Geruchsprobleme auftreten.The reducing agent bath leads to considerable oxygen consumption in the wastewater, which leads to wastewater problems. When using sulfides as reducing agents, the procurement costs are relatively low, but the wastewater problem is becoming increasingly important here, since not only oxygen depletion, but also considerable toxicity and odor problems occur.

Der Erfindung liegt die Aufgabe zugrunde, die dargestellten Nachteile der bisherigen Reduktionsmittel zu vermeiden. Dies wird dadurch erreicht, daß ein Reduktionsmittel verwendet wird, dessen Redoxpotential (Halbstufenpotential),vermehrt um die Ladungstransferüberspannung zur an der Kathode stattfindenden Rückführung der oxidierten Form des Reduktionsmittels in die reduzierte,unterhalb des Kathodenpotentials liegt.The invention has for its object to avoid the disadvantages of the previous reducing agents. This is achieved in that a reducing agent is used whose redox potential (half-stage potential), increased by the charge transfer overvoltage for the return of the oxidized form of the reducing agent to the reduced one below the cathode potential.

Gemäß der Erfindung wird somit der Farbstoff nicht direkt an der Elektrode reduziert, was zwar bereits vorgeschlagen worden ist, sich jedoch nicht bewährt hat. Vielmehr wird ein Reduktionsmittel eingesetzt, das in üblicher Weise den Farbstoff reduziert, dabei    oxidiert wird und in dieser oxidierten Form an die Kathode gelangt, wo es wieder in seinen ursprünglichen Zustand rückgeführt wird. Redoxsysteme dieser Art bezeichnet man in der Elektrochemie als Mediatoren. Solche Mediatoren zur Reduktion von Farbstoffen anzuwenden, lag aus mehreren Gründen nicht nahe. Es wurden Mediatoren bisher an sich kaum in wäßrigerAccording to the invention, the dye is therefore not reduced directly at the electrode, which has already been proposed, but has not proven successful. Rather, a reducing agent is used which reduces the dye in a conventional manner, is oxidized in the process and reaches the cathode in this oxidized form, where it is returned to its original state. Redox systems of this type are called mediators in electrochemistry. The use of such mediators for the reduction of dyes was not obvious for several reasons. So far, mediators have hardly been watery per se

Lösung eingesetzt, im alkalischen Bereich nur ganz ausnahmsweise, und über einem pH-Wert 9 überhaupt nicht. Die bisher zur Reduktion von Farbstoffen eingesetzten Substanzen sind andererseits für das erfindungsgemäße Verfahren nicht verwendbar, da ihre Oxidationsprodukte nur bei Kathodenspannungen in den Grundzustand überführbar wären, bei denen längst eine unzumutbare Wasserstoffentwicklung an der Kathode stattfinden würde.Solution used, in the alkaline range only very exceptionally, and not at all above a pH value of 9. On the other hand, the substances used hitherto for the reduction of dyes cannot be used for the process according to the invention, since their oxidation products could only be converted into the ground state at cathode voltages at which an unreasonable development of hydrogen at the cathode would long ago take place.

Die Kathode reduziert also das reversible Redoxsystem, welches nach Erreichen des Reduktionspotentials des Farbstoffs seinerseits in der Lage ist, den Farbstoff zu reduzieren. Durch die Einstellung des optimalen Redoxpotentials in Lösung können Farbtonverschiebungen, wie sie durch überreduktion hervorgerufen werden, vermieden werden. Das vorgelagerte reversible Redoxsystem hat die Aufgabe, in der Färbeflotte ein laufend regenerierbares Reduktionspotential zu erzeugen, wodurch kein weiteres Reduktionsmittel der Färbeflotte zugegeben werden muß. Der durch Luftoxidation verbrauchte Anteil an Reduktionsmittel wird laufend an der Kathode wiedererneuert. In der Färbeflotte entstehen keine Folgeprodukte aus der Reduktionsmittelzugabe. Eine Anreicherung durch den üblicherweise notwendigen Nachsatz an Reduktionsmittel tritt ebenfalls nicht auf. Nach einer Entfernung des nicht fixierten Farbstoffs (Zentrifugation, Filtration,..) kann das Färbebad wiederverwendet werden, wobei nur das mit der Ware verlorene Flottenvolumen ersetzt werden muß. Ein Chemikalienverbrauch im üblichen Sinn tritt nicht auf. Sogar die Farbstoffwiederoxidation kann im Färbebad vorgenommen werden, was laut Literaturangabe zu einer Verbesserung der Reibechtheit des Farbstoffs führen soll (zweifelhaft). Diese Arbeitsweise ist bei den derzeit verwendeten Reduktionsmitteln nicht wirtschaftlich vertretbar, da am Ende des Färbeprozesses zu große Reduktionsmittelmengen in der färbeflotte verbleiben und ein Ablassen der Färbeflotte kostengünstiger ist. Eine geschlossene Wiederverwertung der gesamten Färbeflotte ohne aufwendige Aufarbeitung kommt hier auch aufgrund der laufenden Anreicherung mit Reduktionsmittelfolgeprodukten nicht in Frage.The cathode thus reduces the reversible redox system which, in turn, is able to reduce the dye after the reduction potential of the dye has been reached. By setting the optimal redox potential in solution, color shifts, such as those caused by over-reduction, can be avoided. The upstream reversible redox system has the task of generating a continuously regenerable reduction potential in the dye liquor, as a result of which no further reducing agent has to be added to the dye liquor. The proportion of reducing agent consumed by air oxidation is continuously renewed at the cathode. There are no secondary products from the addition of reducing agents in the dyeing liquor. Enrichment by the usually necessary addition of reducing agent does not occur either. After removing the unfixed dye (centrifugation, filtration, ..), the dye bath can be reused, only the liquor volume lost with the goods having to be replaced. Chemical consumption in the usual sense does not occur. Even the dye reoxidation can be carried out in the dye bath, which according to the literature should lead to an improvement in the rub fastness of the dye (doubtful). This procedure is not economically justifiable with the reducing agents currently used, since at the end of the dyeing process large amounts of reducing agent remain in the dye liquor and draining the dye liquor is more cost-effective. A closed recycling of the entire dyeing liquor without time-consuming reprocessing is out of the question, also because of the ongoing enrichment with secondary reducing agent products.

