EP0406047B1 - Process for heat-treating of metals - Google Patents
Process for heat-treating of metals Download PDFInfo
- Publication number
- EP0406047B1 EP0406047B1 EP90401645A EP90401645A EP0406047B1 EP 0406047 B1 EP0406047 B1 EP 0406047B1 EP 90401645 A EP90401645 A EP 90401645A EP 90401645 A EP90401645 A EP 90401645A EP 0406047 B1 EP0406047 B1 EP 0406047B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- nitrogen
- metals
- heat treatment
- atmosphere
- treatment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Revoked
Links
- 238000000034 method Methods 0.000 title claims description 23
- 229910052751 metal Inorganic materials 0.000 title claims description 22
- 239000002184 metal Substances 0.000 title claims description 22
- 150000002739 metals Chemical class 0.000 title claims description 12
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 136
- 229910052757 nitrogen Inorganic materials 0.000 claims description 62
- 239000001301 oxygen Substances 0.000 claims description 39
- 229910052760 oxygen Inorganic materials 0.000 claims description 39
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 38
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 30
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 23
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 21
- 239000001257 hydrogen Substances 0.000 claims description 20
- 229910052739 hydrogen Inorganic materials 0.000 claims description 20
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 17
- 238000001816 cooling Methods 0.000 claims description 16
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 15
- 238000000137 annealing Methods 0.000 claims description 14
- 238000010438 heat treatment Methods 0.000 claims description 14
- 238000011144 upstream manufacturing Methods 0.000 claims description 11
- 238000001179 sorption measurement Methods 0.000 claims description 10
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims description 8
- 229910002091 carbon monoxide Inorganic materials 0.000 claims description 8
- 239000007789 gas Substances 0.000 claims description 7
- 238000000926 separation method Methods 0.000 claims description 7
- 238000004821 distillation Methods 0.000 claims description 6
- 238000007254 oxidation reaction Methods 0.000 claims description 6
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 5
- 238000004320 controlled atmosphere Methods 0.000 claims description 5
- 239000001569 carbon dioxide Substances 0.000 claims description 4
- 238000006243 chemical reaction Methods 0.000 claims description 4
- 229910052802 copper Inorganic materials 0.000 claims description 4
- 239000010949 copper Substances 0.000 claims description 4
- 238000005261 decarburization Methods 0.000 claims description 4
- 230000003647 oxidation Effects 0.000 claims description 4
- 238000006555 catalytic reaction Methods 0.000 claims description 3
- 238000005336 cracking Methods 0.000 claims description 3
- 229910000906 Bronze Inorganic materials 0.000 claims description 2
- 229910000831 Steel Inorganic materials 0.000 claims description 2
- 239000010974 bronze Substances 0.000 claims description 2
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 claims description 2
- 239000010959 steel Substances 0.000 claims description 2
- 239000000126 substance Substances 0.000 claims 1
- 239000000203 mixture Substances 0.000 description 8
- 241000894007 species Species 0.000 description 6
- 239000004215 Carbon black (E152) Substances 0.000 description 5
- 229930195733 hydrocarbon Natural products 0.000 description 5
- 150000002430 hydrocarbons Chemical class 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 230000008030 elimination Effects 0.000 description 4
- 238000003379 elimination reaction Methods 0.000 description 4
- 239000012535 impurity Substances 0.000 description 4
- 238000002485 combustion reaction Methods 0.000 description 3
- 150000002431 hydrogen Chemical class 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 239000013626 chemical specie Substances 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 1
- 241001080024 Telles Species 0.000 description 1
- 238000005256 carbonitriding Methods 0.000 description 1
- 238000005255 carburizing Methods 0.000 description 1
- 239000000567 combustion gas Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 235000021183 entrée Nutrition 0.000 description 1
- 230000009931 harmful effect Effects 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 150000002926 oxygen Chemical class 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/74—Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
- C21D1/76—Adjusting the composition of the atmosphere
- C21D1/763—Adjusting the composition of the atmosphere using a catalyst
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/74—Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
- C21D1/76—Adjusting the composition of the atmosphere
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D3/00—Diffusion processes for extraction of non-metals; Furnaces therefor
- C21D3/02—Extraction of non-metals
- C21D3/04—Decarburising
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/02—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working in inert or controlled atmosphere or vacuum
Definitions
- the invention relates to the heat treatment of metals in a continuous furnace by continuous passage of metal parts longitudinally in an elongated treatment zone under a controlled atmosphere having an upstream part at high temperature where said controlled atmosphere comprises nitrogen and reducing chemical species. , in particular hydrogen, possibly carbon monoxide and a downstream part of cooling under atmosphere formed essentially by admission of nitrogen.
- the present invention relates to a method of heat treatment of metals in a continuous furnace which makes it possible to substantially reduce the cost of the treatment atmosphere while ensuring the requisite qualities of said atmosphere which must be devoid of oxygen both in the zone of treatment at high temperature than in the cooling zone and this method according to the invention is characterized in that, in the upstream part at high temperature, the nitrogen constituting the treatment atmosphere is supplied by admission of nitrogen to residual oxygen content not exceeding 5%, and preferably greater than 0.5%, produced by air separation according to permeation or adsorption techniques, in that the reducing species in said treatment atmosphere are at all moment present in contents at least sufficient to eliminate the oxygen thus admitted with the nitrogen, while the nitrogen admitted in the downstream part of cooling t, with a flow rate lower than the nitrogen flow rate admitted to the upstream portion at high temperature, is of the type developed prior to admission with practically zero oxygen content.
