EP0422973A1 - Refrigeration process and apparatus using a refrigerant mixture - Google Patents
Refrigeration process and apparatus using a refrigerant mixture Download PDFInfo
- Publication number
- EP0422973A1 EP0422973A1 EP90402595A EP90402595A EP0422973A1 EP 0422973 A1 EP0422973 A1 EP 0422973A1 EP 90402595 A EP90402595 A EP 90402595A EP 90402595 A EP90402595 A EP 90402595A EP 0422973 A1 EP0422973 A1 EP 0422973A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- condenser
- mixture
- cooling
- light constituent
- residue
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 24
- 238000005057 refrigeration Methods 0.000 title claims abstract description 11
- 238000000034 method Methods 0.000 title claims description 15
- 239000003507 refrigerant Substances 0.000 title description 5
- 238000009434 installation Methods 0.000 claims description 13
- 239000000470 constituent Substances 0.000 claims description 11
- 238000001816 cooling Methods 0.000 claims description 11
- 239000001257 hydrogen Substances 0.000 claims description 11
- 229910052739 hydrogen Inorganic materials 0.000 claims description 11
- 238000009833 condensation Methods 0.000 claims description 9
- 230000005494 condensation Effects 0.000 claims description 9
- 238000009834 vaporization Methods 0.000 claims description 8
- 230000008016 vaporization Effects 0.000 claims description 8
- 230000006835 compression Effects 0.000 claims description 7
- 238000007906 compression Methods 0.000 claims description 7
- 239000012530 fluid Substances 0.000 claims description 6
- 239000007789 gas Substances 0.000 claims description 4
- 239000012466 permeate Substances 0.000 claims description 4
- 239000001307 helium Substances 0.000 claims description 3
- 229910052734 helium Inorganic materials 0.000 claims description 3
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 claims description 3
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 4
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 24
- 239000001294 propane Substances 0.000 description 12
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 7
- 150000002431 hydrogen Chemical class 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 239000004760 aramid Substances 0.000 description 1
- 229920003235 aromatic polyamide Polymers 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000012510 hollow fiber Substances 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B1/00—Compression machines, plants or systems with non-reversible cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B9/00—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
- F25B9/002—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
- F25B9/006—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant containing more than one component
Definitions
- the present invention relates to a refrigeration process and installation using a refrigerant mixture. It relates firstly to a refrigeration process of the type in which a gas mixture is subjected to a cycle comprising steps of compression at a high pressure of the cycle, of condensation by cooling at high pressure, of expansion at a low pressure of the cycle and spraying at low pressure.
- the object of the invention is to provide a technique applicable to installations of relatively small size and which, with a single cycle compressor, makes it possible to lower the cold temperature in a simple manner.
- the invention relates to a process of the aforementioned type, characterized in that: - using a mixture comprising a heavy fraction and at least one light constituent; - Most of said light constituent is separated from the heavy fraction by permeation between a compression step and the condensation step by cooling; - The condensation step is subjected to cooling and the expansion step only to the residue of the permeation; - the permeate is added to said relaxed residue; and - The entire mixture is subjected to the vaporization step.
- the invention also relates to an installation intended for the implementation of such a method.
- This installation of the type comprising a loop which comprises in series a compressor, a condenser, expansion means and vaporization passages of an indirect heat exchanger which also has passages for a fluid to be refrigerated, this loop being traversed by a mixture which is gaseous at the suction of the compressor, is characterized in that: - The gas mixture comprises a heavy fraction and at least one light constituent; and - the loop includes between the compressor and the condenser a permeator much more permeable to said light constituent than to said heavy fraction, the high pressure side of which is connected to the condenser and the low pressure side of which is connected to the outlet of the expansion means.
- the installation shown in the drawing is intended to cool a fluid circulating in a pipe 1. It includes a single cycle compressor 2, a permeator 3, a condenser 4, an indirect heat exchanger 5 and an expansion valve 6.