Der Einsatz der indirekten elektrochemischen Reduktion senkt daher nicht nur die Kosten an Reduktionschemikalien, sondern ermöglicht erstmalig auch die geschlossene Kreislaufführung der Färbeflotten nach einer Entfernung des Restfarbstoffs. Ein mit Ausnahme der Spülwässer abwasserfreies Färben ist dadurch möglich. Gerade die mit Chemikalien derzeit hoch belasteten Färbeflotten können vollständig im Kreislauf geführt werden.The use of indirect electrochemical reduction therefore not only reduces the costs of reducing chemicals, but also enables the dyeing liquors to be closed for the first time after the residual dye has been removed. With the exception of the rinse water, dyeing free of waste water is possible. It is precisely the dye liquors that are currently heavily contaminated with chemicals that can be completely recycled.

Verschiedene vorgelagerte Redoxsysteme können zur indirekten elektrochemischen Farbstoffreduktion eingesetzt werden:
Als organische Verbindungen, mit denen das Redoxsystem realisiert werden kann, wurden insbesondere solche mit anthrachinoider Grundstruktur untersucht. Versuche mit Anthrachinonmono- und disulfonsäuren, Hydroxyanthrachinonen und gemischt substituierten Produkten ermöglichten die Reduktion von Schwefelfarbstoffen und Küpenfarbstoffen mit entsprechenden Potentialen. Die Einsatzmengen an der anthrachinoiden Verbindung liegen zwischen 0,5 . 10⁻³ mol/l und 3 . 10⁻³ mol/l, wobei Konzentrationen von etwa 1,5 . 10⁻³ mol/l günstig sind. Zur Beurteilung der erforderlichen Einsatzmengen an Redoxkatalysator ist aber auch der Sauerstoffeintrag aus der Luft zu berücksichtigen. Durch eine geschlossene Apparatur kann die erforderliche Katalysatormenge reduziert werden.
Various upstream redox systems can be used for indirect electrochemical dye reduction:
As organic compounds with which the redox system can be implemented, in particular those with an anthrachinoid basic structure have been investigated. Experiments with anthraquinone mono- and disulfonic acids, hydroxyanthraquinones and mixed substituted products enabled the reduction of sulfur dyes and vat dyes with the corresponding potential. The quantities of anthrachinoid compound used are between 0.5. 10⁻³ mol / l and 3. 10⁻³ mol / l, with concentrations of about 1.5. 10⁻³ mol / l are cheap. To assess the required quantities of redox catalyst, the oxygen input from the air must also be taken into account. The amount of catalyst required can be reduced by a closed apparatus.

Anorganische Verbindungen, die für den erfindungsgemäßen Einsatz verwendbar sind, hat man vor allem unter den Metallkomplexsalzen zu suchen. Beispielsweise ist das System Fe(II/III)-Triethanolamin-Natronlauge als Reduktionsmediator geeignet. Die erreichbaren Potentiale von bis zu -980 mV ermöglichen die Reduktion aller gängigen Küpenfarbstoffe, indigoider Farbstoffe, Schwefelfarbstoffe, Azofarbstoffe ohne Einsatz von sonstigen reduzierenden Substanzen.Inorganic compounds for the invention Can be used, one has to look above all under the metal complex salts. For example, the system Fe (II / III) triethanolamine sodium hydroxide solution is suitable as a reduction mediator. The achievable potentials of up to -980 mV enable the reduction of all common vat dyes, indigoid dyes, sulfur dyes, azo dyes without the use of other reducing substances.

Dem Fachmann, dem die Lehre der Erfindung bekannt ist, ist es durchaus zuzumuten,weitere Reduktionsmittel zu finden, welche unter den vorgegebenen Verfahrensbedingungen als Mediatoren einsetzbar sind. Wichtig ist dabei, daß die Aktivität dieser Stoffe während der Nutzungsdauer höchstens geringfügig abnimmt, sodaß eine große Zahl von Reduktionszyklen gewährleistet ist. An der Elektrodenoberfläche soll ein rascher Umsatz erfolgen. Die Katalyse von Nebenreaktionen durch das Reduktionsmittel soll ausgeschlossen sein. Für die technische Anwendung ist natürlich auch noch geringe Toxizität zu fordern.The person skilled in the art, who is familiar with the teaching of the invention, can certainly be expected to find further reducing agents which can be used as mediators under the specified process conditions. It is important that the activity of these substances decreases at most slightly during the period of use, so that a large number of reduction cycles is guaranteed. Rapid conversion should take place on the electrode surface. The catalysis of side reactions by the reducing agent should be excluded. Of course, low toxicity is also required for technical applications.