- nitrogen is used industrially pure, that is to say nitrogen with practically zero oxygen content, which however only represents a flow rate of between 2% and 30%, preferably between 2 and 25%, of the total gas flow admitted in the treatment area.
- the nitrogen admitted downstream from the cooling zone is produced according to the technique of air separation by cryogenic distillation.
- the nitrogen admitted downstream from the cooling zone is produced according to the technique of air separation by permeation or adsorption producing crude nitrogen with residual oxygen content, which is eliminated. by catalytic reaction with a supply of hydrogen in an amount at least sufficient to ensure the elimination of residual oxygen.
- the invention also relates to the application of the process to the annealing of metal parts.
- Such annealing is carried out here in a continuous oven at a temperature of the order of 800 ° C.
- water vapor can be added to the cooling zone to obtain, on the contrary, a bluing of the parts.
- the annealing of copper tubes is carried out here in a continuous furnace at a temperature of the order of 650 ° C.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
- Furnace Details (AREA)
- Separation By Low-Temperature Treatments (AREA)
- Heat Treatment Of Strip Materials And Filament Materials (AREA)
- Heat Treatments In General, Especially Conveying And Cooling (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Description
L'invention concerne le traitement thermique de métaux dans un four continu par passage continu de pièces métalliques longitudinalement dans une zone de traitement allongée sous atmosphère contrôlée présentant une partie amont à température élevée où ladite atmosphère contrôlée comprend de l'azote et des espèces chimiques réductrices, notamment de l'hydrogène, éventuellement du monoxyde de carbone et une partie aval de refroidissement sous atmosphère formée essentiellement par admission d'azote.The invention relates to the heat treatment of metals in a continuous furnace by continuous passage of metal parts longitudinally in an elongated treatment zone under a controlled atmosphere having an upstream part at high temperature where said controlled atmosphere comprises nitrogen and reducing chemical species. , in particular hydrogen, possibly carbon monoxide and a downstream part of cooling under atmosphere formed essentially by admission of nitrogen.
Ce type d'atmosphère contrôlée qui est essentiellement utilisée pour le recuit de pièces métalliques est jusqu'à maintenant produit de la façon suivante :
- soit on utilise un générateur exothermique assurant la combustion incomplète d'un hydrocarbure et de l'air et délivrant des gaz de combustion qui, après épuration éventuelle, contiennent de l'hydrogène et du monoxyde de carbone à des teneurs qui dépendent du rapport air/hydrocarbure admis dans le générateur. A titre d'exemple, une telle atmosphère exothermique peut contenir 5 à 10 % de monoxyde de carbone et 6 à 12 % d'hydrogène ;
- soit on réalise une atmosphère synthétique à partir de gaz industriels purs tels que l'azote et l'hydrogène. L'azote est produit par distillation cryogénique de l'air et contient très peu d'impuretés ; par exemple le total des impuretés vapeur d'eau et oxygène est généralement inférieur à 10 vpm. On adjoint à cet azote très pur de l'hydrogène, ou un hydrocarbure, ou de l'hydrogène et un hydrocarbure, ou du méthanol de façon à produire une atmosphère réductrice et le cas échéant non décarburante pour traiter les pièces métalliques.
- either an exothermic generator is used ensuring the incomplete combustion of a hydrocarbon and air and delivering combustion gases which, after possible purification, contain hydrogen and carbon monoxide at contents which depend on the air / air ratio hydrocarbon admitted into the generator. For example, such an exothermic atmosphere may contain 5 to 10% of carbon monoxide and 6 to 12% of hydrogen;
- or a synthetic atmosphere is produced from pure industrial gases such as nitrogen and hydrogen. Nitrogen is produced by cryogenic distillation of air and contains very few impurities; for example, the total of water vapor and oxygen impurities is generally less than 10 vpm. To this very pure nitrogen is added hydrogen, or a hydrocarbon, or hydrogen and a hydrocarbon, or methanol so as to produce a reducing atmosphere and if necessary non-decarburizing to treat the metal parts.
Cette seconde façon de faire a l'avantage de maîtriser complètement la qualité de l'atmosphère de traitement mais présente l'inconvéninent de mettre en oeuvre de l'azote cryogénique qui est relativement onéreux et donc peu adapté à une utilisation dans des fours continus généralement non-étanches. C'est la raison pour laquelle on a été conduit à tenter de réduire les débits de gaz admis en créant notamment en sortie de la zone de refroidissement un tampon d'azote qui permet d'éviter toute remontée d'air au travers de la zone de refroidissement assurant ainsi une réduction significative du débit global admis. Malgré cette réduction de débit global importante, il s'est avéré que les gaz industriellement purs sont encore loin d'être économiquement attractifs par rapport aux gaz produits par un générateur exothermique.This second way of doing things has the advantage of completely controlling the quality of the treatment atmosphere but has the drawback of using cryogenic nitrogen which is relatively expensive and therefore unsuitable for use in generally continuous ovens. not waterproof. This is the reason why we have been led to try to reduce the admitted gas flow rates by creating in particular at the outlet of the cooling zone a nitrogen buffer which makes it possible to avoid any rise of air through the zone. thus ensuring a significant reduction in the overall flow admitted. Despite this significant reduction in overall flow, it turned out that industrially pure gases are still far from being economically attractive compared to the gases produced by an exothermic generator.