- the refrigeration cycle uses a refrigerant mixture consisting of a heavy fraction and at least one light component that can be easily separated from it by permeation, typically a mixture of propane and hydrogen and / or helium.
- This mixture arrives in the gaseous state, via a pipe 7, to the compressor 2 under a low pressure P1 approximately equal to atmospheric pressure, and is compressed to the pressure P2.
- the compressed mixture passes, via a line 8, into the high pressure space 3A of the permeator 3, which separates most of the hydrogen therefrom by selective permeation.
- the hydrogen thus passes into the low pressure space 3B of the permeator.
- the residue from the permeation essentially consisting of propane, is evacuated from the space 3A via a pipe 9. This passes through the water condenser 4, from which the propane leaves in the liquid state under pressure P2 and at the high temperature T2 close to the ambient temperature.
- the liquid propane then passes through the first cooling passages 10 of the exchanger 5, sub-cools there at the low temperature T1 of the cycle, then is expanded in the valve 6 to a low pressure P1, which is advantageously close of atmospheric pressure.
- the permeate that is to say hydrogen, is also cooled to temperature T1 in second cooling passages 11 of the exchanger 5, then is combined in a line 12 with expanded propane.
- the mixture thus reconstituted in two-phase form passes through vaporization-heating passages 13 of the exchanger 5, counter-current to the direction of circulation in passages 10 and 11 and in passages 14 of the same exchanger through which the fluid circulates. to cool.
- propane vaporizes in the presence of hydrogen.
- the pressure P1 and the temperature T2 being given, respectively equal to atmospheric pressure and to ambient temperature for economic reasons: the pressure P2, which is that necessary to obtain condensation by circulation of water, is the same as if the refrigerant fluid was pure propane, since the hydrogen is separated from it upstream of the condenser 4. This pressure P2 is therefore significantly lower than that which would be necessary in the absence of the permeator; and the temperature T1 is the temperature at which vaporization of propane begins in the presence of hydrogen at atmospheric pressure. This temperature is significantly lower than that achieved by propane alone.
- the light component is separated from the mixture when it has an unfavorable effect (before the condensation step), and is re-introduced into the mixture when it has a favorable effect (before the vaporization).
- the permeator 3 is suitable for separating the hydrogen from the other constituents of the mixture which is introduced therein, for example by means of a bundle of hollow fibers formed by a membrane with selective permeability.
- a membrane suitable for this application is based on an aromatic polyamide technology developed by DU PONT DE NEMOURS according to patent Re 30,351 (Reissue from US 3,899,309). Other examples are described in patents US 4,180,553 and US 4,230,463.
- the permeation parameters are adjusted so that the low pressure space 3B is substantially at the low pressure P1, in the vicinity of atmospheric pressure in l 'example considered.
- the permeation can be carried out at a pressure p lower than P2, it may be advantageous to compress the mixture only to this pressure p before subjecting it to permeation, only the residue then being compressed by a second compressor 2A at pressure P2, upstream of the exchanger 4.
- the compressor 2A can in particular constitute the last stage of the single cycle compressor.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
- Separation By Low-Temperature Treatments (AREA)
- Devices That Are Associated With Refrigeration Equipment (AREA)
- Compressor (AREA)
Abstract
Un constituant léger du mélange comprimé est séparé par perméation (en 3). La fraction lourde restante est condensée par de l'eau (en 4), sous-refroidie (en 5) et détendue (en 6). Le constituant léger, refroidi à la même température, est adjoint au condensat sous-refroidi, et l'ensemble est vaporisé sous la basse pression (en 13) pour produire la réfrigération désirée.A light component of the compressed mixture is separated by permeation (at 3). The remaining heavy fraction is condensed with water (in 4), sub-cooled (in 5) and expanded (in 6). The light component, cooled to the same temperature, is added to the sub-cooled condensate, and the assembly is vaporized under low pressure (at 13) to produce the desired refrigeration.