Die Reduktionswirkung der verschiedenen Redoxsysteme wird im Rahmen dieser Beschreibung immer durch ihr Halbstufenpotential charakterisiert. An sich stellt sich ja bei jedem Potential ein bestimmtes Verhältnis zwischen der reduzierten und der oxidierten Form des verwendeten Stoffes ein. Für technisch einsetzbare Systeme muß aber eine gewisse Belastbarkeit gegeben sein, das erreichte Reduktionspotential darf nicht sofort zusammenbrechen. Praktisch bedeutet dies, daß man etwa in dem Bereich arbeiten wird, in Welchem reduzierte und oxidierte Spezies in etwa gleicher Menge vorliegen. Um dieses Potential festzustellen, muß nicht die Ausbildung eines Gleichgewichtszustandes abgewartet werden, es ist vielmehr auch möglich, dynamisch dieThe reduction effect of the various redox systems is always characterized in this description by their half-step potential. As such, a certain relationship between the reduced and the oxidized form of the substance used arises at each potential. For technically usable systems, however, a certain resilience must be given, the reduction potential achieved must not collapse immediately. In practice, this means that one will work in the area in which reduced and oxidized species are present in approximately the same amount. In order to determine this potential, it is not necessary to wait for an equilibrium to form, but rather it is also possible to dynamically develop the

Peakpotentiale der Cv-Kurven festzustellen, zwischen denen das Halbstufenpotential liegt.Determine peak potentials of the Cv curves between which the half-wave potential lies.

Anschließend wird die Erfindung anhand einer Einrichtung zur Durchführung des Verfahrens und mittels einiger Anwendungsbeispiele näher erläutert. Die Einrichtung zur Durchführung des Verfahrens ist in der einzigen Zeichnung schematisch dargestellt. Die in den Anwendungsbeispielen beschriebenen Färbe- und Entfärbeverfahren für Textilien fallen jedoch als solche nicht unter den Gegenstand der Patentansprüche.The invention is then explained in more detail using a device for carrying out the method and by means of some application examples. The device for carrying out the method is shown schematically in the single drawing. However, the dyeing and decolorization processes for textiles described in the application examples do not fall as such under the subject matter of the claims.

Die dargestellte Einrichtung umfaßt einen Behälter 11, an dessen Boden sich eine Arbeitskathode 1 aus Kupfer befindet. Zur Beschleunigung des Abtransports der Reduktionsprodukte befindet sich über der Arbeitskathode 1 ein Magnetrührer 8. Zur Messung des Kathodenpotentials mittels des Spannungsmessers 5 ist eine Referenzelektrode 4 (Ag/AgCl) vorgesehen. Die Messung des Potentials in Lösung erfolgt über eine eigene Meßelektrode 3 aus Kupfer oder Platin, die mit der Referenzelektrode verbunden wird. Dadurch ist der Potentialanstieg in der Lösung als Folge des sich aufbauenden Reduktionssystems verfolgbar.The device shown comprises a container 11, on the bottom of which there is a working cathode 1 made of copper. A magnetic stirrer 8 is located above the working cathode 1 to accelerate the removal of the reduction products. A reference electrode 4 (Ag / AgCl) is provided for measuring the cathode potential by means of the voltmeter 5. The potential in solution is measured using a separate measuring electrode 3 made of copper or platinum, which is connected to the reference electrode. As a result, the potential increase in the solution can be tracked as a result of the reduction system that is building up.

Wesentlich ist, daß die Arbeitsanode 2 durch ein Diaphragma 7 abgeschirmt wird, um in bekannter Weise eine Reoxidation an der Anode zu vermeiden. In den hinsichtlich des Diaphragmas 7 kathodenseitigen Elektrolysenraum wird ein mit zu färbenden Textilien gefüllter Behälter 10 eingebracht, durch den die Lösung mittels der Flottenumwälzpumpe 9 gesaugt wird, woraufhin sie wieder in den Behälter 11 gelangt.It is essential that the working anode 2 is shielded by a diaphragm 7 in order to avoid reoxidation at the anode in a known manner. A container 10 filled with textiles to be dyed is introduced into the electrolysis chamber on the cathode side with respect to the diaphragm 7, through which the solution is sucked by means of the liquor circulation pump 9, whereupon it returns to the container 11.

Durch Verwendung von Kathodenmaterial mit hoher Wasserstoffüberspannung kann je nach Laugengehalt mittels des Netzgerätes 6 ein Arbeitspotential von bis zu -1200 mV an der Kathode realisiert werden, ohne daß es zu Wasserstoffentwicklung kommt.By using cathode material with high hydrogen overvoltage, depending on the alkali content, a power potential of up to -1200 mV can be realized at the cathode by means of the power supply unit 6, without the development of hydrogen.

Bei den anschließend beschriebenen Versuchen lagen die Temperaturen zwischen 40 und 50oC, an sich wäre jedoch der gesamte Temperaturbereich von 20 bis 90oC verwendbar.In the experiments described below, the temperatures were between 40 and 50 o C, but in itself the entire temperature range from 20 to 90 o C could be used.