C'est la raison pour laquelle, dans certaines applications où cela s'est avéré possible, on a proposé de remplacer l'azote cryogénique par de l'azote produit par séparation d'air selon les techniques d'adsorption ou de perméation sélective qui, dans certaines conditions de production, conduisent à des coûts nettement réduits par rapport à l'azote cryogénique au détriment cependant de l'impureté oxygène puisque l'azote produit par adsorption contient usuellement une teneur résiduelle en oxygène de 0,5 % à 5 % alors que la teneur résiduelle en oxygène de l'azote produit par perméation dépasse généralement 3 % et peut aller jusqu'à 10 %.This is the reason why, in certain applications where this has proved possible, it has been proposed to replace the cryogenic nitrogen by nitrogen produced by air separation according to the adsorption or selective permeation techniques which , under certain production conditions, lead to significantly reduced costs compared to cryogenic nitrogen to the detriment, however, of oxygen impurity since the nitrogen produced by adsorption usually contains a residual oxygen content of 0.5% to 5% whereas the residual oxygen content of the nitrogen produced by permeation generally exceeds 3% and can go up to 10%.
Cette impureté oxygène rend très difficile l'utilisation directe de cet azote brut pour élaborer une atmosphère de traitement thermique convenable. En pratique, on a proposé l'azote produit selon le procédé de perméation sélective uniquement pour la production d'amosphères réalisées à partir d'azote et de méthanol, comme cela est décrit dans l'article "Heat treating processes with nitrogen and methanol based atmosphere" M. KOSTELITZ and al. dans "Journal of Heat trating" volume 2 n°1 - 35 et dans les documents US-A-4279406 et EP-A-0213011 au nom de la demanderesse. Une telle atmosphère réalisée à partir d'azote à teneur résiduelle en oxygène et de méthanol peut en effet être utilisée théoriquement dans différentes applications, à savoir le chauffage avant trempe, la carbonitruration et la cémentation d'acier. Mais ce n'est que dans ce dernier domaine que l'utilisation d'azote à teneur résiduelle en oxygène a reçu une utilisation industrielle et cela du fait de la température élevée que la cémentation implique, de l'ordre de 900°C, cette température favorisant la réaction de l'oxygène résiduel véhiculé par l'azote avec les espèces chimiques de type hydrocarbures admis simultanément pour former l'atmosphère de base.This oxygen impurity makes it very difficult to directly use this crude nitrogen to develop a suitable heat treatment atmosphere. In practice, the nitrogen produced according to the selective permeation process has been proposed only for the production of atmospheres produced from nitrogen and methanol, as described in the article "Heat treating processes with nitrogen and methanol based atmosphere "M. KOSTELITZ and al. in "Journal of Heat trating" volume 2 no. 1 - 35 and in documents US-A-4279406 and EP-A-0213011 in the name of the applicant. Such an atmosphere produced from nitrogen with residual oxygen content and methanol can in fact be used theoretically in different applications, namely heating before quenching, carbonitriding and case hardening of steel. But it is only in this latter field that the use of nitrogen with residual oxygen content has received industrial use and this because of the high temperature that carburizing implies, of the order of 900 ° C., this temperature favoring the reaction of the residual oxygen conveyed by the nitrogen with the chemical species of hydrocarbon type admitted simultaneously to form the basic atmosphere.
On a bien envisagé de purifier l'azote à teneur résiduelle en oxygène produit par adsorption ou perméation en faisant réagir par voie catalytique l'oxygène avec un apport correspondant d'hydrogène suffisant pour assurer l'élimination complète de tout oxygène, mais ce procédé relativement onéreux conduit à un coût de production voisin de l'azote cryogénique, ce qui défavorise cette forme d'élaboration d'azote pur, d'autant plus que la production d'azote par adsorption ou perméation ne présente pas les avantages de souplesse et de simplicité de la production de l'azote cryogénique.It has been envisaged to purify the nitrogen with residual oxygen content produced by adsorption or permeation by reacting catalytically the oxygen with a corresponding supply of hydrogen sufficient to ensure the complete elimination of all oxygen, but this process relatively expensive leads to a production cost close to cryogenic nitrogen, which disadvantages this form of production of pure nitrogen, especially since the production of nitrogen by adsorption or permeation does not have the flexibility and simplicity of producing cryogenic nitrogen.
La présente invention vise un procédé de traitement thermique de métaux dans un four continu qui permet de réduire substantiellement le coût de l'atmosphère de traitement tout en assurant les qualités requises de ladite atmosphère qui doit être dépourvue d'oxygène aussi bien dans la zone de traitement à haute température que dans la zone de refroidissement et ce procédé selon l'invention est caractérisé en ce que, dans la partie amont à température élevée, l'azote de constitution de l'atmosphère de traitement est fourni par admission d'azote à teneur résiduelle en oxygène ne dépassant pas 5 %, et de préférence supérieure à 0,5 %, élaboré par séparation d'air selon les techniques de perméation ou d'adsorption, en ce que les espèces réductrices dans ladite atmosphère de traitement sont à tout moment présentes en teneurs au moins suffisantes pour éliminer l'oxygène ainsi admis avec l'azote, tandis que l'azote admis en partie aval de refroidissement, avec un débit inférieur au débit d'azote admis à la partie amont à température élevée, est du type élaboré préalablement à l'admission à teneur en oxygène pratiquement nulle.The present invention relates to a method of heat treatment of metals in a continuous furnace which makes it possible to substantially reduce the cost of the treatment atmosphere while ensuring the requisite qualities of said atmosphere which must be devoid of oxygen both in the zone of treatment at high temperature than in the cooling zone and this method according to the invention is characterized in that, in the upstream part at high temperature, the nitrogen constituting the treatment atmosphere is supplied by admission of nitrogen to residual oxygen content not exceeding 5%, and preferably greater than 0.5%, produced by air separation according to permeation or adsorption techniques, in that the reducing species in said treatment atmosphere are at all moment present in contents at least sufficient to eliminate the oxygen thus admitted with the nitrogen, while the nitrogen admitted in the downstream part of cooling t, with a flow rate lower than the nitrogen flow rate admitted to the upstream portion at high temperature, is of the type developed prior to admission with practically zero oxygen content.