Description
La présente invention est relative à un procédé et à une installation de réfrigération utilisant un mélange réfrigérant. Elle concerne en premier lieu un procédé de réfrigération du type dans lequel on fait subir à un mélange gazeux un cycle comprenant des étapes de compression à une pression haute du cycle, de condensation par refroidissement à la pression haute, de détente à une pression basse du cycle et de vaporisation à la pression basse.The present invention relates to a refrigeration process and installation using a refrigerant mixture. It relates firstly to a refrigeration process of the type in which a gas mixture is subjected to a cycle comprising steps of compression at a high pressure of the cycle, of condensation by cooling at high pressure, of expansion at a low pressure of the cycle and spraying at low pressure.
Les cycles de réfrigération classiques utilisant comme fluide réfrigérant un corps pur font évoluer ce fluide entre deux températures, basse T1 et haut T2, et entre deux pressions, basse P1 et haute P2. Pour que le cycle soit économique et fiable, on ne choisit pas P1 au-dessous de la pression atmosphérique ; par ailleurs, P2 est limitée vers le haut par une pression maximale inférieure à la pression critique PC du corps pur. En effet, au-delà de cette pression maximale, l'irréversibilité du cycle thermodynamique augmente considérablement. D'autre part, la température haute T2 est habituellement la température ambiante pour permettre d'utiliser un condenseur à eau ou à air.Conventional refrigeration cycles using a pure body as the refrigerant cause this fluid to evolve between two temperatures, low T1 and high T2, and between two pressures, low P1 and high P2. For the cycle to be economical and reliable, P1 is not chosen below atmospheric pressure; furthermore, P2 is limited upwards by a maximum pressure lower than the critical pressure PC of the pure body. Indeed, beyond this maximum pressure, the irreversibility of the thermodynamic cycle increases considerably. On the other hand, the high temperature T2 is usually the ambient temperature to allow the use of a water or air condenser.
Pour atteindre des températures froides plus basses, on a proposé la technique dite à cascade classique, mettant en oeuvre une succession de cycles frigorifiques utilisant chacun un corps pur. Cette solution est efficace mais coûteuse et peu fiable, car elle met en oeuvre un grand nombre de machines de compression.To reach lower cold temperatures, the so-called classic cascade technique has been proposed, implementing a succession of refrigeration cycles each using a pure body. This solution is effective but expensive and unreliable, because it implements a large number of compression machines.
Pour conserver un compresseur unique, on a proposé les procédés du type indiqué plus haut, suivant la technique dite "à cascade incorporée". Cette solution s'est révélée compliquée à mettre en oeuvre et ne se justifie que pour les grosses installations.To keep a single compressor, the methods of the type indicated above have been proposed, using the so-called "incorporated cascade" technique. This solution proved to be complicated to implement and is only justified for large installations.
L'invention a pour but de fournir une technique applicable à des installations de taille relativement petite et qui, avec un compresseur de cycle unique, permette d'abaisser de façon simple la température froide.The object of the invention is to provide a technique applicable to installations of relatively small size and which, with a single cycle compressor, makes it possible to lower the cold temperature in a simple manner.
A cet effet, l'invention a pour objet un procédé du type précité, caractérisé en ce que :
- on utilise un mélange comprenant une fraction lourde et au moins un constituant léger ;
- on sépare l'essentiel dudit constituant léger de la fraction lourde par perméation entre une étape de compression et l'étape de condensation par refroidissement ;
- on ne fait subir l'étape de condensation par refroidissement et l'étape de détente qu'au résidu de la perméation ;
- on adjoint le perméat audit résidu détendu ; et
- on fait subir l'étape de vaporisation à l'ensemble du mélange.To this end, the invention relates to a process of the aforementioned type, characterized in that:
- using a mixture comprising a heavy fraction and at least one light constituent;
- Most of said light constituent is separated from the heavy fraction by permeation between a compression step and the condensation step by cooling;
- The condensation step is subjected to cooling and the expansion step only to the residue of the permeation;
- the permeate is added to said relaxed residue; and
- The entire mixture is subjected to the vaporization step.