Anwendungsbeispiel 1Application example 1 Reduktion eines Küpenfarbstoffs - Indanthrenblau GCReduction of a vat dye - indanthrene blue GC

Verfahrenstechnische Bedingungen:
Ausziehverfahren Flottenverhältnis 1:20
Warengewicht: 6,6 g Bw (100%) Flottenvolumen 130 ml
Farbtiefe: 3% (197 mg Farbstoff)
Färbebad: 4 g/l NaOH, 2 g/l Triethanolamin, 0,5 g/l Fe₂(SO₄)₃ Die Arbeitskathode besteht aus Cu (Fläche 36 cm²), die Arbeitsanode besteht aus Pt (Fläche 10 cm²). Das Arbeitspotential der Cu-Kathode beträgt -1150 mV gegen eine AgCl-Referenzelektrode. Die Ware wird bei 40°C mit der Lauge benetzt. Nach der Zugabe des Redoxsystems und dem Einschalten des Arbeitsstroms (ca. 35 mA) steigt das Potential in der Lösung innnerhalb von 20 min auf -940 mV an und wird dort 1 Stunde gehalten. Der auf der Ware befindliche reduzierte Farbstoff wird durch Spülen oxidiert. Die Fertigstellung der Färbung erfolgt durch kochendes Seifen entsprechend den Angaben der Farbstoffhersteller.
Process conditions:
Pull-out procedure liquor ratio 1:20
Product weight: 6.6 g Bw (100%) fleet volume 130 ml
Color depth: 3% (197 mg dye)
Dye bath: 4 g / l NaOH, 2 g / l triethanolamine, 0.5 g / l Fe₂ (SO₄) ₃ The working cathode consists of Cu (area 36 cm²), the working anode consists of Pt (area 10 cm²). The working potential of the Cu cathode is -1150 mV against an AgCl reference electrode. The goods are wetted with the lye at 40 ° C. After adding the redox system and switching on the working current (approx. 35 mA), the potential in the solution rises to -940 mV within 20 minutes and is held there for 1 hour. The reduced dye on the goods is oxidized by rinsing. The dyeing is completed by boiling soap according to the dye manufacturer's instructions.

Die bei der Färbung erreichte Farbtiefe entspricht den Richtwerten der Farbstoffhersteller.The color depth achieved during coloring corresponds to the guide values of the dye manufacturers.

Anwendungsbeispiel 2Example of use 2 Reduktion eines Schwefelfarbstoffs - Hydrosollichtgrün 3BReduction of a sulfur dye - hydrosol light green 3B

Verfahrenstechnische Bedingungen:
Ausziehverfahren Flottenverhältnis 1:20
Warengewicht: 6,68 g Bw (100%) Flottenvolumen 135 ml
Farbtiefe: 5% (334 mg Farbstoff)
Färbebad: 8 g/l Na₂CO₃, 4 g/l Triethanolamin, 0,5 g/l Fe₂(SO₄)₃ Die Arbeitskathode besteht aus Cu (Fläche 36 cm², die Arbeitsanode besteht aus Pt (Fläche 10 cm²). Das Arbeitspotential der Cu-Kathode beträgt -1150 mV gegen eine AgCl-Referenzelektrode. Die Ware wird bei RT mit der Lauge benetzt. Nach der Zugabe des Redoxsystems und dem Einschalten des Arbeitsstroms (ca. 30 mA) steigt das Potential in der Lösung innerhalb von 20 min auf über -800 mV an und wird dort 40 min gehalten. Während dieser Zeit wurde die Färbetemperatur auf ca. 60°C erhöht, der Arbeitsstrom steigt dabei bis auf 60 mA an, das Potential in der Lösung erreicht -870 mV. Der auf der Ware befindliche reduzierte Farbstoff wird durch Spülen oxidiert. Die Fertigstellung der Färbung erfolgt durch kochendes Seifen entsprechend den Angaben der Farbstoffhersteller. Die bei der Färbung erreichte Farbtiefe entspricht den Richtwerten der Farbstoffhersteller.
Process conditions:
Pull-out procedure liquor ratio 1:20
Product weight: 6.68 g Bw (100%) fleet volume 135 ml
Color depth: 5% (334 mg dye)
Dyebath: 8 g / l Na₂CO₃, 4 g / l triethanolamine, 0.5 g / l Fe₂ (SO₄) ₃ The working cathode is made of Cu (area 36 cm², the working anode is made of Pt (area 10 cm²). The working potential of the Cu cathode is -1150 mV against an AgCl reference electrode. The goods are wetted with the alkali at room temperature. After the addition of the redox system and switching on the working current (approx. 30 mA) the potential in the solution rises to over -800 mV within 20 min and is held there for 40 min. During this time the dyeing temperature was increased to approx. 60 ° C, the working current rises to 60 mA, the potential in the solution reaches -870 mV. The reduced dye on the goods is oxidized by rinsing. The dyeing is completed by boiling soap according to the instructions of the dye manufacturer The color depth achieved corresponds to the guide values of the dye manufacturers.