Ainsi, dans la zone a haute température, en adjoignant ou en créant in situ en quantités suffisantes des espèces réductrices telles que l'hydrogène et le monoxyde de carbone, on assure l'élimination quasi-instantanée et quasi-complète de l'oxygène admis avec l'azote par transformation en vapeur d'eau et en gaz carbonique, tout en maintenant, si besoin est, une teneur suffisante en les dites espèces réductrices pour que les rapports H₂/H₂O et CO/CO₂ restent dans les limites convenables à la fois pour assurer l'effet de traitement requis sans pour autant provoquer l'oxydation des pièces en cours de traitement. Au contraire, dans la zone de refroidissement, où la température est nettement plus faible et en tout cas insuffisante pour assurer la réaction immédiate entre l'oxygène résiduel véhiculé par l'azote et les espèces réductrices éventuellement présentes, on utilise de l'azote industriellement pur, c'est-à-dire de l'azote à teneur en oxygène pratiquement nulle, qui cependant ne représente qu'in débit compris entre 2 % et 30 %, du préférence entre 2 et 25 %, du débit gazeux total admis dans la zone de traitement. Ainsi, l'admission d'un faible débit d'azote désoxygéné en zone froide du four permet de prévenir les rentrées d'air et l'emploi d'azote moins pur en zone chaude permet de réduire les coûts d'exploitation sans diminution des performances.Thus, in the high-temperature zone, by adding or creating in situ in sufficient quantities reducing species such as hydrogen and carbon monoxide, it ensures the almost instantaneous and almost complete elimination of the oxygen admitted. with nitrogen by transformation into water vapor and carbon dioxide, while maintaining, if necessary, a sufficient content of the said reducing species so that the H₂ / H₂O and CO / CO₂ ratios remain within the limits suitable for times to ensure the required treatment effect without causing the oxidation of the parts being treated. On the contrary, in the cooling zone, where the temperature is clearly lower and in any case insufficient to ensure the immediate reaction between the residual oxygen conveyed by the nitrogen and the reducing species possibly present, nitrogen is used industrially pure, that is to say nitrogen with practically zero oxygen content, which however only represents a flow rate of between 2% and 30%, preferably between 2 and 25%, of the total gas flow admitted in the treatment area. Thus, the admission of a low flow of deoxygenated nitrogen into the cold zone of the oven makes it possible to prevent the return of air and the use of less pure nitrogen in the hot zone makes it possible to reduce the operating costs without reducing the performances.
Selon une forme de mise en oeuvre, l'azote admis en partie aval de la zone de refroidissement est élaboré selon la technique de séparation d'air par distillation cryogénique.According to one embodiment, the nitrogen admitted downstream from the cooling zone is produced according to the technique of air separation by cryogenic distillation.
Selon une autre forme de mise en oeuvre, l'azote admis en partie aval de la zone de refroidissement est élaboré selon la technique de séparation d'air par perméation ou adsorption produisant un azote brut à teneur résiduelle en oxygène, que l'on élimine par réaction catalytique avec un apport d'hydrogène en quantité au moins suffisante pour assurer l'élimination de l'oxygène résiduel.According to another form of implementation, the nitrogen admitted downstream from the cooling zone is produced according to the technique of air separation by permeation or adsorption producing crude nitrogen with residual oxygen content, which is eliminated. by catalytic reaction with a supply of hydrogen in an amount at least sufficient to ensure the elimination of residual oxygen.
L'invention vise également l'application du procédé au recuit de pièces métalliques.The invention also relates to the application of the process to the annealing of metal parts.
L'invention sera maintenant illustrée par les exemples d'application suivants :The invention will now be illustrated by the following application examples:
Dans un four continu formant une zone allongée de traitement thermique, on admet un débit total de gaz de 120 m³/h qui se décompose de la façon suivante :
- on admet, au niveau de la zone chaude, à température de l'ordre de 900°C, 108 m³/h (90 % du débit total) d'un mélange constitué de 76 m³/h d'azote à teneur résiduelle en oxygène de 0,5 % et de 18,8 l/h de méthanol qui, par craquage dans le four, donne environ 21,3 m³/h d'hydrogène et 10,7 m³/h de monoxyde de carbone ; l'oxygène se combine immédiatement aux espèces réductrices pour former de la vapeur d'eau et du gaz carbonique. Des mesures effectuées au niveau de la zone chaude du four ont permis de constater les teneurs suivantes dans l'atmosphère de traitement :
- . H₂ = 19,5 %
- . CO₂ = 0,3 %
- . CO = 9,5 %
- . H₂O = 0,6 %
- . O₂ < 5 vpm
- on admet, à l'extrémité aval de la zone de refroidissement, afin de prévenir toute entrée d'air, 12 m³/h (10 % du débit total) constitués d'azote produit par distillation cryogénique à teneur en oxygène inférieure à 10 vpm.