L'invention a également pour objet une installation destinée à la mise en oeuvre d'un tel procédé. Cette installation, du type comprenant une boucle qui comporte en série un compresseur, un condenseur, des moyens de détente et des passages de vaporisation d'un échangeur de chaleur indirect qui présente en outre des passages pour un fluide à réfrigérer, cette boucle étant parcourue par un mélange qui est gazeux à l'aspiration du compresseur, est caractérisée en ce que :
- le mélange gazeux comprend une fraction lourde et au moins un constituant léger ; et
- la boucle comporte entre le compresseur et le condenseur un perméateur nettement plus perméable audit constituant léger qu'à ladite fraction lourde, dont le côté haute pression est relié au condenseur et dont le côté basse pression est relié à la sortie des moyens de détente.The invention also relates to an installation intended for the implementation of such a method. This installation, of the type comprising a loop which comprises in series a compressor, a condenser, expansion means and vaporization passages of an indirect heat exchanger which also has passages for a fluid to be refrigerated, this loop being traversed by a mixture which is gaseous at the suction of the compressor, is characterized in that:
- The gas mixture comprises a heavy fraction and at least one light constituent; and
- the loop includes between the compressor and the condenser a permeator much more permeable to said light constituent than to said heavy fraction, the high pressure side of which is connected to the condenser and the low pressure side of which is connected to the outlet of the expansion means.
Un exemple de mise en oeuvre de l'invention va maintenant être décrit en regard du dessin annexé, sur lequel la figure unique représente schématiquement une installation de réfrigération conforme à l'invention.An example of implementation of the invention will now be described with reference to the accompanying drawing, in which the single figure schematically represents a refrigeration installation according to the invention.
L'installation représentée au dessin est destinée à refroidir un fluide circulant dans une conduite 1. Elle comprend un compresseur de cycle unique 2, un perméateur 3, un condenseur 4, un échangeur de chaleur indirect 5 et une vanne de détente 6.The installation shown in the drawing is intended to cool a fluid circulating in a pipe 1. It includes a
Le cycle de réfrigération utilise un mélange réfrigérant constitué d'une fraction lourde et d'au moins un constituant léger facilement séparable de celle-ci par perméation, typiquement un mélange de propane et d'hydrogène et/ou hélium. Ce mélange arrive à l'état gazeux, via une conduite 7, au compresseur 2 sous une pression basse P1 à peu près égale à la pression atmosphérique, et est comprimé à la pression P2. Le mélange comprimé passe, via une conduite 8, dans l'espace haute pression 3A du perméateur 3, qui en sépare l'essentiel de l'hydrogène par perméation sélective. L'hydrogène passe ainsi dans l'espace basse pression 3B du perméateur.The refrigeration cycle uses a refrigerant mixture consisting of a heavy fraction and at least one light component that can be easily separated from it by permeation, typically a mixture of propane and hydrogen and / or helium. This mixture arrives in the gaseous state, via a
Le résidu de la perméation, constitué essentiellement par le propane, est évacué de l'espace 3A via une conduite 9. Celle-ci traverse le condenseur à eau 4, d'où le propane sort à l'état liquide sous la pression P2 et à la température haute T2 voisine de la température ambiante.The residue from the permeation, essentially consisting of propane, is evacuated from the space 3A via a
Le propane liquide traverse ensuite des premiers passages de refroidissement 10 de l'échangeur 5, s'y sous-refroidit à la température basse T1 du cycle, puis est détendu dans la vanne 6 jusqu'à une pression basse P1, qui est avantageusement voisine de la pression atmosphérique.The liquid propane then passes through the