Anwendungsbeispiel 3Example of use 3 Reduktion eines Azofarbstoffs - Remazolbrillantrot BBReduction of an azo dye - Remazolbrillantrot BB

Verfahrenstechnische Bedingungen:
Abziehversuch Flottenverhältnis 1:20
Warengewicht: 5,76 g Bw (100%) Flottenvolumen 115 ml
Farbtiefe: Ausgangsfärbung 10 g Farbst/kg Ware (KKV-gefärbt)
Färbebad: 8,8 g/l NaOH, 4 g/l Triethanolamin, 0,5 g/l Fe₂(SO₄)₃
Die Arbeitskathode besteht aus CU (Fläche 36 cm²), die Arbeitsanode besteht aus Pt (Fläche 10 cm²). Das Arbeitspotential der Cu-Kathode beträgt -1150 mV gegen eine AgCl-Referenzelektrode. Die Ware wird bei RT mit der Lauge benetzt. Nach der Zugabe des Redoxsystems und dem Einschalten des Arbeitsstroms (ca. 20 mA) steigt das Potential in der Lösung innerhalb von 20 min auf -450 mV an. Mit der Erhöhung der Temperatur auf 55°C steigt das Potential auf -800 bis -900 mV an und wird dort 1 Stunde gehalten. Der auf der Ware befindliche Azofarbstoff wird praktisch vollständig zerstört, was normalerweise durch eine Behandlung mit NaOH / Na₂S₂O₄ erreicht wird.
Process conditions:
Peeling test liquor ratio 1:20
Product weight: 5.76 g Bw (100%) fleet volume 115 ml
Color depth: initial color 10 g color / kg goods (KKV-colored)
Dyebath: 8.8 g / l NaOH, 4 g / l triethanolamine, 0.5 g / l Fe₂ (SO₄) ₃
The working cathode consists of CU (area 36 cm²), the working anode consists of Pt (area 10 cm²). The working potential of the Cu cathode is -1150 mV against an AgCl reference electrode. At RT, the goods are wetted with the lye. After adding the redox system and switching on the working current (approx. 20 mA), the potential in the solution rises to -450 mV within 20 min. As the temperature rises to 55 ° C, the potential rises to -800 to -900 mV and is held there for 1 hour. The azo dye on the goods is almost completely destroyed, which is normally achieved by treatment with NaOH / Na₂S₂O₄.

Anwendungsbeispiel 4Example of use 4 Reduktion eines indigoiden Farbstoffs BASF Brillantindigo 4B-DReduction of an indigo dye BASF Brillantindigo 4B-D

Verfahrenstechnische Bedingungen:
Ausziehverfahren Flottenverhältnis 1:20
Warengewicht: 7,0 g Bw (100%) Flottenvolumen 140 ml
Farbtiefe: 4% (280 mg Farbstoff)
Färbebad: 1,4 g/l NaOH, 30 g/l Na₂SO₄, 4 g/l Triethanolamin. 0,5 g/l FeSO₄ . 7H₂O
Die Arbeitskathode besteht aus Cu (Fläche 36 cm²), die Arbeitsanode besteht aus Pt (Fläche 10 cm²). Das Arbeitspotential der Cu-Kathode beträgt -1150 mV gegen eine AgCl-Referenzelektrode. Die Ware wird bei RT mit der Laufe benetzt. Nach der Zugabe des Redoxsystems und dem Einschalten des Arbeitsstroms (ca. 10-20 mA) steigt das Potential in der Lösung insbesondere nach der Zugabe des Na₂SO₄ innerhalb von 60 min auf über -870 mV an. Während dieser Zeit wird die Färbetemperatur auf ca. 45°C erhöht. Der auf der Ware befindliche reduzierte Farbstoff wird durch Spülen oxidiert. Die Fertigstellung der Färbung erfolgt durch kochendes Seifen entsprechend den Angaben der Farbstoffhersteller.
Process conditions:
Pull-out procedure liquor ratio 1:20
Goods weight: 7.0 g Bw (100%) fleet volume 140 ml
Color depth: 4% (280 mg dye)
Dyebath: 1.4 g / l NaOH, 30 g / l Na₂SO₄, 4 g / l triethanolamine. 0.5 g / l FeSO₄. 7H₂O
The working cathode consists of Cu (area 36 cm²), the working anode consists of Pt (area 10 cm²). The working potential of the Cu cathode is -1150 mV against an AgCl reference electrode. The goods are wetted with the barrel at RT. After adding the redox system and switching on the working current (approx. 10-20 mA), the potential in the solution rises to over -870 mV within 60 min, especially after the addition of Na₂SO₄. During this time the dyeing temperature is increased to approx. 45 ° C. The reduced dye on the goods is oxidized by rinsing. The dyeing is completed by boiling soap according to the dye manufacturer's instructions.

Die bei der Färbung erreichte Farbtiefe entspricht den Richtwerten der Farbstoffhersteller.The color depth achieved during coloring corresponds to the guide values of the dye manufacturers.

Anwendungsbeispiel 5Application example 5 Reduktion eines Schwefelfarbstoffs - Hydronblau 3RReduction of a sulfur dye - Hydron Blue 3R