- we admit, at the level of the hot zone, at a temperature of the order of 900 ° C, 108 m³ / h (90% of the total flow) of a mixture consisting of 76 m³ / h of nitrogen with residual oxygen content 0.5% and 18.8 l / h of methanol which, by cracking in the oven, gives about 21.3 m³ / h of hydrogen and 10.7 m³ / h of carbon monoxide; oxygen immediately combines with reducing species to form water vapor and carbon dioxide. Measurements carried out in the hot zone of the oven revealed the following levels in the treatment atmosphere:
- . H₂ = 19.5%
- . CO₂ = 0.3%
- . CO = 9.5%
- . H₂O = 0.6%
- . WHERE <5 vpm
- we admit, at the downstream end of the cooling zone, in order to prevent any entry of air, 12 m³ / h (10% of the total flow) consisting of nitrogen produced by cryogenic distillation with an oxygen content of less than 10 vpm .
Un tel recuit est ici effectué dans un four continu à une température de l'ordre de 800°C.Such annealing is carried out here in a continuous oven at a temperature of the order of 800 ° C.
On admet un débit total dans le four de 100 m³/h, qui se décompose de la façon suivante :
- on admet au niveau de la zone chaude, 85 m³/h (85 % du débit total) d'un mélange constitué de 68 m³/h d'azote à teneur résiduelle en oxygène de 3 % et de 10 litre/heure de méthanol qui, par craquage dans le four, produisent environ 11,3 m³/h d'hydrogène et 5,7 m³/h de monoxyde de carbone. L'oxygène résiduel se combine immédiatement aux espèces réductrices pour former de la vapeur d'eau et du gaz carbonique qui sont les agents décarburants des tôles magnétiques. Des mesures effectuées au niveau de la zone chaude du four ont permis de vérifier que la teneur en vapeur d'eau est suffisante pour assurer une décarburation du métal et que les rapports H₂/H₂O et CO/CO₂ restent suffisants pour protéger le métal contre toute oxydation en zone chaude, ce qui entraverait la décarburation.
Valeurs mesurées :- . H₂ = 9,5 %
- . CO = 5,0 %
- . H₂ = 3,5 %
- . CO₂ = 1,5 %
- . O₂ < 5 vpm
- on admet, au niveau de la zone de refroidissement, 15 m³/h (15 % du débit total) d'azote cryogénique, ce qui permet d'obtenir un recuit décarburant sans bleuissement. Le fait d'utiliser de l'azote cryogénique prévient toute oxydation du fer constituant les tôles magnétiques, cet azote cryogénique ayant pour rôle essentiel de former un tampon à la sortie du four.
- 85 m³ / h (85% of the total flow) of a mixture consisting of 68 m³ / h of nitrogen with a residual oxygen content of 3% and 10 liters / hour of methanol is admitted at the level of the hot zone. , by cracking in the furnace, produce approximately 11.3 m³ / h of hydrogen and 5.7 m³ / h of carbon monoxide. The residual oxygen immediately combines with the reducing species to form water vapor and carbon dioxide which are the decarburizing agents of magnetic sheets. Measurements carried out at the hot zone of the furnace made it possible to verify that the water vapor content is sufficient to ensure decarburization of the metal and that the H₂ / H₂O and CO / CO₂ ratios remain sufficient to protect the metal against any oxidation in a hot zone, which would hamper decarburization.
Measured values:- . H₂ = 9.5%
- . CO = 5.0%
- . H₂ = 3.5%
- . CO₂ = 1.5%
- . WHERE <5 vpm
- 15 m³ / h (15% of the total flow) of cryogenic nitrogen is allowed at the level of the cooling zone, which makes it possible to obtain a decarburizing annealing without bluing. The fact of using cryogenic nitrogen prevents any oxidation of the iron constituting the magnetic sheets, this cryogenic nitrogen having the essential role of forming a buffer at the outlet of the oven.
Le cas échéant, de la vapeur d'eau peut être ajoutée en zone de refroidissement pour obtenir, au contraire, un bleuissement des pièces.If necessary, water vapor can be added to the cooling zone to obtain, on the contrary, a bluing of the parts.
Le recuit de tubes de cuivre s'effectue ici dans un four continu à une température de l'ordre de 650°C.The annealing of copper tubes is carried out here in a continuous furnace at a temperature of the order of 650 ° C.
On admet dans le four un débit total de 180 m³/h qui se décompose de la façon suivante :
- on admet, en zone chaude, 170 m³/h (95 % du débit total) d'un mélange constitué de 165 m³/h d'azote à teneur résiduelle en oxygène de 0,5 % et de 5 m³/h d'hydrogène. Par réaction avec l'oxygène du four, il se forme environ 1,7 m³/h de vapeur d'eau, alors qu'il subsiste environ 3,3 m³/h d'hydrogène. De cette façon, on élimine quasi instantanément l'oxygène afin de ne pas oxyder le cuivre. La présence de vapeur d'eau n'a pas d'effet néfaste compte tenu de la teneur en hydrogène.
- on admet, en zone de refroidissement, 10 m³/h (5 % du débit total) d'un mélange d'azote, de vapeur d'eau et d'hydrogène, obtenu en ajoutant à de l'azote brut de perméation ou d'adsorption présentant une teneur résiduelle en oxygène de 0,5 %, de l'hydrogène en quantité au moins suffisante pour assurer l'élimination de l'oxygène par réaction catalytique.