Le perméat, c'est-à-dire l'hydrogène, est également refroidi à la température T1 dans des seconds passages de refroidissement 11 de l'échangeur 5, puis est réuni dans une conduite 12 au propane détendu.The permeate, that is to say hydrogen, is also cooled to temperature T1 in
Le mélange ainsi reconstitué sous forme diphasique passe dans des passages de vaporisation-réchauffement 13 de l'échangeur 5, à contre-courant du sens de circulation dans les passages 10 et 11 et dans les passages 14 du même échangeur à travers lesquels circule le fluide à refroidir. Dans les passages 13, le propane se vaporise en présence d'hydrogène.The mixture thus reconstituted in two-phase form passes through vaporization-
On voit que, la pression P1 et la température T2 étant données, respectivement égales à la pression atmosphérique et à la température ambiante pour des raisons économiques :
- la pression P2, qui est celle nécessaire pour obtenir une condensation par circulation d'eau, est la même que si le fluide réfrigérant était du propane pur, puisque l'hydrogène en est séparé en amont du condenseur 4. Cette pression P2 est donc nettement inférieure à celle qui serait nécessaire en l'absence du perméateur ; et
- la température T1 est la température de début de vaporisation du propane en présence d'hydrogène sous la pression atmosphérique. Cette température est nettement inférieure à celle que permet d'atteindre le propane seul.We see that, the pressure P1 and the temperature T2 being given, respectively equal to atmospheric pressure and to ambient temperature for economic reasons:
the pressure P2, which is that necessary to obtain condensation by circulation of water, is the same as if the refrigerant fluid was pure propane, since the hydrogen is separated from it upstream of the
the temperature T1 is the temperature at which vaporization of propane begins in the presence of hydrogen at atmospheric pressure. This temperature is significantly lower than that achieved by propane alone.
En d'autres termes, le constituant léger est séparé du mélange lorsqu'il a un effet défavorable (avant l'étape de condensation ), et est ré-introduit dans le mélange lorsqu'il a un effet favorable (avant l'étape de vaporisation).In other words, the light component is separated from the mixture when it has an unfavorable effect (before the condensation step), and is re-introduced into the mixture when it has a favorable effect (before the vaporization).
Le perméateur 3 est adapté pour séparer l'hydrogène des autres constituants du mélange qui y est introduit, par exemple grâce à un faisceau de fibres creuses constituées par une membrane à perméabilité sélective. Un exemple de membrane convenant pour cette application est basé sur une technologie polyamide aromatique développée par DU PONT DE NEMOURS selon le brevet Re 30 351 (Reissue de US 3 899 309). D'autres exemples sont décrits dans les brevets US 4 180 553 et US 4 230 463. Les paramètres de la perméation sont réglés pour que l'espace basse pression 3B soit sensiblement à la pression basse P1, au voisinage de la pression atmosphérique dans l'exemple considéré.The permeator 3 is suitable for separating the hydrogen from the other constituents of the mixture which is introduced therein, for example by means of a bundle of hollow fibers formed by a membrane with selective permeability. An example of a membrane suitable for this application is based on an aromatic polyamide technology developed by DU PONT DE NEMOURS according to patent Re 30,351 (Reissue from US 3,899,309). Other examples are described in patents US 4,180,553 and US 4,230,463. The permeation parameters are adjusted so that the
A titre d'exemple numérique, un cycle propane classique, avec P1 = 1 bar absolu, P2 = 11 bars absolus, et T2 = + 30°C, permet d'obtenir le froid à - 42°C, qui est la température de vaporisation du propane sous 1 bar. Avec le perméateur 3 et un mélange 50 % propane, 50 % hydrogène, la vaporisation se termine vers - 57°C.As a numerical example, a conventional propane cycle, with P1 = 1 bar absolute, P2 = 11 bar absolute, and T2 = + 30 ° C, makes it possible to obtain cold at - 42 ° C, which is the temperature of spraying of propane under 1 bar. With permeator 3 and a mixture of 50% propane, 50% hydrogen, the vaporization ends at - 57 ° C.