Verfahrenstechnische Bedingungen:
Die Reduktion des Farbstoffs wurde kolorimetrisch erfaßt und ausgewertet.
Färbebad: 4 g/l NaOH, 0,5 g/l Anthrachinon-1,5-disulfonsäure, 10 mg/l Hydronblau 3R
Die Arbeitshathode besteht aus Cu (Fläche 88 cm²), die Arbeitsanode besteht aus Pt (Fläche 6 cm²). Das Arbeitspotential der Cu-Kathode beträgt -850 mV gegen eine AgCl-Referenzelektrode. Nach der Zugabe des Redoxsystems und dem Einschalten des Arbeitsstroms (ca. 10-20 mA) wird die Reduktion des Farbstoffs kolorimetrisch verfolgt. Bereits bei Raumtemperatur wird das vorgelagerte Anthrachinon-System innerhalb von 20 min bis zu ca. 34% reduziert (Erreichung des Halbstufenpotentials), der nun zugegebene Schwefelfarbstoff wird sofort quantitativ reduziert. Nach Abschalten des Arbeitsstromes kann die Rückoxidation des Schwefelfarbstoffs beobachtet werden.
Process conditions:
The reduction of the dye was recorded colorimetrically and evaluated.
Dye bath: 4 g / l NaOH, 0.5 g / l anthraquinone-1,5-disulfonic acid, 10 mg / l hydron blue 3R
The working cathode is made of Cu (area 88 cm²), the working anode is made of Pt (area 6 cm²). The working potential of the Cu cathode is -850 mV against an AgCl reference electrode. After adding the redox system and switching on the working current (approx. 10-20 mA) the reduction of the dye is monitored colorimetrically. Already at room temperature, the upstream anthraquinone system is reduced to approx. 34% within 20 minutes (reaching the half-step potential), the sulfur dye now added is immediately reduced quantitatively. After the working current has been switched off, the reoxidation of the sulfur dye can be observed.

Claims (6)

  1. Process for reducing dyes in aqueous solution with pH >9 using a reducing agent having a redox potential of above 400 mV and which is present dissolved in reduced and oxidized form, an electrode pair being introduced into the solution, whose cathode potential is kept below the value at which hydrogen evolution occurs, characterized in that use is made of a reducing agent, whose redox potential (half-wave potential), increased by the charge transfer overvoltage, is below the cathode potential for the return of the oxidized form of the reducing agent to the reduced form taking place on the cathode.
  2. Process according to claim 1, characterized in that use is made of a cathode of Cu, Zn, Pb or high-grade steel.
  3. Process according to claim 1 or 2, characterized in that use is made of a reducing agent with an anthraquinonoid basic structure.
  4. Process according to claim 3, characterized in that use is made of 0.5·10⁻³ mole/l to 3·10⁻³ mole/l, preferably approximately 1.5·10⁻³ mole/l, of the anthraquinonoid compound.
  5. Process according to claim 1 or 2, characterized in that a metal complex salt is used as the reducing agent.
  6. Process according to claim 5, characterized in that a mixture of 0.5·10⁻³ mole/l to 5·10⁻³ mole/l of iron (II) or iron (III) salt with triethanol amine is used.
EP90908918A 1989-06-01 1990-05-31 Process for reducing dyes Expired - Lifetime EP0426832B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT9090908918T ATE105345T1 (en) 1989-06-01 1990-05-31 PROCESSES FOR REDUCING DYE.

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
AT0132989A AT398316B (en) 1989-06-01 1989-06-01 METHOD FOR REDUCING DYE
AT1329/89 1989-06-01
PCT/AT1990/000052 WO1990015182A1 (en) 1989-06-01 1990-05-31 Process for reducing dyes

Publications (2)

Publication Number Publication Date
EP0426832A1 EP0426832A1 (en) 1991-05-15
EP0426832B1 true EP0426832B1 (en) 1994-05-04

Family

ID=3511548

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90908918A Expired - Lifetime EP0426832B1 (en) 1989-06-01 1990-05-31 Process for reducing dyes

Country Status (6)

Country Link
US (1) US5244549A (en)
EP (1) EP0426832B1 (en)
AT (1) AT398316B (en)
DE (1) DE59005612D1 (en)
ES (1) ES2054358T3 (en)
WO (1) WO1990015182A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001046497A2 (en) * 1999-12-22 2001-06-28 Dystar Textilfarben Gmbh & Co. Deutschland Kg Method for electrochemically reducing reducible dyes
DE102004040601A1 (en) * 2004-08-21 2006-03-02 Dystar Textilfarben Gmbh & Co. Deutschland Kg Novel liquid quinoneimine sulfur dye compositions and processes for their preparation and their use for dyeing cellulosic material