- 170 m³ / h (95% of the total flow) of a mixture consisting of 165 m³ / h of nitrogen with a residual oxygen content of 0.5% and 5 m³ / h of hydrogen is allowed in the hot zone . By reaction with oxygen from oven, approximately 1.7 m³ / h of water vapor is formed, while approximately 3.3 m³ / h of hydrogen remains. In this way, oxygen is eliminated almost instantaneously so as not to oxidize the copper. The presence of water vapor has no harmful effect taking into account the hydrogen content.
- we admit, in the cooling zone, 10 m³ / h (5% of the total flow) of a mixture of nitrogen, steam and hydrogen, obtained by adding to raw nitrogen permeation or d adsorption having a residual oxygen content of 0.5%, hydrogen in an amount at least sufficient to ensure the elimination of oxygen by catalytic reaction.
On applique des conditions identique à l'exemple n° 3.Conditions identical to example 3 are applied.
Claims (9)
- A method for the heat treatment of metals by continuously passing metal components longitudinally through an elongate treatment zone under a controlled atmosphere having an upstream high-temperature portion where this controlled atmosphere comprises nitrogen and chemical reducing species, in particular hydrogen and possibly carbon monoxide, and a downstream cooling portion under an atmosphere formed substantially by a supply of nitrogen, characterised in that, in the upstream high-temperature portion, the nitrogen forming the atmosphere is provided by supplying nitrogen obtained by air separation using permeation or adsorption techniques with a residual oxygen content of no more than 5%, the reducing species being present at all times in quantities at least sufficient to eliminate the oxygen supplied in this way with the nitrogen, and in that the nitrogen supplied to the downstream cooling portion, at a rate of flow which is lower than that of the nitrogen supplied to the upstream high-temperature portion, is of the type processed prior to supply and has an oxygen content which is practically zero.
- A method for the heat treatment of metals as claimed in claim 1, characterised in that the residual oxygen content of the nitrogen forming the atmosphere of the upstream high-temperature portion is greater than 0.5%.
- A method for the heat treatment of metals as claimed in claim 1 or 2, characterised in that the nitrogen supplied to the downstream cooling portion is processed using the technique of air separation by cryogenic distillation.
- A method for the heat treatment of metals as claimed in claim 1 or 2, characterised in that the nitrogen supplied to the downstream cooling portion is processed using the technique of air separation by permeation or adsorption producing crude nitrogen with a residual oxygen content that is eliminated by catalytic reaction with a supply of hydrogen in a quantity at least sufficient to ensure that the residual oxygen is eliminated.
- A method for the heat treatment of metals as claimed in any one of claims 1 to 4, characterised in that the flow of nitrogen supplied to the downstream cooling portion of the treatment zone is between 2% and 25% of the overall gas flow supplied to the treatment zone.
- Application of the method for the heat treatment of metals as claimed in any one of claims 1 to 5 to the annealing of metal components.
- Application of the method for the heat treatment of metals as claimed in claim 6 to the annealing of steel components with a supply, in the upstream portion of the treatment zone which is at high temperature, of nitrogen with a residual content of oxygen and methanol producing, by cracking, hydrogen and carbon monoxide such that the annealing treatment atmosphere has H₂/H₂0 and CO/CO₂ content ratios providing this treatment atmosphere with its reducing nature.
- Application of the method for the heat treatment of metals as claimed in claim 6 to the decarburization annealing of magnetic components with a supply, in the upstream portion of the treatment zone which is at high temperature, of nitrogen with a residual oxygen content providing, by reaction with the reducing species, water vapour and carbon dioxide in quantities sufficient to ensure decarburization, while the H₂/H₂0 and CO/CO₂ content ratios remain sufficient to prevent any oxidation of the metal in this upstream high-temperature portion.
- Application of the method for the heat treatment of metals as claimed in claim 6 to the annealing of copper or bronze components at a temperature of between 350°C and 700°C with a supply of nitrogen with a residual content of oxygen and hydrogen to the upstream high-temperature portion of the treatment zone.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR8908786 | 1989-06-30 | ||
FR8908786A FR2649123B1 (en) | 1989-06-30 | 1989-06-30 | METHOD FOR HEAT TREATING METALS |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0406047A1 EP0406047A1 (en) | 1991-01-02 |
EP0406047B1 true EP0406047B1 (en) | 1995-08-16 |
Family
ID=9383322
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP90401645A Revoked EP0406047B1 (en) | 1989-06-30 | 1990-06-14 | Process for heat-treating of metals |
Country Status (7)
Country | Link |
---|---|
US (1) | US5069728A (en) |
EP (1) | EP0406047B1 (en) |
JP (1) | JPH0347914A (en) |