En variante, comme indiqué en trait mixte au dessin, si la perméation peut s'effectuer à une pression p inférieure à P2, il peut être avantageux de ne comprimer le mélange que jusqu'à cette pression p avant de le soumettre à la perméation, seul le résidu étant ensuite comprimé par un second compresseur 2A à la pression P2, en amont de l'échangeur 4. Le compresseur 2A peut en particulier constituer le dernier étage de l'unique compresseur de cycle.As a variant, as indicated in phantom in the drawing, if the permeation can be carried out at a pressure p lower than P2, it may be advantageous to compress the mixture only to this pressure p before subjecting it to permeation, only the residue then being compressed by a second compressor 2A at pressure P2, upstream of the
Claims (12)
- on utilise un mélange comprenant une fraction lourde et au moins un constituant léger ;
- on sépare l'essentiel dudit constituant léger de la fraction lourde par perméation (en 3) entre une étape de compression (2) et 1 étape de condensation par refroidissement (4) ;
- on ne fait subir l'étape de condensation par refroidissement (4) et l'étape de détente (6) qu'au résidu de la perméation ;
- on adjoint le perméat audit résidu détendu ; et
- on fait subir l'étape de vaporisation à l'ensemble du mélange.1. A refrigeration process, of the type in which a gas mixture is subjected to a cycle comprising steps of compression at a high pressure of the cycle, of condensation by cooling at high pressure, of expansion at a low pressure of the cycle and of vaporization at low pressure, characterized in that:
- using a mixture comprising a heavy fraction and at least one light constituent;
- Most of said light constituent is separated from the heavy fraction by permeation (in 3) between a compression step (2) and 1 condensation step by cooling (4);
- the condensation step by cooling (4) and the expansion step (6) is only subjected to the residue of the permeation;
- the permeate is added to said relaxed residue; and
- The entire mixture is subjected to the vaporization step.
- le mélange gazeux comprend une fraction lourde et au moins un constituant léger ; et
- la boucle comporte, entre le compresseur (2) et le condenseur (4), un perméateur (3) nettement plus perméable audit constituant léger qu'à ladite fraction lourde, dont le côté haute pression (3A) est relié au condenseur (4) et dont le côté basse pression (38) est relié à la sortie des moyens de détente (6).7. Refrigeration mixture refrigeration installation, of the type comprising a loop which comprises in series a compressor (2), a condenser (4), expansion means (6) and vaporization passages (13) of a heat exchanger indirect heat (5) which also has passages (14) for a fluid to be refrigerated, this loop being traversed by a mixture which is gaseous at the suction of the compressor, characterized in that:
- The gas mixture comprises a heavy fraction and at least one light constituent; and
- the loop comprises, between the compressor (2) and the condenser (4), a permeator (3) clearly more permeable to said light constituent than to said heavy fraction, whose high pressure side (3A) is connected to the condenser (4 ) and the low pressure side (38) of which is connected to the outlet of the expansion means (6).