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE59107584D1 (en) * 1990-12-03 1996-04-25 Verein Zur Foerderung Der Fors METHOD FOR REDUCING TEXTILE DYES
TW251325B (en) * 1993-03-30 1995-07-11 Basf Ag
DE19513839A1 (en) * 1995-04-12 1996-10-17 Basf Ag Process for the electrochemical reduction of vat dyes
DE19723889A1 (en) * 1997-06-06 1998-12-10 Consortium Elektrochem Ind System for the electrochemical delignification of lignocellulosic materials and method for its use
AT408455B (en) * 1997-09-04 2001-12-27 Basf Ag METHOD FOR REDUCING SULFUR DYES
AU1146500A (en) 1998-11-24 2000-06-13 Otmar Dossenbach Method and apparatus for reducing vat and sulfur dyes
DE19919746A1 (en) * 1999-04-29 2000-11-02 Basf Ag Process for the preparation of aqueous alkaline solutions of reduced indigoid dyes
DE10010060A1 (en) * 2000-03-02 2001-09-06 Dystar Textilfarben Gmbh & Co Mediator system for alkaline vat or sulfur dyeing of cellulose textiles comprises electrochemically-active polyvalent metal ions, hydroxy group-containing complexer and salt of an electrochemically-inactive polyvalent metal
DE10010059A1 (en) * 2000-03-02 2001-09-06 Dystar Textilfarben Gmbh & Co Mediator system especially for alkaline vat or sulfur dyeing of cellulose textiles comprises polyvalent metal ions, an amino group-containing complexer and a hydroxy group-containing complexer
DE10161265A1 (en) * 2001-12-13 2003-06-26 Dystar Textilfarben Gmbh & Co Changing color of dyed textile substrate by treatment with electrochemically generated aqueous solution of reducing or oxidizing agents while controlling cell current
DE10234825A1 (en) * 2002-07-31 2004-02-19 Dystar Textilfarben Gmbh & Co. Deutschland Kg Process for dyeing with sulfur and sulfur vat dyes
WO2004042138A1 (en) * 2002-11-06 2004-05-21 Tex-A-Tec Ag Method for the electrochemical reduction of vat and sulphur dyes
ES2222077B1 (en) * 2002-12-23 2006-03-16 Argelich, Termes Y Cia S.A. DYEING PROCESS WITH TUB AND COLORING COLORS BY ELECTROLYTIC REDUCTION.
HK1067926A2 (en) * 2004-01-20 2005-03-24 Hong Kong Productivity Council An electrochemical dye reducing method.
DE102005040469A1 (en) * 2005-08-26 2007-03-01 Dystar Textilfarben Gmbh & Co. Deutschland Kg Dye formulations of indigoid dyes, of vat and sulfur dyes containing inorganic and / or organic electrochemically active mediator systems and their use
EP1870494A1 (en) 2006-06-23 2007-12-26 ETH Zürich, ETH Transfer Electrochemical reactor
US8291683B2 (en) * 2010-02-13 2012-10-23 Ruetenik Monty L Equine exercise boot assembly and method
CN102174731B (en) * 2011-03-04 2012-11-07 东华大学 Dyeing device for electrochemical reduction
CN102154793A (en) * 2011-03-23 2011-08-17 东华大学 Dyeing apparatus for electrochemical reduction of cotton yarns
CN102433770A (en) * 2011-08-31 2012-05-02 常州耀春格瑞纺织品有限公司 Electrochemical quick cleaning dyeing process for vat dye
BR112015004395A2 (en) 2012-08-30 2016-02-16 Cargill Inc sulfur dye reducing agent, process for making the reducing agent, use of the agent, method for reducing sulfur dyes and method for dyeing fabrics
CN108691116A (en) * 2018-05-24 2018-10-23 武汉纺织大学 A kind of conductive yarn electrochemical reduction dyeing device and method
WO2020109577A1 (en) 2018-11-30 2020-06-04 Sedo Engineering Sa Leucodye (such as leucoindigo) as dispersing aid
EP3887577B1 (en) 2018-11-30 2022-12-07 Sedo Engineering SA By-products (impurity) removal
EP3887576B1 (en) 2018-11-30 2022-12-21 Sedo Engineering SA Electrochemical reactor and its cleaning or regeneration
CN113416967B (en) * 2021-06-17 2022-09-06 武汉纺织大学 Method for recycling indigo dye in waste jeans and fabric dyeing method
CN113549938B (en) * 2021-06-17 2022-06-21 武汉纺织大学 Method for recycling indigo in waste denim laser waste ash
WO2023161441A2 (en) 2022-02-25 2023-08-31 Laboratoire Biosthetique Kosmetik Gmbh & Co. Kg Colorant composition comprising leucoindigo for coloring fibers and fabrics

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE139567C (en) *
FR319390A (en) * 1902-03-07 1902-11-11 Cie Parisienne De Couleurs D A Process for the reduction of indigo
FR384866A (en) * 1907-02-18 1908-04-24 Baudot Et Cie Soc Process for the penetration and electrical oxidation of dye products in the dyeing of fibers and fabrics
DE534464C (en) * 1928-06-21 1931-09-28 Walter Haendel Process for dyeing and patterning fabrics, knitted goods, braids, leather and other substances made from vegetable and animal fibers by electrolytic decomposition of a solution in the material
US2147635A (en) * 1938-02-08 1939-02-21 Du Pont Dyestuff pastes and process for applying the same
US2433632A (en) * 1942-12-23 1947-12-30 Rca Corp Fibrous sheet material for the electrolytic formation of azo dye image records thereon
US2729726A (en) * 1953-08-31 1956-01-03 Ite Circuit Breaker Ltd Position indicator for enclosed disconnect switch
US3518038A (en) * 1965-10-20 1970-06-30 Allied Chem Electrographic recording mixture containing a morpholinyl diphenyl methane and 2 triphenyl methane
BE757171A (en) * 1969-10-08 1971-04-07 Basf Ag PROCESS FOR DYING AND PRINTING TEXTILE MATERIALS
DE2263138C3 (en) * 1972-12-22 1978-06-29 The Bombay Textile Research Association, Bombay (Indien) Process for dyeing textile material with vat dyes and apparatus therefor
FR2265901B1 (en) * 1974-04-02 1977-10-14 Bombay Textile Res Assoc
DE3065361D1 (en) * 1979-07-02 1983-11-24 Hoechst Ag Two-phase printing process for the manufacture of conversion style and discharge resist articles
US4394227A (en) * 1981-03-05 1983-07-19 Ciba-Geigy Ag Electrochemical process for the preparation of benzanthrones and planar, polycyclic aromatic oxygen-containing compounds
SU1183585A1 (en) * 1982-04-23 1985-10-07 Таджикский государственный университет им.В.И.Ленина Method of dyeing textile material of cotton, polyamide and their blends
DK153412C (en) * 1984-11-22 1988-12-19 Ferring A S PROCEDURE FOR THE PREPARATION OF P-AMINOPHENOLS BY ELECTROLYSE