CA (1) | CA2020077A1 (en) |
DE (1) | DE69021658T2 (en) |
ES (1) | ES2075177T3 (en) |
FR (1) | FR2649123B1 (en) |
Families Citing this family (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4016183A1 (en) * | 1990-05-19 | 1991-11-21 | Linde Ag | METHOD FOR IMPROVING THE PROVISION OF TREATMENT GAS IN HEAT TREATMENTS |
KR940003784B1 (en) * | 1990-07-31 | 1994-05-03 | 가와사키 세이데츠 가부시키가이샤 | Continuous annealing line having carburizing/nitriding furnace |
FR2668166B1 (en) * | 1990-10-18 | 1994-05-20 | Air Liquide | PROCESS FOR THE PREPARATION OF A CONTROLLED ATMOSPHERE FOR HEAT TREATMENT OF METALS. |
US5221369A (en) * | 1991-07-08 | 1993-06-22 | Air Products And Chemicals, Inc. | In-situ generation of heat treating atmospheres using non-cryogenically produced nitrogen |
US5342455A (en) * | 1991-07-08 | 1994-08-30 | Air Products And Chemicals, Inc. | In-situ generation of heat treating atmospheres using a mixture of non-cryogenically produced nitrogen and a hydrocarbon gas |
US5259893A (en) * | 1991-07-08 | 1993-11-09 | Air Products And Chemicals, Inc. | In-situ generation of heat treating atmospheres using a mixture of non-cryogenically produced nitrogen and a hydrocarbon gas |
DE4212307C2 (en) * | 1992-04-13 | 1994-07-28 | Messer Griesheim Gmbh | Process for the production of a protective or reaction gas for the heat treatment of metals |
US5284526A (en) * | 1992-12-22 | 1994-02-08 | Air Products And Chemicals, Inc. | Integrated process for producing atmospheres suitable for heat treating from non-cryogenically generated nitrogen |
US5417774A (en) * | 1992-12-22 | 1995-05-23 | Air Products And Chemicals, Inc. | Heat treating atmospheres |
US5298090A (en) * | 1992-12-22 | 1994-03-29 | Air Products And Chemicals, Inc. | Atmospheres for heat treating non-ferrous metals and alloys |
US5320818A (en) * | 1992-12-22 | 1994-06-14 | Air Products And Chemicals, Inc. | Deoxygenation of non-cryogenically produced nitrogen with a hydrocarbon |
US5254180A (en) * | 1992-12-22 | 1993-10-19 | Air Products And Chemicals, Inc. | Annealing of carbon steels in a pre-heated mixed ambients of nitrogen, oxygen, moisture and reducing gas |
US5348592A (en) * | 1993-02-01 | 1994-09-20 | Air Products And Chemicals, Inc. | Method of producing nitrogen-hydrogen atmospheres for metals processing |
US5401339A (en) * | 1994-02-10 | 1995-03-28 | Air Products And Chemicals, Inc. | Atmospheres for decarburize annealing steels |
EP0763143A4 (en) * | 1994-04-25 | 1997-06-11 | Sturm Ruger & Co | Method of treating titanium parts |
US5968457A (en) * | 1994-06-06 | 1999-10-19 | Praxair Technology, Inc. | Apparatus for producing heat treatment atmospheres |
US5441581A (en) * | 1994-06-06 | 1995-08-15 | Praxair Technology, Inc. | Process and apparatus for producing heat treatment atmospheres |
NZ314334A (en) * | 1996-04-19 | 1997-09-22 | Boc Group Inc | Method of heat treating a metal with nitrogen rich gas preheated and then having oxygen-reactive gas added |
IT1291205B1 (en) * | 1997-03-18 | 1998-12-29 | Rivoira S P A | PROCEDURE FOR THE GENERATION OF A PROTECTIVE ATMOSPHERE WITH LOW DEW POINT AND FREE FROM OXYGEN, FOR THE PERFORMANCE OF |
US6168774B1 (en) | 1997-08-07 | 2001-01-02 | Praxair Technology, Inc. | Compact deoxo system |
US6458217B1 (en) | 2000-02-29 | 2002-10-01 | American Air Liquide, Inc. | Superadiabatic combustion generation of reducing atmosphere for metal heat treatment |
US6533996B2 (en) * | 2001-02-02 | 2003-03-18 | The Boc Group, Inc. | Method and apparatus for metal processing |
DE10347312B3 (en) * | 2003-10-08 | 2005-04-14 | Air Liquide Deutschland Gmbh | Process for the heat treatment of iron materials |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1063624B (en) * | 1957-07-25 | 1959-08-20 | Robert Von Linde Dipl Ing | Industrial furnace |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB671421A (en) * | 1949-08-12 | 1952-05-07 | Edward Alfred Wheeley | Improvements in and relating to production of nitrogen or nitrogen-hydrogen mixtures |
US3492378A (en) * | 1968-05-13 | 1970-01-27 | Bethlehem Steel Corp | Method of operation of a continuous strip heating furnace |
US3950192A (en) * | 1974-10-30 | 1976-04-13 | Monsanto Company | Continuous carburizing method |
US4049472A (en) * | 1975-12-22 | 1977-09-20 | Air Products And Chemicals, Inc. | Atmosphere compositions and methods of using same for surface treating ferrous metals |
US4183773A (en) * | 1975-12-25 | 1980-01-15 | Nippon Kakan Kabushiki Kaisha | Continuous annealing process for strip coils |
GB2018299A (en) * | 1978-01-17 | 1979-10-17 | Boc Ltd | Heat treatment of metal |
DE2844167C2 (en) * | 1978-10-10 | 1984-07-26 | Fa. J. Aichelin, 7015 Korntal | Process for generating a nitrogen protective gas atmosphere in a furnace chamber and protective gas industrial furnace for carrying out this process |
US4359351A (en) * | 1979-10-23 | 1982-11-16 | Air Products And Chemicals, Inc. | Protective atmosphere process for annealing and or spheroidizing ferrous metals |
US4334938A (en) * | 1980-08-22 | 1982-06-15 | Air Products And Chemicals, Inc. | Inhibited annealing of ferrous metals containing chromium |
US4415379A (en) * | 1981-09-15 | 1983-11-15 | The Boc Group, Inc. | Heat treatment processes |
FR2524006B1 (en) * | 1982-03-23 | 1985-10-11 | Air Liquide | PROCESS FOR THE SURFACE CURING OF METAL PARTS |