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR8913158 | 1989-10-09 | ||
FR8913158A FR2652884B1 (en) | 1989-10-09 | 1989-10-09 | METHOD AND INSTALLATION FOR REFRIGERATION USING A REFRIGERANT MIXTURE. |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0422973A1 true EP0422973A1 (en) | 1991-04-17 |
EP0422973B1 EP0422973B1 (en) | 1993-01-13 |
Family
ID=9386208
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP90402595A Expired - Lifetime EP0422973B1 (en) | 1989-10-09 | 1990-09-20 | Refrigeration process and apparatus using a refrigerant mixture |
Country Status (8)
Country | Link |
---|---|
US (1) | US5086623A (en) |
EP (1) | EP0422973B1 (en) |
JP (1) | JP3006692B2 (en) |
KR (1) | KR910008351A (en) |
AU (1) | AU6327690A (en) |
CA (1) | CA2027066A1 (en) |
DE (1) | DE69000766T2 (en) |
FR (1) | FR2652884B1 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5352272A (en) * | 1991-01-30 | 1994-10-04 | The Dow Chemical Company | Gas separations utilizing glassy polymer membranes at sub-ambient temperatures |
US5837032A (en) * | 1991-01-30 | 1998-11-17 | The Cynara Company | Gas separations utilizing glassy polymer membranes at sub-ambient temperatures |
US5234471A (en) * | 1992-02-04 | 1993-08-10 | E. I. Du Pont De Nemours And Company | Polyimide gas separation membranes for carbon dioxide enrichment |
US5769927A (en) * | 1997-01-24 | 1998-06-23 | Membrane Technology And Research, Inc. | Monomer recovery process |
US5785739A (en) * | 1997-01-24 | 1998-07-28 | Membrane Technology And Research, Inc. | Steam cracker gas separation process |
CN113340020A (en) | 2021-05-27 | 2021-09-03 | 五邑大学 | Refrigeration equipment applied to refrigerator |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4062197A (en) * | 1976-07-09 | 1977-12-13 | Hester Jarrett C | Absorption heating-cooling system |
FR2400173A1 (en) * | 1977-08-12 | 1979-03-09 | Electricite De France | Heat pump with wide range efficiency - has secondary circuit to heat refrigerant in liq. receiver |
DE3143534A1 (en) * | 1981-11-03 | 1983-06-01 | Joachim 2930 Varel Rieder | Continuously running absorption refrigeration unit without a refrigerant distillation process |
FR2529651A1 (en) * | 1982-07-05 | 1984-01-06 | Inst Francais Du Petrole | Cooling and/or heating by using electrochemical reactions. |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1866526A (en) * | 1928-02-07 | 1932-07-12 | Chicago Pneumatic Tool Co | Refrigerating apparatus |
KR930000852B1 (en) * | 1987-07-31 | 1993-02-06 | 마쓰시다덴기산교 가부시기가이샤 | Heat pump system |
-
1989
- 1989-10-09 FR FR8913158A patent/FR2652884B1/en not_active Expired - Fee Related
-
1990
- 1990-09-20 DE DE9090402595T patent/DE69000766T2/en not_active Expired - Fee Related
- 1990-09-20 EP EP90402595A patent/EP0422973B1/en not_active Expired - Lifetime
- 1990-09-28 AU AU63276/90A patent/AU6327690A/en not_active Abandoned
- 1990-10-01 US US07/591,076 patent/US5086623A/en not_active Expired - Lifetime
- 1990-10-03 JP JP2263964A patent/JP3006692B2/en not_active Expired - Fee Related
- 1990-10-05 CA CA002027066A patent/CA2027066A1/en not_active Abandoned
- 1990-10-08 KR KR1019900015916A patent/KR910008351A/en not_active Application Discontinuation
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4062197A (en) * | 1976-07-09 | 1977-12-13 | Hester Jarrett C | Absorption heating-cooling system |
FR2400173A1 (en) * | 1977-08-12 | 1979-03-09 | Electricite De France | Heat pump with wide range efficiency - has secondary circuit to heat refrigerant in liq. receiver |
DE3143534A1 (en) * | 1981-11-03 | 1983-06-01 | Joachim 2930 Varel Rieder | Continuously running absorption refrigeration unit without a refrigerant distillation process |
FR2529651A1 (en) * | 1982-07-05 | 1984-01-06 | Inst Francais Du Petrole | Cooling and/or heating by using electrochemical reactions. |
Also Published As
Publication number | Publication date |
---|---|
AU6327690A (en) | 1991-04-11 |
FR2652884B1 (en) | 1992-10-16 |
FR2652884A1 (en) | 1991-04-12 |
JP3006692B2 (en) | 2000-02-07 |
US5086623A (en) | 1992-02-11 |
JPH03134437A (en) | 1991-06-07 |
DE69000766T2 (en) | 1993-04-29 |
DE69000766D1 (en) | 1993-02-25 |
EP0422973B1 (en) | 1993-01-13 |
KR910008351A (en) | 1991-05-31 |