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001046497A2 (en) * 1999-12-22 2001-06-28 Dystar Textilfarben Gmbh & Co. Deutschland Kg Method for electrochemically reducing reducible dyes
WO2001046497A3 (en) * 1999-12-22 2001-12-13 Dystar Textilfarben Gmbh & Co Method for electrochemically reducing reducible dyes
DE102004040601A1 (en) * 2004-08-21 2006-03-02 Dystar Textilfarben Gmbh & Co. Deutschland Kg Novel liquid quinoneimine sulfur dye compositions and processes for their preparation and their use for dyeing cellulosic material

Also Published As

Publication number Publication date
EP0426832A1 (en) 1991-05-15
AT398316B (en) 1994-11-25
WO1990015182A1 (en) 1990-12-13
ES2054358T3 (en) 1994-08-01
US5244549A (en) 1993-09-14
DE59005612D1 (en) 1994-06-09
ATA132989A (en) 1994-03-15

Similar Documents

Publication Publication Date Title
EP0426832B1 (en) Process for reducing dyes
EP1056900B1 (en) Method and apparatus for reducing vat and sulfur dyes
DE10161265A1 (en) Changing color of dyed textile substrate by treatment with electrochemically generated aqueous solution of reducing or oxidizing agents while controlling cell current
EP0513291B1 (en) Process for reducing textile dyestuffs
DE2803289C2 (en)
DE19513839A1 (en) Process for the electrochemical reduction of vat dyes
DE3209533A1 (en) REACTIVE DYE MIXTURE AND METHOD FOR COLORING CELLULOSE FIBERS
EP1527228B1 (en) Method for dyeing with sulphur and sulphur vat dyes
AT408455B (en) METHOD FOR REDUCING SULFUR DYES
DE2638236C3 (en) Process for dyeing leather by the simultaneous use of acidic and basic dyes
DE410180C (en) Process for the reduction of organic or inorganic substances using sodium amalgam
DE3721765C2 (en)
DE10010059A1 (en) Mediator system especially for alkaline vat or sulfur dyeing of cellulose textiles comprises polyvalent metal ions, an amino group-containing complexer and a hydroxy group-containing complexer
DE2727112A1 (en) PROCESS FOR PRE-CLEANING AND COLORING TEXTILE MATERIALS
DE4320867A1 (en) Process for dyeing cellulosic textile materials with vat dyes or sulphur dyes
DE10010060A1 (en) Mediator system for alkaline vat or sulfur dyeing of cellulose textiles comprises electrochemically-active polyvalent metal ions, hydroxy group-containing complexer and salt of an electrochemically-inactive polyvalent metal
DE2011387A1 (en) Improved process for vat dyeing of textiles
DE3437717C2 (en)
DE1912678C3 (en) Process for dyeing cellulose materials with sulfur vat dyes of the carbazole series
DE208998C (en)
WO2006084840A1 (en) Method for the electrochemical decoloration of indigo-containing aqueous dispersions
WO2007023132A2 (en) Dye preparations of indigo dyes, vat or sulphur dyes containing inorganic and/or organic electrochemically active mediator systems and to the use thereof
DE294666C (en)
DE2555046A1 (en) PROCESS FOR OXIDATIVE AFTER-TREATMENT WITH SULFUR DYES OF DYED OR PRINTED TEXTILE MATERIALS
DE843400B (en) Process for evenly dyeing and dyeing densely packed cellulose fibers

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19910107

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT CH DE ES FR GB IT LI SE

17Q First examination report despatched

Effective date: 19920506

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE ES FR GB IT LI SE

REF Corresponds to:

Ref document number: 105345

Country of ref document: AT

Date of ref document: 19940515

Kind code of ref document: T

ITF It: translation for a ep patent filed
REF Corresponds to:

Ref document number: 59005612

Country of ref document: DE

Date of ref document: 19940609

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19940517

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2054358

Country of ref document: ES

Kind code of ref document: T3

EAL Se: european patent in force in sweden

Ref document number: 90908918.7

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19980514

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990531

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: VEREIN ZUR FOERDERUNG DER FORSCHUNG UND ENTWICKLUN

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20050506

Year of fee payment: 16

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: PATENTANWAELTE SCHAAD, BALASS, MENZL & PARTNER AG

Ref country code: CH

Ref legal event code: PUE

Owner name: DYSTAR TEXTILFARBEN GMBH & CO. DEUTSCHLAND KG

Free format text: BASF AKTIENGESELLSCHAFT##67056 LUDWIGSHAFEN (DE) -TRANSFER TO- DYSTAR TEXTILFARBEN GMBH & CO. DEUTSCHLAND KG#INDUSTRIEPARK HOECHST#65926 FRANKFURT (DE)

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060601

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

EUG Se: european patent has lapsed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20090605

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20090521

Year of fee payment: 20

Ref country code: DE

Payment date: 20090529

Year of fee payment: 20

Ref country code: FR

Payment date: 20090515

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20090513

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20090527

Year of fee payment: 20

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20100601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20100601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20100530

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20100531