JPS63310915A (en) * | 1987-06-10 | 1988-12-19 | Daido Steel Co Ltd | Operating method for continuous type heat treatment furnace |
-
1989
- 1989-06-30 FR FR8908786A patent/FR2649123B1/en not_active Expired - Fee Related
-
1990
- 1990-06-14 EP EP90401645A patent/EP0406047B1/en not_active Revoked
- 1990-06-14 ES ES90401645T patent/ES2075177T3/en not_active Expired - Lifetime
- 1990-06-14 DE DE69021658T patent/DE69021658T2/en not_active Expired - Fee Related
- 1990-06-26 US US07/543,581 patent/US5069728A/en not_active Expired - Fee Related
- 1990-06-26 JP JP2165861A patent/JPH0347914A/en active Pending
- 1990-06-28 CA CA002020077A patent/CA2020077A1/en not_active Abandoned
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1063624B (en) * | 1957-07-25 | 1959-08-20 | Robert Von Linde Dipl Ing | Industrial furnace |
Also Published As
Publication number | Publication date |
---|---|
FR2649123A1 (en) | 1991-01-04 |
CA2020077A1 (en) | 1990-12-31 |
DE69021658D1 (en) | 1995-09-21 |
DE69021658T2 (en) | 1996-02-01 |
US5069728A (en) | 1991-12-03 |
ES2075177T3 (en) | 1995-10-01 |
JPH0347914A (en) | 1991-02-28 |
FR2649123B1 (en) | 1991-09-13 |
EP0406047A1 (en) | 1991-01-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0406047B1 (en) | Process for heat-treating of metals | |
EP0482992B1 (en) | Process for the production of a thermic treatment atmosphere | |
EP0407254A1 (en) | Process for thermal treating of metals | |
CA1114656A (en) | Process for sintering powder metal parts | |
EP0375477B1 (en) | Process for producing an atmosphere for thermal treatment by air separation by permeation | |
US1979820A (en) | Heat treatment | |
CA2053503A1 (en) | Processes for production of a controlled atmosphere for metal heating | |
EP1080243B1 (en) | Low pressure carbonitriding method for metal alloy parts | |
EP0370872B1 (en) | Process for producing an atmosphere for thermal treatment by air separation by adsorption | |
FR2639249A1 (en) | Process for producing an atmosphere for heat treatment by air separation using permeation and drying | |
FR2653448A1 (en) | Process for the production of an atmosphere for metal treatment | |
US5779826A (en) | Method for forming heat treating atmospheres | |
EP2376663B1 (en) | Method for producing a gaseous atmosphere for treating metals | |
JPH08511063A (en) | Method and apparatus for heat treatment of workpieces | |
US5194096A (en) | Carburizing treatment of a steel with reduction of the hydrogen content in the carburized layer | |
WO2003000947A1 (en) | Method for carburizing and carbonitriding steel by carbon oxide | |
WO2013102714A1 (en) | Method for generating a mixture of gas containing substantially equal proportions of carbon monoxide and hydrogen | |
JPS599624B2 (en) | Gas nitrocarburizing method | |
JPS60194014A (en) | Iron material heat treatment | |
BE562895A (en) | ||
BE837460A (en) | IMPROVEMENTS IN HOT REDUCING GAS PRODUCTION PROCESSES | |
JPH1046237A (en) | Method for improving atmosphere in continuous heat treatment furnace for steel strip | |
BE436849A (en) | ||
BE497446A (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19900619 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): BE DE ES FR IT SE |
|
17Q | First examination report despatched |
Effective date: 19921209 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): BE DE ES FR IT SE |
|
ITF | It: translation for a ep patent filed | ||
REF | Corresponds to: |
Ref document number: 69021658 Country of ref document: DE Date of ref document: 19950921 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2075177 Country of ref document: ES Kind code of ref document: T3 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19960510 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 19960520 Year of fee payment: 7 Ref country code: BE Payment date: 19960520 Year of fee payment: 7 |
|
PLBQ | Unpublished change to opponent data |
Free format text: ORIGINAL CODE: EPIDOS OPPO |
|
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19960528 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 19960613 Year of fee payment: 7 |
|
PLBF | Reply of patent proprietor to notice(s) of opposition |
Free format text: ORIGINAL CODE: EPIDOS OBSO |
|
26 | Opposition filed |
Opponent name: LINDE AKTIENGESELLSCHAFT Effective date: 19960515 |
|
PLBF | Reply of patent proprietor to notice(s) of opposition |
Free format text: ORIGINAL CODE: EPIDOS OBSO |
|
PLBF | Reply of patent proprietor to notice(s) of opposition |
Free format text: ORIGINAL CODE: EPIDOS OBSO |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Effective date: 19970615 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Effective date: 19970630 |
|
RDAH | Patent revoked |
Free format text: ORIGINAL CODE: EPIDOS REVO |
|
BERE | Be: lapsed |
Owner name: S.A. L' AIR LIQUIDE POUR L'ETUDE ET L'EXPLOITATION Effective date: 19970630 |
|
RDAH | Patent revoked |
Free format text: ORIGINAL CODE: EPIDOS REVO |
|
EUG | Se: european patent has lapsed |
Ref document number: 90401645.8 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
RDAG | Patent revoked |
Free format text: ORIGINAL CODE: 0009271 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: PATENT REVOKED |
|
27W | Patent revoked |
Effective date: 19980202 |