CA2027066A1 (en) | 1991-04-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0576314B1 (en) | Process and installation for the production of gaseous oxygen under pressure | |
EP0644996B1 (en) | Gas cooling process and plant, especially for natural gas liquefaction | |
EP0465366B1 (en) | Process and installation for the simultaneous production of methane and carbon monoxide | |
CA2062506C (en) | Process and apparatus for producing pressurized oxygen gas | |
EP0818661B1 (en) | Improved process and apparatus for cooling and liquefaction of natural gas | |
FR2764972A1 (en) | Liquefaction of natural gas using two stages and monophase refrigerant | |
FR2829401A1 (en) | Fractionating a gas produced by pyrolysis of hydrocarbons, including hydrogen and hydrocarbons, in particular 1-4C hydrocarbons, water and CO2 | |
EP0618415B1 (en) | Process and installation for the production of gaseous oxygen and/or gaseous nitrogen under pressure by distillation of air | |
EP0422973B1 (en) | Refrigeration process and apparatus using a refrigerant mixture | |
FR2787560A1 (en) | PROCESS FOR CRYOGENIC SEPARATION OF AIR GASES | |
FR2540612A1 (en) | METHOD AND INSTALLATION FOR COOLING A FLUID, IN PARTICULAR A LIQUEFACTION OF NATURAL GAS | |
WO1985003072A1 (en) | Method and plant for recovery of the heavier hydrocarbons of a gas mixture | |
EP0718576A1 (en) | Process for separating a gaseous mixture by cryogenic distillation | |
FR2723183A1 (en) | Process for the liquefaction of hydrogen | |
EP1446620B1 (en) | Method and installation for helium production | |
EP0914584B1 (en) | Method and plant for producing an air gas with a variable flow rate | |
EP0644390A1 (en) | Gas compression process and assembly | |
FR2479846A1 (en) | REFRIGERATION PROCESS FOR THE RECOVERY OR FRACTIONATION OF A MIXTURE CONSISTING OF MAINLY BUTANE AND PROPANE, CONTENT IN RAW GAS, USING AN EXTERNAL MECHANICAL CYCLE | |
CA2115399C (en) | Process and plant for oxygen pressure generation | |
EP4325150A1 (en) | Method and apparatus for cooling hydrogen | |
EP4279848B1 (en) | Method and apparatus for cooling a co2-rich flow | |
FR2636543A1 (en) | Process and plant for treating a purge gas from an ammonium synthesis plant | |
FR2864213A1 (en) | Producing oxygen, argon or nitrogen as high-pressure gas by distilling air comprises using electricity generated by turbine to drive cold blower | |
FR2685460A1 (en) | Method and installation for producing gaseous oxygen under pressure by distillation of air | |
BE582975A (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19900924 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): BE DE DK ES FR GB IT NL SE |
|
17Q | First examination report despatched |
Effective date: 19920409 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
ITF | It: translation for a ep patent filed | ||
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): BE DE DK ES FR GB IT NL SE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Effective date: 19930113 Ref country code: SE Effective date: 19930113 Ref country code: ES Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY Effective date: 19930113 Ref country code: NL Effective date: 19930113 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19930126 |
|
REF | Corresponds to: |
Ref document number: 69000766 Country of ref document: DE Date of ref document: 19930225 |
|
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20050815 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20050817 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20050818 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20050909 Year of fee payment: 16 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060930 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20060930 Year of fee payment: 17 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070403 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20060920 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20070531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060920 |
|
BERE | Be: lapsed |
Owner name: S.A. L'*AIR LIQUIDE POUR L'ETUDE ET L'EXPLOITATION Effective date: 20060930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20061002 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070920 |